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Globally Stable Attitude Control of a Fixed-Wing
Rudderless UAV Using Subspace Projection

Yujendra Mitikiri

Abstract—This letter extends recent work on globally asymptot-
ically stable nonlinear attitude control of fully actuated vehicles
to underactuated vehicles, specifically, a rudderless fixed-wing air-
plane. Previous work uses a quaternion attitude representation and
Lyapunov theory to establish global asymptotic stability for atti-
tude tracking in a fully actuated fixed-wing airplane, beginning
from arbitrary initial conditions. Many small unmanned aerial ve-
hicles are, however, heavily constrained with respect to sensor and
actuator resources. A common situation is a flying wing configu-
ration with a pair of elevons that serve the purpose of both the
elevator as well as the ailerons. While it is not possible to track
an arbitrary attitude in the three-dimensional (3-D) attitude space,
we show that it is still possible to track a 2-D subspace of the unit
quaternion space. Projecting a desired attitude onto a 2-D subspace
is achieved by solving an optimization problem in the quaternion
attitude formulation. The resulting controller is verified using sim-
ulations that demonstrate satisfactory performance.

Index Terms—Aerial systems, mechanics and control, underac-
tuated robots, robust/adaptive control of robotic systems.

1. INTRODUCTION

HE attitude dynamics of a fixed wing airplane are primar-
T ily nonlinear. If the deviations from trimmed conditions
are relatively small, the dynamics may be linearized to perform
a perturbation analysis about the nominal trimmed motion. The
small perturbation assumption is the key to enabling a linear
analysis that yields to classical methods of linear feedback con-
trol. Implicit in this treatment are the understated and frequently
overlooked secondary assumptions that the initial conditions are
also close to the trim conditions, and that external disturbances
do not cause the system to move far away from such conditions.
These may hold true for large aircraft flying at high speeds,
which have a high inertia and present a relatively small expo-
sure to environmental disturbances at the boundary (note: if L
is a characterstic length associated with a vehicle, inertia scales
as L3, while the surface area exposed to the environment scales
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as L?). For smaller vehicles flying at low speeds, the effect
of environmental disturbances can no longer be ignored. For
instance, external wind may cause increasingly larger pertur-
bations in the angle-of-attack, «, and sideslip angle, 3. These
perturbations would in turn cause the attitude state to move far
away from the trim conditions, such that the linearized analysis
is no longer valid and the controller fails to track or stabilize the
vehicle.

A second non ideality occurs on account of the coupling
between the lateral and longitudinal dynamics of low aspect
ratio wings. It has been experimentally observed that wing-tip
vortices can cause the sideslip-roll stability derivative (C; ) to
be a strong function of «, in effect causing the roll moment to
vary both with respect to « as well as 3 [1]. In other words, the
lateral state variable roll rate p has a stability derivative with
respect to the longitudinal variable o.

The above nonidealities motivate a new approach to the con-
trol of small unmanned aerial vehicles (UAVs), that places
greater emphasis on the control of the coupled attitude dynamics
of the vehicle, while also accounting for external disturbances.
There is very little published work on attitude control in fixed
wing aircraft that ensures global asymptotic stability (GAS),
while also estimating, and accounting for, the effect of external
wind on the attitude dynamics. Most work focus exclusively
on the attitude control problem [2]-[5], or the aerodynamic
angle estimation problem [6]—[8]. In [9], the authors present a
novel attitude controller that accounts for both the nonidealities,
by designing a single integrated nonlinear attitude controller
that accounts for the coupled lateral-longitudinal dynamics, and
is GAS with respect to initial conditions and deviations from
trimmed motion.

One of the assumptions in the controller presented in [9] is
that the airplane is fully actuated. For fixed-wing airplanes, this
translates to the requirement of three independent degrees of
control, traditionally the roll, pitch, and yaw controllers actu-
ating the ailerons, elevator, and rudder respectively. When all
three actuations are present and effective, the airplane can be
controlled to track any arbitrary attitude configuration (asymp-
totic stability), beginning from any arbitrary initial condition
(global nature of the stability). Note that the three actuation
degrees are independent and effective only when the airplane
is not under stall, actuator saturation, or similar pathological
conditions.

