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ABSTRACT

Spreadsheet systems used by nearly 1/10th of the world’s population
allow users to store and analyze data in an intuitive and flexible
interface. Yet the scale of data and the complexity of formula com-
putation often leads to spreadsheets hanging and freezing on small
changes. We propose a new asynchronous approach to formula
computation: instead of freezing the interface until all of the for-
mulae are computed, we return control to the user quickly, while
computing the formulae in the background, ensuring interactiv-
ity. For formulae that are being computed in the background, we
indicate the formula computation progress on the spreadsheet front-
end via visual cues. To ensure interactivity without introducing
inconsistencies, we develop a flexible and efficient formula compu-
tation framework that (a) identifies cell dependencies in bounded
time, and (b) schedules computation to maximize the number of
cells available to the user over time. We bound the dependency
identification time by compressing the formula dependency graph
lossily, a problem we demonstrate to be NP-HARD, and propose
techniques for compression and maintenance. Finding an optimal
computation schedule to maximize cell availability is also NP-HARD,
and even merely obtaining a schedule can be expensive—we pro-
pose an on-the-fly scheduling technique to address this. Overall, we
have incorporated our approach in a scalable spreadsheet system
that we are developing, targeted at operating on arbitrarily large
datasets on a spreadsheet frontend.

1 INTRODUCTION

Spreadsheets are one of the most popular systems for ad-hoc
storage and analysis of data, with a user base of roughly
10% of the world’s population [31]. From personal bookkeep-
ing to complex financial reports to scientific data analysis,
the ubiquity of spreadsheets as a computing system is un-
paralleled. Nardi and Miller [24] identify two reasons for
their success: an intuitive tabular presentation, and in-situ
formula computation. In particular, formula computation en-
ables end-users with little programming experience to be
able to interrogate their data, and compute derived statistics.

However, the sheer volume of data available for analysis
in a host of domains exposes the limitations of traditional
formula computation. A recent study exploring Microsoft
Excel forum posts on Reddit describes several instances of Ex-
cel becoming unresponsive while computing formulae [21].

One user posted! that complex calculations on Excel can
take as long as four hours to finish, during which time the
user interface is unresponsive:

“...approximately 90% of the time I spend with
the spreadsheet is waiting for it to recalculate ...’
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Another user reported using spreadsheets to track their en-
tire life, and periodically cull data to keep the size manage-
able, but they still have trouble with formula computation:

“...the spreadsheet locks up during basic calculations—
the entire screen freezes...”

The chief culprit for this unresponsiveness is that in tra-
ditional spreadsheet systems, every change, be it changing
values or formulae, triggers a sequence of computation of
dependent formulae. This sequence could take minutes to
complete, depending on the size of the data and complexity
of the formulae. Since these systems aim to present a “consis-
tent” view after any update, i.e., one with no stale values, they
forbid users from interacting with the spreadsheet while the
computation is being performed, limiting interactivity. They
only return control to the user after the computation is com-
plete: the only indication to the user is a bar at the bottom,
as in Figure 1(c), with no viewing, scrolling, or edits allowed.
Recent studies have shown that even delays of 0.5s can lead
to fewer hypotheses explored and insights generated [19],
so this synchronous computation approach is not desirable.

One workaround that traditional spreadsheet systems pro-
vide is a manual computation approach, wherein computation
of dependent formulae is performed only when triggered
manually by users. This method breaks consistency, as stale
values are visible to the users, as in Figure 1(b), potentially
leading to users drawing incorrect conclusions.

Towards Interactivity and Consistency

We introduce an asynchronous computation approach that
preserves both interactivity and consistency. After updates, we
return control to the user almost immediately, “blur out” cells
that are not yet up-to-date or consistent, and compute them
in the background, incrementally making them available
once computed. Users are able to continue working on the
rest of the spreadsheet. We show an example in Figure 1(a)

1 All Reddit quotes are paraphrased to preserve anonymity.
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Figure 1: (a) Our proposed asynchronous computation main-
tains interactivity and consistency by showing computation
status instead of a stale value. (b) Manual computation mode
in traditional spreadsheets achieve interactivity but violate
consistency. (c) Automatic calculation mode in traditional
spreadsheets achieve consistency but keep user interface
non-responsive for the duration of the computation.

where the formula in B2 summing up one million values is
“blurred out”, with a progress bar indicating the computation
progress, while users can still interact with the rest of the
sheet. For example, a user can add a new formula to cell B3,
after which both formulae are computed in the background.

We can quantify the benefit of this approach using a new
metric we developed, called unavailability, i.e., the number
of cells that are not available for the user to operate on, at
any given time. Synchronous computation has the highest
unavailability, since all of the sheet is inaccessible while
computation is being performed. In contrast, asynchronous
computation allows users to interact with most of the sheet
while computation happens in the background, leading to
low unavailability, while still respecting consistency.

While the asynchronous computation approach is appeal-
ing and natural, and dramatically minimizes the time during
which users cannot interact with the spreadsheet, and conse-
quently the unavailability, it requires a fundamental redesign
of the formula computation engine, thanks to two primary
challenges: dependencies, and scheduling. Next, we describe
these challenges along with our approaches to address them.

Dependencies: Challenges and Approach

Since we need to preserve both interactivity and consistency,
once a change is made, we need to quickly identify cells
dependent on that change, and therefore must be “blurred
out”, or made unavailable, as in B2 in Figure 1(a). One simple
approach is to traverse the network or graph of formula de-
pendencies to find all dependent cells, and then make them
unavailable. However, during this period, the entire spread-
sheet is unavailable, so we aim to minimize the time spent in
identifying dependent cells. Unfortunately, for computation-
ally heavy spreadsheets, a traditional dependency graph that
captures formula dependencies at the cell level [32] can be

quite large, so identifying dependencies can be computation-
ally intensive and cannot be done in a bounded time. Ideally,
we would like to do this within interactive timescales (less
than 500 ms [19]), without sacrificing consistency.

To enable fast lookups of dependencies, we introduce the
idea of compression. Dependency graphs can tolerate false
positives, i.e., identifying a cell as being impacted by an up-
date, even when it is not. However, false negatives are not
permitted, since they violate consistency. The goal of com-
pression is to represent the dependencies of each cell by
using a bounded number of regions. Using this representa-
tion, we can quickly identify the impacted cells after a user
updates a cell, ensuring interactivity and consistency.

When compressing our representation of the dependency
graph, we trade off the size of the representation and the
number of false positives. The size impacts the dependency
lookup time, and the false positives impact the formula com-
putation time, and thus both impact the unavailability. We
show that graph compression is NP-HARD. Thus, formally,
our challenge is to find an optimal way to compress the de-
pendencies such that the unavailability metric is optimized.

We propose techniques and data structures for compress-
ing the dependency graph and its maintenance.

Scheduling: Challenges and Approach

Once we have identified cells that are dependent on the
change that was made (with possibly a few false positives),
we then need to compute them efficiently, so that we can
decrease unavailability as much and as quickly as possible.
In the asynchronous computation model, we incrementally
return the values of the dependent cells to users as soon as
they are computed, as opposed to waiting for all cells to be
computed, as is done in a synchronous computation model.
When adhering to a schedule, or an order in which the cells
are computed, the time that a dependent cell is unavailable
essentially comprises of (i) time waiting for prior cells in the
schedule to complete, and (ii) computing of the cell itself.
Therefore, choosing the schedule is crucial because it directly
impacts the unavailability. For example, if we compute a cell
that takes more time to compute early in the schedule, all
other cells pay the penalty of being unavailable during this
time. A computation schedule must respect dependencies:
the computation of a cell must be scheduled only after all
the cells that it depends on are computed.

We find that not only is determining an optimal schedule
NP-HARD, merely obtaining a schedule can be prohibitively
expensive as it requires traversal of the entire dependency
graph—this is undesirable and can negate the benefits gained
from incrementally returning the computed values within
the asynchronous computation model. We propose an on-the-
fly scheduling technique that reduces the up-front scheduling
time by performing local optimization.

Putting It All Together



We are incorporating our asynchronous computation model

in a scalable spreadsheet system that we’re building DATASPREAD [7,

8], with the goal of holistically integrating spreadsheets with
databases to address the scalability limitations of traditional
spreadsheet systems. DATASPREAD achieves scalability by uti-
lizing a two-tiered memory model, where data resides in an
underlying relational database and is fetched on-demand into
main-memory, which is limited in size. This introduces addi-
tional challenges that go beyond those found in traditional
spreadsheets which are completely main-memory resident.
(Note, however, that our techniques for decreasing unavail-
ability apply equally well to traditional spreadsheets as well
as our spreadsheet-database hybrid, DATASPREAD.) We ad-
ditionally discuss how we support this two-tiered memory
model in this paper. For the two-tiered memory model, the
computation schedule impacts not only the unavailability
metric but also the total computation time significantly.

Contributions. The following list describes our contribu-
tions and also serves as the outline of the paper.

1. Asynchronous Computation. In Section 2, we intro-
duce the asynchronous computation model ensuring inter-
activity and consistency. Additionally, we propose a novel
unavailability metric to quantitatively evaluate our model.

2. Fast Dependency Identification. In Section 3, we pro-
pose the idea of lossily compressing the dependency graph
to identify dependencies in a bounded time. We show that
the problem is NP-HARD, and develop techniques for com-
pression and maintenance of this graph.

3. Computation Scheduling. In Section 4, we discuss the
importance of finding an efficient schedule for computing
formulae. Since, not only is finding the optimal schedule NP-
HaRD but also obtaining a schedule expensive, we propose
an on-the-fly scheduling technique.

