
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019 1123
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Nonstationary Channels
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Abstract—This paper considers a set of multiple independent
control systems that are each connected over a nonstationary wire-
less channel. The goal is to maximize control performance over all
the systems through the allocation of transmitting power within a
fixed budget. This can be formulated as a constrained optimization
problem examined using Lagrangian duality. By taking samples of
the unknown wireless channel at every time instance, the result-
ing problem takes on the form of empirical risk minimization, a
well-studied problem in machine learning. Due to the nonstationar-
ity of wireless channels, optimal allocations must be continuously
learned and updated as the channel evolves. The quadratic conver-
gence property of Newton’s method motivates its use in learning
approximately optimal power allocation policies over the sampled
dual function as the channel evolves over time. Conditions are
established under which Newton’s method learns approximate so-
lutions with a single update, and the subsequent suboptimality of
the control problem is further characterized. Numerical simula-
tions illustrate the near-optimal performance of the method and
resulting stability on awireless control problem.

Index Terms—Wireless control systems, learning, Newton’s
method, nonstationary channel.

I. INTRODUCTION

T
HE recent developments in autonomy in industrial control

environments, teams of robotic vehicles, and the Internet-

of-Things have motivated intelligent design of wireless systems.

Even though wireless communication facilitates connectivity, it

also introduces uncertainty that may affect stability and per-

formance. To guarantee performance and safety of the control

application it is common to employ model-based approaches.

However wireless communication is naturally uncertain and

time-varying due to effects that are not always amenable to

modeling, such as mobility in the environment. In this paper

we propose an alternative learning-based approach, where au-

Manuscript received March 2, 2018; revised July 19, 2018 and October 12,
2018; accepted December 1, 2018. Date of publication December 27, 2018; date
of current version January 14, 2019. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Laura Cottatellucci.
This work was supported by the ARL DCIST CRA W911NF-17-2-0181 and
Intel Science and Technology Center for Wireless Autonomous Systems. This
paper presented in part at the IEEE International Conference on Acoustics,
Speech and Signal Processing, Telus Convention Centre, Calgary, AB, Canada,
April 2018, and in part at the Annual American Control Conference, Wisconsin
Center/Hilton Milwauke City Center, Milwauke, WI, United States, June 2018
[1], [2]. (Corresponding author: Mark Eisen.)

The authors are with the Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA 19107 USA (e-mail:, maeisen@
seas.upenn.edu; kgatsis@seas.upenn.edu; pappasg@seas.upenn.edu; aribeiro@
seas.upenn.edu).

Digital Object Identifier 10.1109/TSP.2018.2890056

tonomy relies on collected channel samples to optimize perfor-

mance in a non-stationary environment. The connection between

the two approaches is based on the observation that a sampled

version of the model-based design approach can be cast as an

empirical risk minimization (ERM) problem, a typical machine

learning problem. Even so, standard techniques developed for

solving ERM problems in machine learning do not address the

additional challenges present in wireless autonomous systems,

namely the non-stationarity of sample distributions.

The traditional model-based approach is motivated by the de-

sire to build wireless control systems with stability and optimal

performance. To counteract channel uncertainties it is natural to

include a model of the wireless communication, for example an

i.i.d. or Markov link quality, alongside the model of the physi-

cal system to be controlled. These models have been valuable to

help analysis and control/communication design. For example,

one can characterize that it is impossible to estimate and/or sta-

bilize an unstable plant if its growth rate is larger than the rate at

which the link drops packets [3]–[6], or below a certain channel

capacity [7], [8]. Additionally models facilitate the design of

controllers [9]–[11], as well as the allocation of communication

resources to optimize control performance, for example power

allocation over fading channels with known distributions [12],

[13], or event-triggered control [14]–[18].

In practice wireless autonomous systems operate under un-

predictable channel conditions following unknown time-varying

distributions. While one approach would be to estimate the dis-

tributions using channel samples and then follow the above

model-based design approach, in this paper we propose an al-

ternative learning-based approach which bypasses the channel-

modeling phase. We exploit channel samples taken from the

time-varying channel distributions with the goal to learn directly

the solution to communication design problems. To apply this

approach we exploit a connection between the model-based and

the learning-based design problems. Existing works [19]–[21]

study related problems in multiple-access wireless control sys-

tems and resource allocation problems in wireless systems but

under a stationary channel distribution. These works generally

employ first-order stochastic methods, which have slow conver-

gence rates and hence not suitable for the present framework. A

significant challenge remains in how to continuously learn op-

timal policies over a wireless channel that is time-varying. This

shortcoming of existing sample-based approaches used in [19]–

[21] and more general machine learning scenarios motivates the

higher-order learning approach proposed in this paper. Some

existing machine learning methods account for nonstationarity
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by optimizing an averaged objective over all time [22]–[24].

Our approach differs in that we seek and track optimality lo-

cally with respect to the current channel distribution at every

time epoch.

In this paper we consider a wireless autonomous system

where the design goal is to maximize a level of control per-

formance for multiple systems while meeting a desired transmit

power budget over the wireless channel (Section II). The wire-

less channel is modeled as a fading channel with a time-varying

and unknown distribution, and only available through samples

taken over time. We derive in Section II-A a wireless control

problem that finds optimal power allocation policies for an in-

dividual time epoch where the wireless channel distribution

does not change, and then proceed to derive the Lagrange dual

(Section II-B). We show in Section III that the dual of the power

allocation problem can be rewritten using channel samples as

an empirical risk minimization problem, a common machine

learning problem in which an expected loss function over an

unknown distribution is approximated by optimized over a set

of samples. Here the risk is loosely related to how far the current

solution is from the desired optimal power allocation.

Because the wireless channel is varying over time, we de-

velop a new approach to solving a sequence of ERM prob-

lems. We collect and store a window of channel samples taken

from consecutive distributions to reduce sampling complexity

and employ Newton’s method to learn new policies quickly

(Section IV). More specifically, the quadratic convergence rate

of Newton’s method is shown to be sufficient to find approxi-

mate solutions to slowly varying objectives with a single update.

Using Newton’s method, we propose an algorithm that uses

channel samples to approximate the solution of a power allo-

cation wireless control problem over a non-stationary channel.

We prove that, under specific conditions, the algorithm reaches

an approximately optimal point in a single iteration of Newton’s

method (Section V). This result establishes both a suboptimal-

ity bound with respect to the sampled problem (Section V-A)

as well as with respect to control performance metric in the

wireless control problem (Section V-B). We additionally show

a stability result for a particular problem description common

in wireless control systems (Section V-C) and provide consider-

ations for practical implementation of the method (Section VI).

These results are further demonstrated in a numerical demon-

stration of learning power allocation policies across multiple

control systems over a time-varying channel (Section VII).

II. WIRELESS CONTROL PROBLEM

We consider a wireless control problem (WCP) with m in-

dependent control systems labeled i = 1, . . . , m, as shown in

Fig. 1. Each control system/agent i communicates at time t its

state xi
t over a wireless channel in order to close a loop and max-

imize a level of control performance. In particular, system i tries

to close the control loop over the wireless channel by transmit-

ting with power level pi ∈ [0, p0 ]. Due to propagation effects the

channel fading conditions that each system i experiences, de-

noted by hi ∈ R+ , change unpredictably over time [25, Ch. 3].

Together, the channel fading hi and transmit power pi deter-

Fig. 1. Wireless control system. Plants communicate state information to
access point/controllers over wireless medium.

mine the signal-to-noise ratio (SNR) at the receiver for system

i, which in turn affects the probability of successful decoding

of the transmitted packet at the receiver. We consider a function

q(hi , pi) that, given a current channel state and transmit power,

determines the probability of successful transmission and de-

coding of the transmitted packet – see, e.g., [12], [13] for more

details on this model. Transmission are assumed on different

frequencies/bands and are not subject to contention – see [19],

[20] for alternative formulations.

Because these fading conditions vary quickly and unpre-

dictably, they can be modeled as independent random vari-

ables drawn from distribution H that itself is non-stationary,

or time-varying. Channel fading is assumed constant during

each transmission slot and it is independently distributed over

time slots (block fading). Furthermore, the channel distribution

H may vary across time epochs, but will in general be stationary

within a single time epoch. In particular, consider an epoch in-

dex k = 0, 1, . . . that specifies a particular channel distribution

Hk with realization hi
k for system i. In Fig. 2, we display a time

axis rendering of this model. The state variables change at each

transmission slot t, while the channel changes at scale k, which

will in general contain multiple time steps. This is to say that

we assume that the channel distribution Hk changes at a rate

slower than the system evolution, and that within a single time

epoch the channel is effectively stationary.

We proceed to derive a formal description of the wireless

control problem of interest within a single time epoch, where

the channel is assumed stationary. In Section IV we extend this

formulation to the non-stationary setting.

A. WCP in Single Epoch

Within a particular time epoch k with channel distributionHk ,

we can derive a formulation that characterizes the optimal power

allocations between the m control systems so as to maximize

the aggregate control performance across all systems, where p0

reflects a maximum transmission power of the system. Given a

random channel state hi
k ∈ R+ drawn from the distribution Hk .

