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Learning in Wireless Control Systems Over
Nonstationary Channels

Mark Eisen ¥, Konstantinos Gatsis

Abstract—This paper considers a set of multiple independent
control systems that are each connected over a nonstationary wire-
less channel. The goal is to maximize control performance over all
the systems through the allocation of transmitting power within a
fixed budget. This can be formulated as a constrained optimization
problem examined using Lagrangian duality. By taking samples of
the unknown wireless channel at every time instance, the result-
ing problem takes on the form of empirical risk minimization, a
well-studied problem in machine learning. Due to the nonstationar-
ity of wireless channels, optimal allocations must be continuously
learned and updated as the channel evolves. The quadratic conver-
gence property of Newton’s method motivates its use in learning
approximately optimal power allocation policies over the sampled
dual function as the channel evolves over time. Conditions are
established under which Newton’s method learns approximate so-
lutions with a single update, and the subsequent suboptimality of
the control problem is further characterized. Numerical simula-
tions illustrate the near-optimal performance of the method and
resulting stability on awireless control problem.

Index Terms—Wireless control systems, learning, Newton’s
method, nonstationary channel.

1. INTRODUCTION

environments, teams of robotic vehicles, and the Internet-
of-Things have motivated intelligent design of wireless systems.
Even though wireless communication facilitates connectivity, it
also introduces uncertainty that may affect stability and per-
formance. To guarantee performance and safety of the control
application it is common to employ model-based approaches.
However wireless communication is naturally uncertain and
time-varying due to effects that are not always amenable to
modeling, such as mobility in the environment. In this paper
we propose an alternative learning-based approach, where au-
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tonomy relies on collected channel samples to optimize perfor-
mance in a non-stationary environment. The connection between
the two approaches is based on the observation that a sampled
version of the model-based design approach can be cast as an
empirical risk minimization (ERM) problem, a typical machine
learning problem. Even so, standard techniques developed for
solving ERM problems in machine learning do not address the
additional challenges present in wireless autonomous systems,
namely the non-stationarity of sample distributions.

The traditional model-based approach is motivated by the de-
sire to build wireless control systems with stability and optimal
performance. To counteract channel uncertainties it is natural to
include a model of the wireless communication, for example an
i.i.d. or Markov link quality, alongside the model of the physi-
cal system to be controlled. These models have been valuable to
help analysis and control/communication design. For example,
one can characterize that it is impossible to estimate and/or sta-
bilize an unstable plant if its growth rate is larger than the rate at
which the link drops packets [3]-[6], or below a certain channel
capacity [7], [8]. Additionally models facilitate the design of
controllers [9]-[11], as well as the allocation of communication
resources to optimize control performance, for example power
allocation over fading channels with known distributions [12],
[13], or event-triggered control [14]-[18].

In practice wireless autonomous systems operate under un-
predictable channel conditions following unknown time-varying
distributions. While one approach would be to estimate the dis-
tributions using channel samples and then follow the above
model-based design approach, in this paper we propose an al-
ternative learning-based approach which bypasses the channel-
modeling phase. We exploit channel samples taken from the
time-varying channel distributions with the goal to learn directly
the solution to communication design problems. To apply this
approach we exploit a connection between the model-based and
the learning-based design problems. Existing works [19]-[21]
study related problems in multiple-access wireless control sys-
tems and resource allocation problems in wireless systems but
under a stationary channel distribution. These works generally
employ first-order stochastic methods, which have slow conver-
gence rates and hence not suitable for the present framework. A
significant challenge remains in how to continuously learn op-
timal policies over a wireless channel that is time-varying. This
shortcoming of existing sample-based approaches used in [19]—
[21] and more general machine learning scenarios motivates the
higher-order learning approach proposed in this paper. Some
existing machine learning methods account for nonstationarity
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by optimizing an averaged objective over all time [22]-[24].
Our approach differs in that we seek and track optimality lo-
cally with respect to the current channel distribution at every
time epoch.

In this paper we consider a wireless autonomous system
where the design goal is to maximize a level of control per-
formance for multiple systems while meeting a desired transmit
power budget over the wireless channel (Section II). The wire-
less channel is modeled as a fading channel with a time-varying
and unknown distribution, and only available through samples
taken over time. We derive in Section II-A a wireless control
problem that finds optimal power allocation policies for an in-
dividual time epoch where the wireless channel distribution
does not change, and then proceed to derive the Lagrange dual
(Section II-B). We show in Section III that the dual of the power
allocation problem can be rewritten using channel samples as
an empirical risk minimization problem, a common machine
learning problem in which an expected loss function over an
unknown distribution is approximated by optimized over a set
of samples. Here the risk is loosely related to how far the current
solution is from the desired optimal power allocation.

Because the wireless channel is varying over time, we de-
velop a new approach to solving a sequence of ERM prob-
lems. We collect and store a window of channel samples taken
from consecutive distributions to reduce sampling complexity
and employ Newton’s method to learn new policies quickly
(Section IV). More specifically, the quadratic convergence rate
of Newton’s method is shown to be sufficient to find approxi-
mate solutions to slowly varying objectives with a single update.
Using Newton’s method, we propose an algorithm that uses
channel samples to approximate the solution of a power allo-
cation wireless control problem over a non-stationary channel.
We prove that, under specific conditions, the algorithm reaches
an approximately optimal point in a single iteration of Newton’s
method (Section V). This result establishes both a suboptimal-
ity bound with respect to the sampled problem (Section V-A)
as well as with respect to control performance metric in the
wireless control problem (Section V-B). We additionally show
a stability result for a particular problem description common
in wireless control systems (Section V-C) and provide consider-
ations for practical implementation of the method (Section VI).
These results are further demonstrated in a numerical demon-
stration of learning power allocation policies across multiple
control systems over a time-varying channel (Section VII).