4. Incorporation in the Prototype of DATASPREAD. In Sec-
tion 5, we describe DATASPREAD, a scalable spreadsheet sys-
tem we built that incorporates the ideas discussed in this
paper, operating on very large spreadsheets.

5. Experimental Evaluation. Throughout the paper, we
provide illustrative experiments to demonstrate individual
ideas. In Section 6, we discuss our experimental setup and
provide evaluation with real-world spreadsheets.

2 ASYNCHRONOUS COMPUTATION

We propose an asynchronous computation model to address
the interactivity issues of traditional spreadsheet systems
when operating on complex spreadsheets. We first define
key spreadsheet terminology. We then introduce two prin-
ciples that influence the design of our model, and conclude
with new concepts for our proposed model. We also define
unavailability to formally quantify spreadsheet usability and
evaluate the performance of our computation models.

Figure 2: A dependency graph that captures the dependen-
cies of Example 1 at the granularity of cells.

For simplicity, we explain the concepts and techniques in
the context of standard spreadsheet tools, which are main-
memory-based, where once loaded the cost of data retrieval
is negligible compared to the cost of formula evaluation.
The techniques, as described for main-memory systems, are
beneficial even if used in systems with different memory
settings. In Appendix A, we extend our techniques to two-tier
memory systems wherein data retrieval cost is significant.

While the techniques discussed in this paper extend to
normal usage of spreadsheets where multiple update events
happen throughout the timeline, for ease of exposition, we
focus on changes resulting from a single update to a cell u.

2.1 Standard Spreadsheet Terminology

We now formally introduce spreadsheet terminology that
we utilize throughout the paper.

Spreadsheet Components. A spreadsheet consists of a col-
lection of cells. A cell is referenced by its column and its row.
Columns are identified using letters A, . . ., Z, AA, . .. in order,
while rows are identified using numbers 1, 2, . .. in order. A
range is a collection of cells that form a contiguous rectan-
gular region, identified by the top-left and bottom-right cells
of the region. For instance, A1:C2 is the range containing the
six cells A1, A2, B1, B2, C1, C2.

A cell may contain content that is either a value or a for-
mula. A value is a constant belonging to some fixed type. For
example, in Figure 1(b), cell A1 (column A, row 1) contains
the value HW1. In contrast, a formula is a mathematical ex-
pression that contains values and/or cell/range references as
arguments to be manipulated by operators or functions. A
formula has an evaluated value, which is the result of evalu-
ating the expression, with cell references substituted by their
values or evaluated values. For the rest of the paper, we shall
use the term “value” to refer to either the value or the evalu-
ated value of a cell, depending on what the cell contains. In
addition to a value or a formula, a cell could also additionally
have formatting associated with it, e.g., width, or font. For
the purpose of this paper, we focus only on computation.
Dependencies. In spreadsheets, cell contents may change,
and maintaining the correct evaluated values of formulae is
necessary for consistency. Consider the following example.



ExaMPLE 1. A spreadsheet with the following formulae:
(i) B1=A1C1, (ii) B2=A2*C1, (iii) B3=A3*C1, (iv) B4=SUM(B1:B3),
(v) C4=B3+B4, and (vi) E2=SUM(B2:D2).

The cell B4 has a formula SUM(B1:B3), which indicates that
B4’s value depends on B1:B3’s value. Any time a cell is up-
dated, the spreadsheet system must check to see whether
other cells must have their values recalculated. For exam-
ple, if B2’s value is changed, B4’s value must be recalculated
using the updated value of B2. We formalize the notion of
dependencies as follows.

DEeFINITION 1 (DIRECT DEPENDENCY). For two cells u and
v, u — v is a direct dependency if the formula in cell v
references cell u or a range containing cell u. Here, u is called a
direct precedent of v, and v is called a direct dependent of u.

DEFINITION 2 (DEPENDENCY). For two cellsu andv,u = v
is a dependency if there is a sequence wy, w1, . . ., wy, of cells
where wy = u, w, = v, and for alli € [n], wi_; = w; isa
direct dependency. Here, u is called a precedent of v, and v is
called a dependent of u. We denote the set of dependents of a
cellu as A,.

One can construct a conventional dependency graph of
direct dependencies [32]. Figure 2 depicts the graph for the
formulae in Example 1 at the granularity of cells. Here, each
vertex corresponds to a single cell, e.g., A1. The edges in
the graph indicate direct dependencies. For example, the
directed edge from A1 to B1 indicates a direct dependency
due to formula A1*C1 in cell B1. The dependencies of a cell
u are therefore the vertices that are reachable from u in the
dependency graph. For example, cell B1 has B4 and C4 as de-
pendents. As this dependency graph captures dependencies
at the granularity of cells, this graph grows quickly when
the ranges mentioned in the formulae are large [32]. For ex-
ample, a formula SUM(A1:A1000) in cell F2 will require 1,001
vertices and 1,000 edges to capture the dependencies.

2.2 Design Principles

We introduce consistency and interactivity as two funda-
mental principles that any system should maintain during
formula computation. Spreadsheets should be consistent, i.e.,
they should not display stale values. For example, if a cell B2
contains the formula SUM(A1:A225500) and the user updates
the value in cell A1, the user should not see the stale value
in B2 until the corresponding formula is recomputed. Along
with consistency, spreadsheet systems must ensure interac-
tivity, meaning they should react to user events, such as cell
updates, rapidly, and provide users with results as soon as
possible—this is crucial for the usability of any interactive
exploration systems [19]. Thus, we introduce the following
two design principles by which our solution must abide.

PrINCIPLE 1 (CONSISTENCY). Never display an outdated or
incorrect value on the user interface.

PRINCIPLE 2 (INTERACTIVITY). Return control to users within
a bounded time after any cell update user event.

In relation to these two principles, we describe the computa-
tion model adopted by traditional spreadsheet systems, and
then discuss our proposed model.

Synchronous Computation Model. Traditional spread-
sheet systems adopt a synchronous computation model, where,
upon updating u, the entire spreadsheet becomes unavail-
able during the evaluation of cells that are dependent on
u. The spreadsheet system waits for all of the computation
to complete before providing updated values and returning
control back to the user—thereby adhering to the consistency
principle. However, the waiting time can be substantial for
computationally intensive spreadsheets. According to our
recent Reddit study [21], waiting for formula computation
is one of the primary sources of poor interactivity. In other
words, when the number of cells dependent on u is large, this
model sacrifices interactivity, with often minutes to hours
of unresponsiveness.

Asynchronous Computation Model. To adhere to inter-
activity in addition to consistency, we propose an asynchro-
nous computation model. Here, upon updating u, the cells
dependent on u are computed asynchronously in the back-
ground without blocking the user interface.

One naive asynchronous approach could be to merely
modify the synchronous model to return control to the user
immediately after an update, even before all the dependent
cells are computed. However, similar to the manual compu-
tation option found in traditional spreadsheet systems, this
approach violates consistency. Consider Figure 1(b), where
even after updating the value of cell B1 from 80 to 40, the cell
B3 is not updated to the correct value of 90 unless a full com-
putation of the spreadsheet is triggered manually—violating
consistency, cell B3 shows 130, a stale value.

To satisfy the consistency principle within the asynchro-
nous computation model, we instead provide users with the
cells that the system can ensure to have correct values in
a short time, while notifying users of cells that have stale
values—see Figure 1(a), where upon updating A1 the com-
putation of cell B2 is performed in the background and the
computation progress is depicted by a progress bar. Our so-
lution is to add a “dependency identification” step before
computation of any dependent formulae. The goal of this
step is to efficiently identify the cells that do not depend on
an updated cell, so that they can be quickly marked clean
and “control” of them can be returned to the user.



2.3 New Concepts

We now introduce new concepts that help us describe and
quantify the benefits of the asynchronous computation model.

Partial Results. Within the asynchronous computation model,

we introduce the notion of partial results: providing users
with the cells that the system can ensure to have correct (or
consistent) values and notifying users of cells that have stale
values. Thus, within these partial results, each cell on the
spreadsheet is determined by the computation model to be
in the “clean” or the “dirty” state, defined as follows.

DEeFINITION 3 (CLEAN CELL). We consider a cell u to be
clean if and only if (i) all of u’s precedents are clean and (ii)u’s
evaluated value is determined to be up-to-date.

DEFINITION 4 (DIrTY CELL). We consider a cell u to be
dirty if and only if (i) at least one of u’s precedents are dirty or
(ii) the u’s evaluated value is determined to be not up-to-date.

Adhering to the consistency principle, (i) for clean cells, the
evaluated value is displayed on the user interface (like in
existing spreadsheet systems), and (ii) for dirty cells, the cell
displays a progress bar depicting the status of its computa-
tion, thus preventing users from acting on stale values. Note
that a dirty cell is one that is determined by the computation
model to be dirty, and therefore requires recomputation. As
we will see later, a dirty cell may be a false positive, but we
will treat both false positives and true positives equivalently
since they will both be recomputed—and are therefore both
dirty from the perspective of the computation model.
Finally, we introduce one last term to describe the state of
a cell: the unavailable state. A cell is unavailable if it cannot
be used by the user for various reasons, defined as follows.

DEFINITION 5 (UNAVAILABLE CELL). We consider a cell ¢
to be unavailable if and only if a user cannot act on c either
because (i) ¢ is determined to be dirty or (ii) the system has not
yet determined if ¢ is in the clean or dirty state or (iii) the user
interface is unresponsive.