In the absence of a fully-actuated vehicle, it is, in general, not
possible to track any arbitrary attitude configuration in the full
three-dimensional attitude space. For instance, the specification
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Fig. 1. The Stryker F27 rudderless deltawing with a pair of elevons. The wing
span is 0.94 m and the fully loaded weight is 0.66 kg. A. GPS antenna, B.
Elevon, C. Propeller, D. Autopilot from [10], E. Battery.

of a constant positive roll angle in a typical fixed-wing rudder-
less airplane leads to a constant positive yaw-rate, and the yaw
angle can no longer be independently specified. Conversely, the
specification of a yaw-rate yields a specification on the roll atti-
tude in such an airplane. This situation (of being under-actuated)
is quite common in the field of small unmanned aerial vehicles
(UAVs), which are highly constrained with respect to available
sensor and actuator resources. Such is the case with, for exam-
ple, the 0.94 m-span Stryker F27 fixed deltawing (Fig. 1) small
RC plane. While this particular model is very convenient on ac-
count of its small size, low cost, and robust physical frame, it is
associated with the shortcoming of lacking a rudder actuation.
Thus we are motivated to extend the GAS attitude controller for
the fully actuated case, to the under-actuated case, in particular,
a rudderless fixed-wing airplane.

There has been some work reported on the control of under-
actuated UAVs in the past. In [11], and [12], aeroelastic and
piezoelectric surfaces are used to control rudderless airplanes.
In [13], PID controllers are used to control a rudderless airplane.
However, as is usual with linear control methods, the airplane
is assumed to never perform major excursions from the trim
conditions.

There are several nonlinear controllers that achieve near GAS
for under-actuated UAVs, but most of them involve rotorcraft
[14],[15], [16], [17], and the methods reported do not easily ex-
tend to fixed-wing airplanes. For example, the under-actuation
in rotorcrafts involves the composite translational and rotational
dynamics, while the under-actuation in fixed-wing airplanes is
almost always specific to the rotational dynamics (exceptions
include gliders without propulsion). Furthermore, the physical
quantities of significance in the dynamics of fixed-wing air-
planes differ from those in rotorcraft. The work in [14] does not
consider disturbances in the aerodynamic angles, as these are not
a major concern in the control of rotorcraft UAVs. However, the
aerodynamic angles, angle of attack « and sideslip (3, play a ma-
jor role in the dynamics of fixed-wing aircraft and disturbances
introduced through them cannot be ignored for such aircraft.
Similarly, The work in [17] considers bounded uncertainties,
but does not consider aerodynamic damping proportional to the
angular velocity. Thus, the absence of a suitable controller for
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fixed-wing under-actuated airplanes in existing literature moti-
vates the extension of the GAS nonlinear controller in [9].

A brief outline of this letter is as follows: the next section
discusses the background of the problem, including the vehicle
dynamics, and GAS attitude control. Section III contains the
main technical contribution in this letter: the derivation of a
consistent subspace of reference attitudes for an underactuated
airplane, within which the stability results apply. Section IV
presents simulation results validating the presented solution,
leading to the final conclusion.

II. GLOBALLY STABLE NONLINEAR ATTITUDE CONTROL

We consider a fixed-wing airplane with attitude dynamics
given by (e.g., [9]):

—q1 —42 —Qq3
.1 1| 9 —9B3 @ p T
§=5Qw=5 q| =;4"w, (1)
2 21 g3 Qo —q| |y
—q2 q1 q0

where ¢ = [qo q1 ¢2 g3]7 denotes the 4-component attitude
quaternion of unit magnitude, w = [p ¢ r]7 denotes the angu-
lar velocity of the airplane in the body frame and ® signifies
quaternion multiplication. The aileron, elevator and rudder con-
trol inputs enters the dynamics through the equations of motion
for angular accelerations:

