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ABSTRACT: The synthesis and characterization of a CdS-based
molecular cluster, [Cd;,S;(SPh)s]*" (Cd,), with site-specific
substitution of Cd** with Mn** impurities are reported. The
formation of the Cd;, cluster from the smaller [Cd,(SPh),,]*~
(Cd,) cluster involves a metastable intermediate cluster, [ CdgS-
(SPh) x]*~ (Cdy), that is detected by electrospray ionization mass
spectrometry (ESI-MS). To account for this unexpected
intermediate, we propose a complex equilibrium between Cd,,
Cdg, and Cd,, exists that we exploit to introduce Mn?* impurities
at both core and surface cation sites of the Cd,, lattice. We
demonstrate through two synthetic procedures that differ only in
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the sequence in which Mn*" is introduced to the reaction dictates its speciation in the cluster. Introducing dopants at an early
stage of the synthesis prevents full conversion of Cdg to Cd,o; however, it yields core doped Cd,, clusters. Addition of Mn*" ions
after the preparation of Cd;, yields only surface doped clusters. The composition of the doped clusters is systematically
characterized by ESI-MS and exhibits speciation-dependent peak intensities. Photoluminescence (PL) spectra of the Mn?*-
centered *T, — °A, transition also exhibits significant differences in peak position and PL lifetimes that are consistent with the
expected variation in ligand field strength experienced by these two metal sites. However, ESI-MS and PL collected on “aged”
samples indicate slow displacement of Mn>* from core sites. This study provides new insights to the growth mechanism of
clusters that remained rather elusive and demonstrates how the cluster surface dynamics and cluster equilibria can be exploited
for precise doping of these well-defined semiconductor analogues.

B INTRODUCTION

The chemical and physical properties of small, discrete
molecular and magic-sized clusters have received great
attention in recent years due to their inherent monodispersity
in contrast to their colloidal nanocrystal analogues."” Similar
to quantum confined nanocrystals, these semiconductor
nanoclusters also exhibit size-dependent electronic struc-
tures.” " Interest in the synthesis of colloidal nanocrystals
with better-defined composition and narrow size distributions
has led many to focus their studies on the chemistry of
molecular clusters that may serve as precursor clusters in the
synthesis of nanocrystals.”"'™"” Some of these molecular
clusters have also been employed as single-source precursors
for the synthesis of pure and doped colloidal semiconductor
nanocrystals.”'%"?

The substitutional doping of paramagnetic transition metal
ions in these clusters produces large magneto-optical effects
and dopant-related photoluminescence (PL) reminiscent of
diluted magnetic semiconductor quantum dots (DMS-
QDs).”*"** Recent examples involving Mn*" as the impurity
ion in semiconductor nanoclusters includes (Zn,_,Mn,Te);s,
which exhibited long-lived emission from the Mn** dopant,”*
and (Cdl_x_yanMnySe)B that exhibits well-resolved giant
Zeeman splittings of the HOMO—LUMO (excitonic-like)
transition.”””® Despite the monodispersity of these doped
nanoclusters, little is known regarding the chemical stability
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and distribution of impurities in such small clusters where even
a single dopant can surpass the solid solubility limit in the bulk
semiconductor. Even these small tridecameric magic-sized
clusters must possess more than one unique site in the lattice
that expands the difficulty in correlating material properties
with dopant speciation.

The class of metal chalcogenide nanoclusters employed in
this study adopt “supertetrahedral” molecular structures with
potentially multiple unique crystallographic sites.”'*">**~!
The molecular clusters utilized herein are based on anionic
cadmium thiophenolate clusters with NMe," counterions and
also $*~ ions at the cores of the larger clusters.””**™>> Of
particular importance to this study include the following:
[Cd4(SPh)10]2_, Cd4; [CdSS(SPh)lé]Z_J Cdg;
[CdIOS4(SPh)16]4_) Cd,; and [Cd17S4(SPh)28]2_, Cd,;. The
Cd, cluster has one unique cation site that is coordinated to
4PhS~ ligands (three y-PhS™ and one monovalent PhS™) and
defines the surface site that is conserved in every Cd, cluster in
this study. Scheme 1 shows both the similarities Cd-site as well
as crystallographic differences between the Cdg and Cdj
clusters. Specifically, in addition to the 4 equiv surface sites,
Cdg and Cd,, contain additional “core” sites. The remaining 4
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and 6 Cd** ions, respectively, occupy the core cation sites of
the lattice defined by Cd*" in a pseudotetrahedral arrangement
with both u-PhS™ and p-S*~ ligands. The Cd;, cluster
possesses 4 surface, 12 core, and one additional central site
with a Cd(p4-S), unit at its center. Studies aimed at resolving
the mechanism of cation exchange in molecular or magic-sized
clusters have been relatively limited.