Utilizing the idea of partial results within the asynchro-
nous computation model, we propose to provide users with
the cells that are being computed as soon as they are ready
(moving them from the dirty to the clean state), without
waiting for all of the cells to be computed. This idea of incre-
mentally computing and marking cells as clean allows the
number of unavailable cells to gradually decrease over time.
Unavailable and Dirty Time. Quantifying the time a cell
is unavailable to the user to act upon is an important factor
for understanding the usability of the spreadsheet. Similarly,
the dirty time is the time a cell spends in the dirty state. We
formalize the notion of unavailable and dirty time as below.

DEFINITION 6 (UNAVAILABLE TIME). The unavailable time
of a cell ¢, denoted as unavailable(c), is the amount of time
that ¢ remains in the unavailable state after an update.
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Figure 3: Unavailability comparing synchronous and asyn-
chronous models. For the asynchronous model, 4., denotes
dependency identification time, A, is the set of cells that are
determined to be dependent on u and therefore need compu-
tation, and fcyec denotes computation time for these cells.

DErFINITION 7 (DIRTY TIME). The dirty time of a cell c,
denoted as dirty(c), is the amount of time that ¢ remains in
the dirty state after an update.

Unavailability. To quantitatively evaluate different com-
putation models, we introduce the metric of unavailability,
which we define as the area under the curve that, for a com-
putation model, plots the number of unavailable cells in a
spreadsheet with respect to time.

DEFINITION 8 (UNAVAILABILITY). The unavailability Uy
for a computation model M is given by Uy = fot D(t)dt =
D ces unavailable(c), where D(t) denotes the number of un-
available cells at time t and S is the set of all spreadsheet cells.

Simply put, unavailability measures the effectiveness of
a computation model by quantifying the number of cells
that a user cannot act upon over time. Therefore, a compu-
tation model with lower unavailability is more usable than
a model with a higher value. For the synchronous compu-
tation model, for the entire time the user interface is un-
responsive, all of the cells within the spreadsheet are un-
available. On the other hand, by incrementally returning
results in the asynchronous computation model, for a cell c,
unavailable(c) = tgep + dirty(c), where tgep is the time taken
by the system to determine if ¢ is in the clean or dirty state.

Illustrative Experiment 1: Asynchronous vs. Synchro-
nous Computation. The goal of this experiment is to quan-
titatively compare the asynchronous and synchronous com-
putation models using unavailability. We describe the experi-
mental setup later in Section 6. Here, we adopt a conventional
dependency identification mechanism as described in Sec-
tion 2.1 and a naive schedule for computing cells—we will
build on this and develop better variants later. We use a syn-
thetic spreadsheet with a total of 10,000 cells out of which
5,000 cells are formulae dependent on a cell u. We update
the value of u and plot the number of unavailable cells on



the y-axis with respect to time on the x-axis for both compu-
tation models—see Figure 3. The synchronous computation
model (in red) performs poorly under unavailability, since it
keeps the interface unresponsive for the entire duration of
computation of all of the dependent cells. The asynchronous
computation model (in green) performs better in terms of
unavailability, since it allows users to interact with most of
the spreadsheet cells while performing calculations asyn-
chronously in the background, with the cells incrementally
returned to the user interface as they are complete.

We now describe how the computations proceed with
respect to time for both models—refer to Figure 3. Upon up-
dating u (at time = 0), the asynchronous model identifies
dependents of u, as is marked by ¢4, on the graph. For both
models, all 10,000 cells in the sheet are unavailable for the
first 890 ms, as the sheet is unresponsive. After this point, the
asynchronous model has determined which cells are clean
and which cells are dirty, and it returns the clean cells to the
user. Thus, the number of unavailable cells drops down to
5,000 from 10,000 after 890 ms. However, under the synchro-
nous model, control has not been returned to the user, and
thus all cells are still unavailable. Under the asynchronous
model, at the 5,700 ms mark, all of the cells have been com-
puted and marked clean—this is slightly after the 4,900 ms
mark, which is when the synchronous model returns control
of all of the cells to the user. This time difference is due to
the fact that the asynchronous model takes some time to
identify dependent cells in a separate step from computing
them, while the synchronous model does not have to have
this separate step. Note that the area under the green curve
is greater than that under the red curve, and therefore the
asynchronous model performs better under unavailability.

Takeaway: The asynchronous computation model improves
usability of spreadsheets, without forgoing correctness, by
(i) quickly returning control to the user and (ii) incrementally
making cells available.

Thus, while this experiment shows that the asynchronous
computation model already has a lower unavailability than
the synchronous one, it can be reduced even further; in the
remainder of this paper, we discuss approaches for doing so.

3 FAST DEPENDENCY IDENTIFICATION

In this section, we propose our first technique for decreasing
unavailability: identifying dependencies in a bounded time.
Upon updating u, our strategy is to quickly identify u’s de-
pendencies, ideally, within a bounded time—this enables us
to promptly identify the cells that do not depend on u as
clean and return their control to the user. Our strategy, the
dependency table, aims to reduce tgep in Figure 3, which is the
time during which the user interface is non-responsive for
the asynchronous computation model. Reducing t4cp, is par-
ticularly crucial when the update affects a small number of

cells relative to the size of the spreadsheet. We propose com-
pression to accelerate dependency identification by grouping
a large number of dependent cells into a smaller number of
regions. We then discuss construction and maintenance of
the compressed dependency table.

3.1 Motivation and Problem Statement

After a user updates a cell v in a spreadsheet, to minimize the
number of unavailable cells over time, we need to quickly
identify the cells that depend on u. Until we can determine
that a cell ¢ is independent of u or not, we cannot designate
c as clean and return its control to the user. For example,
within the asynchronous computation model in Figure 3, we
return the control to the user in 890 ms, which corresponds
to the time it takes dependency identification to finish.

A naive approach to identify the cells that depend on u
is to individually check whether each cell is reachable from
u in the dependency graph. However, this strategy is time
consuming for large and complex spreadsheets, since all cells
will remain in the unavailable state for a long period of time.

Our goal is to efficiently identify the cells that do not de-
pend on an updated cell, so that they can be quickly marked
clean and their control can be returned to the user. Thus, we
formalize our problem as follows:

PROBLEM 1 (DEPENDENCY IDENTIFICATION). Design a data
structure that, upon updating u, quickly (preferably in bounded
time) identifies u’s dependencies. Additionally, modifications
to the data structure, i.e., inserts and deletes, should be quick
(again, preferably in bounded time).

Our proposed method of capturing dependencies is to
maintain a dependency graph. Rather than the conventional
method of recording dependencies between individual cells
(Figure 2), we capture dependencies between regions—this
substantially reduces the size of the dependency graph. Fig-
ure 4 shows the dependency graph for Example 1. Our de-
pendency graph has the following four components. (i) A
cell vertex corresponding to each cell, in gray, e.g., A1, B1.
(ii) A range vertex corresponding to each range that appears
in at least one formula, in red, e.g., B1:B3. (iii) A formula edge
from u to v if u is an operand in the formula of cell v, e.g.,
the edge from A1 to B1. (iv) An inherent edge from u to v if
cell u is contained in range v, e.g., the edge from B1 to B1:B3.

In the dependency graph, the cells that depend on a cell u
are those represented by vertices reachable from the vertex
representing u. For example, the dependencies of the cell C1
are B1, B2, B3, B4, C4, and E2.

We can persist the formula edges in the dependency graph
as adjacency lists. Thus, the number of dependent regions
within formulae is a good proxy for storage cost. For example,
we can represent the formula A1*C1 within cell B1 using
two directed edges: (i) from A1 to B1 and (ii) from C1 to
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Figure 4: Dependency graph capturing dependencies be-
tween regions thus reducing the graph size.

B1. Rather than storing the inherent edges explicitly, which
can be expensive, we can infer these edges from the cell
and ranges they represent. To enable efficient lookups for
inherent edges, we can use a spatial index, such as R-tree [15].
To find outgoing edges from a cell ¢, we can issue a query
to the R-tree to find all ranges containing c. For example, to
infer the outgoing edges from B2, we can search for all the
nodes that overlap with B2—for B2 we have B1:B3 and B2:D2.

Challenges With Dependency Traversal. The lookup of
dependencies by traversing a full dependency graph takes
time proportional to the number of dependencies, which is in-
efficient when the number of dependencies is large. Consider
the scenario depicted in Figure 5—looking up dependencies
of A1 takes Q(n) time, where n is the number of dependen-
cies. For example, the t4ep of 890 ms in Figure 3 will increase
linearly with the number of dependencies. Therefore, to per-
form the dependency identification in a bounded time, we
cannot traverse the dependency graph on-the-fly.

@ HA2 A3 > >@

A1=0  A2=A1+1 A3=A2+1 An=A(n — 1)+1
Figure 5: Long Dependency Chain

3.2 Compressed Dependency Table (CDT)

To overcome the aforementioned challenge, we propose an
alternate manner to capture dependencies. In addition to
the dependency graph, we maintain a “cache” of dependents
for each cell, in a dependency table—see Figure 7(a). The
dependency table stores key-value pairs of cells and their
dependents, and thus allows us to query a cell u and quickly
identify all of the cells that depend on u. We can construct the
dependency table from scratch by traversing the dependency
graph multiple times, starting from every vertex.