II. WIRELESS CONTROL PROBLEM

We consider a wireless control problem (WCP) with m in-
dependent control systems labeled 7 = 1,...,m, as shown in
Fig. 1. Each control system/agent ¢ communicates at time ¢ its
state 2/ over a wireless channel in order to close a loop and max-
imize a level of control performance. In particular, system ¢ tries
to close the control loop over the wireless channel by transmit-
ting with power level p € [0, py]. Due to propagation effects the
channel fading conditions that each system 7 experiences, de-
noted by h’ € R, change unpredictably over time [25, Ch. 3].
Together, the channel fading h’ and transmit power p’ deter-
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Fig. 1. Wireless control system. Plants communicate state information to
access point/controllers over wireless medium.

mine the signal-to-noise ratio (SNR) at the receiver for system
1, which in turn affects the probability of successful decoding
of the transmitted packet at the receiver. We consider a function
q(h', p') that, given a current channel state and transmit power,
determines the probability of successful transmission and de-
coding of the transmitted packet — see, e.g., [12], [13] for more
details on this model. Transmission are assumed on different
frequencies/bands and are not subject to contention — see [19],
[20] for alternative formulations.

Because these fading conditions vary quickly and unpre-
dictably, they can be modeled as independent random vari-
ables drawn from distribution 7 that itself is non-stationary,
or time-varying. Channel fading is assumed constant during
each transmission slot and it is independently distributed over
time slots (block fading). Furthermore, the channel distribution
‘H may vary across time epochs, but will in general be stationary
within a single time epoch. In particular, consider an epoch in-
dex k = 0,1, ... that specifies a particular channel distribution
'y, with realization k!, for system 4. In Fig. 2, we display a time
axis rendering of this model. The state variables change at each
transmission slot ¢, while the channel changes at scale &k, which
will in general contain multiple time steps. This is to say that
we assume that the channel distribution 7, changes at a rate
slower than the system evolution, and that within a single time
epoch the channel is effectively stationary.

We proceed to derive a formal description of the wireless
control problem of interest within a single time epoch, where
the channel is assumed stationary. In Section IV we extend this
formulation to the non-stationary setting.

A. WCP in Single Epoch

Within a particular time epoch £ with channel distribution Hy,
we can derive a formulation that characterizes the optimal power
allocations between the m control systems so as to maximize
the aggregate control performance across all systems, where py
reflects a maximum transmission power of the system. Given a
random channel state hj, € R, drawn from the distribution H,.
We wish to determine the amount of transmit power pj, (h} ) :
Ry — [0,p0] to be used when attempting to close its loop—
see [12] for details. We note that we are looking for transmit
power as a function of current channel conditions, as the power
necessary to close the loop will indeed change with channel
conditions. We assume the current channel gain h}, is available
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at the transmitter at each slot, as this can generally be obtained
via short pilot signals—see [12]. Then the probability of closing
the loop is given by the value

Yi = Epy {a(h,0h (h}))} - (1)

The variable y; € [0, 1] is the expectation of successful trans-
mission over the channel distribution ;..

Using the variable y;. we use a monotonically increasing con-
cave function J’ : [0,1] — R that returns a measure of control
system performance as a function of the probability of success-
ful transmission. Such a function can take on many forms and,
in general, can be derived in relation to the particular control
task of interest. In the following example, we derive such a mea-
sure for a typical wireless control problem setting, namely the
quadratic control performance of a switched linear dynamical
system — see, e.g., [4], [6].

Example 1: Consider for example that a control system i is
a scalar linear dynamical system of the form

Ty = Ayry + Bluy + wy

2

where z; € R is the state of the system at transmission time ¢, A?
is the open loop (potentially unstable) dynamics of the system,
ul € R is the control input applied to the system at time ¢, and
w; is some zero-mean i.i.d. disturbance process with variance
W, Consider a given linear state feedback is applied to the
system as the control input when a transmission is successful,

ie.,
; Kzl if loop closes
up = : .
t 0 otherwise

3)

As a result, the system switched between an open loop mode
Al and a closed loop stable mode A’ = A’ + B'K', as in

; Al x! +w! if loop closes
LTiv1 =

4)

Alx! +w!  otherwise

The goal is to regulate the system state close to zero, i.e., the
system attempts to close the loop at a high rate in order to
minimize an expected quadratic control cost objective of the
form

=

o1&
i, 2 B’

(&)

I
o

Assuming the control loop in (4) is closed with the success
probability y; in (1) at all time steps, it is possible to express
the above cost explicitly as a function of y.. Using the sys-
tem dynamics (4), the variance of the system state satisfies the
recursive formula

E(wi1)? =y (A E(2)? + (1 — i) (A))* E(;)* + W'
(6)

Hs

Time axis showing evolution of time ¢ and epochs k. Each channel distribution H, is stationary for a set of time instances.

that is, with probability y;. the variance grows according to the
open loop dynamics, and with probability 1 — y;. the variance
shrinks according to the closed loop stable dynamics.

Operating recursively and using the geometric series sum, we
can rewrite the variance at time ¢ as

E(21)? = [yp (A7 + (1= y;) (4)°] E(ap)’

1= [y (AD? + (1 —yp) (AD)?)
T AT T (L) (@)

As follows from the above expression, the system is stable,
i.e., the variance is bounded, if the packet success rate satis-
fies [y (A2)? + (1 —y.) (A%)?] < 1 so that the sum above is
bounded — see also [4], [6]. In that case, the state variance as
well as the average (5) converge to the same limit value, which
we can define as our control performance function

(N

®)

W?’,
1= [yp(AL)? + (1 — yp)(40)?]

This control performance function satisfies the assumption of
concavity, and it is also monotonically increasing because we
have added the negative sign in front of the expression. It is also
possible to extend this analysis to include a cost on the control
input, as is common in the Linear Quadratic Control problem,
i.e., replace the cost in (5) with E(z})? + (u})?.

Remark 1: In Example 1, observe that the control system
performance in (5) is a long term objective asymptotically for
t — oo. As the channel fading distribution H;, will change un-
predictably in the future it is hard to define an accurate value of
this control performance. As a surrogate, in the above example
we write a control system performance in (9) with respect to
the current channel distribution H;., i.e., as if this channel dis-
tribution is stationary and will not change in the future. Later,
in Section V-C we argue that this approximation and the power
allocation algorithm we develop can indeed guarantee system
stability.