We recently reported the incorporation of Co*" ions into
preformed Cd,, Cd,y, and Cd;; molecular clusters.®®*” We
determined a positive correlation exists between the metal-ion
exchange kinetics of substitutional Co®" impurities and the
interconversion rate of the surface PhS™ ligands bound to the
Cd*" ions at each vertex (see Scheme 1 for Cd,y). The ligand
interconversion rate was found to decrease significantly with
increasing cluster size as evidenced by variable-temperature 'H
NMR spectroscopy and provides strong evidence for the
importance of fast surface dynamics in facilitating fast metal-
ion exchange. However, despite this finding, the main
limitation of low-temperature doping of preformed Cd,
clusters from metal ions in solution is that substitution occurs
only at the surface sites and typically not with core sites.
Sufficient understanding of the reaction mechanism governing
heteronuclear cluster formation is thus required to develop an
effective site-specific doping strategy.

Herein, we present two room-temperature syntheses of Mn-
doped Cd;, cluster, (NMe,),[Cd;o_,Mn,S,(SPh) (]
(Mn:Cd,,). The two syntheses differ only in the order in
which the dopant and S*” are added and also present an
alternate method to prepare Cd,,. The two methods are
referred to as method 1 (Mn:Cd;,-1) and method 2
(Mn:Cd,,-2), where Mn** and S*~ ions are added in different
sequences to premade Cd, clusters. Mn:Cd -1 is similar to our
previous study of Co:Cd,,, where the dopants were added to
the premade Cd,, cluster.”® The formation of Cd,, and
Mn:Cd;, was confirmed by ESI-MS, an analytical technique
that has been proven to be a very effective tool to characterize
the size, composition, structural evolution, and stability of
various inor_ganic molecular clusters”**~** and noble-metal
clusters.”>~*" Spectroscopic and analytical characterization of
the resulting Mn:Cd,, clusters display features consistent with
Mn** ions substituted primarily at surface sites in Mn:Cd, -1
or core sites in Mn:Cd,,-2. However, the substitution of Mn*"
at core Cd sites in Mn:Cd,,-2 is found to be unstable with slow
exchange of dopant ions to either surface sites or diffusion out
of the cluster. Systematic titration studies reveal that the
conversion of Cd, to Cd;, appears to include a metastable Cdg
intermediate that we hypothesize is responsible for Mn**
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incorporation at core sites in the Cd), cluster via method 2.
The site-specific doping of substitutional Mn?* ions in the Cd,,
clusters prepared from these two methods provides intriguing
possibilities for extending this strategy of utilizing metastable
doped clusters to synthesize larger nanoclusters, including
magic-sized clusters and even diluted magnetic semiconductor
quantum dots with homogeneous dopant distributions.

B EXPERIMENTAL SECTION

Chemicals. Cadmium nitrate tetrahydrate (Cd(NO;),-4H,0,
99.999%, Alfa Aesar), sodium sulfide nonahydrate (Na,S-9H,0,
98%, Acros Organics), thiophenol (PhSH, 99%, ACROS Organics),
manganese nitrate hydrate (Mn(NO;),«H,0, 99.98%, Alfa Aesar),
tetramethylammonium hydroxide (TMAOH, 99%, Fisher Chemical),
anhydrous acetonitrile (CH;CN, 99.8%, ACROS Organic), anhy-
drous methanol (CH;0H, 99.8%, ACROS Organics), and triethyl-
amine (Et;N, 99%, Fisher) were used without further purification.
Caution! Thiophenol is extremely toxic and has an unpleasant odor.
Handle with caution according to the material safety data sheet. All
manipulations were handled under inert atmosphere of dry N, using
the glovebox.

Synthesis of Cd;,. The typical synthesis of Cd,, involves direct
addition of elemental S to Cd,, where PhS™ ligands reduce S to $*~ to
yield Cd,o.> We did not use this literature method. Instead, we
employed the following procedure originally reported”” to prepare
Cd,, that was modified to prepare Cd,,. By decreasing the amount of
Cd** added, it is possible to synthesize Cd,,.