As discussed, the number of dependencies of a cell is ©(n)
in the worst case, where n is the number of cells on the
spreadsheet, and thus even recording each dependency at a
cell level could take too long and be expensive to store. There-
fore, we propose compression to reduce both the dependency
identification time and the dependency output size.
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Figure 6: Comparing unavailability for by using dependency
graph vs dependency table with varying Kcomp.

cell dependents cell dependents

Al B1, B4, C4 Al B1, B4:C4

A2 B2, B4, C4, E2 A2 B2:C4, E2

A3 B3,B4,C4 A3 B3,B4:C4

B3 B4, C4 B3 B4, C4

C1 B1, B2, B3, B4, C4, E2 C1 B1:C4, E2
(@) (b)

Figure 7: Compressing dependency table to bound the num-
ber of dependents: (a) original before compression (b) after
compression with Keomp = 2.

Recall that to ensure consistency, we must recalculate all
the dependent cells on a cell update. If the dependency table
includes a “false positive”, i.e., a cell cpp that is not an actual
dependency of u, the system will trigger a recalculation of
crp, whose value will remain the same. In other words, the
dependency table is false positive tolerant—the presence of
a false positive does not affect correctness, but can cause
unnecessary calculations. On the other hand, a “false neg-
ative”, a cell cpy that is an actual dependency of u but is
missing from the table, is unacceptable, because a update
to u would not trigger a recalculation of cpy, leading to a
possibly incorrect value for cpy.

A compressed dependency table, or CDT for short, is a
variation of a dependency table that enables identifying de-
pendencies in O(1) time—see Figure 7(b). As ranges naturally
represent a group of cells, we express the dependents in a
compressed dependency table as ranges. For example, depen-
dents of C1 can be expressed as B1:B3, B4:C4, E2 with no false
positives, or as B1:C4, E2 with three false positives (C1, C2,
C3). For a set of cells C to be expressed as a set of regions R,
we require that the regions in R can collectively “cover” the
set C. We formalize the notion of a cover as follows.

DEeFINITION 9 (COVER). For a set C of cells, a set R =
{R1,...,Rn} of ranges is a cover of C if C C R", where R”
denotes the set of cells that are in at least one of the ranges
Ry, ..., Ry,. The size of the cover R, denoted by size(R), is |R)|.
The cost of the cover R, denoted by cost(R), is |RU|.



To ensure that dependents of a cell u can be retrieved and
reported in constant time, we limit the size of the cover to
a constant Kcomp. In Figure 7(b), the Kcomp is 2. Varying the
value of Keomp can significantly impact the unavailability,
due to the following: there is a trade-off between the time
it takes to perform dependency identification (t4ep in Fig-
ure 3) and the number of cells that remain when dependency
identification is complete (A, in Figure 3). This trade-off is
because the less time we spend identifying dependencies, the
smaller the Kcomp and the more false positives we introduce
into the dependency table. This increase in false positives
causes the cost of the cover, and therefore the total number
of dirty cells at the time immediately following dependency
identification, to increase. Ultimately, we need a value of
Kecomp that minimizes unavailability.

Illustrative Experiment 2: Impact of Kcomp. In this exper-
iment we quantitatively demonstrate the benefit of using a
dependency table instead of a traditional dependency graph
using unavailability. Additionally, we also demonstrate the
impact of varying Kcomp for the dependency table. We con-
sider a synthetic spreadsheet having 10,000 cells out of which
5,000 cells contain formulae. Out of the 5,000 formulae cells,
50% of the cells are dependent on a cell u, which we inter-
sperse with cells that are independent of u. For this synthetic
spreadsheet, we update the value of u and plot the number
of unavailable cells on the y-axis with respect to time on the
x-axis for the asynchronous computation model—see Fig-
ure 6. Due to a large number of dependencies, dependency
identification using the dependency graph (in purple) takes
a significant time of 1.4 seconds. The three remaining curves
show the benefit of using a dependency table—here, we vary
Keomp and observe its impact on the time for identifying de-
pendencies. At one extreme, we have the blue curve where
Kecomp is 2,000—the dependency identification takes around
60 ms. On the other hand, the green curve, when Kcomp is 20,
remains in the dependency identification step for very little
time (20 ms). However, to compress all of the dependents of
a cell into 20 regions, the number of false positives grow to
2,400 cells. Therefore, even though the green curve returns
control to the user in a few milliseconds, it takes more time
to clean all the dirty cells. In this example, Kcomp = 2,000 (in
blue) performs the best under the unavailability metric, as
its curve encloses the least area.
Takeaway: Dependency table with lossy compression of depen-
dencies bounds the time for which user interface is unresponsive.

3.3 Construction of the CDT

When constructing the compressed dependency table, our
goal is to group dependents of each cell into Kcomp groups
while allowing for the fewest false positives and no false
negatives. We formalize the problem as follows:

PrROBLEM 2 (DEPENDENTS COMPRESSION). Given a set C of
cells and a size parameter k, find the cover of C whose size does
not exceed k with the smallest cost.

Grouping the dependents of a cell u into Kcomp regions
amounts to solving Problem 2 with a set A, of cells and a size
parameter Kcomp, where A, is the set of cells dependent on
u. For a cover R, the number of false positives is |[R”| — |A,].
Thus, minimizing the number of false positives is equivalent
to minimizing the cost of the cover. It turns out that the
aforementioned problem is NP-HARD—see Theorem 1. The
proof of the theorem is given in Appendix B.

THEOREM 1. The decision version of DEPENDENTS COMPRES-
SION is NP-HARD.

Greedy Heuristic. Since efficiently finding the best com-
pression is hard, we propose a greedy algorithm for graph
compression: while the number of ranges representing de-
pendents of a cell exceeds Kcomp, two of those ranges are
selected and replaced by the smallest range enclosing them;
repeat until the number of ranges reduce to Komp. We can
use various heuristics for selecting the two ranges to com-
bine. One such simple heuristic is to select two ranges such
that replacing them with their enclosing range introduces
the fewest false positives, which, as we will see, does well
in practice. Note that due to the incremental nature of our
compression algorithm, we can use it for the maintenance of
the dependency table when we add a new dependency, as we
will see next. The pseudocode for the greedy compression
algorithm is given as Algorithm 1 in Appendix B.3.

3.4 Maintenance of the CDT

We now discuss how to update the compressed dependency
table when formulae are changed. Adhering to the interactiv-
ity principle, our goal is to return control to the user quickly
after an update. Therefore, the time taken to modify the de-
pendency table must be small. Finding all dependents of a
cell by traversing the dependency graph again, for example,
is infeasible. We now introduce techniques for inserting into
and deleting elements from the dependency table.

Deleting dependencies. Deleting a dependent from the
dependency table can potentially introduce false negatives.
To illustrate this, consider the example provided in Figures 4
and 7. Here, C4 is a dependent of B3. Suppose the formula
in C4 is changed to =B4+3, and thus the direct dependency
B3 — C4is deleted. However, we cannot remove C4 from the
dependent list of B3, because C4 remains a dependent of B3,
albeit no longer a direct one. In other words, the dependency
between C4 and B3 is due to more than one formula. Another
issue is deleting a single dependent cell from one represented
by a range, which is difficult to do efficiently without leading
to a highly fragmented, inefficient R-tree.



A simple way to circumvent deletion issues in the com-
pressed dependency table is to make no changes to the table
upon direct dependency deletion. If d is a dependent that is
supposed to be deleted but is instead ignored and kept, then d
becomes a false positive, which, as previously discussed, does
not affect correctness but adds to computation time. Over
time, however, false positives resulting from deletion accu-
mulate. We combat this issue by periodically reconstructing
the compressed dependency table from scratch, particularly
during spreadsheet idle time. Such a method is also beneficial
because the dependents of a cell can change drastically over
the lifetime of a spreadsheet, and an entirely new grouping
of cells into ranges may lead to a significant decrease in the
number of false positives.

Adding dependencies. Adding a direct dependency can
be quite time-consuming in the worst case. Consider the
example in Figure 8, where the formula of B1 is changed
from =0 to =A3+1, and thus a new direct dependency A3 — B1
is added. Because of this change, A3 and its precedents must
have their entries changed in the dependency table by adding
B1, B2, B3 as their dependents, which is quite time consuming.

(AD)——HA2——HA)—(B1——(B2)——(B3)
A1=0 A2=A1+1 A3=A2+1 _B1=0  B2=B1+1 B3=B2+1

B1=A3+1

Figure 8: Adding a new direct dependency in a dependency
chain.

To get around the aforementioned issue, we introduce
lazy dependency propagation. The idea is to only add the
direct dependency (A3 — B1) to the dependency table. Such
direct dependencies have a must-expand status (indicated
as a single bit), indicating that the dependency is recently
added and not fully processed. Also, the dependency table
is put into a special unstable state (another bit), indicating
that at least one dependency has the must-expand status,
because we can no longer perform the dependency lookup in
the dependency table in the same manner. We propagate the
must-expand dependencies in the background, say, during
idle time. More precisely, for a must-expand dependency
u — v, dependents of v are added as dependents of u and all
its precedents (in the example above, adding B1, B2, and B3
as dependents to cells A1, A2 and A3). The dependency table
leaves the unstable state once we are done propagating all
must-expand dependencies.

To identify dependents of u in an unstable dependency
table, one must look up dependents recursively, similar to
traversing a dependency graph. However, a lookup requires
no further recursive steps if none of its dependents have a
must-expand dependent.