To derive the full formulation of the wireless control prob-
lem for current channel distribution Hy,, we first define using
boldface vectors the set of m channel states hy, := [h}; hi;. . .;
h7'] ~ H]" observed by the control systems and the set of power
allocation policies py (hy) == [p}(h});pi(h3);...; Py (h)]
€ P:=1[0,po]™. We further define the vector of transmis-
sion probabilities at specific channel states q(hy, pi(hy)) :==
lq(h},ph(RL))s .. sq(h, pi (h))] and expected transmis-
sion probabilities yy, = [y};v7;. .. ;y;"] from(1). The goal is to
select py (hy) whose expected aggregate value is within a max-
imum power budget pn,.x While maximizing the total system
performance > J¢ over m agents. Because .J* is monotonically
increasing, we can relax the equality in (1) to an inequality

J(yp) = — )
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constraint and write the following optimization problem.

argmax J(yx) Ji(y
pPrEP,yr ER™ Z
Yk S Ehk {q(hka Pk (hk))} )

m

Z Eh;ﬁ (pgs (hﬁc)) S Pmax

i=1

{plt(h)vy;:} = CPk)

s. t.

The problem in (WCP},) states the optimal power allocation
policy p; (hy) is the one that maximizes the expected aggregate
control performance over channel states while guaranteeing that
the expected total transmitting power is below an available bud-
get pmax- We stress that this only provides the optimal policy
with respect to a particular channel distribution ;.. In the non-
stationary wireless setting we are interested in solving (WCP},)
for all k.

B. Dual Formulation of (WCP},)

Solving this optimization problem directly has a number of
significant challenges. The first is that the problem is non-
convex, in particular due to the first constraint in (WCP},).
The second challenge is that the problem is optimized over
an infinite-dimensional variable p; (hy). It is very difficult to
solve such a problem if there is no assumed parameterization
of p; (hy). We can show, however, from a result in [26] that a
naturally occurring parameterization of p; (hy) indeed can be
derived from Lagrangian duality theory.

We proceed then to derive the dual problem from the con-
strained problem in (WCP}). To simplify the presentation,
we first introduce a set of augmented variables, denoted with
tildes. Define the augmented vectors ¢(hy, py(hy)) € R™ 1
and y, € R™*! as

q(h}., k() Yl
athepe(he) o= | o g |
q(hi, py (hi)) Y

— Z:n 1 pk (hl )] —Pmax

(10)

The augmented q(hy, pi (hy,)) includes transmission probabili-
ties augmented with the total power allocation while ¥y, includes
auxiliary variables augmented with total power budget. Using
this new notation, the Lagrangian function is formed as

m

=2 T

+ i (En, a(hy, pr(hy))

Ly (pr (i), yi, )

—=¥), (1D

where gy, := [ub;. ..l ; i) € R contains the dual vari-
ables associated with each of the m + 1 constraints in
(WCPy},). From the Lagrangian function in (11), the Lagrangian
dual loss function is defined as Lj () := maxp, v, Lr(Pk
(hy.),yx, i )—see, e.g., [27]—and the corresponding dual
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problem as

i = argmin Ly ()
>0

m

Ly (pp) := Ehk{max ZJ

Pk Yk

) + (@b, pr(hy) — yk)}.
(12)

Note in (12) that the expectation operator and maximization
were exchanged without loss of generality—see, e.g., [19,
Proposition 2]. It is important to stress here the connection
between the dual problem in (12) with the original problem in
(WCPy). While (WCP;,) is indeed not convex, problems of
this form can be shown to exhibit zero duality gap under the
technical assumption that the primal problem is strictly feasi-
ble and that the channel probability distribution is non-atomic
[26]. This implies that the optimal primal variable pj (hy) in
(WCP;,) can be recovered from the optimal dual variable f; in
(12). Thus, the power allocation policy for each agent 7 is found
indirectly by solving (12) and recovering as

Pk (B, ) = argmax pj.q(hy,, i, (ht,)) — fipj, (hy,),  (13)
;. €[0,p0]
yi. () = argmax J' (y}.) — 1}, y4- (14)

Yi.

The optimal policy is subsequently recovered using the optimal
dual variable as pj, (hy,) == [pt (ht, 25); - - s pi (A, ;)] Ob-
serve that the problem in (12) is a simply constrained stochastic
problem that is known to always be convex from duality theory,
and can be solved efficiently with a variety of projected stochas-
tic descent methods [19], [20], [28]—[30]. Thus, the non-convex,
infinite-dimensional optimization problem in (WCP}) can be
solved indirectly but exactly with the convex, finite-dimensional
problem in (12).

Remark 2: The problem formulation given in (WCP},) that
we use in this paper assumes there is a fixed power budget and
the metric to be optimized is a measure of control performance.
An alternative formulation of resource allocation that may be
more relevant in some settings would instead fix a bound on the
required control performance, typically derived from a stability
margin for the control system. Here the objective would instead
be to minimize total power usage, subject to the constraint on
control performance. Indeed, these two problems are very sim-
ilar when reformulated in the dual domain, and can thus be
studied almost identically as such. We specifically focus on the
problem in (WCPy) in this paper but stress that all the results
will apply to this alternative problem as well.

III. ERM FORMULATION OF (WCP},)

The stochastic program in (12) features an objective that is
the expectation taken over a random variable, and can thus
be considered as a particular case of the empirical risk min-
imization (ERM) problem. Empirical risk minimization is a
common problem studied in machine learning due to its ubig-
uity in training classifiers, and the same structure appears nat-
urally in the dual formulation of the WCP. A generic ERM
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problem considers a convex loss function f(p,,hy) of a de-
cision variable g, € R™*! and random variable h; drawn
from distribution H;, and seeks to minimize the expected loss
Ly (py,) :==En, [f (g, hy)]. For the WCP in (WCPy), we
rewrite the loss function L and associated ERM problem in
terms of a function f (g, hy) using its dual as

f, := argmin Ly (p;,) := argmin Ey,, f(py, hy),
i >0 wy. >0

Fl, ) = J(yrk () + o (@b, pr (hye, )
(15)

Typically the distribution 7, is not known by the user, so the
expected loss cannot be evaluated directly, but is instead re-
placed by an empirical risk by taking n samples labeled h}, h?,

. hl € H", (where hl := [hi’l; co h:l‘l]). In practice, such
samples can be obtained through the use of short pilot signals
sent from the users to measure channel conditions—see [12].
We then consider the empirical average loss function

qu;,hl ka (1)

To characterize the closeness of the empirical risk Ly, (p;,) with
n samples with respect to the expected loss Ly, (u;, ), we define a
constant V,, called the statistical accuracy of ﬁk. The statistical
accuracy V,, provides a bound of the difference in the empirical
and expected loss for all p; with high probability (i.e., at least
1 — ~ for some small ). In other words, we define V,, to be the
constant that satisfies

(16)

sup | Ly (p,) — Ly ()| < Vi whop. (17)

H

The upper bounds on V,, are well studied in the learning litera-
ture and in general may involve a number of parameters of the
loss function f as well as, perhaps most importantly, the num-
ber of samples . For Ly () defined in (16), a bound for the
statistical accuracy V;, can be obtained in the order of O(1/+/n)
or, in some cases, @(1/n) [31], [32]. This further implies a
suboptimality of L :=min L, (p;,) of the same accuracy, i.e.,
\L; — Lj| <2V, [31].