We wish to determine the amount of transmit power pi
k (hi

k ) :
R+ → [0, p0 ] to be used when attempting to close its loop—

see [12] for details. We note that we are looking for transmit

power as a function of current channel conditions, as the power

necessary to close the loop will indeed change with channel

conditions. We assume the current channel gain hi
k is available
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Fig. 2. Time axis showing evolution of time t and epochs k. Each channel distribution Hk is stationary for a set of time instances.

at the transmitter at each slot, as this can generally be obtained

via short pilot signals—see [12]. Then the probability of closing

the loop is given by the value

yi
k := Eh i

k

{

q(hi
k , pi

k (hi
k ))

}

. (1)

The variable yi
k ∈ [0, 1] is the expectation of successful trans-

mission over the channel distribution Hk .

Using the variable yi
k we use a monotonically increasing con-

cave function J i : [0, 1] → R that returns a measure of control

system performance as a function of the probability of success-

ful transmission. Such a function can take on many forms and,

in general, can be derived in relation to the particular control

task of interest. In the following example, we derive such a mea-

sure for a typical wireless control problem setting, namely the

quadratic control performance of a switched linear dynamical

system – see, e.g., [4], [6].

Example 1: Consider for example that a control system i is

a scalar linear dynamical system of the form

xi
t+1 = Ai

ox
i
t + Biui

t + wi
t (2)

where xi
t ∈ R is the state of the system at transmission time t, Ai

o

is the open loop (potentially unstable) dynamics of the system,

ui
t ∈ R is the control input applied to the system at time t, and

wi
t is some zero-mean i.i.d. disturbance process with variance

W i . Consider a given linear state feedback is applied to the

system as the control input when a transmission is successful,

i.e.,

ui
t =

{

Kixi
t if loop closes

0 otherwise
(3)

As a result, the system switched between an open loop mode

Ai
o and a closed loop stable mode Ai

c = Ai
o + BiKi , as in

xi
t+1 =

{

Ai
ox

i
t + wi

t if loop closes

Ai
ox

i
t + wi

t otherwise
(4)

The goal is to regulate the system state close to zero, i.e., the

system attempts to close the loop at a high rate in order to

minimize an expected quadratic control cost objective of the

form

lim
N →∞

1

N

N −1
∑

t=0

E(xi
t)

2 (5)

Assuming the control loop in (4) is closed with the success

probability yi
k in (1) at all time steps, it is possible to express

the above cost explicitly as a function of yi
k . Using the sys-

tem dynamics (4), the variance of the system state satisfies the

recursive formula

E(xi
t+1)

2 = yi
k (Ai

c)
2

E(xi
t)

2 + (1 − yi
k ) (Ai

o)
2

E(xi
t)

2 + W i

(6)

that is, with probability yi
k the variance grows according to the

open loop dynamics, and with probability 1 − yi
k the variance

shrinks according to the closed loop stable dynamics.

Operating recursively and using the geometric series sum, we

can rewrite the variance at time t as

E(xi
t)

2 = [yi
k (Ai

c)
2 + (1 − yi

k ) (Ai
o)

2 ]tE(xi
0)

2 (7)

+ W i 1 − [yi
k (Ai

c)
2 + (1 − yi

k ) (Ai
o)

2 ]t

1 − [yi
k (Ai

c)
2 + (1 − yi

k ) (Ai
o)

2 ]
. (8)

As follows from the above expression, the system is stable,

i.e., the variance is bounded, if the packet success rate satis-

fies [yi
k (Ai

c)
2 + (1 − yi

k ) (Ai
o)

2 ] < 1 so that the sum above is

bounded – see also [4], [6]. In that case, the state variance as

well as the average (5) converge to the same limit value, which

we can define as our control performance function

J i(yi
k ) = − W i

1 −
[

yi
k (Ai

c)
2 + (1 − yi

k )(Ai
o)

2
] (9)

This control performance function satisfies the assumption of

concavity, and it is also monotonically increasing because we

have added the negative sign in front of the expression. It is also

possible to extend this analysis to include a cost on the control

input, as is common in the Linear Quadratic Control problem,

i.e., replace the cost in (5) with E(xi
t)

2 + (ui
t)

2 .

Remark 1: In Example 1, observe that the control system

performance in (5) is a long term objective asymptotically for

t → ∞. As the channel fading distribution Hk will change un-

predictably in the future it is hard to define an accurate value of

this control performance. As a surrogate, in the above example

we write a control system performance in (9) with respect to

the current channel distribution Hk , i.e., as if this channel dis-

tribution is stationary and will not change in the future. Later,

in Section V-C we argue that this approximation and the power

allocation algorithm we develop can indeed guarantee system

stability.

To derive the full formulation of the wireless control prob-

lem for current channel distribution Hk , we first define using

boldface vectors the set of m channel states hk := [h1
k ;h2

k ; . . . ;
hm

k ] ∼ Hm
k observed by the control systems and the set of power

allocation policies pk (hk ) := [p1
k (h1

k ); p2
k (h2

k ); . . . ; pm
k (hm

k )]
∈ P := [0, p0 ]

m . We further define the vector of transmis-

sion probabilities at specific channel states q(hk ,pk (hk )) :=
[q(h1

k , p1
k (h1

k )); . . . ; q(hm
k , pm

k (hm
k ))] and expected transmis-

sion probabilities yk := [y1
k ; y2

k ; . . . ; ym
k ] from (1). The goal is to

select pk (hk ) whose expected aggregate value is within a max-

imum power budget pmax while maximizing the total system

performance
∑

J i over m agents. Because J i is monotonically

increasing, we can relax the equality in (1) to an inequality
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constraint and write the following optimization problem.

{p∗
k (h),y∗

k} := argmax
pk ∈P,yk ∈Rm

J(yk ) :=

m
∑

i=1

J i(yi
k ) (WCPk )

s. t. yk ≤ Ehk
{q(hk ,pk (hk ))} ,

m
∑

i=1

Eh i
k
(pi

k (hi
k )) ≤ pmax

The problem in (WCPk ) states the optimal power allocation

policy p∗
k (hk ) is the one that maximizes the expected aggregate

control performance over channel states while guaranteeing that

the expected total transmitting power is below an available bud-

get pmax . We stress that this only provides the optimal policy

with respect to a particular channel distribution Hk . In the non-

stationary wireless setting we are interested in solving (WCPk )
for all k.

B. Dual Formulation of (WCPk )

Solving this optimization problem directly has a number of

significant challenges. The first is that the problem is non-

convex, in particular due to the first constraint in (WCPk ).
The second challenge is that the problem is optimized over

an infinite-dimensional variable pk (hk ). It is very difficult to

solve such a problem if there is no assumed parameterization

of p∗
k (hk ). We can show, however, from a result in [26] that a

naturally occurring parameterization of p∗
k (hk ) indeed can be

derived from Lagrangian duality theory.

We proceed then to derive the dual problem from the con-

strained problem in (WCPk ). To simplify the presentation,

we first introduce a set of augmented variables, denoted with

tildes. Define the augmented vectors q̌(hk ,pk (hk )) ∈ R
m+1

and y̌k ∈ R
m+1 as

q̌(hk ,pk (hk )) :=

⎡

⎢

⎢

⎢

⎣

q(h1
k , p1

k (h1
k ))

...

q(hm
k , pm

k (hm
k ))

−
∑m

i=1 pi
k (hi

k )]

⎤

⎥

⎥

⎥

⎦

y̌k :=

⎡

⎢

⎢

⎢

⎣

y1
k
...

ym
k

−pmax

⎤

⎥

⎥

⎥

⎦

.

(10)

The augmented q̌(hk ,pk (hk )) includes transmission probabili-

ties augmented with the total power allocation while y̌k includes

auxiliary variables augmented with total power budget. Using

this new notation, the Lagrangian function is formed as

Lk (pk (hk ),yk ,µk ) :=

m
∑

i=1

J i(yi
k )

+ µ
T
k (Ehk

q̌(hk ,pk (hk )) − y̌k ) , (11)

where µk := [µ1
k ; . . . ;µm

k ; µ̃] ∈ R
m+1
+ contains the dual vari-

ables associated with each of the m + 1 constraints in

(WCPk ). From the Lagrangian function in (11), the Lagrangian

dual loss function is defined as Lk (µk ) := maxpk ,yk
Lk (pk

(hk ),yk ,µk )—see, e.g., [27]—and the corresponding dual

problem as

µ̃
∗
k := argmin

µk ≥0
Lk (µk )

Lk (µk) := Ehk

{

max
pk ,yk

m
∑

i=1

J i(yi
k) + µ

T
k(q̌(hk ,pk (hk)) − y̌k)

}

.