& =D+G(H+Iw+ J5) )

where, D = M ~'w x Mw contains the contribution due to the
rotating body frame; G is a scaled inverse of the moments of
inertia matrix M; J is the matrix of control derivatives; § =
[8as Oc, 0,]7 is the control input from the ailerons, elevator, and
rudder; H is the coupling from the translational variables o and
£ into attitude dynamics; [ is the matrix of damping derivatives.
Given these nonlinear dynamics, the control inputs in a GAS
controller are derived in [9]:

GJ(S = —(D + GH —|— GI(U) + 2A(L%€1 — (L1 —|— LQ)@Q + q,)
— 2A€2 5 (3)

where, e = ¢ — ¢, and ey = é; + Lje; are the tracking and
filtered tracking error with respect to the reference attitude ¢, ,
and L, and Lo are positive definite gain matrices.

It can be seen from (3) that the control is well defined only
when the control-derivative matrix J is of rank 3 and invertible,
i.e., the airplane is fully actuated. A typical J would contain
derivatives of the roll, pitch, and yaw moments with respect to
the control inputs, for example:

Cisa 0 C.sr
J = 0 Cm.(sc 0 y (4)
Cnﬁa 0 Cn,,ﬁr

with lateral and longitudinal control separation. In a rudderless
airplane with two degrees of actuation, the matrix J in equation
(3) would contain only the first and second columns. In this
situation, .JJ has a nonzero nullspace spanned by a vector f. In
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the above example with lateral-longitudinal control separation,
f would lie along [~C,, 5, 0 C; 5,]7 so that

Ol Jda 0
fTJ = I:_C”VL,(SU 0 Cl,éa} 0 Cmﬁe
Cn J0a 0
The vector f would in general depend upon the coefficients in
matrix J, and we shall assume that f is known in our controller
design. Thus, the right hand side in equation (3) is constrained
on account of under-actuation to satisfy
fTR=0, (0)

where GR = —(D + GH + Glw) + 2A(L}e; — (L1 + Lo)
es + (j,) is the right hand side of equation (3). Equation (6)
provides one scalar degree of constraint on the evolution of the
reference attitude ¢, with time.

One approach to design the underactuated controller is to
employ least-squares to solve for the control ¢:

=N YITGIR, (7)

=0. (5

where, R is the RHS of equation (3). The Lyapunov analysis
that provided the stability results in the fully actuated case is
no longer applicable, but for small deviations from a prescribed
trajectory, a linearized analysis shows that equation (7) still
provides stable attitude tracking. However, this approach no
longer provides the GAS result of the fully actuated situation.
Since this is not the approach taken in this letter, we do not
discuss it further.

Another approach for globally stable attitude control in un-
deractuated vehicles is to derive the reference attitude ¢, in such
a manner that the RHS in equation (3) degenerates into a two-
dimensional subspace, so that it can be uniquely solved even in
the underactuated case. This precludes the access of all points in
the general three-dimensional attitude space. With this caveat,
we are once again guaranteed GAS attitude control by taking
this approach. It may be noted that the restriction to a two-
dimensional attitude subspace still allows the accessibility of a
three-dimensional velocity space to the airplane. This access is
provided by the attitude and throttle control. With this clarifica-
tion, we proceed to derive such a reference attitude trajectory in
the next section.

III. ATTITUDE PROJECTION AND YAW CORRECTION

As discussed in the previous section, it is not possible to orient
a fixed-wing airplane in an arbitrary attitude configuration by
actuating only the ailerons and elevator. Intuitively, we can see
that two independent controls cannot access all three degrees of
freedom of an arbitrary attitude. We next note that the ailerons
produce a primarily rolling moment, while the elevator produces
a primarily pitching moment. Furthermore, the yaw angle is a
cyclic variable in the flight dynamics of a fixed-wing airplane.
We are therefore led to considering the problem of projecting a
desired attitude onto a two-dimensional subspace specified only
by the roll and pitch angles.

Let us denote the three dimensional space of all rigid body
attitude configurations by Q. We shall refer to the subspace with
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aroll-pitch specification as the free-yaw subspace Q. Attitudes
in QQ shall be denoted by variables with a check accent, for e.g.,
D, q etc.