As is often the case in machine learning problems, the statis-
tical accuracy informs the proper use of regularization terms in
the empirical loss function. We can add regularizations to pre-
scribe desirable properties on the empirical risk Ly (g, ), such
as strong convexity, without adding additional bias beyond that
already accrued by the empirical approximation. In other words,
as I:Z will be of order V,, from the optimal expected value L*,
any additional bias of order V), or less is permissible. With that
in mind, we add the regularization term «'V;, /2|, ||* where
a > 0 to the empirical risk in (16) to impose strong convexity.
We can further remove the non-negativity constraint on the dual
variables in (15) through the use of a logarithmic barrier. To
preserve smoothness for small ., we use an e-thresholded log
function, defined as

lo > €

p’k<67

18
oty — ) (%)

=y () -
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where (5 (p;,) is a second order Taylor series expansion of
log(p;,) centered at e for some small 0 < e < 1. We then use
—BV, 17 log, p;, where 3 > 0 as a second regularization term,
and obtain a regularized empirical risk function

- ﬂ‘/n ]-T loge M-

1 n
) = o Zfli(“k) +
o (19)

From here, we can seek a minimizer of the strongly convex
regularized risk Ry () without explicitly enforcing a non-
negativity constraint on g, and find a solution with suboptimal-
ity of order O(V,,) with respect to (15). Such a deterministic and
strongly convex loss function as in (19) can be minimized using
a wide array of optimization methods [30], [33]-[35]. However,
all such methods only solve the problem for a particular epoch
k, or otherwise assume a stationary channel distribution Hj, as
is typical in machine learning settings.

IV. ERM OVER NONSTATIONARY CHANNEL

The ERM problem we are interested in solving in wireless au-
tonomous systems is further complicated by the non-stationarity
of H, making existing solution methods insufficient. This is due
to the fact that finding the minimizer to Ry, (x) will only provide
an optimal power allocation for the respective channel distribu-
tion Hy. In wireless systems, we instead must continuously
learn optimal policies as the channel varies, or in other words,
find optimal points for Ry () for k = 0, 1, . . .. To formulate the
non-stationarity, however, we first define an epoch-indexed em-
pirical risk function. While we may use a simple empirical risk
as we did in (16), we instead define a more general statistical
loss function for a non-stationary channel using samples from
the previous M epochs. We define a windowed empirical loss
function Ly, (p) at epoch k as

~ 1

Li(n) = 7 (20)

k A
> Liw
=k—M+1

By keeping a window of samples, we may retain N = Mn total
samples while drawing only n new samples at each epoch. If
the successive channel distributions Hy 741, . . ., Hj are not
very different, we may expect the old channel samples to still
be of interest. We define the associated statistical accuracy Vi
as the constant that satisfies

sup [Ly (1) — Ly ()] < Vy - whip. 1)
"

Here we stress that the bounds on this constant f/N are not
as easily obtainable or well-studied as in the stationary setting.
Such a bound over non-i.i.d. samples may be dependent upon
many parameters such as the sample batch size n, window size
M, and correlation between successive distributions H; and
‘H 4 1. Therefore, finding precise bounds on Vy would require
a sophisticated statistical analysis and is outside the scope of
this work. We instead define a user-selected accuracy V that
may estimate the statistical accuracy V. We assume that V>

Vi, with equality holding in cases where Vyy is known. Using
the same regularizations introduced previously, we obtain the
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regularized windowed empirical loss function

k A~
N oV “
Ry (p) == > Lilw+ TIIuII2 — V1T log, p

j=k—M+1

1
M
22

We subsequently define fi;, := argmin,, Ry (). The definition
of the loss function in (22) includes the batches of n sam-
ples taken from the previous M channel distributions a7 41,

., H}.. This definition is, in a sense, a generalization of the
simpler empirical risk Ry () in (19). Observe that, by using a
window size of M = 1, we use only samples from the current
channel and recover Ry (). In the following proposition we
establish the accuracy of an optimal point of our regularized
empirical risk function Ry () relative to the optimal point of
the original dual loss function Ly, (p).

Proposition 1: Consider L = Ly (p}) and L} = min,>o
Ly (), and define R} := min,, Ly (p) + oV /2||u> — BV1T
log pt as the optimal value of the regularized empirical risk.
Define Vy by (21). Assuming Vy < V, the difference |L*
Rk | is upper bounded on the order of statistical accuracy V.ie.,
for some p > 0

L — Ri| < 2Vy +pV < (2+p)V, whp. (23)

Proof: To obtain the result in (23), consider expanding and
upper bounding |Lj — R*| = |L} — Li + Lj + Rk| <I|L; —
Li| +|L; + Rf|. The first term is bounded by 2Vy as pre-
viously discussed. The second term, can be decomposed into
the bias introduced by the logarithmic barrier —BV1T log p
and the bias introduced by the quadratic regularizer ¢V /2|| /2.
The former of these is known to produce an optimality bias of
(m+ 1)ﬁ‘7 [27, Section 11.2.2], while the latter is known to in-
troduce a bias on the order of O(V) [36]. Combining these, we
get a total suboptimality between the regularized risk function
optimal and the true optimal of 2VV + ,oV for some constant
p > 0. As we assume that Vi <V, the rightmost bound in (23)
follows. [ |

A key observation to be made here is that any exact solution
to (22) only minimizes the expected loss Lj, to within accuracy
1% (assuming 1% > IN/N ). There is therefore no need to minimize
(22) exactly but is in fact sufficient to find a V-accurate solu-
tion, as this incurs no additional error relative to the statistical
approximation itself. While many optimization methods can be
used to find a minimizer to (22), we demonstrate in the next
section that fast second order methods can be used to learn
approximate minimizers—and by Proposition 1 approximately
solve (15)—at each epoch k with just single updates as the chan-
nel distribution H;, changes, thus tracking near-optimal points
at every epoch. This is done by exploiting an important property
of second order optimization methods, namely local quadratic
convergence.