(12)

Note in (12) that the expectation operator and maximization

were exchanged without loss of generality—see, e.g., [19,

Proposition 2]. It is important to stress here the connection

between the dual problem in (12) with the original problem in

(WCPk ). While (WCPk ) is indeed not convex, problems of

this form can be shown to exhibit zero duality gap under the

technical assumption that the primal problem is strictly feasi-

ble and that the channel probability distribution is non-atomic

[26]. This implies that the optimal primal variable p∗
k (hk ) in

(WCPk ) can be recovered from the optimal dual variable µ̃
∗
k in

(12). Thus, the power allocation policy for each agent i is found

indirectly by solving (12) and recovering as

pi
k (hi

k ,µk ) = argmax
p i

k ∈[0,p0 ]

µi
kq(hi

k , pi
k (hi

k )) − µ̃pi
k (hi

k ), (13)

yi
k (µk ) = argmax

y i
k

J i(yi
k ) − µi

kyi
k . (14)

The optimal policy is subsequently recovered using the optimal

dual variable as p∗
k (hk ) := [p1

k (h1
k , µ̃∗

k ); . . . ; pm
k (hm

k , µ̃∗
k )]. Ob-

serve that the problem in (12) is a simply constrained stochastic

problem that is known to always be convex from duality theory,

and can be solved efficiently with a variety of projected stochas-

tic descent methods [19], [20], [28]–[30]. Thus, the non-convex,

infinite-dimensional optimization problem in (WCPk ) can be

solved indirectly but exactly with the convex, finite-dimensional

problem in (12).

Remark 2: The problem formulation given in (WCPk ) that

we use in this paper assumes there is a fixed power budget and

the metric to be optimized is a measure of control performance.

An alternative formulation of resource allocation that may be

more relevant in some settings would instead fix a bound on the

required control performance, typically derived from a stability

margin for the control system. Here the objective would instead

be to minimize total power usage, subject to the constraint on

control performance. Indeed, these two problems are very sim-

ilar when reformulated in the dual domain, and can thus be

studied almost identically as such. We specifically focus on the

problem in (WCPk ) in this paper but stress that all the results

will apply to this alternative problem as well.

III. ERM FORMULATION OF (WCPk )

The stochastic program in (12) features an objective that is

the expectation taken over a random variable, and can thus

be considered as a particular case of the empirical risk min-

imization (ERM) problem. Empirical risk minimization is a

common problem studied in machine learning due to its ubiq-

uity in training classifiers, and the same structure appears nat-

urally in the dual formulation of the WCP. A generic ERM
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problem considers a convex loss function f(µk ,hk ) of a de-

cision variable µk ∈ R
m+1 and random variable hk drawn

from distribution Hk and seeks to minimize the expected loss

Lk (µk ) := Ehk
[f(µk ,hk )]. For the WCP in (WCPk ), we

rewrite the loss function L and associated ERM problem in

terms of a function f(µk ,hk ) using its dual as

µ̃
∗
k := argmin

µk ≥0

Lk (µk ) := argmin
µk ≥0

Ehk
f(µk ,hk ),

f(µk ,hk) := J(yk (µk)) + µ
T
k (q̌(hk ,pk (hk ,µk)) − y̌k (µk)) .

(15)

Typically the distribution Hk is not known by the user, so the

expected loss cannot be evaluated directly, but is instead re-

placed by an empirical risk by taking n samples labeled h1
k ,h2

k ,

. . . ,hn
k ∈ Hm

k , (where hl
k := [h1,l

k ; . . . ;hm,l
k ]). In practice, such

samples can be obtained through the use of short pilot signals

sent from the users to measure channel conditions—see [12].

We then consider the empirical average loss function

L̂k (µk ) :=
1

n

n
∑

l=1

f(µk ,hl
k ) :=

1

n

n
∑

l=1

f l
k (µk ). (16)

To characterize the closeness of the empirical risk L̂k (µk ) with

n samples with respect to the expected loss Lk (µk ), we define a

constant Vn called the statistical accuracy of L̂k . The statistical

accuracy Vn provides a bound of the difference in the empirical

and expected loss for all µk with high probability (i.e., at least

1 − γ for some small γ). In other words, we define Vn to be the

constant that satisfies

sup
µk

|L̂k (µk ) − Lk (µk )| ≤ Vn w.h.p. (17)

The upper bounds on Vn are well studied in the learning litera-

ture and in general may involve a number of parameters of the

loss function f as well as, perhaps most importantly, the num-

ber of samples n. For L̂k (µk ) defined in (16), a bound for the

statistical accuracy Vn can be obtained in the order of O(1/
√

n)
or, in some cases, O(1/n) [31], [32]. This further implies a

suboptimality of L̂∗
k := min L̂k (µk ) of the same accuracy, i.e.,

|L∗
k − L̂∗

k | ≤ 2Vn [31].

As is often the case in machine learning problems, the statis-

tical accuracy informs the proper use of regularization terms in

the empirical loss function. We can add regularizations to pre-

scribe desirable properties on the empirical risk L̂k (µk ), such

as strong convexity, without adding additional bias beyond that

already accrued by the empirical approximation. In other words,

as L̂∗
k will be of order Vn from the optimal expected value L∗,

any additional bias of order Vn or less is permissible. With that

in mind, we add the regularization term αVn/2‖µk‖2 where

α > 0 to the empirical risk in (16) to impose strong convexity.

We can further remove the non-negativity constraint on the dual

variables in (15) through the use of a logarithmic barrier. To

preserve smoothness for small µk , we use an ǫ-thresholded log

function, defined as

logǫ(µk ) :=

{

log(µk ) µk ≥ ǫ

ℓ2,ǫ(µk − ǫ) µk < ǫ,
(18)

where ℓ2,ǫ(µk ) is a second order Taylor series expansion of

log(µk ) centered at ǫ for some small 0 < ǫ < 1. We then use

−βVn1T logǫ µk where β > 0 as a second regularization term,

and obtain a regularized empirical risk function

Rk (µk ) :=
1

n

n
∑

l=1

f l
k (µk ) +

αVn

2
‖µk‖2 − βVn1T logǫ µk .

(19)

From here, we can seek a minimizer of the strongly convex

regularized risk Rk (µk ) without explicitly enforcing a non-

negativity constraint on µk and find a solution with suboptimal-

ity of order O(Vn ) with respect to (15). Such a deterministic and

strongly convex loss function as in (19) can be minimized using

a wide array of optimization methods [30], [33]–[35]. However,

all such methods only solve the problem for a particular epoch

k, or otherwise assume a stationary channel distribution Hk as

is typical in machine learning settings.

IV. ERM OVER NONSTATIONARY CHANNEL

The ERM problem we are interested in solving in wireless au-

tonomous systems is further complicated by the non-stationarity

of H, making existing solution methods insufficient. This is due

to the fact that finding the minimizer to Rk (µ) will only provide

an optimal power allocation for the respective channel distribu-

tion Hk . In wireless systems, we instead must continuously

learn optimal policies as the channel varies, or in other words,

find optimal points for Rk (µ) for k = 0, 1, . . .. To formulate the

non-stationarity, however, we first define an epoch-indexed em-

pirical risk function. While we may use a simple empirical risk

as we did in (16), we instead define a more general statistical

loss function for a non-stationary channel using samples from

the previous M epochs. We define a windowed empirical loss

function L̃k (µ) at epoch k as

L̃k (µ) :=
1

M

k
∑

j=k−M +1

L̂j (µ) (20)

By keeping a window of samples, we may retain N = Mn total

samples while drawing only n new samples at each epoch. If

the successive channel distributions Hk−M +1 , . . . ,Hk are not

very different, we may expect the old channel samples to still

be of interest. We define the associated statistical accuracy ṼN

as the constant that satisfies

sup
µ

|L̃k (µ) − Lk (µ)| ≤ ṼN w.h.p. (21)

Here we stress that the bounds on this constant ṼN are not

as easily obtainable or well-studied as in the stationary setting.

Such a bound over non-i.i.d. samples may be dependent upon

many parameters such as the sample batch size n, window size

M , and correlation between successive distributions Hj and

Hj+1 . Therefore, finding precise bounds on ṼN would require

a sophisticated statistical analysis and is outside the scope of

this work. We instead define a user-selected accuracy V̂ that

may estimate the statistical accuracy ṼN . We assume that V̂ ≥
ṼN , with equality holding in cases where ṼN is known. Using

the same regularizations introduced previously, we obtain the
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regularized windowed empirical loss function

R̃k (µ) :=
1

M

k
∑

j=k−M +1

L̂j (µ) +
αV̂

2
‖µ‖2 − βV̂ 1T logǫ µ.

(22)

We subsequently define µ̃
∗
k := argminµ R̃k (µ). The definition

of the loss function in (22) includes the batches of n sam-

ples taken from the previous M channel distributions Hk−M +1 ,
. . . ,Hk . This definition is, in a sense, a generalization of the

simpler empirical risk Rk (µ) in (19). Observe that, by using a

window size of M = 1, we use only samples from the current

channel and recover Rk (µ). In the following proposition we

establish the accuracy of an optimal point of our regularized

empirical risk function R̃k (µ) relative to the optimal point of

the original dual loss function Lk (µ).
Proposition 1: Consider L∗

k = Lk (µ∗
k ) and L̃∗

k = minµ≥0

L̃k (µ), and define R̃∗
k := minµ L̃k (µ) + αV̂ /2‖µ‖2 − βV̂ 1T

log µ as the optimal value of the regularized empirical risk.

Define ṼN by (21). Assuming ṼN ≤ V̂ , the difference |L∗
k −

R̃∗
k | is upper bounded on the order of statistical accuracy V̂ , i.e.,

for some ρ > 0

|L∗
k − R̃∗

k | ≤ 2ṼN + ρV̂ ≤ (2 + ρ)V̂ , w.h.p. (23)

Proof: To obtain the result in (23), consider expanding and

upper bounding |L∗
k − R̃∗| = |L∗

k − L̃∗
k + L̃∗

k + R̃∗
k | ≤ |L∗

k −
L̃∗

k | + |L̃∗
k + R̃∗

k |. The first term is bounded by 2ṼN as pre-

viously discussed. The second term, can be decomposed into

the bias introduced by the logarithmic barrier −βV̂ 1T log µ

and the bias introduced by the quadratic regularizer cV̂ /2‖µ‖2 .