Briefly, a solution of PhS™ was prepared by adding PhSH (0.53 mL,
5.20 mmol) and Et;N (0.73 mL, 5.20 mmol) to 4.0 mL of CH;CN in
a single-neck RB flask with magnetic stirring. A solution of Cd(NOj),:
4H,0 (0.660 g, 2.14 mmol) in CH;CN (2.2 mL) was then added to
PhS™ to yield a white precipitate. A 0.24 M stock solution of Na,S-
9H,0 (0.288 g, 1.2 mmol) dissolved in CH;OH (5.0 mL) was added,
resulting in dissolution of the white precipitate followed by the
emergence of turbid light-yellow solution. A solution of 0.234 M
TMAOH (0.212 g, 1.17 mmol) in CH;OH (5.0 mL) was then added
to the solution and left undisturbed for 3 days. The lightly yellowish
powder was then filtered and washed with methanol.

Synthesis of Mn-Doped Cd;, by Method 1. Similar to the
synthesis of Cd,, however, the Mn(NO;),-«H,0 (0.537 g 2.14
mmol) dissolved in methanol (1 mL) was added to the reaction
solution before the TMAOH solution. The pale yellowish orange
product was left undisturbed for 5 days, vacuum filtered, and washed
with methanol.

Synthesis of Mn-Doped Cd;, by Method 2. After the addition of
Cd(NO;), to a solution of PhS~, 0.5 mL of the 5.0 mL Na,S stock
solution was added, which dissolved the white precipitant and yields
clear yellow solution. Mn(NO;),«H,0 (0.537 g, 2.14 mmol) in 1.0
mL methanol was then added to the solution followed by successive
addition of the remaining Na,S and TMAOH solutions. The pale
reddish powder was left undisturbed for 5 days, vacuum filtered, and
washed with methanol.

Physical Characterization. Room temperature absorption,
photoluminescence, and excitation spectra of the clusters in N,-
purged CH;CN solutions were collected with either a Cary 50 or a
Cary Eclipse spectrophotometer. The optical density of the
absorption spectra was <0.6 over throughout the UV and visible
regions. High-resolution electrospray ionization mass spectra (ESI-
MS) were collected in negative ion mode with a Bruker MicroTOF-II.
The concentration of analyte solution was kept at ~30 yM, and the
flow rate of samples was set to 3 #L/min for ESI-MS. Analysis of the
mass spectra was performed using the mMass program.*®

B RESULTS AND DISCUSSION

Alternative Synthesis of the Cd,, Cluster. Figure 1
shows the negative-ion mode ESI-MS collected at —20 V in a
narrow region of m/z values for samples taken at various steps
during the synthesis of Cd,, (see Supporting Information for
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Figure 1. Negative-ion mode ESI-MS over an expanded set of aliquots
taken during the sequential titration of Na,S and Cd(NOj;), reactants
to a Cd, solution (see Supporting Information for full spectra). All
spectra were collected at a cone voltage of —20 V. Mass spectra were
collected after sequential addition of the following to a solution
containing 5.20 mmol of PhS™: (a) 2.14 mmol of Cd(NO;),, (b)
0.240 mmol of Na,S, (c) 0.720 mmol of Na,S, (d) 1.20 mmol of
Na,S, and (e, purple) 0.40S mmol of Cd(NO;),. (f Sim) Peak
simulations for [Cd,(SPh),]™ {Cd,}~ (blue), [CdgS(SPh),s]*"
{Cds}z_ (red), [CleS4(SPh)14]2_ {Cdlo}z_ (green), and
[Cd;(S4(SPh)1,]*~ + PhSH {*Cd,o}*~ (green), respectively. Note
the offset between singly and doubly charged fragments (6m/z = 1
and !/,, respectively). The aliquots removed from the reaction
solution used in this figure were turbid with the exception for sample
b. Before injection into the ESI-MS instrument, all samples were
dissolved in additional CH;CN.

full spectra). After addition of ~0.4 eq of Cd*" to a solution of
PhS™, the formation of anionic Cd,-related clusters is
confirmed by the appearance of a major peak at m/z 1432
corresponding to the [Cd,(SPh),]™ fragment (Figure 1a). In
addition, we also observe the Zn>* exchange product,
[Cd;Zn(SPh),]™, in the mass spectra that we attribute to
Zn** contamination either from the mass spectrometer or the
PhSH precursor (see Figure S4).*