Remark 3: Observe in the text of Proposition 1 that we de-
fine R: to be the optimal point of the loss function Ly (gt
regularized with a standard log barrier — log(g;, ), rather than
the thresholded barrier — log, (1, ) used in the definition in (22).
Indeed, using the thresholded barrier does not explicitly enforce
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nonnegativity for values smaller than e. However, this thresh-
olding is necessary to preserve smoothness of the barrier, which
will be necessary for the proof of Lemma 1 in Section V. The
threshold e can be made as small as necessary to enforce non-
negativity, although this comes at the cost of a worse smoothness
constant. In practice, however, we observe this thresholding to
not be explicitly needed and is just included here for ease of
analysis. We also stress that the smoothness constant itself does
not play a pivotal role in the proceeding analysis.

A. Learning via Newton’s Method

In this paper, we use Newton’s method to approximately min-
imize (22) efficiently as the channel H;, changes over epochs.
Motivated by the recent use of Newton’s method in solving large
scale ERM problems through adaptive sampling policies [34],
[35], we use the N samples drawn from recent distributions to
find an iterate p;, that approximately solves for fi;.. At the next
epoch, the iterate p; provides a “soft” start towards finding a
point ., that approximately minimizes Ry (). In this way,
with single iterations we may find near-optimal solutions for
each regularized empirical loss function, and thereby efficiently
learn the optimal power allocation of the wireless channel as the
channel distribution evolves over time epochs.

We proceed by presenting the details of Newton’s method.
Atepoch k, we compute a new iterate p;.,; by subtracting from
the current iterate p;, the product of the Hessian inverse and the
gradient of the function Ry (p,). For the empirical dual loss
function Ry, defined in (22), we define the gradient V Ry, (1) and
Hessian V2 R}, (). The new approximate solution g, is then
found from current approximate solution p,; using the Newton
update

—H; | VR (1), (24)

By = My

where we use Hj,; := V2 Ry, (1) as simplified notation.

To understand the full algorithm, consider that g is a V-
accurate solution of current loss function Rk, ie., Ry(py) —
R* < V. Recall that the new loss function Ryyy differs from
Rk only in the discarding of old samples Lk,MH and inclusion
of samples ﬁkH drawn from Hj.;. If we consider that the
distributions are varying slowly across successive time epochs,
ie., Hk+1 is close to ‘Hj., then the respectlve loss functions Rk+1
and Ry, and their optimal values Rk .1 and Rk will also not differ
greatly under some smoothness assumptions. Therefore, under
such conditions a single step of Newton’s method as performed
in (24) can in fact be sufficient to reach a V -accurate solution of
the new loss function Ry . This is possible precisely because of
the Newton method’s property of local quadratic convergence,
meaning that Newton’s method will find a near-optimal solution
very quickly when it is already in a local neighborhood of the
optimal point. Given then a V -accurate solution 1 of initial loss
Ry, the proceeding and all subsequent iterates p;, will remain
within the statistical accuracy of their respective losses Ry asthe
channel distribution varies over time. The formal presentation
of the exploitation of this property and other technical details of
this result are discussed in Section V of this paper.
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Algorithm 1: Learning via Newton’s Method.

1: Parameters: Sample size increase constants ny > 0,
M, > 1 backtracking params 0 < v < 1 < I', and
accuracy V.

: Input: Initial sample size n = m, and argument
o = By, With [V R, ()| < (V20)V

: for k=0,1,2,... do {main loop}

Reset factor n = ng, M = M, .

repeat {sample size backtracking loop}

Draw n samples from Hj;, discard from Hj, .
Compute Gradient V Ry, (p;,_, ), Hessian Hy,.
Newton Update [cf. (24)]:

[\

P A A

e =y — H 'V R ()

9: Determine power allocation, aux. variables
[cf. (13), (14)]:

i (hi., ) = argmax i q(hy,, pj (i) — fipp. (hy,),
P} €[0,po]

yi. () = argmax J' (y;) — i,y

Vi
10: Backtrack sample draw n = I'n, window size
M =~vM.
11: until |[VR ()] < (vV22)V
12: end for

The learning algorithm is presented in Algorithm 1. After
preliminaries and initializations in Steps 1-4, the backtracking
loop starts in Step 5. Each iteration begins in Step 6 with the
the drawing of n samples from the new channel distribution Hy,
and discarding of old samples from Hj_,; to form ]:Zk. Note
that samples will be only be discarded for & > M. The gradient
Vf%k and Hessian H;, of the regularized dual loss function are
computed in Step 7. The Newton step is taken with respect to
Ry.p1 in Step 8. In Step 9, the optimal primal variables are com-
puted with respect to the updated dual variables. This includes
both the auxiliary variables y(u;) and the power allocation
policy p(h, p;,) itself. Because there are function and channel
system parameters that are not known in practice, we include
a backtracking step for the parameters n and M in Step 10 to
ensure the new iterate p,;, is within the intended accuracy V of
py.- Further details on the specifics of the backtracking proce-
dure are discussed in Section VI after the presentation of the
theoretical results.

V. CONVERGENCE ANALYSIS

In this section we provide a theoretical analysis of the
Newton learning update in (24). We do so by first analyzing
the convergence properties of the ERM problem in (22). We
subsequently return to the WCP in (WCP},) and establish a
control performance result.

A. Convergence of ERM Problem

We begin by analyzing the ERM formulation of the power
allocation problem in (22) and establish a theoretical result that,
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under certain conditions, guarantees each iterate p,; is within
the statistically accuracy of the risk function at epoch k. Our pri-
mary theoretical result characterizes such conditions dependent
on statistical accuracy and rate of non-stationarity. We begin by
presenting a series of assumptions made in our analysis regard-
ing the dual loss functions f.