The former of these is known to produce an optimality bias of

(m + 1)βV̂ [27, Section 11.2.2], while the latter is known to in-

troduce a bias on the order of O(V̂ ) [36]. Combining these, we

get a total suboptimality between the regularized risk function

optimal and the true optimal of 2ṼN + ρV̂ for some constant

ρ > 0. As we assume that ṼN ≤ V̂ , the rightmost bound in (23)

follows. �

A key observation to be made here is that any exact solution

to (22) only minimizes the expected loss Lk to within accuracy

V̂ (assuming V̂ ≥ ṼN ). There is therefore no need to minimize

(22) exactly but is in fact sufficient to find a V̂ -accurate solu-

tion, as this incurs no additional error relative to the statistical

approximation itself. While many optimization methods can be

used to find a minimizer to (22), we demonstrate in the next

section that fast second order methods can be used to learn

approximate minimizers—and by Proposition 1 approximately

solve (15)—at each epoch k with just single updates as the chan-

nel distribution Hk changes, thus tracking near-optimal points

at every epoch. This is done by exploiting an important property

of second order optimization methods, namely local quadratic

convergence.

Remark 3: Observe in the text of Proposition 1 that we de-

fine R̃∗
k to be the optimal point of the loss function L̃k (µk )

regularized with a standard log barrier − log(µk ), rather than

the thresholded barrier − logǫ(µk ) used in the definition in (22).

Indeed, using the thresholded barrier does not explicitly enforce

nonnegativity for values smaller than ǫ. However, this thresh-

olding is necessary to preserve smoothness of the barrier, which

will be necessary for the proof of Lemma 1 in Section V. The

threshold ǫ can be made as small as necessary to enforce non-

negativity, although this comes at the cost of a worse smoothness

constant. In practice, however, we observe this thresholding to

not be explicitly needed and is just included here for ease of

analysis. We also stress that the smoothness constant itself does

not play a pivotal role in the proceeding analysis.

A. Learning via Newton’s Method

In this paper, we use Newton’s method to approximately min-

imize (22) efficiently as the channel Hk changes over epochs.

Motivated by the recent use of Newton’s method in solving large

scale ERM problems through adaptive sampling policies [34],

[35], we use the N samples drawn from recent distributions to

find an iterate µk that approximately solves for µ̃
∗
k . At the next

epoch, the iterate µk provides a “soft” start towards finding a

point µk+1 that approximately minimizes R̃k+1(µ). In this way,

with single iterations we may find near-optimal solutions for

each regularized empirical loss function, and thereby efficiently

learn the optimal power allocation of the wireless channel as the

channel distribution evolves over time epochs.

We proceed by presenting the details of Newton’s method.

At epoch k, we compute a new iterate µk+1 by subtracting from

the current iterate µk the product of the Hessian inverse and the

gradient of the function R̃k+1(µk ). For the empirical dual loss

function R̃k defined in (22), we define the gradient∇R̃k (µ) and

Hessian ∇2R̃k (µ). The new approximate solution µk+1 is then

found from current approximate solution µk using the Newton

update

µk+1 = µk − H−1
k+1∇R̃k+1(µk ), (24)

where we use Hk+1 := ∇2R̃k+1(µk ) as simplified notation.

To understand the full algorithm, consider that µk is a V̂ -

accurate solution of current loss function R̃k , i.e., R̃k (µk ) −
R̃∗

k ≤ V̂ . Recall that the new loss function R̃k+1 differs from

R̃k only in the discarding of old samples L̂k−M +1 and inclusion

of samples L̂k+1 drawn from Hk+1 . If we consider that the

distributions are varying slowly across successive time epochs,

i.e., Hk+1 is close to Hk , then the respective loss functions R̃k+1

and R̃k and their optimal values R̃∗
k+1 and R̃∗

k will also not differ

greatly under some smoothness assumptions. Therefore, under

such conditions a single step of Newton’s method as performed

in (24) can in fact be sufficient to reach a V̂ -accurate solution of

the new loss function R̃k+1 . This is possible precisely because of

the Newton method’s property of local quadratic convergence,

meaning that Newton’s method will find a near-optimal solution

very quickly when it is already in a local neighborhood of the

optimal point. Given then a V̂ -accurate solution µ0 of initial loss

R̃0 , the proceeding and all subsequent iterates µk will remain

within the statistical accuracy of their respective losses R̃k as the

channel distribution varies over time. The formal presentation

of the exploitation of this property and other technical details of

this result are discussed in Section V of this paper.
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Algorithm 1: Learning via Newton’s Method.

1: Parameters: Sample size increase constants n0 > 0,

M0 ≥ 1 backtracking params 0 < γ < 1 < Γ, and

accuracy V̂ .

2: Input: Initial sample size n = m0 and argument

µn = µm 0
with ‖∇R̃n (µk+1)‖ < (

√
2α)V̂

3: for k = 0, 1, 2, . . . do {main loop}
4: Reset factor n = n0 , M = M0 .

5: repeat {sample size backtracking loop}
6: Draw n samples from Hk , discard from Hk−M.

7: Compute Gradient ∇R̃k (µk−1), Hessian Hk .

8: Newton Update [cf. (24)]:

µk = µk−1 − H−1
k ∇R̃k (µk−1)

9: Determine power allocation, aux. variables

[cf. (13), (14)]:

pi
k (hi

k ,µk ) = argmax
p i

k ∈[0,p0 ]

µi
kq(hi

k , pi
k (hi

k )) − µ̃pi
k (hi

k ),

yi
k (µk ) = argmax

y i
k

J i(yi
k ) − µi

kyi
k .

10: Backtrack sample draw n = Γn, window size

M = γM .

11: until ‖∇R̃k (µk )‖ < (
√

2α)V̂
12: end for

The learning algorithm is presented in Algorithm 1. After

preliminaries and initializations in Steps 1–4, the backtracking

loop starts in Step 5. Each iteration begins in Step 6 with the

the drawing of n samples from the new channel distribution Hk

and discarding of old samples from Hk−M to form R̃k . Note

that samples will be only be discarded for k > M . The gradient

∇R̃k and Hessian Hk of the regularized dual loss function are

computed in Step 7. The Newton step is taken with respect to

R̃k+1 in Step 8. In Step 9, the optimal primal variables are com-

puted with respect to the updated dual variables. This includes

both the auxiliary variables y(µk ) and the power allocation

policy p(h,µk ) itself. Because there are function and channel

system parameters that are not known in practice, we include

a backtracking step for the parameters n and M in Step 10 to

ensure the new iterate µk is within the intended accuracy V̂ of

µ
∗
k . Further details on the specifics of the backtracking proce-

dure are discussed in Section VI after the presentation of the

theoretical results.

V. CONVERGENCE ANALYSIS

In this section we provide a theoretical analysis of the

Newton learning update in (24). We do so by first analyzing

the convergence properties of the ERM problem in (22). We

subsequently return to the WCP in (WCPk ) and establish a

control performance result.

A. Convergence of ERM Problem

We begin by analyzing the ERM formulation of the power

allocation problem in (22) and establish a theoretical result that,

under certain conditions, guarantees each iterate µk is within

the statistically accuracy of the risk function at epoch k. Our pri-

mary theoretical result characterizes such conditions dependent

on statistical accuracy and rate of non-stationarity. We begin by

presenting a series of assumptions made in our analysis regard-

ing the dual loss functions f .

Assumption 1: The expected loss function Lk and empirical

loss functions f(µ,hk ) are convex with respect to µ for all

values of hk . Moreover, their gradients ∇Lk (µ) and ∇f(µ, z)
are Lipschitz continuous with constant ∆.

Assumption 2: The loss functions f(µ,h) are self-

concordant with respect to µ for all h, i.e., for all i,

|∂3/∂µ3
i f(µ,h)| ≤ 2∂2/∂µ2

i f(µ,h)3/2 .

Assumption 1 implies that the regularized empirical risk gra-

dients ∇R̃k are Lipschitz continuous with constant ∆ + cV̂
where c := α + β/ǫ2 and α, β, ǫ are the regularization constants

in (22). The function R̃k is also strongly convex with constant

αV̂ . This implies an upper and lower bound of the eigenvalues

of the Hessian of R̃k , namely

αV̂ I � Hk � (∆ + cV̂ )I. (25)

Assumption 2 states the loss functions are additionally self con-

cordant, which is a common assumption made in the analysis

of second-order methods—see, e.g., [27, Ch. 9], for such an

analysis. It also follows that the functions R̃k+1 are therefore

self concordant because both the quadratic and thresholded log

regularizers are self-concordant. We present a brief remark re-

garding the implications of these assumptions on the dual risk

function on the wireless control problem.