The naive method of projecting from a given attitude p onto
the free-yaw subspace of a second attitude ¢ might seem to be
to retain the yaw angle from p, and changing the roll and pitch
angles to those given by ¢. However, as we demonstrate below
using a counter example, this is not the most efficient strategy
in projecting from one attitude onto another subspace.

Consider, for example, an airplane in the 321 Euler angle
attitude p = [0,7/2 — 0, 7/2] that needs to be projected onto
the free-yaw subspace Q, = [¢),7/2 — 0, —7/2], where 0 <
d < /2, and v is unspecified and free. Retaining the yaw
angle from p, and the roll and pitch angles from ¢ yields the
attitude [0,7/2 — 0, —7 /2], thus requiring a rotation through
7 about the body roll axis. Instead consider the projection onto
7 = [m,m/2 — J, —m/2]. While the sequential rotations from the
[0,0,0] configuration to p and # differ by = along the yaw
axis, and subsequently by 7 along the roll axis, the incremental
rotation in going from p to 7 is only 29 along the body yaw axis,
and is much smaller than the rotation through 7 in going from p
to ¢. Therefore, if done correctly, projecting from p to 7 is much
more efficient than projecting from p to g.

The above example shows that the Euler angle representation
might not be the best way to compare two rotations. A much bet-
ter representation is one using unit quaternions. The quaternion
representations of p, ¢, 7 in the above example are [(1 + ), (1 +
5), (1—8), —(1—8)7 /2. [(1+3), ~(1+3), (1-3), (1 -
0T /2, and [-(1—6), —(1=6), —=(1+ ), (1 +0)]"/2 re-
spectively. The rotation that takes p to § is given by p~' ® § =
[0, —1, 0, 0]7, while the rotation that takes p to 7 is given by
pl@r=]1,0,0, 257, where ® denotes quaternion multi-
plication, and we have made the approximation that 6 < 1. In
this representation, it is clear that the most efficient projection
of p on the free-yaw subspace Q,; is given by 7.

Consider now the attitude of an airplane ¢ in the quaternion
representation that needs to track a reference attitude quaternion
d,. We would like to specify the reference attitude ¢, such that
its dynamics are consistent with the rank-deficiency of matrix
J, but at the same time, it leads to a desired roll and pitch
specification ¢, and 6,.. The projection of an attitude p, onto a
free yaw subspace has been reported in [18] and is given by:

Pro k(1 + bs)
. Pr1 1 Kby + by ®)
e | T VRO A by) | b e |
Dr3 (1+b3)
where,
by —sin6,
by | = | cosf,sing, |,
bs cos 0, cos ¢,
1+ 0 - b
. (14 b3)po — bipz + bapr . ©)

~ bipr + bapa + (1 + b3)ps
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Fig. 2. Projection of the attitude of a minimal rigid body (represented by the

triangular patch) onto the free-yaw subspace using equations (8) and (9) [18].

The projection is visually depicted in Figure 2.

The optimal static projection of the reference attitude de-
scribed above, from p, (t) at time ¢ to g, (t + dt) at t + dt, is
appropriate for negligible angular velocities, i.e., when w, =~ 0,
and the yaw angle is free (hence the terminology). When a
nonzero reference angular velocity or acceleration is desired,
the attitude dynamics are to additionally satisfy equations (1)
and (2). Moreover, in an under-actuated airplane, the projected
attitude ¢, may give rise to an attitude trajectory that is in-
consistent with respect to the constraint equation (6). These
requirements are satisfied by following a three-step sequential
algorithm in time, that we describe next.

The first step is to determine a nominal reference attitude p,.,
reference angular velocity v, , and reference angular acceleration
a,, that can be reached with no control effort. The angular
acceleration «, is nominally determined from equation (2) for
zero errors e and es, and zero control effort §:

o, =&, =D, + GH + Glw,, 10)

where D, = M~} (wy x Mw,) is the kinematic transport term
for the reference trajectory. We set the errors to zero as we are
deriving the reference trajectory. The control effort is set to zero
in order to derive the natural dynamics of the airplane in the
reference attitude, and also to remain unbiased at this stage.
Integration of equations (10) and (1) then yield a nominal evo-
lution for the reference angular velocity and attitude quaternion
in time:

ve(t+dt) | wy (t) + a, (t + dt)dt (a1
Brt+dt) | (1) + L () @ v (t+db) |

It must be noted that the integrated angular velocity v, and at-
titude p, are only nominal, and subject to change as described
below. We shall therefore denote the actual reference attitude,
angular velocity and acceleration at time ¢ + dt by using dif-
ferent symbols ¢, w,, and .. The nominal reference accel-
eration «, in equation (10) is the optimal value if there was
no tracking objective, or control constraint. The presence of a
tracking objective (of tracking a desired roll and pitch specifica-
tion) and a control constraint (of being under-actuated), entail a
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modification to «,.(t + dt). A similar comment applies to
v, (t 4 dt) and p, (t + dt).

The second step in deriving the reference trajectory is to
incorporate the desired roll and pitch angles ¢, (¢t + dt) and
0, (t + dt). To this end, we project the integrated attitude p, (¢ +
dt) onto 7, (t + dt) in the free yaw subspace specified by ¢,
and 6, using equations (8) and (9). The projection from p, to
7, is optimal with respect to meeting the roll and pitch angle
specifications when there is no other constraint equation. If there
was no control constraint this would be our reference attitude at
time ¢ + dt.

A third and final step in determining the reference attitude
at time ¢ + dt is in order to comply with the under-actuation
constraint contained in equation (6), so that we can solve for
a suitable control command using equation (3) that provides
GAS attitude tracking. We shall therefore correct 7, (t + dt)
by a suitable yaw angle 1. to the final attitude configuration
G- (t + dt) in order to meet the under-actuation constraint:

G (t+dt) = he @ 7 (t + dt), (12)
where h. = [cos(¢,./2) 00 sin(¢), /2)]” is the yaw-correction
to 7, and 1), is undetermined as yet.

The constraint-corrected reference attitude ¢, can be reached
only by changing the nominal angular velocity v, in equation
(11) to the final angular velocity w,, which in turn requires a
change in the nominal acceleration c,. to [3,:

wy (¢ + dt) qu,.l (t) @ (¢, (t 4 dt) — G.(t))/dt

B, (t + dt)

13)

(wy(t+dt) — w,(t))/dt

In order to derive the appropriate yaw-correction )., we substi-
tute g, (t + dt) and w, (t + dt) in equation (6). It may be recalled
that the error variables e; and e, contain ¢, and (}T , and also the
airplane’s attitude ¢ and §. The resulting scalar equation may
then be solved for the single unknown )., which completes the
specification of the reference attitude ¢, at time ¢ + dt, along
with the reference angular velocity w,, and the reference angular
acceleration (3, (t + dt).

The entire procedure may be summarized in the following

sequential algorithm:

1) Initialize the reference attitude ¢,.(0), angular velocity
w,(0), and angular acceleration 3, (0).

2) Determine the nominal angular acceleration cv, (¢ + dt) at
time t + dt using equation (10). This nominal acceleration
would require zero control effort.

3) Determine the nominal angular velocity v, (¢t + dt) and
the nominal attitude p, (¢ + dt) by integrating the nomi-
nal angular acceleration «, (¢ 4+ dt) and angular velocity
v, (t 4 dt), as given by equation (11).

4) Project the nominal attitude p, (¢ 4 dt) onto the free-yaw
subspace specified by the desired roll and pitch angles
¢ (t + dt) and 0, (t + dt) using equations (8) and (9).

5) Rotate the projected attitude through an undetermined yaw
angle 1. into ¢, (t + dt) using equation (12) and derive
the corresponding angular velocity and acceleration, w,
and (,, using equation (13).
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6) Substitute the values of g, (¢ + dt), G, (t + dt), and w, (t +
dt) into the under-actuation constraint equation (6) to
solve for the yaw correction ., and hence determine
Gr (t + dt), w, (t + dt), and B, (t + dt).

7) Repeat steps 2 to 6 until the final time .