Assumption 1: The expected loss function L;, and empirical
loss functions f(u,hy) are convex with respect to p for all
values of hy,. Moreover, their gradients VL () and V f (s, z)
are Lipschitz continuous with constant A.

Assumption 2: The loss functions f(u,h)
concordant with respect to p for all h, i.e., for all 7,

0% /02 f (. h)| < 207 /Op? f (e, h)*/2.

Assumption 1 implies that the regularized empirical risk gra-
dients VR, are Lipschitz continuous with constant A + %
where ¢ := a + 3/¢? and «, 3, € are the regularization constants
in (22). The function R}, is also strongly convex with constant
oV . This implies an upper and lower bound of the eigenvalues
of the Hessian of ]:Zk, namely

are self-

aVI<Hj < (A+cV)L (25)

Assumption 2 states the loss functions are additionally self con-
cordant, which is a common assumption made in the analysis
of second-order methods—see, e.g., [27, Ch. 9], for such an
analysis. It also follows that the functions Rk+1 are therefore
self concordant because both the quadratic and thresholded log
regularizers are self-concordant. We present a brief remark re-
garding the implications of these assumptions on the dual risk
function on the wireless control problem.

Remark 4: We state the preceding assumptions in terms of
the sampled dual functions f due to their direct use in the pro-
ceeding analysis. However, they indeed have implications on the
primal domain problem in (WCP}, ). While the dual function is
always convex, the smoothness condition in Assumption 1 can
be obtained from the strong concavity of the control perfor-
mance Y, J* with strong concavity 1/A. The self-concordance
property on the dual function in Assumption 2, however, is not
easily derived from properties of J(-) or ¢(-). We point to work
that establishes self concordance of the dual for various machine
learning problems [37], [38].

The two preceding assumptions deal specifically with the
properties of the empirical dual loss functions used in the ERM
problem. To connect the solving of the sampled functions f'
with the expected loss function L, we additionally include two
assumptions regarding the statistics of the expected and empir-
ical losses.

Assumption 3: The difference between the gradients of the
empirical risk L and the statistical average loss Ly, is bounded
by V/? for all j4 and k with high probability,

sup |VLi () — VIe ()| < Vy/?,  whp. (26
I

Assumption 4: The difference between two successive ex-
pected loss functions Ly (p) = Ep, f(p, hy) and Ly (@) =
Ep,,, f(, his1) and the difference between their gradients
are bounded respectively by a bounded sequence of constants
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{Dy},{Dy} > 0 for all p,

sup | Ly, () — Liy1 ()| < Dy, (27)
m

sup |VLi (1) — VL ()| < Dy (28)
y7

Assumption 3 bounds the difference between gradients of the

expected loss and the empirical risk with N samples by V\l,/ ’
which can be readily obtained using the law of large numbers.
Assumption 4 bounds the point-wise difference in the expected
loss functions and their gradients at epochs k and k + 1. This can
be interpreted as the rate at which the channel evolves between
epochs, and is used to establish that optimal dual variables for
two consecutive empirical risk functions Ry, and ]:Z;m are not
very different. We discuss practical implications of this assump-
tion in Section VI.

Remark 5: Observe that the bounds provided in Assumption
(4) are with respect to the dual function rather than explicitly on
the non-stationary statistics of the channel. They are provided
as such because this is the manner in which the non-stationarity
appears in the proceeding analysis. To see how the channel char-
acteristics play a role in the provided bound, consider that, e.g.,
(27) can be expanded using the definition of the dual function

Li(p) as

sup [En, {max W7k p(hm}
m peP

- Ehk+1 {III)lEa;( “TQ(hk-‘rlvp(hlﬁl))} ‘ S Dk- (29)

The exact condition this imposes upon the channel distribution
variation thus depends both on the form of the distributions Hj;,
H.+1, and the function ¢(h, p). Thus, the exact manner in which
the varying channel conditions effect this bound are indeed
problem-specific, and a generic condition on non-stationarity of
the channel is only present in the proceeding analysis indirectly
through the condition in (29).

The proceeding analysis is organized in the following man-
ner. Our goal is to establish conditions on the parameters of
the statistical accuracy—V—and the non-stationarity—D), and
Dj,—that guarantee that, starting from an approximate solution
to Ry, a single step of Newton’s method generates an approxi-
mately accurate solution to Rk+1 . From there, we can recursively
say that, assuming an initial point g, that is within the intended
accuracy of RO, the method will continue to find a V-accurate
solution at each epoch as the channel distribution changes with
k. We achieve this result in two steps. We first find a condi-
tion that guarantees that a V-accurate solution of Ry, is also in
the quadratic convergence region of Ry.1. Second, we find a
condition that guarantees that such a point within the quadratic
convergence region of Ry1 will reach its intended accuracy
with a single update as in (24).

We begin by establishing the condition in the first step,
namely that a V-accurate solution to R, labeled M. 1s in in
the quadratic convergence region of Ry, if certain conditions
hold. The quadratic convergence region is a region local to the
optimum in which Newton’s method is known to converge at
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a fast quadratic rate. The analysis of Newton’s method com-
monly characterizes quadratic convergence in terms of a quan-
tity called the Newton decrement, explicitly defined as Ay
() == |V Rp1 (1) "2V Rpy1 (u)]|. We say the dual iterate g
is in the quadratic convergence region of Ry1 when Ay (n) <
1/4—see [27, Chapter 9.6.4]. In the following proposition, we
give conditions under which any iterate p,, that is within the ac-
curacy V of the optimal point ]?j: = min, Ry, () is also within
the quadratic convergence region of the subsequent loss function
Rii1.

Lemma 1: Consider p,. as a V-accurate optimal solution of
the loss Ry, i.e., Ry, () — Rk < V. In addition, define Abrt
( ) = (VRk+1 ( ) V2Rk+l( ) 1VRk+1( ))1/2 as the
Newton decrement of variable p associated with the loss Ry .
If Assumptions 1—4 hold, then Newton’s method at point g, is
in the quadratic convergence phase for the objective function
Ri1, i€ At (my) < 1/4, if we have

(30)

PN 1/2 1/2
(2(A+CV)V> W+ Dy 1
el A — <2 whp.

aV (aV)1/2

Proof: See Appendix. |

Lemma 1 provides the first necessary condition in our anal-
ysis by identifying the statistical parameters under which every
iterate p;, is in the quadratic region of Ry41. From here we can
show the second step, in which such a point in the quadratic
convergence region of Ry, can reach its statistical accuracy
with a single Newton step as given in (24). To achieve this, we
first present the following lemma that upper bounds the sub-
optimality of the point p; with respect to the optimal solution
of Ri,.