Remark 4: We state the preceding assumptions in terms of

the sampled dual functions f due to their direct use in the pro-

ceeding analysis. However, they indeed have implications on the

primal domain problem in (WCPk ). While the dual function is

always convex, the smoothness condition in Assumption 1 can

be obtained from the strong concavity of the control perfor-

mance
∑

i J i with strong concavity 1/∆. The self-concordance

property on the dual function in Assumption 2, however, is not

easily derived from properties of J i(·) or q(·). We point to work

that establishes self concordance of the dual for various machine

learning problems [37], [38].

The two preceding assumptions deal specifically with the

properties of the empirical dual loss functions used in the ERM

problem. To connect the solving of the sampled functions f l

with the expected loss function L, we additionally include two

assumptions regarding the statistics of the expected and empir-

ical losses.

Assumption 3: The difference between the gradients of the

empirical risk L̂k and the statistical average loss Lk is bounded

by V
1/2
N for all µ and k with high probability,

sup
µ

‖∇Lk (µ) −∇L̂k (µ)‖ ≤ V
1/2
N , w.h.p. (26)

Assumption 4: The difference between two successive ex-

pected loss functions Lk (µ) = Ehk
f(µ, hk ) and Lk+1(µ) =

Ehk+1
f(µ, hk+1) and the difference between their gradients

are bounded respectively by a bounded sequence of constants
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{Dk}, {D̄k} ≥ 0 for all µ,

sup
µ

|Lk (µ) − Lk+1(µ)| ≤ Dk , (27)

sup
µ

‖∇Lk (µ) −∇Lk+1(µ)‖ ≤ D̄k . (28)

Assumption 3 bounds the difference between gradients of the

expected loss and the empirical risk with N samples by V
1/2
N ,

which can be readily obtained using the law of large numbers.

Assumption 4 bounds the point-wise difference in the expected

loss functions and their gradients at epochs k and k + 1. This can

be interpreted as the rate at which the channel evolves between

epochs, and is used to establish that optimal dual variables for

two consecutive empirical risk functions R̃k and R̃k+1 are not

very different. We discuss practical implications of this assump-

tion in Section VI.

Remark 5: Observe that the bounds provided in Assumption

(4) are with respect to the dual function rather than explicitly on

the non-stationary statistics of the channel. They are provided

as such because this is the manner in which the non-stationarity

appears in the proceeding analysis. To see how the channel char-

acteristics play a role in the provided bound, consider that, e.g.,

(27) can be expanded using the definition of the dual function

Lk (µ) as

sup
µ

|Ehk

{

max
p∈P

µ
T q̌(hk ,p(hk ))

}

− Ehk+1

{

max
p∈P

µ
T q̌(hk+1 ,p(hk+1))

} ∣

∣

∣

∣

≤ Dk . (29)

The exact condition this imposes upon the channel distribution

variation thus depends both on the form of the distributions Hk ,

Hk+1 , and the function q(h,p). Thus, the exact manner in which

the varying channel conditions effect this bound are indeed

problem-specific, and a generic condition on non-stationarity of

the channel is only present in the proceeding analysis indirectly

through the condition in (29).

The proceeding analysis is organized in the following man-

ner. Our goal is to establish conditions on the parameters of

the statistical accuracy—V̂ —and the non-stationarity—Dk and

D̄k —that guarantee that, starting from an approximate solution

to R̃k , a single step of Newton’s method generates an approxi-

mately accurate solution to R̃k+1 . From there, we can recursively

say that, assuming an initial point µ0 that is within the intended

accuracy of R̃0 , the method will continue to find a V̂ -accurate

solution at each epoch as the channel distribution changes with

k. We achieve this result in two steps. We first find a condi-

tion that guarantees that a V̂ -accurate solution of R̃k is also in

the quadratic convergence region of R̃k+1 . Second, we find a

condition that guarantees that such a point within the quadratic

convergence region of R̃k+1 will reach its intended accuracy

with a single update as in (24).

We begin by establishing the condition in the first step,

namely that a V̂ -accurate solution to R̃k , labeled µk is in in

the quadratic convergence region of R̃k+1 if certain conditions

hold. The quadratic convergence region is a region local to the

optimum in which Newton’s method is known to converge at

a fast quadratic rate. The analysis of Newton’s method com-

monly characterizes quadratic convergence in terms of a quan-

tity called the Newton decrement, explicitly defined as λk+1

(µ) := ‖∇2R̃k+1(µ)−1/2∇R̃k+1(µ)‖. We say the dual iterate µ

is in the quadratic convergence region of R̃k+1 when λk+1(µ) <
1/4—see [27, Chapter 9.6.4]. In the following proposition, we

give conditions under which any iterate µk that is within the ac-

curacy V̂ of the optimal point R̃∗
k = minµ R̃k (µ) is also within

the quadratic convergence region of the subsequent loss function

R̃k+1 .

Lemma 1: Consider µk as a V̂ -accurate optimal solution of

the loss R̃k , i.e., R̃k (µk ) − R̃∗
k ≤ V̂ . In addition, define λk+1

(µ) := (∇R̃k+1 (µ)T ∇2R̃k+1(µ)−1∇ R̃k+1(µ))1/2 as the

Newton decrement of variable µ associated with the loss R̃k+1 .

If Assumptions 1–4 hold, then Newton’s method at point µk is

in the quadratic convergence phase for the objective function

R̃k+1 , i.e., λk+1(µk ) < 1/4, if we have

(

2(∆ + cV̂ )V̂

αV̂

)1/2

+
2Ṽ

1/2
N + D̄k

(αV̂ )1/2
<

1

4
. w.h.p. (30)

Proof: See Appendix. �

Lemma 1 provides the first necessary condition in our anal-

ysis by identifying the statistical parameters under which every

iterate µk is in the quadratic region of R̃k+1 . From here we can

show the second step, in which such a point in the quadratic

convergence region of R̃k+1 can reach its statistical accuracy

with a single Newton step as given in (24). To achieve this, we

first present the following lemma that upper bounds the sub-

optimality of the point µk with respect to the optimal solution

of R∗
k+1 .

Lemma 2: Consider a point µk that minimizes the loss func-

tion R̃k to within accuracy V̂ , i.e., R̃k (µk ) − R̃∗
k ≤ V̂ . Provided

that Assumptions 1–4 hold, the sub-optimality R̃k+1(µk ) −
R̃∗

k+1 is upper bounded w.h.p. as

R̃k+1(µk ) − R̃∗
k+1 ≤ 4ṼN + V̂ + 2Dk (31)

Proof: See Appendix. �

In Lemma 2 we establish a bound on the suboptimality of

µk with respect to R̃k+1 . The following lemma now bounds the

suboptimality of µk+1 in terms of the suboptimality of µk with

a quadratic rate.

Lemma 3: Consider µk to be in the quadratic neighborhood

of the loss R̃k+1 , i.e., λk+1(µk ) ≤ 1/4. Recall the definition of

the variable µk+1 in (24) as the updated variable using New-

ton’s method. If Assumptions 1–3 hold, then the difference

R̃k+1(µk+1) − R̃∗
k+1 is upper bounded by

R̃k+1(µk+1) − R̃∗
k+1 ≤ 144(R̃k+1(µk ) − R̃∗

k+1)
2 . (32)

Proof: See Appendix. �

With Lemma 3 we establish the known quadratic rate of

convergence of the suboptimality of the Newton update in (24).

Now by substituting the upper bound on R̃k+1(µk ) − R̃∗
k+1 from

Lemma 2, a condition can easily be derived under which the

suboptimality of the new iterate is within the accuracy V̂ of

R̃k+1 . Using the results of Lemmata 1–3, we present our main

result in the following theorem.
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Theorem 1: Consider Newton’s method defined in (24) and

the full learning method detailed in Algorithm 1. Define ṼN to

be the statistical accuracy of N = Mn samples by (21), with

n samples taken from each of the M most recent channel dis-

tributions Hk . Further consider the variable µk as a V̂ -optimal

solution of the loss R̃k , and suppose Assumptions 1–4 hold. If

the sample size n and window size M are chosen such that the

following conditions

(

2(∆ + cV̂ )V̂

αV̂

)1/2

+
2V̂ 1/2 + D̄k

(αV̂ )1/2
<

1

4
(33)

144(4ṼN + V̂ + 2Dk )2 ≤ V̂ (34)

are satisfied, then the variable µk+1 computed from (24) has the

suboptimality of V̂ with high probability, i.e.,

R̃k+1(µk+1) − R̃∗
k+1 ≤ V̂ , w.h.p. (35)

The inequalities (33)–(34) in Theorem 1 specify conditions

under which µk+1 as generated by (24) is a V̂ -optimal solu-

tion of R̃k+1 . Note that these conditions come directly from

the preceding lemmata. Thus, when these conditions are satis-

fied, single iterations of Newton’s method at each epoch k—as

detailed in Algorithm 1—successively generate approximately

optimal dual parameters. A further discussion of the satisfac-

tion of such conditions in regards to practical implementation

is provided later in Section VI. We first extend the theoretical

result of Theorem 1 to establish properties of the resulting WCP

solution.

Remark 6: Observe in Theorem 1 that the provided condi-

tions cannot be satisfied if the true statistical accuracy ṼN is

greater than the selected V̂ . While we assume in our analysis

this is not the case, (i.e., V̂ is a conservative estimate of ṼN ),

this may not be guaranteed if very little information is known

about VN . In the case V̂ < VN , we point out that the results

in Theorem 1 can simply be modified by replacing achieved

accuracy V̂ by VN . In other words, the accuracy we can achieve

is limited by the greater of these terms. We do not go through

the details of this analysis for clarity of presentation, but such

result can be obtained through the same steps of the preceding

analysis.