For example, instead of updating all entries as in Fig-
ure 9(a), B1is added as a must-expand dependent of A3, as in
Figure 9(b). At this unstable state, to identify dependents of

cell dependents cell dependents

Al A2, A3, B1, B2, B3 Al A2, A3
A2 A3, B1, B2, B3 A2 A3
A3 B1,B2, B3 A3* B1*
B1 B2,B3 B1 B2,B3
B2 B3 B2 B3
B3 B3

(a) (b)

Figure 9: Adding dependencies to dependency table: (a)
naive method (b) lazy dependency propagation (must-
expand dependencies are marked by asterisks)

A1, it is insufficient to just report A2, A3 as dependents, even
if neither of the cells are must-expand dependents. Since A3
has a must-expand dependent B1, the recursive lookup con-
tinues, to include B2 and B3. Since neither of the dependents
of B1 (which are B2 and B3) has a must-expand dependent,
recursion can stop there. Eventually, the must-expand depen-
dent is resolved by a background thread and the dependency
table becomes similar to that shown in Figure 9(a).

The downside of this approach is that dependency iden-
tification does not have a constant time guarantee until all
must-expand dependencies are propagated and the table
leaves the unstable state. However, this approach quickly
returns control to the user and allows users to perform other
spreadsheet operations while we update the dependency
table, potentially at the expense of speed of subsequent op-
erations, if they come in rapid succession.

Note that adding dependents to a cell can push the number
of dependents beyond the Kcomp limit. To ensure constant
lookup time when the dependency table leaves the unsta-
ble state, we reduce the number of ranges representing the
dependents down to Kcomp using the method of repeated
merging of ranges described in Section 3.3.

4 COMPUTATION SCHEDULING

In this section, we propose our second technique for decreas-
ing unavailability: computation scheduling. After updating a
cell u, we need to find an efficient schedule for the computa-
tion of the cells that depend on u to reduce the amount of time
they spend being unavailable. We explain the significance of
scheduling, discuss how obtaining a complete scheduling up
front can be prohibitively expensive, and provide a solution,
on-the-fly scheduling. We discuss the extension, weighted
computation scheduling, that prioritizes computation based
on what users are currently interacting.

Recall that, for asynchronous computation, we incremen-
tally provide users with cell values as soon as they are com-
puted, without waiting for the formula engine to compute
the remaining dirty cells. We motivate scheduling by experi-
mentally demonstrating its impact on unavailability.
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Ilustrative Experiment 3: Computation Schedule. The
goal of this experiment is to demonstrate the impact of sched-
uling. Here, we consider a synthetic spreadsheet with six
formula cells. The formulae perform summation using the
SUM function of varying sized ranges to simulate varying
complexities. In this case, as the complexity of a formula in
increases, the time to compute it increases as well. These for-
mula cells are independent of each other but dependent on a
cell u. For this sample spreadsheet, we update the value of u
and plot the number of formula cells that are unavailable on
the y-axis with respect to time on the x-axis—see Figure 10.
Even though the total time required to complete cleaning all
the cells is the same across all possible schedules (around
40,000 ms), the time spent by each cell in the dirty state
varies, which impacts unavailability. Schedule 1 and 2 adopt
a random schedule, and thus differ in terms of unavailability.
The best schedule computes the cells in the increasing order
of complexity, thereby minimizing unavailability.

Takeaway: Computation scheduling is important within the
asynchronous computation model and impacts the number of
cells that are available to users over time.

4.1 Motivation and Problem Statement

The computation scheduling problem naturally arises from
the idea of partial results (Section 2.3): if we are displaying the
computed cell values to the user as we finish computing them,
in what order should we compute cells? For our computation
scheduling problem, we define cost(c) to quantify the time
taken for computing a cell c. For now we assume a simple
independent computation model where we ignore the impact
of caching cells ; we will discuss its impact later and relax
this assumption. Their formal definitions are as follows.

DEFINITION 10 (CosT). The cost of a cell ¢, denoted by
cost(c), is the amount of time needed to compute the evaluated
value of ¢, assuming the values of its precedents are already
computed.
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AssUMPTION 1 (INDEPENDENT COMPUTATION MODEL). We
assume that the cost of computing a cell ¢, i.e., cost(c), is inde-
pendent of the computation schedule. In other words, c takes
the same time to evaluate, regardless of when we compute c.

Note that for a synchronous computation model, compu-
tation scheduling is unimportant. The total evaluation time
for all cells dependent on u is }..cp, cost(c), where A, is the
set of cells dependent on u. Therefore, in the synchronous
model, since all cells in the sheet remain unavailable until all
of the computations are completed, the unavailable time for
every cell in the spreadsheet is equal to t4ep + Xcep, cOSt(c),
where t4.p is the dependency identification time, and thus
unavailability is Ugne = S| - (taep + Lcen, cost(c)), where S
is the set of cells in the spreadsheet, regardless of the order
in which the cells in A, are computed.

On the other hand, when we incrementally return cells
in the asynchronous model, dirty(c) is not the same across
all cells because a cell becomes clean as soon as its value
is evaluated. Therefore, choosing the order in which cells
are computed is crucial because it affects unavailability. For
example, one simple intuition is to avoid calculating cells
with a high cost early in the schedule, since all other cells
must incur this cost in their unavailable time. We will now
formally define the computation scheduling problem.

Computation Scheduling Problem. Upon updating u, our
goal is to decide the order of evaluation of dependents of
u, i.e., Ay, such that the order minimizes unavailability. The
primary constraint for scheduling the computation of a cell
c is that the cells that are precedents of c, if they are dirty,
need to be become clean before c itself can be evaluated.
Otherwise, the computation would rely on outdated values
resulting in incorrect results. Note that because cyclic depen-
dencies are forbidden in spreadsheet systems, there is always
at least one order that follows the dependency constraint
of the problem: a topological order. Formally, we define the
dependency constraint as follows.

DEFINITION 11 (DEPENDENCY CONSTRAINT). A computa-
tion ordercy, . . ., c, of cells is valid only if the following holds:
ifi < j, then c; is not a dependent of c;.

Recall that the dirty time of a cell ¢ is the amount of time
until its value is computed, which includes the time waiting
for the earlier elements in the scheduled order to be com-
puted as well as the cost of computing c itself, as follows.

DEFINITION 12 (DIRTY TIME WITH RESPECT TO A SCHED-
ULE). In a computation ordercy, .. .,c,, the dirty time for the
cell ¢; is dirty(c;) = Z,l-:1 cost(c;j) = dirty(c;—1) + cost(c;).

We formalize our scheduling problem as follows, which is
shown as NP-HARD by Lawler [17].



PrOBLEM 3 (COMPUTATION SCHEDULING). Given a set of
dirty cells (A) along with the dependencies among them, de-
termine a computation order cq, . .., c, of all the cells in A
that minimizes unavailability, i.e, 3, ca dirty(c;), under the
dependency constraint.

4.2 On-the-fly Scheduling

In addition to the fact that COMPUTATION SCHEDULING is
NP-HARD, upon updating u, merely obtaining a schedule
can be prohibitively expensive. The dirty time defined in the
previous subsection (Definition 12) only takes into account
computation time, but not the time to perform the schedul-
ing itself. If there are n dirty cells in A,, then the amount
of time to obtain any complete schedule satisfying the de-
pendency constraints is Q(n), as each of the n cells must be
examined at least once to determine dependency and the
cost of computation. If the scheduling algorithm takes time
ts, then performing scheduling up front increases the dirty
time of each cell in A, by t;, and no progress towards their
computation is made during that time. Such an effect is unde-
sirable and potentially negates any gains from incrementally
computing and showing results to the users.

To overcome this issue, upon updating u, we do not de-
termine the complete order of all dependents of u up front—
instead, we utilize the heuristic of performing scheduling
“on-the-fly” by prioritizing a small sample of cells at a time
based on their costs. A cell’s exact computation cost can
be difficult to determine exactly; the number of precedents
provides a good approximation. We can easily determine the
number of precedents by looking at a cell’s formula.

Upon updating u, we perform on-the-fly scheduling as
follows. We draw k cells from A, and put them in the pool
P. In each step, we choose m cells from P, where m <« k,
whose costs are the smallest among those in the pool. The
system schedules computation for the chosen m cells. Then,
we replenish P by drawing cells from A,, that still requires
computation until P has k cells again (or until no cells re-
main). We repeat the steps until all cells in A, are computed.

To properly schedule the chosen m cells for computation
obeying the dependency constraint, precedents of each of
the m cells must be computed before the cell itself can be
computed. Thus, the precedents of the m cells must also be
scheduled for computation, in topological order.

The on-the-fly scheduling heuristic attempts to postpone
computing high cost cells for as long as possible, because
computing low cost cells first allows for more results to be
quickly shown to the user. In fact, without dependency re-
quirements, scheduling computation in increasing order of
cost yields the optimal schedule [13]. Our heuristic is based
on the same principle, but adapted to obey the dependency
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constraint and to make decisions without looking at the en-
tire workload. The pseudocode for the on-the-fly scheduling
procedure is given as Algorithm 2 in Appendix B.3.

4.3 Weighted Computation Scheduling

Due to limited screen real estate, users often do not see all the
cells of a spreadsheet at the same time. Typically, spreadsheet
systems allow users to interact with spreadsheets through
a viewport, which we define as a rectangular range of cells
that a user can interact with, i.e., read values or update cell
content. The user can change the viewport either by scrolling
or jumping to the desired part of the spreadsheet.