Lemma 2: Consider a point p;, that minimizes the loss func-
tion R, to within accuracy V, i.e., Ry () — R;, < V.Provided
that Assumptions 1—4 hold, the sub-optimality Ry (p;) —
R}; .1 1s upper bounded w.h.p. as

R () — Riyy < 4Vy + V +2D; (31

Proof: See Appendix. |

In Lemma 2 we establish a bound on the suboptimality of
p;, with respect to Ryi1. The following lemma now bounds the
suboptimality of p,,,; in terms of the suboptimality of p, with
a quadratic rate.

Lemma 3: Consider pu,. to be in the quadratic neighborhood
of the loss Ry, i.e., A1 (1) < 1/4. Recall the definition of
the variable pt;; in (24) as the updated variable using New-
ton’s method. If Assumptions 1-3 hold, then the difference
Ry1(pry) — R}, is upper bounded by

R (i) — RZH < 144(Rk-+1 (i) — RZ+1)2~ (32)

Proof: See Appendix. |

With Lemma 3 we establish the known quadratic rate of
convergence of the suboptimality of the Newton update in (24).
Now by substituting the upper bound on Rk+1 (py,) — Rk 4 from
Lemma 2, a condition can easily be derived under which the
suboptimality of the new iterate is within the accuracy V of
Ris1. Using the results of Lemmata 1-3, we present our main
result in the following theorem.
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Theorem 1: Consider Newton’s method defined in (24) and
the full learning method detailed in Algorithm 1. Define Vy to
be the statistical accuracy of N = Mn samples by (21), with
n samples taken from each of the M most recent channel dis-
tributions Hy,. Further consider the variable p;. as a V—optimal
solution of the loss Ry, and suppose Assumptions 14 hold. If
the sample size n and window size M are chosen such that the
following conditions

AN 1/2 N _
2(A + V)V 2V1/2 + Dy, 1 33)
aV (aV)1/2 4
144(4Vy +V +2D)> <V (34)

are satisfied, then the variable ;. ; computed from (24) has the
suboptimality of V with high probability, i.e.,

Ria () — Ripy <V, whop. (35)

The inequalities (33)—(34) in Theorem 1 specify conditions
under which p,,; as generated by (24) is a V—optimal solu-
tion of flkﬂ. Note that these conditions come directly from
the preceding lemmata. Thus, when these conditions are satis-
fied, single iterations of Newton’s method at each epoch k—as
detailed in Algorithm 1—successively generate approximately
optimal dual parameters. A further discussion of the satisfac-
tion of such conditions in regards to practical implementation
is provided later in Section VI. We first extend the theoretical
result of Theorem 1 to establish properties of the resulting WCP
solution.

Remark 6: Observe in Theorem 1 that the provided condi-
tions cannot be satisfied if the true statistical accuracy Vv is
greater than the selected V While we assume in our analysis
this is not the case, (i.e., V is a conservative estimate of V),
this may not be guaranteed if very little information is known
about V. In the case V< V', we point out that the results
in Theorem 1 can simply be modified by replacing achieved
accuracy 1% by V. In other words, the accuracy we can achieve
is limited by the greater of these terms. We do not go through
the details of this analysis for clarity of presentation, but such
result can be obtained through the same steps of the preceding
analysis.

B. Suboptimality in Wireless Control System

Because the proposed Newton method indeed solves (15) to
within a statistical approximation V, it is important to con-
sider the effect of such an approximation on the original WCP
in (WCPy,). In this section we provide a sequence of results
that characterize the accuracy of the solutions generated by the
Newton update in (24) in the original primal control problem in
(WCPy,). Firstly, recall the constraints in (WCP},) reflect both
a power budget limited by p,,.x and that the auxiliary variable
y' should not exceed the expected packet success function ¢(-).
In solving the dual problem approximately, we may then also
violate these constraints by a small margin. We can specifically
characterize such a constraint violation, as well as address the
suboptimality in terms of the primal objective. Both these results
together can then be combined to demonstrate the stability of
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the switched system WCP introduced in Example 1. To do so,
we first introduce an assumption regarding the feasibility and
boundedness of the dual loss solutions Lj, and the optimal dual
point g1 .

Assumption 5: For all epochs k, the problem in (WCPy)
under distribution H;, is strictly feasible. There also exists con-
stants K and K such that the optimal dual objective value Lj
is bounded as L; < K and optimal dual variable bounded as
i < K.

From strict feasibility of the primal problem in (WCPy, ), we
also obtain a finite upper bound on the value of the dual function.
This can be used with the suboptimality result in Theorem 1
to bound the norm of the dual variables u,; generated from
the Newton update in (24). This is presented in the following
corollary.

Corollary 1: The norm of the dual variables u,; generated
by the update in (24) is bounded as ||, || < 1/(2/a) + K.

Proof: From strong convexity we have that ||p;, — fi;]|? <
(2/aV) (R () — R;). Using the reverse triangle inequality
with (35) and Assumption 5, we obtain the intended result. W

Observe that the boundedness of the solutions to the regu-
larized dual function in Assumption 5 in effect states that, for
all distributions H;,, the empirical, or sampled, versions of the
constrained problem in (WCP},) will be strictly feasible. From
here, we can establish through duality a bound on each con-
straint violation that may occur from solving the dual problem
to its statistical accuracy. This result is stated in the following
proposition.