B. Suboptimality in Wireless Control System

Because the proposed Newton method indeed solves (15) to

within a statistical approximation V̂ , it is important to con-

sider the effect of such an approximation on the original WCP

in (WCPk ). In this section we provide a sequence of results

that characterize the accuracy of the solutions generated by the

Newton update in (24) in the original primal control problem in

(WCPk ). Firstly, recall the constraints in (WCPk ) reflect both

a power budget limited by pmax and that the auxiliary variable

yi should not exceed the expected packet success function q(·).
In solving the dual problem approximately, we may then also

violate these constraints by a small margin. We can specifically

characterize such a constraint violation, as well as address the

suboptimality in terms of the primal objective. Both these results

together can then be combined to demonstrate the stability of

the switched system WCP introduced in Example 1. To do so,

we first introduce an assumption regarding the feasibility and

boundedness of the dual loss solutions L∗
k and the optimal dual

point µ
∗
k .

Assumption 5: For all epochs k, the problem in (WCPk )
under distribution Hk is strictly feasible. There also exists con-

stants K and K̂ such that the optimal dual objective value L∗
k

is bounded as L∗
k ≤ K and optimal dual variable bounded as

‖µ∗
k‖ ≤ K̂.

From strict feasibility of the primal problem in (WCPk ), we

also obtain a finite upper bound on the value of the dual function.

This can be used with the suboptimality result in Theorem 1

to bound the norm of the dual variables µk generated from

the Newton update in (24). This is presented in the following

corollary.

Corollary 1: The norm of the dual variables µk generated

by the update in (24) is bounded as ‖µk‖ ≤
√

(2/α) + K̂.

Proof: From strong convexity we have that ‖µk − µ̃
∗
k‖2 ≤

(2/αV̂ )(R̃k (µk ) − R̃∗
k ). Using the reverse triangle inequality

with (35) and Assumption 5, we obtain the intended result. �

Observe that the boundedness of the solutions to the regu-

larized dual function in Assumption 5 in effect states that, for

all distributions Hk , the empirical, or sampled, versions of the

constrained problem in (WCPk ) will be strictly feasible. From

here, we can establish through duality a bound on each con-

straint violation that may occur from solving the dual problem

to its statistical accuracy. This result is stated in the following

proposition.

Proposition 2: Consider µk to be a V̂ -optimal minimizer

of R̃k , i.e., R̃k (µk ) − R̃∗
k ≤ V̂ . Further consider p(h,µk ) and

y(µk ) to be the Lagrangian maximizers over dual parameter µk .

If Assumptions 1 and 5 hold, then the norm of the constraint

violations in (WCPk ) can each be upper bounded as
∣

∣

∣

∣

∣

m
∑

i=1

Eh i
k
(pi(hi

k ,µ)) − pmax

∣

∣

∣

∣

∣

≤
√

2∆(ṼN + CV̂ ),

(36)

‖y(µk ) − Ehk
{q(hk ,p(hk ,µk ))}‖ ≤

√

2∆(ṼN + CV̂ ),

(37)

where C := 1 + ρ + βκ and κ such that 1T logǫ(µk ) ≤ κ.

Proof: See Appendix. �

In Proposition 2, we establish a bound that is proportional

to V̂ on the violation of the constraints in (WCPk ). There

are two points to be stressed here. First, is that this constraint

violation can indeed be made small by controlling the target

accuracy V̂ . Additionally, we point out that the violation of the

budget constraint can be controlled by adding a slack term to

the maximum power as p̂max = pmax − 2∆CV̂ . In this way,

any such violation will still be within the true intended budget

pmax .

We proceed by establishing suboptimality of the generated

variables y(µk ) in terms of control performance. Recall the fi-

nal result in Theorem 1 that establishes at each epoch k, the

current dual function value R̃k (µk ) will be within accuracy

V̂ of the optimal value R̃k (µ̃∗
k ) (after satisfying the necessary
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conditions). To establish that the control systems induced by

such dual parameters µk remain stable, we first connect the ac-

curacy of the dual function value to the accuracy of associated

primal variables p(h,µk ) and y(µk ) with respect to their op-

timal values p∗
k (h) := p(h,µ∗

k ) and y∗
k := y(µ̃∗

k ). This bound

is established in the following theorem.

Theorem 2: Consider µk to be a V̂ -optimal minimizer of R̃k ,

i.e., R̃k (µk ) − R̃∗
k ≤ V̂ . Further consider p(h,µk ) and y(µk )

to be the Lagrangian maximizers over dual parameter µk . Under

Assumptions 1–5 the primal objective function sub-optimality

J(y(µk )) − J(y∗
k ) can be upper bounded as

J(y(µk )) − J(y∗
k ) ≤ (1 + C)∆

(

1

α
+ 2V̂ (

√

2/α + K̂)

)

.

(38)

Proof: See Appendix. �

In Theorem 2, we derive a bound on the suboptimality of the

primal objective function J(y) that is proportional also to the

statistical accuracy V̂ plus a constant. Recall that this function

is, in general, a measure of the control performance of the sys-

tem. Thus, solving the dual problem approximately indeed can

be translated into approximate accuracy in terms of our origi-

nal utility metric with respect to the control system. In many

problems, the performance J(y) will also effectively establish

a stability margin for control systems that have unstable regions

of operation. To demonstrate the effect of using the proposed

Newton’s method over a non-stationary wireless channel, we

return to the switched dynamical system in Example 1.

C. Stability of Switched Dynamical System (Example 1)

Consider the switched dynamical system given in (4) and the

derived performance metric J(y) in (9) that tracks the asymp-

totic behavior of the state xt . In this system, if the open loop

gain is unstable |Ao | > 1 it can indeed cause the system to grow

in an unstable manner if the system is not closed sufficiently of-

ten. As mentioned in Example 1 the system reaches instability if

yA2
c + (1 − y)A2

o becomes close to 1. A question of interest in

this example is, using the power allocation policy found using

Newton’s method over a time-varying channel, whether or not

the system remains stable over time. We can indeed demonstrate

this to be true with the following argument.

From Theorem 2, we obtained that the primal suboptimal-

ity with respect to the control performance function J(y) is

bounded by a term proportional to V̂ . Assuming that J(y∗
k ) is

finite for all epochs k, it follows then that the generated perfor-

mance J(y(µk )) is also finite. Considering the expression for

J i(yi) given in (9), this is finite if and only if the denominator

is positive, i.e., there exists a ω such that

1 − yi(µk )((Ai
o)

2 − (Ai
c)

2) ≤ ω < 1 (39)

at all epochs k.

Moreover from Proposition 2 we also have that the actual

packet success rate during epoch k satisfies

Ehk

{

q(hi
k , p(hi

k , µk ))
}

≥ yi(µk ) −
√

2∆(ṼN + CV̂ ),

(40)

If the statistical accuracy at the right hand side of this expression

is sufficiently small, then using (39) we also get that

1 − Ehk

{

q(hi
k , p(hi

k , µk ))
}

((Ai
o)

2 − (Ai
c)

2) ≤ ω̃ < 1 (41)

In particular this holds if

√

2∆(ṼN + CV̂ )((Ai
o)

2 − (Ai
c)

2) <
1 − ω.

Substituting (41) back into the recursive expression in (6), we

get that the variance of the state at each time step satisfies

E(xi
t+1)

2 ≤ ω̃E(xi
t)

2 + W i . (42)

Operating recursively and using the geometric series as in

Example 1, we can bound (42) as

E(xi
t+1)

2 ≤ ω̃t+1
E(xi

0)
2 + W i 1 − ω̃t+1

1 − ω̃
. (43)

As both terms on the right hand side of (43) are finite, we can

conclude that the state variables remain bounded in variance for

all t in the non-stationary channel.

VI. DETAILS OF IMPLEMENTATION

In this section we provide a discussion of necessary consider-

ations for practical implementation of the result in Theorem 1.

Observe that the conditions in (33) and (34) are functions of four

primary terms, V̂ , ṼN , Dk , and D̄k . While V̂ is user-selected,

the latter three terms come directly from statistical properties

of the control performance functions and the channel distribu-

tion. They can, however, be indirectly controlled for with some

careful implementation techniques.

First, consider that the latter two terms Dk and D̄k provide

a bound on the difference of the neighboring expected loss

functions Lk and Lk+1 and their gradients, respectively. Thus,

these terms collectively can be interpreted as a bound on the

degree of non-stationarity of the channel distributionH between

successive time iterations, or in other words the rate at which

the channel changes over time epochs. In a practical sense, this

rate is controllable by determining how much real time makes

up a single discrete time epoch. That is, time epochs k and k + 1
that are closer together in a real time-sense will naturally have

a lower bound for Dk , and D̄k , assuming the rate of change

of the channel distribution is indeed smooth. In this sense, Dk

and D̄k can be lowered to satisfy the conditions in (33) and

(34) by considering shorter time between discrete epochs. This

is to say that, because the channel conditions are not in our

control, if necessary we may change the rate at which we apply

our algorithm in a real time sense. By using shorter epochs, we

collect channel samples and run the proposed Newton step more

often to adapt to quickly changing channel conditions.