Since users can only view the cells that are within the
viewport, it is desirable to prioritize the computation of cells
that the user is currently viewing—for this purpose we in-
troduce a weighted variation of unavailability. Here, each
cell ¢ is given a weight, denoted as weight(c). The more im-
portant a cell is, the higher its weight. For example, we can
prioritize computation of cells in the viewport by assigning
a high weight, w > 1, to cells within the viewport and a
low weight, 1, to other cells. It may also be desirable to as-
sign a medium weight to cells just outside the viewport, as
scrolling to these cells is likely. The following formalization
of a weighted unavailability modifies our previously defined
unavailability (see Definition 8) such that if a high-weight
cell is left dirty, and therefore unavailable, for an extended
period, the metric’s value is much higher.

DEFINITION 13 (WEIGHTED UNAVAILABILITY). The weighted
unavailability Wi for a computation model M over a spread-
sheet S is Wy = 2.5 (weight(c) - unavailable(c)), where
weight(c) is the weight of ¢, unavailable(c) is the unavailable
time for c, and S is the set of all cells within the spreadsheet.
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Figure 11: Weighted unavailability comparing synchronous
computation models and asynchronous computation model
with and without viewport prioritization.

Using the weighted unavailability, we now formalize a
weighted variation of our computation scheduling problem
that aims at minimizing weighted unavailability while ad-
hering to dependency constraint.



PROBLEM 4 (WEIGHTED COMPUTATION SCHEDULING). Given
a set of dirty cells (A) along with their weights and the de-
pendencies among them, determine an ordercy, ..., c, of all
the cells in A that minimizes weighted unavailability, i.e.,
e, en (weight(c;) - dirty(c;)), wheredirty(c;) = Zji-:l cost(cj) =
dirty(c;—1) + cost(c;) and weight(c) is the weight of ¢, under
the DEPENDENCY constraint.

WEIGHTED COMPUTATION SCHEDULING is trivially NP-
HARD, since it is a generalization of COMPUTATION SCHED-
ULING discussed in Section 4.1, which is NP-HARD.

Ilustrative Experiment 4: Weighted Scheduling. This
experiment demonstrates a weighted variation of Experi-
ment 1, with Figure 11 showing a weighted variation of
Figure 3. Here, we assign a weight of 1,000 for 30 formula
cells within the user’s viewport and 1 for the remaining.
We plot time on the x-axis and weighted unavailability (the
product of the number of unavailable cells and their weights)
on the y-axis. Past the 890 ms mark, the red curve, which
represents the synchronous model, maintains the same level
of weighted unavailability until all of the cells have been
computed and marked clean at around 5,000 ms. For the asyn-
chronous model (in blue) that prioritizes cells in the viewport
when scheduling, the weighted unavailability drops off very
quickly between 890 ms and 1,000 ms, and then slowly de-
creases to 0 afterwards. This sharp decline represents the
time when the system is computing the highly-weighted
cells within the viewport. The remaining, lower-weighted
cells outside the viewport are computed afterwards. On the
other hand, the asynchronous computation model that uses
random scheduling, slowly decreases over time, as high-
weighted cells are left in the dirty state due to randomized
scheduling. As can be clearly seen in Figure 11, the model
which prioritizes cells in the viewport when scheduling per-
forms the best under weighed unavailability.

Takeaway: Weighted computation scheduling enables prioritiza-
tion of important cells such as those visible on the user interface.

On-the-fly Weighted Scheduling. For weighted compu-
tation scheduling, we adapt the on-the-fly scheduling algo-
rithm discussed in Section 4.2 by updating the cost calcula-
tion to additionally consider the weight of the cell. Intuitively,
we would like to prioritize cells that have a higher weight
but a lower cost. Thus, in Algorithm 2, we sort the cells by
cost(c)/weight(c), where cost(c) is the computation cost for ¢
and weight(c) is the weight that we assign to c¢. Addition-
ally, we dynamically update the cell weights when the user
changes their viewport by scrolling. Further more we can
also modify Algorithm 2 to first pick up the cells that are
within the viewport.
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5 DATASPREAD SYSTEM

In this section, we introduce DATASPREAD, the spreadsheet
system we have implemented, that utilizes the techniques dis-
cussed throughout the paper. We also describe the system’s
architecture, explaining how components work together to
implement asynchronous computation.

Until this point, we focus on the setting of main-memory
systems throughout the discussion and the illustrative exper-
iments, for faithfulness with existing main-memory-based
systems. However, we develop DATASPREAD to not only take
the available main memory into account, but also utilize
larger (disk) storage to handle spreadsheets at scale. In Ap-
pendix A, we discuss how the problem changes when we
consider such a memory model as used by DATASPREAD, a
two-tiered memory model, and how the techniques can be
adapted to account for different cost considerations.

5.1 System Description

We have implemented a fully functional prototype for the
spreadsheet system DATASPREAD. The system is designed to
be a one-stop tool that unifies the capabilities of spreadsheets
and databases to provide an intuitive direct-manipulation [29]
interface for managing big data. Thus, we have designed our
tool to be scalable—the current prototype supports inter-
active browsing of billion cell spreadsheets on moderately
powered desktop hardware. The support for datasets of this
size is only possible by going beyond the limitations of main-
memory. Our system leverages an RDBMS’s ability to handle
data at scale, essentially using it as a paging solution for our
spreadsheet system.

Its back-end utilizes a PostgreSQL database for its ability to
handle data at scale. DATASPREAD is a web-based application
that uses the React framework [3] for the front-end, and ZK
Spreadsheet [5] for the formula engine. The prototype, along
with its source code, documentation, and user guide, can be
found at http://dataspread.github.io.

DATASPREAD adopts a two-tiered memory model (Appen-
dix A) where it persists the spreadsheet data in the back-end
database and fetches it on-demand when triggered by a user
action (like scrolling) or a system action (like calculating a
formula). In addition to utilizing the techniques described in
Sections 2, 3, and 4, we support the following features to en-
sure interactivity and scalability. (i) We reduce the front-end
to back-end communication latency by using web-sockets.
(ii) We implement caching at multiple layers using an LRU
based evacuation scheme. (iii) Our back-end is context-aware,
meaning it keeps track of what the user is looking at and
what data is cached in the web-browser. (iv) All the commu-
nication between back-end threads is event-driven. (v) We
adopt a push-based architecture, where upon scroll event or
change in data, updated cell values are pushed by the back-
end to the front-end via web sockets and vice-versa. (vi) We
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Figure 12: DATASPREAD Architecture

adopt the idea of a virtual DOM (Document Object Model),
where the web browser only renders the visible cells.

5.2 Architecture

Figure 12 illustrates DATASPREAD's architecture, which, at a
high level, can be divided into three main layers, (i) user in-
terface, (ii) application layer, and (iii) storage layer. The user
interface consists of a custom developed spreadsheet compo-
nent based on the React framework, which runs in the web
browser and presents a spreadsheet to the user and handles
interactions on it. The application layer consists of compo-
nents responsible for main operations of the spreadsheet
system, including formula evaluation. These components are
developed in Java and reside on an application server. The
storage layer consists of a relational database and is respon-
sible for persisting spreadsheet data and metadata, including
dependency information.

The front-end back-end communication designed using
the Spring [4] framework uses (i) RESTful APIs for non-
latency critical communication, e.g., getting a list of spread-
sheets, and (ii) web-sockets for latency critical communica-
tion, e.g., updating cells on the user interface after an event.
Partial Result Presentation Components. As discussed
in Section 2, the ability to present partial results is the main
advantage of asynchronous computation. To determine which
values are available to the user, the dirty manager is respon-
sible for maintaining a collection of regions that are dirty
and thus need computation. It utilizes the dirty cell data
structures discussed in the Appendix.

The session manager keeps track of the user’s current
viewport and the collection of cells that are cached in the
browser—thus upon a scroll event on the user interface, the
application layer can determine whether the browser already
has the required cells or if new cells need to be pushed. Its
viewport information is also useful for viewport prioritiza-
tion, as discussed in Section 4.3.

It communicates with the dirty manager to determine
which cells are shown to the user, and make proper changes
to the front-end when cells change their availability. It also
communicates with the computation status manager, which
periodically checks the progress of the computations and
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informs the front-end about the progress, and the front-end
updates the progress bars to reflect the progress.

Formula Evaluation Components. The dependency graph
maintains dependencies between cells and regions. The com-
pressed dependency table, maintained by the dependency table
compressor, allows the system to support fast dependency
identification, as discussed in Section 3.

Formula evaluation is triggered by updates to cells on the
user interface. Upon a cell update, fast dependency identifi-
cation mark dependents of the updated cell as dirty in the
dirty manager. In addition, if the update involves adding,
removing, or modifying a formula, the formula parser in-
terprets the formula and identifies what cells are required
for computation—this information is sent to the dependency
graph and the dependency table to make appropriate updates.

The computation scheduler coordinates the formula com-
putation. It retrieves dirty cells from the dirty manager and
schedules their computation as discussed in Section 4. The
actual formula evaluation is done using the formula engine,
which fetches the cells required for computing the formula
from the LRU cell cache in a read-through manner, i.e., the
cache fetches the cells that are not present on demand from
the storage layer. The formula engine then computes the
result of the formula. Finally, it persists the calculated result
by passing it back to the LRU cell cache in a write-through
manner, i.e., the cache pushes its updates to the storage.