It must be noted that the GAS controller in equation (3) re-
quires the reference attitude ¢,, and its first and second time
derivatives, ¢, and ¢, to be bounded. These conditions are
now transferred to the reference roll and pitch angle specifica-
tions: ¢,, ¢, 0., and 6, must be bounded and |0| < 6,, < 7/2
for some constant 6,, sufficiently far away from 7/2 (note:
these conditions apply to the reference attitude and are not to
be confused as conditions on the airplane’s attitude, which is
still arbitrary; the global stability of the controller still provides
asymptotic tracking to the bounded reference trajectory for any
given initial attitude).

As an example application of the proposed method, the free-
yaw subspace for the attitude projection, Q; ;1 1, may be derived
in order to perform waypoint and path tracking missions. For
example, the reference roll angle, ¢, , and pitch angle, 6, , may be
determined by the below equations in order to track waypoints:

d)r = ¢m tanh(% + w() - 1/’)
= Om tanh(atan((y - yr)/(CL’ - wr)) + %o
/

— atan(2(pops + p1p2)/ (0§ + 01 — 3 — p3))), (14)

0, =0, tanh(z — 2, ) /L. , (15)
where, (z,y, z) are the current spatial coordinates of the air-
plane, (x,,y,, z.) are the coordinates of the waypoint, L, is a
length that determines the gain from an error in z to 6,., and ¢, ,
and 6,,, are the maximum roll and pitch angles. The translational
dynamics of x, y, and z, and the yaw angle v are bounded, and
consequently so are those of ¢, and 6,.

IV. SIMULATION RESULTS

In this section, we verify that it is possible to achieve way-
point tracking in a rudderless airplane using the optimal attitude
subspace projection and yaw correction described in the previ-
ous section. For the simulations, we use the aerodynamic model
derived for the Stryker F27C small unmanned aerial vehicle pro-
vided in [19]. The Stryker F27C has a wingspan of 0.94 m and
a loaded mass of 0.67 kg. The hardware and autopilot are de-
scribed in [10]. Important geometric, inertial, and aerodynamic
properties of the vehicle are provided in [19] and reproduced
below in Table I and II.

In the below simulation, the airplane is initialized in an ar-
bitrary attitude at time ¢ = 0 and directed to a waypoint at
x, = 300, y, = —50 until time ¢ < 90s, and subsequently redi-
rected to a new waypoint at x, = 200, y, = 150. Both way
points are located at an altitude of —z, = 200. Equations (14)
and (15) are used to derive a reference roll and pitch angle at
each time instance. The algorithm presented in Section III is
then used to derive a reference attitude trajectory for the GAS
controller of equation (3).
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TABLE I
GEOMETRY AND INERTIAL PARAMETERS OF THE STRYKER F27C
SMALL UAV [19]

Parameter Measured value
Wing-span b 0.940 m
Reference chord ¢ 0.270 m
Wing planform area S 0.217 m?
Mass M 0.66 kg
Position of CG zo g 0.15m
Moment of inertia Iz 0.0079 kgm?
Moment of inertia Iy, 0.0203 kgm?
Moment of inertia I, . 0.0282 kgm2
Moment of inertia I, 0.0000 kgm?
Air density p 1.2 kg/m?
Airspeed V, 12.5 m/s
TABLE II

AERODYNAMIC STABILITY AND CONTROL DERIVATIVES OF THE STRYKER F27C
UAYV, UNDER TRIM CONDITIONS [19]

Parameter AVL Windtunnel
Cmo -0.018
Cm,a -0.108
Cim,q -1.203 -1.321
Cr.s. -0.264
Cio 0.000
Cip -0.056
Cip -0.323 -0.392
Crr 0.042 0.051
Ci.s, -0.139
Cho 0.000
Cn s 0.049
Ch.,p -0.072 -0.027
Ch,r -0.025 -0.027
Ch.s, -0.011
350
300 r
250
200 r
E 150 |
>
100 r
50 r
0r time = 199.99
-50 - . . !
-200 -100 0 100 200

x (m)

Fig. 3. Ground track of the airplane commanded on a waypoint track-
ing mission. The waypoint is (300, —50) for time ¢ < 90s, and (200, 150)
subsequently.