The second term present in the conditions of Theorem 1—

namely ṼN —represents the statistical accuracy of the non-i.i.d.

samples taken from the window of M most recent channel dis-

tributions with respect to the current channel distribution. A

condition on ṼN in fact then indirectly provides conditions on

the sample size n and window size M used to define R̃k neces-

sary to learn a V̂ -optimal solution. We reiterate here that, in the

simpler setting of M = 1, a well-studied bound on ṼN exists

of the order O(1/
√

n). For the case of windowed sampling the
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Fig. 3. Convergence paths of optimal values vs. values generated by the Newton learning method for time-varying Hk for dual variables (left) µ1 , (center) µ̃, and
(right) control performance

∑

J i (yi ). Newton’s method is able to find an approximately optimal value for the dual variables and respective control performance
at each iteration.

bound on ṼN can nonetheless still be varied through various

choices of window size M and sample draw size n. However,

because the exact nature of both ṼN and Dk come from statis-

tical properties not known in practice, precise selection of such

parameters n and M can be chosen via a standard backtracking

procedure.

The details of the backtracking procedure can be seen in Steps

10 and 11 in Algorithm 1. At each epoch k, the parameters n
and M are initialized to n0 and M0 in Step 4. In the inner loop,

in Step 10 these parameters are respectively increased and de-

creased by factors of Γ and γ after performing the Newton step.

In Step 11, the accuracy of the new dual iterate µk+1 is checked

to be within the intended accuracy V̂ . Note that, while the sub-

optimality cannot be checked directly without knowledge of

R̃∗
k+1 , it can be checked indirectly by checking the norm of the

gradient ‖∇R̃k+1(µk+1)‖ < (
√

2α)V̂ from the strong convex-

ity property in (25). If the condition in Step 11 is satisfied, the

parameters n and M require no further modification. Otherwise,

they are further modified until µk+1 is within the target accuracy

which in turn may imply that the conditions in (33) and (34)

are satisfied. Note that the backtracking rates γ,Γ are standard

parameters used in the definition of a backtracking algorithm

and effectively tradeoff the speed of the backtracking search vs.

its thoroughness or accuracy. Generally speaking, values closer

to 1 will result in a slower, more careful backtracking search

while values of γ and Γ that are, respectively, smaller and larger

will result in a faster, more aggressive search. Tuning of these

parameters should thus reflect the desired tradeoff. With this

practical considerations in mind, we proceed by simulating a

wireless control learning problem using the proposed use of

Newton’s method on the ERM relaxation.

VII. SIMULATION RESULTS

We simulate the performance of our second order learning

method on a simple WCP. Consider the 1-dimensional switched

dynamical system in (1) governed by the transition constants

Ao and Ac for m = 4 systems/states. The control performance

for the ith agent J i(yi) measures the mean square error per-

formance and is now given by the expression in (9). The

open and closed loop control gains for each agents are cho-

sen between [1.1, 1.5] and [0, 0.8], respectively. The probability

of successful transmission for agent i is modeled as a nega-

tive exponential function of both the power and channel state,

q(hi , pi(hi) := 1 − e−h i p i (h i ) , while channel states at epoch k
are drawn from an exponential distribution with mean uk . The

channel varies over time by the mean uk changing for different

times. We draw n = 200 samples and store a window of the

previous M = 5 distributions for a total of N = 1000 samples

at each epoch. As we assume the that channel statistics vary

only vary across time epochs, but stay constant within a single

epoch, we may consider it reasonable to collect 200 channel

samples within an epoch.

To demonstrate the ability of Newton’s method to instanta-

neously learn an approximately optimal power allocation as the

channel distribution varies over time, we perform Algorithm 1

over the ERM problem in (15) with the defined control perfor-

mance J(·), transmission probabilities q(·) and channel distri-

butions Hk . In Fig. 3 we show the path of Newton’s method

at each time k for the dual variables µ1
k , µ̃k , and the control

performance
∑m

i=1 J i(yi
k ). The red line of each figure plots the

optimal values for the current distribution parameter uk as it

changes with k. These values are obtained by solving the opti-

mization problem at each epoch offline a priori. The blue line,

alternatively, plots the values generated by Newton’s method for

each epoch k in an online manner. The channel evolves at each

iteration by a fixed rate uk+1 = uk ± r for some rate r. Observe

that within some small error Newton’s method is indeed able to

quickly and approximately find each new solution as the channel

varies over time.

To compare the effect of selecting different choices of accu-

racy V̂ numerically, we present in Fig. 4 the simulation perfor-

mance of two representative cases with respective accuracies

of V̂ = 0.01 (left) and V̂ = 0.03 (right). In the top figures, we

show the suboptimality relative to the optimal control perfor-

mance and show on the bottom figures the resulting constraint

violation (where a positive value reflect violation) over a set

of time epochs where the channel varies. Here, we see an in-

teresting case that highlights the need of proper selection or

estimation of V̂ . Although the left hand figures strive for a bet-

ter accuracy, the performance is better on the right hand figures.

This is due to the fact that single iterations of Newton’s method

cannot reach accuracies of 0.01, resulting in a more suboptimal

trajectory of resource allocation policies. On the other hand,
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Fig. 4. Comparison of suboptimality (top) and constraint violation (bottom)

for the case of V̂ = 0.01 (left) and V̂ = 0.03 (right). Although the right-hand
figures strive for less accuracy, they perform better because Newton’s method
can adapt to the intended accuracy more easily with single iterations.

Fig. 5. Dynamic evolution of each of the 4 state variables over the time-varying
channel. The blue curve shows the opportunistic power allocation policy found
with Newton’s method while the red curve shows the evolution assuming the
loop can always be closed.

the more moderate goal of 0.03 allows for the learning method

to reach intended accurate goals with each step of Newton’s

method as the channel varies.

Using the dual parameters found by Newton’s method, we

simulate the resulting dynamical system. The dual parameters

are used to determine the power allocation policy, which is used

to determine transmission probabilities given current channel

conditions. In Fig. 5 we show the resulting state evolution of xi
t

for each of the 4 state variables. The blue curve shows the pro-

cess using the opportunistic transmission policy from Newton’s

method, while the red curve shows the process when the loop

is always closed, i.e., no packet drops. Here, we observe that

while there are some instances when the state variable grows

large when the system is in open loop, overall the system re-

mains stable over time.

VIII. CONCLUSION

In this paper we considered the wireless control system over

a non-stationary wireless channel. The problem of maximizing

a control utility subject to resource constraints can be formu-

lated as a stochastic optimization problem in the dual domain.

Because the wireless channel is random and time-varying, chan-

nel samples must be taken, resulting in a relaxed empirical risk

minimization (ERM) problem. Standard ERM techniques do not

suffice in the wireless setting because the channel is constantly

changing. We propose the use of Newton’s method, whose local

quadratic convergence property allows us to continuously learn

and adapt our optimal power allocation policies to changes in the

channel distribution. We derive specific conditions on achieving

instantaneous convergence to an approximate solution and char-

acterize the suboptimality and stability in the wireless control

problem (WCP). We additionally provide numerical simulations

that demonstrate the use of Newton’s method to learn and track

optimal power allocations over a time varying channel. While

this paper considers only resource allocation on contention-free

links, consider the scheduling problem on a shared channel with

non-stationary distributions remains an area of future work.

APPENDIX

PROOF OF LEMMA 1

We start with the definition of the Newton decrement at time

k + 1. We can add and subtract ∇R̃k (µk ) and upper bound

using the triangle inequality as

λk+1(µk ) = ‖H−1/2
k+1 ∇R̃k+1(µ)‖ = ‖∇R̃k+1(µk )‖H−1

k+1

≤ ‖∇R̃k (µk )‖H−1
k+1

+ ‖∇R̃k+1(µk ) −∇R̃k (µk )‖H−1
k+1

.

(44)

First, we will upper bound the second term in (44). By adding

and subtracting the expected losses ∇Lk (µk ) and ∇Lk+1(µk )
and using the triangle inequality to obtain

‖∇R̃k+1(µk ) −∇R̃k (µk )‖ ≤ ‖∇L̂k+1(µk ) −∇Lk+1(µk )‖

+ ‖∇Lk (µk ) −∇L̂k (µk )‖ + ‖∇Lk+1(µk ) −∇Lk (µk )‖.

The first two terms in the above sum are bounded by Ṽ
1/2
N per

(26), while the third term is the difference of two consecutive

loss functions and is therefore bounded by D̄k from (28). The

norm weight H−1
k+1 additionally provides a bound of αV̂ as the

strong convexity constant of R̃k+1 providing an upper bound on

the norm of Hessian inverse as in (25). Combining these, we

obtain

‖∇R̃k+1(µk ) −∇R̃k (µk )‖H−1
k+1

≤ 2Ṽ
1/2
N + D̄k

(αV̂ )1/2
. (45)
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We now can bound the first term in (44) using the Lipschitz

continuity of the gradient ∆ + cV̂ , i.e.

‖∇R̃k (µk )‖H−1
k+1

≤
(

2(∆ + cV̂ )‖µk − µ̃
∗
k‖

αV̂

)1/2

(46)

Recall that µk is given to be a V̂ -accurate minimizer of R̃k .