Titration of Na,S to the Cd, solution results in a significant
decrease in the relative intensity of "Cd,"-related fragments
and the formation of intact Cdg clusters at m/z 1339 as shown
in Figure 1b. Note the absence of Zn-exchanged Cdy clusters
in the mass spectrum (see simulated spectrum in Figure 1f).
Additional titration of Na,S shown in Figures 1c and d results
in further reduction of both Cd,-related and Cdg fragments
and the appearance of new features at m/z 1390 and 1445.
These new fragments are attributed to Cd,, clusters with
specific compositions of free and PhSH-bound
[Cd;4S4(SPh),,]*" fragments, respectively. The Zn-contami-
nated Cd,, products are also observed. After complete addition
of S*~ to the reaction solution, most of the Cd, and Cd,
clusters have been converted to Cd,, clusters as shown in
Figure 1d. Upon addition of the counterion, TMAOH, a light-
yellow precipitate forms. After filtration and washing this
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powder, it was found to be primarily Cd;, by ESI-MS (see
Figure S1). However, both Cd, and Cdg are detected in the
initial supernatant (see Figure S2).

Further addition of Cd*" to the turbid reaction solution
yields more Cd,-related fragments and Cdy clusters, as shown
in Figure le. Further addition of Cd(NO;), after this step
would yield Cd;, according to the literature protocol.”” The
reversibility in the relative concentrations of Cd, and Cd,
suggests an equilibrium exists between these clusters and
includes Cdg. The only other synthetic method to prepare Cd,,
was reported by Dance and co-workers®® and involves the
addition of elemental sulfur to Cd, in the appropriate
stoichiometry to afford Cd;, and the oxidation product of
PhS™ that is Ph,S,. Dance and co-workers also reported that
the reaction between Cd;, and Ph,Se, in DMF yielded
[CdgS(SePh),]*~.>* We propose two limiting scenarios, S-rich
and Cd-rich, to explain the possible cluster equilibria involving
Cd,, Cdg, and Cd,, species (see Scheme 2). Different

Scheme 2. Proposed Solution Equilibria of Cd,, Cdg, and
Cd,, Clusters under $>~-Rich and Cd**-Rich Conditions”

6[Cd4(SPh)ol* 3[CdgS(SPh) 6]
+ 852 ~— [+ 552 + 12SPh-
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+4Cd?* + 28SPh™

Ky

2[Cds(SPh)1ol| K, [CdgS(SPh)el

+2Cd?* + 582 | === | + 2Cd?* + 4S% + 4SPh-
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[Cd10S4(SPh)q6]*~
+ 82 + 4SPh-

“The direction of the arrow closest to K, represents the forward
reaction.

assumptions were made for these mechanisms that are mainly
associated with the chemical species present in the upper-left
of each triangle scheme (designated in blue). The S-rich
scheme is based on the assumption that all free Cd** ions are
converted to Cd, when Cd*" is added to the excess PhS™.
However, the Cd-rich scheme explicitly allows for free Cd*"
species and Cd, (and Cdg) to be present in solution with S*~
(and PhS™).

According to Scheme 2, if the formation of Cd,, during the
titration reaction proceeds without total dissolution of the Cd,
cluster, then it may be possible to utilize Mn**-doped Cd,
clusters as the direct reactant to prepare either internally Mn**-
doped Cdg clusters following K; or Mn**-doped Cd,, (Kj).
However, if any of the clusters totally disassemble and then
reassemble along any equilibrium pathway, then the kinetics
should favor formation of undoped clusters. Thus, the likely
speciation of Mn*" ions in the latter scenario would only occur
at surface sites of Cd,,. Both of these proposed mechanisms
provide similar insight into the cluster conversion process that
occurs during Cd,, synthesis and potentially enable metal ion
exchange reactions to be targeted to specific cluster types.