6 ADDITIONAL EXPERIMENTS

Throughout the paper, we have provided illustrative experi-
ments along with takeaways to demonstrate the individual
aspects of our proposed asynchronous computation model. In
this section, we describe our setup and additionally provide
an evaluation on real-world spreadsheets. The experiments
described in this paper aim to demonstrate: (i) quantifica-
tion of the benefit of the asynchronous computation model,
(ii) the necessity and the benefit of compressing the depen-
dencies, (iii) the necessity of finding an efficient computation
schedule, (iv) how the weighted variation of unavailability
prioritizes the computations of cells in a user’s viewport, and
(v) the applicability of our ideas on real-world spreadsheets.

Environment. We have implemented the asynchronous
model along with graph compression and computation sched-
uling within our scalable spreadsheet system, DATASPREAD,
which uses PostgreSQL 10.5 as a backend data store. We
run all of our experiments on a workstation running Win-
dows 10 on an AMD Phenom II X6 2.7 GHz CPU with 16 GB
RAM. While we have a functional prototype, to eliminate the
impact of communication between front-end and back-end,
we design our test scripts as single threaded independent
applications that directly utilize DATASPREAD’s back-end.
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Figure 13: Unavailability comparing synchronous and asyn-
chronous computation models for two real world spread-
sheets of different sizes. (a) small (b) large

Dataset. We evaluate our algorithms on a variety of syn-
thetic spreadsheets and some real-world spreadsheets that
we collected by a survey from spreadsheet users. We con-
ducted the survey across multiple colleges in a university
asking users to send in their largest, most complex spread-
sheets. We received tens of spreadsheets, which we then
examined one at a time to find a few representative ones
with complex and computationally intensive formulae.

Illustrative Experiment 5: Real-world Spreadsheets. In
this experiment, we use two real-world spreadsheets to com-
pare the two computation models. For both spreadsheets, we
find a cell u that has the highest number of dependents. The
first spreadsheet has complex financial calculations, with
a total of 917 cells, out of which 406 formula cells are de-
pendent on u. The second spreadsheet is targeted towards
inventory management and had a total of 42,181 cells, out
of which 6,803 formula cells are dependent on u. We use
a naive synchronous computational model as described in
Experiment 1. For the asynchronous model, we use a com-
pressed dependency table with Komp = 5000 (Section 3.2)
and schedule computations on-the-fly (Section 4.2). We up-
date u and plot the number of unavailable cells on the y-axis
with respect to time on the x-axis—see Figure 13. Observa-
tions are similar to Experiment 1. In terms of unavailability,
for the asynchronous model, we see an improvement of 2x
and 12x over the synchronous model for the first and second
spreadsheet respectively, thus confirming the applicability
of our ideas to real-world spreadsheets.

Takeaway: Our proposed asynchronous computation model

maintains interactivity and consistency thus improving usability

of spreadsheet systems for large and complex spreadsheets.

7 RELATED WORK

The asynchronous formula computation model presented
in this paper is an alternative to the synchronous model
adopted by traditional spreadsheet systems. Problems similar
to graph compression and scheduling are studied in various
contexts with different goals and constraints. There are also
related papers that handle spreadsheets at scale by utilizing
database systems for content storage. We now discuss in
more detail each of these categories of related work.
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Computation Models. Asynchrony has been used in oper-
ations with delayed actors, such as in crowdsourcing [22, 26]
and web search [11] but never for spreadsheets—their con-
cerns and objectives are very different. The synchronous
model of traditional spreadsheets utilize the idea of depen-
dency graph [23, 28, 32] to avoid unnecessary computations,
but it does not avoid the performance degradation due to
large and complex dependencies [33]. Our proposed asyn-
chronous computation model along with compressed depen-
dency table alleviate such issues as discussed in Section 3.

Graph Compression. Alternate representations of graph-
structured data have been introduced for numerous appli-
cations, including for web and social graphs. While some
papers focus on a high-level understanding of the network
via clustering [12], those that obtain a concise representa-
tion of graphs to improve query performance are related to
our work. Graph compression methods, surveyed by Liu et
al. [18], have different focuses, such as compactness with
bounded errors [25], pattern matching queries [20], and dy-
namic graphs [30]. Our setting is different from these works
because of (i) our goal of quickly obtaining a representation
of dependents of a cell, (ii) the one-sided (false positive only)
tolerance, and (iii) the spatial nature of cell ranges.

Scheduling. Scheduling under precedence constraints is
a thoroughly studied problem, especially in operations re-
search, with various settings and metrics, including ones
similar to the unavailability metric [17]. Similar scheduling
problems arise in this paper, and some hardness results are
drawn from previous work. However, as discussed in Sec-
tion 4, in the prior work, schedules are built up front, whereas
obtaining a complete schedule up front is prohibitive in our
setting. For this reason, we introduce on-the-fly scheduling.

Handling Scale. Previous work on supporting spreadsheets
at scale has been done by 1010data [1], ABC [27], Airtable [2],
DATASPREAD [9, 10], and Oracle [34, 35]. While these systems
address scale, interactivity for formula computation is not
their focus. Our work is distinguished from them by its ability
to provide partial results with consistency guarantees.

8 CONCLUSIONS

Our proposed asynchronous computation model improves
the interactivity of spreadsheets without violating the con-
sistency while working with large datasets. To support asyn-
chrony without violating consistency, we introduced the
idea of partial results, which blurs out the formulae that are
being computed in the background. We ensured interactiv-
ity by proposing a compressed dependency table to identify
dependent cells after a cell update in a bounded amount of
time. For usability, we developed an on-the-fly scheduling
technique to minimize the number of cells that are pend-
ing computation. We have implemented the aforementioned



ideas in DATASPREAD and demonstrated improved interactiv-
ity compared to traditional spreadsheet systems. Thus, our
new computation model’s improved interactivity allows the
use of spreadsheet systems in data analysis situations where
it was once inconceivable.
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design of current spreadsheet systems fundamentally limits
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section, we discuss a two-tier memory model, wherein the
cost of data retrieval from storage factors into the unavailable
time.

We discussed the techniques in the earlier sections in the
context of main-memory systems, wherein computation time
is the dominant concern. These techniques still provide a
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significant improvement in a two-tier setting, but can be
further improved if fetching costs are taken into account.
This section discusses how we adapt the techniques described
in the earlier sections to work with these additional cost
concerns.

A.1 Two-tier Memory Model

We define the two-tier memory model as follows:

DEFINITION 14. The two-tier memory model contains two
tiers of memory:

e the main-memory, which is limited in size, but allows
fast data access; the application interfaces with this tier;

e the storage, which is large, but data access is slow; and
the application does not directly interact with this tier.

Under the two-tiered memory model, the spreadsheet data
is persisted in the storage tier—thus any changes must be
eventually reflected there. We assume that the storage tier is
not accessed directly by a spreadsheet application but rather
via the main-memory in a read/write-through manner, mean-
ing (i) if the application requires a data not present in the
main-memory, then the data is fetched from the storage tier,
stored in the main-memory, and returned to the application;
and (ii) when the application updates data, it is first updated
in the main-memory, and the control is returned to the appli-
cation only when the update is also refelcted in the storage.
In particular, for DATASPREAD, we use a relational database
for the storage tier—this enables DATASPREAD to go beyond
main-memory limitations while working with large datasets.

A.2 Techniques under Fetching Cost

The data transfer between the two tiers is time consuming;
we incur a fetching cost each time we bring a cell from
the storage tier into the main-memory tier. Often, these
costs dominate the computation cost. This section explores
how the techniques of dependency graph compression and
scheduling change when the main cost concern is fetching.

Fast Dependency Identification. The dependency graph
is asymptotically as large as the the spreadsheet size, and
therefore is persisted in the storage tier. Identifying depen-
dencies naively by traversing the graph is inefficient in main-
memory systems, and can be even worse in the two-tier
memory model; each step of the traversal requires a query to
the storage layer. Even if the query is done in a breadth-first
search fashion, such that each step (of the same distance from
the origin) is done in a batch, the number of steps required
is equal to the length of the longest chain in the graph. The
result of fetching for each step in the chain can be far too
costly for our purposes.

The compressed dependency table, as presented for main-
memory systems, can also be used in the two-tier memory
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model. The dependency table can be stored as a relational
table in the storage layer. A query for dependents of a cell u

is often a straightforward lookup in the dependency table,
avoiding the aforementioned issues with graph traversal.

Computation Scheduling. Here we introduce a new ver-
sion of the scheduling problem, which we adapt to include
the cost of fetching the direct precedents of dirty cells from
storage, as those values are required for computation.

PrOBLEM 5 (COMPUTATION SCHEDULING WITH FETCHING
CosTs). Given a set of dirty cells (A), their direct precedents
P = {p | the direct dependency p — c exists for some c € A},
along with the dependencies among the cells in A* = AU P,
determine an order cy, . .., c, of all the cells in A* that min-
imizes the unavailability metric, i.e., 3., ea dirty(c;), where
dirty(c;) = Z;zl cost(c;) = dirty(c;—1) + cost(c;), under the
DEPENDENCY constraint.

Because both the dirty cells and their precedents need
to be fetched from storage, all cells in A* are relevant in
the fetching order. However, the unavailability metric only
concerns those of the dirty cells A.

We shall show that the COMPUTATION SCHEDULING WITH
FETCHING CosTs problem is NP-HARD.

THEOREM 2. COMPUTATION SCHEDULING WITH FETCHING
CosTs is NP-HARD.

Scheduling for the two-tier memory model can be done
in a similar fashion as on-the-fly weighted scheduling for
main-memory systems. However, the cost function cost(c)
for a cell ¢ must be adjusted, since fetching costs dominates
computation costs in the two-tier context.