The ground track in Figure 3 shows successful waypoint
tracking. The airplane initially heads directly towards the way-
point from a distance. Once it gets close, the sigmoid function
in (14) causes it to loiter around the waypoint at the maximum
roll angle ¢,, . In this simulation ¢,, was setto 7/6, and 6,,, was
set to 7/18.

In order to verify global stability, the vehicle is initialized in
a random attitude at time ¢ = 0. It is seen in Figure 3 that the
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Fig. 4. The airplane commanded on a waypoint tracking mission. Shown
in this figure is the asymptotic Euler angle attitude tracking from a random
initialization.
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Fig.5. A zoomed in portion of the attitude tracking at initial time shows large
initial errors and the global nature of the stability provided by the controller.
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Fig. 6. Quaternion attitude error while tracking waypoints.
airplane is stabilized beginning from initial errors that are as
large as 7 /2 radians. The large roll angle error causes the initial
path of the airplane to not head directly towards the waypoint, as
seen in Figure 3. However, within a few seconds, the nonlinear
controller stabilizes the roll angle (Figure 4). During the turn,
the reference roll angle is suitably modified by equation (14) in
order to loiter around the commanded waypoint. As the airplane
loses altitude upon banking to turn, the reference pitch angle is
modified using equation (15).

Figure 6 shows the asymptotic tracking and Figure 7 shows
the bounded control input that provides the tracking perfor-
mance.
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Fig. 7. The normalized control input while tracking waypoints. Note that the
rudder input is forced to 0, as the Stryker F27 doesn’t have a rudder.
350
300
250 r
200
E 150 |
>
100 r
50
0r time = 199.99
-50 ! 1 ' L
0 100 200 300
x(m)

Fig. 8. Ground track of the airplane commanded on a path tracking mission.
The target path is a square with corners at (0,0), (0,300), (300,300), and
(300,0).
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Fig. 9. The airplane commanded on a path tracking mission. Shown in
this figure is the asymptotic Euler angle attitude tracking from a random
initialization.

The airplane can also be commanded for path tracking mis-
sions as shown in the next set of figures (Figs. 8—12). The target
path is a square path with corners at (0, 0), (0, 300), (300, 300),
and (300, 300), traversed in clockwise sense. As the airplane
passes each vertex of the square, its inertia causes it to over-
shoot the desired trajectory. The controller subsequently causes
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Fig. 10. A zoomed in portion of the attitude tracking at initial time shows large
initial errors and the global nature of the stability provided by the controller.
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Fig. 11.  Quaternion attitude error while tracking the reference path.
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Fig. 12.  The normalized control input while tracking the reference path. Note

that the rudder input is forced to 0, as the Stryker F27 doesn’t have a rudder.

the airplane to bank and turn so as to approach the next target
vertex. Once the heading is correct, the controller returns to
level flight until the next vertex.

It is straightforward to extend the above procedure from a
square path to an arbitrary path, whose curvature is not so
steep as to exceed the maximum desired bank angle ¢,,, by
approximating it as a series of piecewise straight line seg-
ments. The minimum radius of curvature can be computed as
R~ V?/(gtan ¢,,), where V, is the airspeed of the airplane
and ¢,, is the maximum reference roll angle. For example, val-
ues of V, = 12.5m/s and ¢,,, = 7/6 produce a minimum radius
of curvature of ~26 m. For steady turns about a waypoint, the
error in heading is 7/2, which yields (equation (14)) the radius
of the turn as V.2 /(g tan(¢,, tanh(w/2))) ~ 31 m.
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V. CONCLUSION

We have thus presented a method to achieve waypoint or
path tracking by a rudderless fixed-wing small UAV, by using
a nonlinear attitude controller to optimally track a desired atti-
tude specified solely by roll and pitch angles. The third degree
of freedom of the attitude is derived so as to satisfy the control
constraint which expresses the absence of the rudder. The perfor-
mance of the controller with such a reference attitude trajectory
is verified in Matlab simulations for global stability. Our team is
now working on the experimental validation of the global stabil-
ity results using the UAV platform described in the introduction.
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