Mn?* Speciation in Cd, Clusters. We performed two
syntheses of Mn”**-doped Cd,, clusters that differ only in the
order in which Mn(NOs;), is added. We refer to these as
Mn:Cd,;-1, where Mn** was added after formation of Cdj,
and Mn:Cd, -2, where Mn?* was added after formation of Cd,
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and Cdg (corresponds to the species shown in Figure 1b). For
both Mn:Cd,, syntheses, the nominal Mn>* concentration is
equivalent to the total Cd** concentration (50 mol percent).
Figure 2 shows the ESI mass spectra of the isolated and filtered

(a) [Cd1o-,Mn,S4(SPh)yl”

2 1 0

b+ 0[Cdg_,Mn,S(SPh)gl"

1————1—0 (NMe,)[Cdl-,Mn, S,(SPh):5I”
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1300
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miz
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Figure 2. Negative-ion mode ESI mass spectra of (a) Mn:Cd,y-1
(M1) and (b) Mn:Cd,(-2 (M2) clusters in the region of the doubly
ionized fragments (6m/z = 0.5): [Cd;,_,Mn,S,(SPh),,]*~ (blue), and
(NMe,)[Cdy_Mn,_S,(SPh),;]*~ (black); and the Cds-derived cluster:
[Cds_ Mn,S(SPh)s]*~ (purple). All spectra were collected at a cone
voltage of —20 V.

from both Mn:Cd;, syntheses where fragments with the
general formula [Cd;(S,(SPh),]*” (m/z 1390), [CdgS-
(SPh),4]* (m/z 1339), and (NMe,)[CdyS,(SPh) 51>~ (m/z
1317) are detected (see Figures SS and S6 for full spectra).
The major peak in Figure 2 for both Mn:Cd,, products is
assigned to the Cd,, precursor cluster centered at m/z 1390. In
addition, fragments containing up to three Mn?* ions in the
Cd,, fragments are detected with decreasing relative intensities
at m/z values of 1362 (CdyMn,), 1333 (CdgMn,), and 1304
(Cd,Mn;), respectively. A very broad feature between m/z
1325 and 1350 clearly originates from two distinct fragments
as shown on an expanded scale in Figure 2a. Deconvolution of
this region reveals that the peaks match well to the simulated
spectra of [CdgS(SPh)4]*~ centered at m/z 1339 and
[CdgMn,S,(SPh),,]*~ at m/z 1333. The final set of peaks
originate from (NMe,)[Cd,_Mn,S,(SPh),3]*~ product frag-
ments at m/z 1317 (CdyMn,) and 1288(CdgMn,), respec-
tively.

A clear difference between the two Mn:Cd,, products shown
in Figure 2 is that the relative intensities of the doped
fragments are always higher for the Mn:Cd,-2 clusters where
Mn** was added prior to Cd,, formation. In addition, there is
much higher abundance of Cdy and Mn:Cdg clusters for
Mn:Cd,4-2. The data in Figure 2 are summarized in Scheme 3.
While it is tempting to attribute the increased relative
abundance of Mn-doped Cd,, fragments to possible exchange
of Mn** with Cd*" ions in the Cd, core, it is not supported by
the ESI-MS data alone. Under low ionization conditions, the
data shown in Figure 2 provide no direct information regarding
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Scheme 3. Proposed Reaction for the Formation of Doped
Cd,, Clusters
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the Mn®" speciation in the Cd,, cluster. In addition, the
maximum number of Mn?* ions in the Cd,, fragment by either
synthesis is three, which could simply occupy just surface sites.
This is the most likely scenario for Mn:Cd,,-1, where cation
exchange between the preformed Cd;, and Mn*" can occur
only at the surface sites. However, although very small in
relative peak intensity, Cdg and Mn-doped Cd, fragments were
observed for Mn:Cd, -1 in Figure 2a, suggesting reversibility of
Cd, to Cdg may occur by the addition of Mn®' in a similar
manner that Cd** addition caused destabilization of the Cd,,
cluster shown in Figure le.

The mechanism for metal ion exchange in Cd, clusters most
likely proceeds by association of metal ions to PhS™ ligands
undergoing rapid interconversion with other bridging/surface
PhS™ ligands in the cluster.***° This requirement for exchange
could be mediated by the presence of additional clusters in
solution with faster ligand interconversion dynamics (i.e., less
S~ content) in solution.”® Very slow metal ion exchange
kinetics between intact clusters of similar’® and dissimilar”’
clusters has been reported and may involve similar cluster
equilibria.