In addition, “locality” becomes important. Systems often
perform data fetching in blocks, and therefore scheduling
computation of formulae in the same block together can be
beneficial. Working on formulae whose operands are already
fetched into the cache is less costly; switching to completely
unrelated formulae may result in cells being evicted from
limited-size cache, requiring refetching. These concerns can
be factored into in the cost function. It may require dynamic
updates as the cache changes in the same way weights are
updated when the viewport moves.

B PROOFS AND ALGORITHMS

This section provides proofs for hardness claims stated in
the main paper, in addition to pseudocode for some of the
key algorithms.

B.1 Proof of Theorem 1

We shall prove Theorem 1 by providing polynomial-time
reduction from the Porycon ExacT CovER problem, a known
NP-HARD problem, defined as follows [14].



Input: a set of rectangular regions R, and an integer k
Output: a cover R’ of the union of rectangular
regions in R, where |[R’| < k
R« R;
while |R’| > k do
Let r; and r; be two rectangular regions in R’
where the bounding box of r; U r, introduces the
smallest false positives out of all such
combinations;
Let r be the smallest of such a bounding box;
R — R \{r,rhur
end
return R’
Algorithm 1: Incremental Greedy Compression

Input: a set dirty cells A,, and two integers k and m
Output: a computation schedule of the cells in A,
D« Ay;
P« 0,
Let S be an empty schedule;
while |D| > 0 do
P’ « subset of k — |P| cells drawn from D;
D« D-P;
P« PUP,
Compute cost of each element in P.;
M « the m elements of P with lowest cost;
P« P-M,
Let M’ be the union of the dirty precedents of c
for ¢ € M;
Append M U M’, in topological order, to S;
end
return S
Algorithm 2: On-the-fly Scheduling algorithm

PROBLEM 6 (PoLyGoN Exact CoveR). Given a simple and
holeless orthogonal polygon P and an integer k, is there a set
of at most k axis-aligned rectangles whose union is exactly P?

Proor oF THEOREM 1. Given a simple and holeless orthog-
onal polygon P and an integer k in a Porycon Exact COVER
instance, perform a rank-space reduction on the coordinates
of P; that is, change the actual coordinates into values in
{1, ..., n}, where n is the size (number of vertices) in P, such
that the coordinates are in the same order. Translate the
polygon in the new coordinates into a set C of cells. (Note
that the representation size goes up quadratically.) There
is a set of at most k axis-aligned rectangles whose union is
precisely P if and only if C has a cover whose size does not
exceed k and cost is at most |C| (has no false positives), fol-
lowing the natural coordinate mapping between rectangles
and ranges. O
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B.2 Proof of Theorem 2

Problem 5 is a generalization of the ScHEDULING WITH Sup-
PORTING Tasks problem [16], which is NP-HARD, defined as
follows.

PROBLEM 7 (SCHEDULING WITH SUPPORTING TASKs). Let
A=A{ay,...,an} and B = {by,...,b,} be sets of tasks, and
R C A X B be a relation. All tasks take a unit time to complete.
The tasks in A and B are to be scheduled on a single machine
that can perform one task at a time, under the restriction that
if (a;, bj) € R, then task a; must be completed before task b;.
Tasks in A are supporting tasks and are not required to be
completed (unless required by other tasks in B). Let cost(b;)
denote the time until task b; is completed in a schedule. Givenc,
determine whether there is a schedule to complete all tasks in B
within the stated restrictions such that the total cost ), cost(b;)
is at most c.

Proor oF THEOREM 2. We provide a polynomial-time re-
duction from SCHEDULING WITH SUPPORTING Tasks. For
each task t in A U B, create a corresponding cell cell(#). For
each (a;, bj) € R, make cell(b;) dependent on cell(a;); in other
words, if a;,, . . ., a;, are the elements of {a | (a, b;) € R}, cre-
ate a formula cell(b;) = cell(a;, )+ - - +cell(a;, ). Mark all cells
corresponding to B dirty; that is, let D = {cell(b;) | b; € B}
and P be their precedents. It follows that a valid schedule in
one problem is also valid on the other (given proper trans-
lations between tasks and cells), and the cost metrics of the
two problems are identical. O

B.3 Algorithms

Algorithm 1 provides an outline of a greedy graph compres-
sion process, as we described in Section 3.3. Algorithm 2
provides an outline of an on-the-fly scheduling heuristic, as
we described in section Section 4.2.

C DIRTY CELL DATA STRUCTURES

We have introduced the notion of dirty cells in Section 2.3
and have used this concept throughout the paper. We have
mentioned the operations of marking cells and regions as
dirty upon an update to a cell and marking them as clean
as soon as the values are recomputed or known to be cor-
rect. However, we have yet to discuss how such marking
operations can be performed efficiently.

A naive solution involves maintaining a boolean dirtiness
flag for each cell. However, when the set of operations is
extended to involve more than one cell at a time, in scenarios
where a region or an entire sheet needs to be marked as dirty
or clean, the naive solution is inefficient. Individually chang-
ing flags of the cells in the region takes time proportional to
the size of the region, which is undesirable.

In this section, we describe data structures that support
operations related to dirty cells and regions. We start with a



primitive solution that works for simpler strategies. We then
describe modifications required to support an extended set
of operations that are required by the new techniques: Fast
Dependency Identification (from Section 3) and Scheduling
(from Section 4).

C.1 Supporting Base Operations

Upon updating u, the whole sheet becomes temporarily un-
available, because cells have yet to be determined whether
they are dependent on u. During this period, any cell is un-
available regardless of its cleanliness status. The temporary
unavailability period ends when dependency identification
is complete. A boolean flag is sufficient to record whether
the sheet is within such a period.

In order to support incrementally returning results, the
data structure which tracks dirtiness must be able to support
the following base operations.

e isDirty(c) returns true if a cell ¢ is dirty and false other-
wise.

e markClean(c) marks the cell ¢ as clean.

o markDirty(c) marks the cell c as dirty.

The query operation in this set, isDirty(), is used to decide
whether the value can be displayed to the user. When a cell
c is identified as a dependent of an update, markClean(c) is
called, and when its value is evaluated, markDirty(c) is called.

While the naive solution of maintaining a boolean dirti-
ness flag for each cell seems sufficient for the base operations,
there can be issues when concurrent updates exist.

In order to record the order in which operations occur, we
assume that there is a synchronous clock from which the
system can request the current time.

For each cell ¢, maintain a timestamp cleanTimestamp(c)
and a timestamp dirtyTimestamp(c), storing the latest time at
which the cell is marked clean and dirty, respectively. The
query isDirty(c) compares whether the latest marking of cell
c as clean or dirty happens later. More precisely, isDirty(c) re-

turns true if and only if dirtyTimestamp(c) > cleanTimestamp(c).

The data structure requires O(|S|) memory, where S is the
set of cells in the spreadsheet, and O(1) time per operation.

C.2 Supporting Fast Dependency
Identification

Fast Dependency Identification provides Kcomp regions con-

taining all dependents of the updated cell. Cells outside of

this region are now determined as clean (assuming they were

not dirty earlier). The following operation is now required.
o markRegionDirty(r) marks all the cells in region r as

dirty.
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The Kcomp regions obtained from Fast Dependency Iden-
tification are marked dirty by calling markRegionDirty(r) on

each region r.
We use an R-tree to store dirty regions, which allows us

to store rectangular regions in a way that facilitates quick
lookup of regions overlapping with a specified region (say,
a cell). With each entry r in the R-tree, we store additional
information regarding the cleanliness of that region: a clean-
Timestamp(r) and a dirtyTimestamp(r).

Thus, in order to mark a cell ¢ as dirty, we add the region to
the R-tree with a dirtyTimestamp(r) which reflects the current
timestamp. For isDirty(c) queries, we look up the region in the
R-tree that intersects with r and has the largest timestamp.
Such a timestamp determines the latest time ¢ is marked dirty
as part of a region. Comparing such a timestamp with the in-
dividual timestamps cleanTimestamp(c) and dirtyTimestamp(c)
determines whether a cell is currently dirty.

The runtime to perform updates and lookups in an R-
tree is O(log R), where R is the number of entries in the
tree. Normally, R increases by Keomp after each update. Note
that no procedures for removing regions from the R-tree
is present, even if all the cells in that region are cleaned at
a later time. Thus the tree grows as more operations are
performed, deteriorating performance. A method to mitigate
this issue is to periodically scan the R-tree for regions that
can be safely removed; a better method that also integrates
another operation will be described later.

C.3 Supporting Scheduling

To support scheduling, we need the ability to retrieve cells
that are currently dirty from the data structure.

e getNextDirtyCell() returns a dirty cell.

In order to support getNextDirtyCell(), we maintain a progress
pointer that scans through a dirty region in the R-tree, and
yields cells that are dirty. At any time, there is a single active
region r in the R-tree, with a pointer p pointing to a cell
within the region r. When getNextDirtyCell() is called, the
pointer scans through the region in an order, say, a row-
major order, starting from its current position (where it left
off from last time), returning the cell if it is dirty, determined
by isDirty(c).

The invariant is that all cells in r that are before where p is
currently pointing must have been cleaned after dirtyTimes-
tamp(r), for otherwise the pointer would not have moved
past that cell. Therefore, once p have scanned through the
entirety of r, the region r can be safely removed. Note that it
is possible for a cell that p have moved past to become dirty
again; however, the dirtiness event would be captured either
by a different range or an individual cell timestamp, and it
remains safe to remove r.
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