The difference ‖µk − µ̃
∗
k‖ can subsequently be bounded with

V̂ , resulting in the final bound for the first term

‖∇R̃k (µk )‖H−1
k+1

≤
(

2(∆ + cV̂ )V̂

αV̂

)1/2

(47)

To be in the quadratic convergence region, i.e., λk+1(µk ) < 1/4,

follows by summing (45) and (47) as in (30).

APPENDIX

PROOF OF LEMMA 2

To prove this result, we start by expanding the term R̃k+1

(µk ) − R̃∗
k+1 . By adding and subtracting R̃k (µk ), R̃∗

k , and

R̃k (µ∗
k+1), we obtain

R̃k+1(µk ) − R̃∗
k+1 = R̃k+1(µk ) − R̃k (µk )

+ R̃k (µk ) − R̃∗
k

+ R̃∗
k − R̃k (µ∗

k+1)

+ R̃k (µ∗
k+1) − R̃∗

k+1 . (48)

We now individually bound each of the four differences in (48).

Firstly, the difference R̃k+1(µk ) − R̃k (µk ) becomes

R̃k+1(µk ) − R̃k (µk ) = L̂k+1(µk ) − L̂k (µk ), (49)

Using the same reasoning as in (45) with the functional statistical

accuracy bound in place of the bound for gradients in (26) and

using (27) in place of (28), we obtain the equivalent bound

R̃k+1(µk ) − R̃k (µk ) ≤ 2ṼN + Dk . (50)

For the second term in (48), we again use the fact that µk as

an V̂ -optimal solution for the sub-optimality R̃k (µk ) − R̃∗
k to

bound with the statistical accuracy as

R̃k (µk ) − R̃∗
k ≤ V̂ . (51)

We proceed with bounding the third term in (48). Based on the

definition of µ
∗
k as the optimal solution of the loss R̃k , the the

difference R̃∗
k − R̃k (µ∗

k+1) is always negative, i.e.,

R̃∗
k − R̃k (µ∗

k+1) ≤ 0. (52)

For the fourth term in (48), we use the triangle inequality to

bound the difference R̃k (µ∗
k+1) − R̃∗

k+1 in (48) as

R̃k (µ∗
k+1) − R̃∗

k+1 = L̂k (µ∗
k+1) − L̂k+1(µ

∗
k+1)

≤ 2ṼN + Dk . (53)

Observe that (53) uses the same reasoning as (50). Replacing

the differences in (48) by the upper bounds in (50)–(53),

R̃k+1(µk ) − R̃∗
k+1 ≤ 4ṼN + V̂ + 2Dk w.h.p. (54)

APPENDIX

PROOF OF LEMMA 3

The proof for this result follows from [34, Proposition 4],

which we repeat here for completeness. We proceed by bound-

ing the difference R̃k+1(µ) − R̃∗
k+1 in terms of the Newton

decrement parameter λk+1(µ). We first use the result in [39,

Theorem 4.1.11], showing that

λk+1(µ) − ln (1 + λk+1(µ))

≤ R̃k+1(µ) − R̃∗
k+1

≤ −λk+1(µ) − ln (1 − λk+1(µ)) . (55)

We can use the Taylor’s expansion of ln(1 + a) for a = λk+1

(µ) to show that λk+1(µ) − ln(1 + λk+1(µ)) is bounded

below by (1/2)λk+1(µ)2 − (1/3)λk+1(µ)3 for 0 < λk+1(µ)
< 1/4. Likewise, we have that (1/6)λk+1(µ)2 ≤ (1/2)λk+1

(µ)2 − (1/3)λk+1(µ)3 and subsequently λk+1(µ) − ln(1 +
λk+1(µ)) is bounded below by (1/6)λ2 . We again use Tay-

lor’s expansion of ln(1 − a) for a = λk+1(µ) to show that

−λk+1(µ) − ln (1 − λk+1(µ)) is bounded above by λk+1(µ)2

for λk+1(µ) < 1/4; see e.g., [27, Ch. 9]. Considering these

bounds and the inequalities in (55) we obtain that

1

6
λk+1(µ)2 ≤ R̃k+1(µ) − R̃∗

k+1 ≤ λk+1(µ)2 . (56)

Because we assume that λk+1(µk ) ≤ 1/4, the quadratic con-

vergence rate of Newton’s method for self-concordant functions

[27] implies that the Newton decrement has a quadratic conver-

gence and we can write

λk+1(µk+1) ≤ 2λk+1(µk )2 . (57)

We combine the results in (56) and (57) to show that the op-

timality error R̃k+1(µk+1) − R̃∗
k+1 has an upper bound which

is proportional to (R̃k+1(µk ) − R̃∗
k+1)

2 . In particular, we can

write R̃k+1(µk+1) − R̃∗
k+1 ≤ λk+1(µk+1)

2 based on the second

inequality in (56). This observation in conjunction with the re-

sult in (57) implies that

R̃k+1(µk+1) − R̃∗
k+1 ≤ 4λk+1(µk )4 . (58)

The first inequality in (56) implies that λk+1(µk )4 ≤ 36(R̃k+1

(µk ) − R̃∗
k+1)

2 . Thus, we can substitute λk+1(µk )4 in (58) by

36(R̃k+1(µk ) − R̃∗
k+1)

2 to obtain the result in (32).

APPENDIX

PROOF OF PROPOSITION 2

We begin by bounding the gradient of the expected dual loss

L(µk ) at the kth dual iterate µk by using Lipschitz continuity,

i.e.

‖∇Lk (µk )‖2 ≤ 2∆(Lk (µk ) − L∗
k ). (59)

We expand the sub-optimality L(µk ) − L∗ by adding and sub-

tracting terms as follows

1

2∆
‖∇Lk (µk )‖2 ≤ Lk (µk ) − L̃k (µk ) + L̃k (µk )

− R̃k (µk ) + R̃k (µk ) − R̃∗
k + R̃∗

k − L∗
k ,

(60)
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where we recall the notation R̃∗
k := R̃k (µ̃∗

k ). We now proceed

by bounding each successive pair of terms in (60). The first dif-

ference Lk (µk ) − L̃k (µk ) comes from the sampling and is thus

bounded by the statistical accuracy ṼN . The second difference

L̃k (µk ) − R̃k (µk ) can be bounded by the regularizers as

L̃k (µk ) − R̃k (µk ) ≤ βV̂ 1T logǫ(µk ) − αV̂

2
‖µk‖2 . (61)

The second term on the right hand side of (61) is negative and can

be ignored. Because the dual variable ‖µk‖ was upper bounded

in Corollary 1, we can place a finite bound on 1T logǫ(µk ) ≤ κ
and then bound the term βV̂ 1T logǫ(µk ) ≤ βV̂ κ. The third

difference R̃k (µk ) − R̃∗
k is bounded by the suboptimality V̂

from the main result in (35) and the fourth difference R̃∗
k − L∗

k

can be bounded by ρV̂ from (23). We can therefore bound the

gradient of the dual loss as

‖∇Lk (µk )‖2 ≤ 2∆(ṼN + CV̂ ), (62)

where C := 1 + ρ + βm log κ. From here, consider that the

norm of the dual gradient ‖∇Lk (µk )‖2 is the sum of squares of

each constraint violation in (WCPk ), i.e.,

(

m
∑

i=1

Eh i
k
(pi(h)) − pmax

)2

+
m

∑

i=1

(

yi − Eh i
k

{

q(h, pi(h))
}

)2

≤ 2∆(ṼN + CV̂ ). (63)

The results in (36) and (37) then follow from here.

APPENDIX

PROOF OF THEOREM 2

Consider that, using the definitions of the primal maximizers

p(h,µk ) and y(µk ) at a dual point µk , we can write the dual

function as

L(µk ) = J(y(µk )) + µ
T
k (Eh q̌(p(h,µk )) − y̌(µk )) . (64)

Likewise, we know from strong duality that the optimal dual

values L∗
k is equivalent to the optimal primal objective value

J(y∗
k ). Therefore, we can write the suboptimality of dual func-

tions as

L(µk ) − L∗
k = J(y(µk )) − J(y∗

k )

+ µ
T
k (Eh q̌(p(h,µk )) − y̌(µk )) . (65)

Using the bound on dual suboptimality that comes from com-

bining strong convexity and the gradient bound in (62), we can

upper bound (65) as

(1 + C)∆/α ≥ J(y(µk )) − J(y∗
k )

+ µ
T
k (Eh q̌(p(h,µk )) − y̌(µk )) . (66)

We can lower bound the right hand side of (66) by taking the

negative of the absolute value of the final term. Rearranging

terms we obtain

(1 + C)∆/α + |µT
k (Eh q̌(p(h,µk )) − y̌(µk )) |

≥ J(y(µk )) − J(y∗
k ). (67)

From here, we can upper bound the second term on the left hand

side using the Cauchy-Schwartz inequality. The norm ‖µk‖
is bounded by

√

2/α + K̂ from Corollary 1 while the norm

‖Eh q̌(p(h,µk )) − y̌(µk )‖ is bounded by 2∆(1 + C)V̂ from

(37). This provides us the final result as

(1 + C)∆

(

1

α
+ 2V̂ (

√

2/α + K̂)

)

≥ J(y(µk )) − J(y∗
k ).

(68)
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