For Mn:Cd, -2, the synthesis involves adding Mn®" after the
initial formation of Cd, and Cdg clusters, but before the
addition of the total amount of $>~ required to produce Cd,,.
As shown in Figure 2b, there is also a considerable amount of
fully intact Cdg clusters present that exchange up to 2 Mn*"
ions by ESI-MS (see red dashed lines in Figure 2b). This
observation is consistent with an apparent positive correlation
between the relative intensity of doped Cdg and Cd,, clusters
with Mn:Cd, -1 and Mn:Cd;,-2. Furthermore, this correlation
would predict that Mn®>* and Cd®>* compete for S*~
coordination in solution that could lead to the incomplete
conversion of Cdg to Cd;, under the high nominal Mn*" mole
percentages used here (50%).

It may seem reasonable to assume that the Cdg clusters
prepared by the Mn:Cd;;-2 method were doped through
surface metal ion exchange similar to Mn:Cd -1 and other Cd,
clusters. While very likely, both Mn?* and Cd** ions can
compete for available S*~ anions during cluster assembly with
the Mn:Cd,;-2 method. This possible mechanism could allow
at least some of the Mn®* ions ligated to S~ anions to be
incorporated at Cdg core sites that may be retained when Cdg
converts to Cd,, Furthermore, the ESI mass spectra also
suggest the dopant distribution is different between the two
Mn:Cd,, clusters from the relative peak intensities shown in
Figure 2. The relative intensities for all Mn*"-doped clusters
are significantly higher in Mn:Cd -2 than Mn:Cd4-1.

We also examined the change in the relative intensities of
the singly doped and nondoped Cd, clusters as a function of
increasing fragmentation via loss of up to two neutral
Cd(SPh), or Mn(SPh), species (see Figure 3). The largest
clusters are [CdyMn,S,(SPh),]*>~ (CdyMn, in the figure) and
[Cd}4S4(SPh),4]*>” (Cd,, in the figure) at m/z 1362 and 1390,
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Figure 3. Negative-ion mode ESI mass spectra of Mn:Cd, -1 (red, left
panel) and Mn:Cd,,-2 (blue, right panel) in the region of the doubly
ionized fragments (6m/z = 0.5). The fragments in these focused
regions correspond to (a) [Cdyo_,Mn,S,(SPh),]*>", (b)
[Cdy_Mn,S,(SPh);,]*7, and (c) [Cdy_,Mn,S,(SPh);,]*", where x
= 0 and 1. The asterisk at m/z 1024 is (NMe,)[Cd,,S,(SPh) ¢]*~
(6m/z = 0.33). The clusters were suspended in degassed CH;CN and
collected at a cone voltage of —40 V.

respectively. These fragments differ from the intact cluster by
two PhS™ ligands that are removed by ionization. The most
likely position for the cluster to lose the additional M(SPh),
fragments is also from these surface sites of the Cd,, cluster.
The relative peak intensities of the CdyMn, fragment in the
Mn:Cd -1 clusters has ~19% the intensity of the Cd,
fragment. This relative peak intensity steadily decreases with
increasing removal of both M(SPh), fragments, which is
consistent with Mn?* predominantly occupying surface sites.
Contrary to Mn:Cd -1, the mass spectrum of Mn:Cd -2 does
not exhibit this same trend. The relative peak intensity of the
Cd,Mn, fragments remains fairly constant between 64 and
69% of the Cd, fragments. The data presented in Figure 3
provides strong evidence that Mn®* is located at core cation
sites only in the Mn:Cd;y-2 clusters. However, without
removing all surface cation sites with increasing stronger
ionization voltage and confirming core Mn®* substitution, we
cannot determine the precise location of the dopants in Cd,,
by ESI-MS.

Gated Photoluminescence Spectroscopy. We utilized
photoluminescence (PL) spectroscopy to decipher whether the
variation in the ligand fields between core and surface sites
manifest themselves in the Mn**-centered PL spectra. The
steady-state spectra of both Cd,, and Mn:Cd;, products is
dominated by strong intraligand and metal-to-ligand charge
transfer (MLCT) PL ranging from 305 to 345 nm (see Figure
S9). The Mn:Cd,, PL is consistent with the ESI-MS data that
confirm that the majority of Mn:Cd,, clusters do not contain
Mn?*. However, we were able detect the long-lived *T; — °A,
PL of pseudotetrahedral Mn®" by collecting the PL after a
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delay of 100 us after excitation to remove the fast Cd,
fluorescence. The resulting gated PL and PL excitation
(PLE) spectra of the Mn:Cd,, clusters on normalized scales
are shown in Figure 4. Both the energies and lifetimes of the

M2 M1
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Figure 4. (a) Gated PL and PLE (left) spectra of Mn:Cd,-1 (red)
and Mn:Cd-2 (blue) samples in N,-purged CH;CN solutions.
Spectra were collected within 5 min of preparation. The absorbance
spectrum of Cd, is also shown (black line with gray shading). (b) PL
decay (dots) and biexponential fits (lines) of the Mn** PL from panel
(a) on a logarithmic time scale. Average PL lifetimes, (7), were
calculated using eq 2.

broad Mn**-centered PL are significantly different between the
two clusters. The Mn:Cd, -1 clusters display Mn** PL centered
at 638 nm (1.94 eV), while the Mn:Cd,,-2 clusters display PL
centered at 590 nm (2.10 eV).

The PL lifetimes of the Mn** PL display biexponential decay
behavior that were fit using eq 1.”'

I(t) = (al/Tl)e_(t+t0)/Tl + (az/Tz)e_(t+t0)/Tz (1)

where a; and @, are the amplitudes, 7, and 7, are the PL
lifetimes, and ¢, is the gate time of the measurement. We
included the numerical results from the fits in Table S3. The
average PL lifetimes were calculated by taking the weighted
average of the individual PL lifetimes according to eq 2

(7) = (a7 + ay1,) /(o + @) ()

The average PL lifetime is found to be much shorter for
Mn:Cd;o-1 ({(z) = 0.66 ms) than Mn:Cd,o-2 ({7) = 2.5 ms).
Both lifetimes are consistent with previously reported lifetimes
for Mn?**-doped in magic-sized clusters and QDs.”"**>*

The PLE spectra of Mn*" PL exhibit energy transfer in the
broad UV regions centered at 250 nm. This overlaps well with
the absorption spectrum of Cd,, also shown in Figure 4. The
UV absorption features is attributed to overlapping 7 — #*
intraligand transition of PhS™ and a ligand-to-metal charge
transfer (LMCT) transition from PhS™ (HOMO) to Cd** Ss
orbital (LUMO).”** A shoulder centered at ~325 nm is also
observed in the PLE spectra of both Mn:Cd,, clusters that we
attribute to a charge transfer transition involving the core:
namely, S~ 2p orbitals and Cd** Ss or Mn?* 4s orbitals. Cd,,
does not show any transition in this region, but a broad
absorption ranging from ~320 to 400 nm can be observed in
concentrated solutions of Mn:Cd,, that we tentatively attribute
to a Mn2+—to—ligand charge-transfer transition (see Figure S8).

The difference in the energy of the “T; — °A; PL is ~160
meV between the two Mn:Cd, clusters. The energy difference
between the *T, excited state and the °A;, ground state
decreases with increasing ligand field strength.”* The average
ligand field imposed on the Mn>* depends on whether it sits at
a surface or core site in the Cd), cluster. Evaluation of ligand
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field parameters for Mn** complexes is complicated by the lack
of spin-allowed transitions; however, these parameters are
known for Co** in two relevant clusters, (PPh,),[Co(SPh),]
and (NMe,),[Co,(SPh),,], as well as CdS (u,-S>7).> > The
ligand-field parameters for Co** in the relevant lattices are
given in Table 1. The ligand field strengths of both monovalent

Table 1. Experimental Ligand-Field Parameters for
Tetrahedral Co®" with PhS™ and S>~ Ligands”

lattice 10Dg B B ref
[Co(SPh),]*~ —4030 619 0.63 55
[Co,(SPh),o]*~ —4740 643 0.65 56
Co*":CdS —3160 664 0.67 57

“All energies are in cm™. bNephelauxetic ratio, # = B(complex)/
B(free-ion). Free-ion value for Co®* is 989 cm™®

PhS™ and p-PhS~ ligands are greater than 4,-S*~. Thus, Mn®*
coordination to PhS™ ligands is expected to have a smaller *T,
— A, transition energy compared to that of Mn?* with mixed
PhS™/S*” coordination (see Figure S7).

Mn?* Stability. Figure Sa shows the gated PL of a N,-
purged acetonitrile solution of Mn:Cd,y-2 collected after 2 h

Mn:Cd,o-2: fresh
590 nm

aged
638 nm

Gated PL (a.u.)

600 700 800
Wavelength (nm)

500

Figure S. Gated PL spectra of a Mn:Cd, -2 solution collected within
S min of dissolving in N,-purged acetonitrile (fresh, light blue) and
again after aging for 2 h (aged, dark blue). The intensity of the fresh
PL spectrum is ~6 weaker compared to the aged PL spectrum

(dotted, light blue).

(aged Mn:Cd;y-2). Initially, the fresh Mn:Cd;y-2 solution
exhibits Mn?* PL at 590 nm; however, the gated PL spectrum
of the aged Mn:Cd,y-2 solution shows the peak position
redshifts to 638 nm and increases drastically in intensity. No
further changes in the peak position were observed at longer
times. The gated PL spectrum of Mn:Cd,4-1 shows no energy
shifts over the same timespan but does exhibit a significant
increase in PL intensity (see Figure S10). We attribute this
increase in PL intensity from surface Mn®" ions in the aged
samples to the longer equilibrium times associated with slow
metal-ion exchange kinetics of Cd;, (and surface-doped
Mn:Cd,,). We note that we previously observed relatively
slower exchange kinetics for Co®* ions with preformed Cd,,
compared to preformed Cd,.*”

Furthermore, the ESI mass spectrum of aged Mn:Cd ;-2 is
drastically different from fresh Mn:Cd, (-2 and displays similar
trends to Mn:Cd,o-1 (see Figure 3 and Supporting Information
for the full ESI mass spectrum). The spectra of the fresh and
aged Mn:Cd,y-2 cluster in the same regions from the
fragmentation analysis are shown in Figure 6. The relative
peak intensity of [CdyMnS,(SPh),,]*” decreases from >60 to
26% after being dissolved in CH;CN for 2 h. The trend of
decreasing relative peak intensity with increasing fragmentation
also behaves similar to the results shown in Figure 3 for
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Figure 6. Negative-ion mode ESI mass spectra of Mn:Cd,,-2 sample
collected immediately after dispersing in N,-purged CH;CN (fresh,
light blue) and after 2 h (aged, dark blue). The solution was dispersed
in N,-purged CH;CN (see Supporting Information for full spectrum).
The asterisk at m/z 1024 is (NMe,)[Cd,(S,(SPh)s]*~ (6m/z
0.33).

Mn:Cd,-1. After 2 h, the relative peak intensities of the doped
fragments decrease by ~3% for every M(SPh), removed.
These combined results are consistent with the majority of
Mn** ions initially located at core site in the Cd,, lattice, but
over time they have either exchanged with surface Cd*" ions or
been removed from the cluster. Thus, the instability of Mn®* in
the Cdj, core suggests that the core substitution is the kinetic
product and hard—soft acid—base arguments still dominate the
thermodynamic product with Cd-only cores in the Cd,
clusters. Kinetic studies are currently underway to resolve
the potential mechanisms responsible for the loss of core
dopants in these clusters such as dopant ejection vs dopant
exchange from the core to surface sites.

B CONCLUSIONS

We presented a synthetic strategy to control the speciation of
defects in a small CdS-based molecular cluster. The initial
cluster assembly and cluster-to-cluster conversion process were
systematically studied and suggest a complex equilibrium exists
between Cd,, Cdg, and Cd,, clusters that all have unique
kinetics for metal-ion exchange and ligand interconversion.
Through ESI-MS, we observe Mn**-doped Cdg, which appears
to correlate with the successful incorporation of Mn?* ions at
the inner core sites of Cd,,. Metal ion exchange only at surface
sites is also confirmed when Mn®' is simply added to
preformed Cd,.

The combination of negative-ion mode ESI-MS and gated
PL spectroscopy allow for unambiguous determination of
dopant speciation in Cd,,. Specific assignment of dopant locale
is supported by the energy of the Mn**-centered PL that is
consistent with variation in average ligand field strengths for
the different coordination environments of surface and core
metal sites of Cd,y. These approaches provide evidence that
solution dynamics cannot be overlooked when designing
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doped molecular clusters. Future work will encompass
exploration of various synthetic routes for doping larger
molecular clusters such as Cd;,, Cd,, and Cd;,, where
targeted dopant ions may be efficiently stabilized at core sites
due to the larger lattice stabilization energies compared to the
smaller Cd,,.
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