Proposition 2: Consider p,;. to be a V—optimal minimizer
of Ry, i.e., R () — R; < V. Further consider p(h, p;,) and
v (1) to be the Lagrangian maximizers over dual parameter p;,.
If Assumptions 1 and 5 hold, then the norm of the constraint
violations in (WCP},) can each be upper bounded as

m

<A\[2A(Vy +CV),

ZEh hmﬂ ) Pmax
(36)
[y (k) = Eng {a(hy, p(hy, )} < 1/2A(Vy +CV),
(37)

where C' := 1+ p + Br and & such that 17 log, (p;.) < K
Proof: See Appendix. |
In Proposition 2, we establish a bound that is proportional

to V on the violation of the constraints in (WCP},). There

are two points to be stressed here. First, is that this constraint
violation can indeed be made small by controlling the target
accuracy V. Additionally, we point out that the violation of the
budget constraint can be controlled by adding a slack term to
the maximum power as Pyax = Pmax — 2ACYV. In this way,
any such violation will still be within the true intended budget

pmax N
We proceed by establishing suboptimality of the generated

variables y(p,, ) in terms of control performance. Recall the fi-

nal result in Theorem 1 that establishes at each epoch k, the
current dual function value Ry () will be within accuracy

V of the optimal value Ry (f1;,) (after satisfying the necessary
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conditions). To establish that the control systems induced by
such dual parameters p; remain stable, we first connect the ac-
curacy of the dual function value to the accuracy of associated
primal variables p(h, p;,) and y () with respect to their op-
timal values pj (h) := p(h, u; ) and y}, := y(ft;,). This bound
is established in the following theorem.

Theorem 2: Consider p;, tobe a V-optimal minimizer of Ry,
i.e., Rp(py,) — Ry < V. Further consider p(h, p;,) and y(p;,)
to be the Lagrangian maximizers over dual parameter pt;,. Under
Assumptions 1-5 the primal objective function sub-optimality
J(y(py,)) — J(y) can be upper bounded as

Hylan)) = I57) < L+ OO (£ + 20 (VT +)).
(38)
Proof: See Appendix. |
In Theorem 2, we derive a bound on the suboptimality of the
primal objective function J(y) that is proportional also to the
statistical accuracy 1% plus a constant. Recall that this function
is, in general, a measure of the control performance of the sys-
tem. Thus, solving the dual problem approximately indeed can
be translated into approximate accuracy in terms of our origi-
nal utility metric with respect to the control system. In many
problems, the performance J(y) will also effectively establish
a stability margin for control systems that have unstable regions
of operation. To demonstrate the effect of using the proposed
Newton’s method over a non-stationary wireless channel, we
return to the switched dynamical system in Example 1.

C. Stability of Switched Dynamical System (Example 1)

Consider the switched dynamical system given in (4) and the
derived performance metric J(y) in (9) that tracks the asymp-
totic behavior of the state x;. In this system, if the open loop
gain is unstable |A,| > 1 it can indeed cause the system to grow
in an unstable manner if the system is not closed sufficiently of-
ten. As mentioned in Example 1 the system reaches instability if
yA% + (1 — ) A% becomes close to 1. A question of interest in
this example is, using the power allocation policy found using
Newton’s method over a time-varying channel, whether or not
the system remains stable over time. We can indeed demonstrate
this to be true with the following argument.

From Theorem 2, we obtained that the primal suboptimal-
ity with respect to the control performance function J(y) is
bounded by a term proportional to V. Assuming that J(y}) is
finite for all epochs £k, it follows then that the generated perfor-
mance J(y(p,,)) is also finite. Considering the expression for
Ji(y") given in (9), this is finite if and only if the denominator
is positive, i.e., there exists a w such that

L=y () (A5 = (AL)") <w < 1 39)

at all epochs k.
Moreover from Proposition 2 we also have that the actual
packet success rate during epoch k satisfies

2A(Vy + CV),
(40

En, {a(hi,p(hi, 1))} > o' (1) —
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If the statistical accuracy at the right hand side of this expression
is sufficiently small, then using (39) we also get that

1—En, {q(hi,p(hy, )} ((A))7 = (AL)?) <0 <1 (41)

In particular this holds if \/2A(Vy + CV)((AL)? — (A%)?) <

1 —-w.
Substituting (41) back into the recursive expression in (6), we
get that the variance of the state at each time step satisfies

E(z},,)” < @E(z})* + W' 42)

Operating recursively and using the geometric series as in
Example 1, we can bound (42) as
) ) 1= ~t+1
E(z),1)* < 0™ E(w)? + Wi
As both terms on the right hand side of (43) are finite, we can
conclude that the state variables remain bounded in variance for
all ¢ in the non-stationary channel.

(43)

VI. DETAILS OF IMPLEMENTATION

In this section we provide a discussion of necessary consider-
ations for practical implementation of the result in Theorem 1.
Observe that the conditions in (33) and (34) are functions of four
primary terms, V, VN, Dy, and D;,. While Vis user-selected,
the latter three terms come directly from statistical properties
of the control performance functions and the channel distribu-
tion. They can, however, be indirectly controlled for with some
careful implementation techniques.

First, consider that the latter two terms D}, and D provide
a bound on the difference of the neighboring expected loss
functions Lj and L. and their gradients, respectively. Thus,
these terms collectively can be interpreted as a bound on the
degree of non-stationarity of the channel distribution 7 between
successive time iterations, or in other words the rate at which
the channel changes over time epochs. In a practical sense, this
rate is controllable by determining how much real time makes
up a single discrete time epoch. That is, time epochs k and £ + 1
that are closer together in a real time-sense will naturally have
a lower bound for Dy, and D, assuming the rate of change
of the channel distribution is indeed smooth. In this sense, D,
and Dj, can be lowered to satisfy the conditions in (33) and
(34) by considering shorter time between discrete epochs. This
is to say that, because the channel conditions are not in our
control, if necessary we may change the rate at which we apply
our algorithm in a real time sense. By using shorter epochs, we
collect channel samples and run the proposed Newton step more
often to adapt to quickly changing channel conditions.

The second term present in the conditions of Theorem 1—
namely Vy—represents the statistical accuracy of the non-i.i.d.
samples taken from the window of M most recent channel dis-
tributions with respect to the current channel distribution. A
condition on Vyy in fact then indirectly provides conditions on
the sample size n and window size M used to define Ry, neces-
sary to learn a V—optimal solution. We reiterate here that, in the
simpler setting of M = 1, a well-studied bound on Vi exists
of the order O(1/+/n). For the case of windowed sampling the
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Convergence paths of optimal values vs. values generated by the Newton learning method for time-varying Hy. for dual variables (left) ut, (center) fi, and

(right) control performance Z J'(y"). Newton’s method is able to find an approximately optimal value for the dual variables and respective control performance

at each iteration.

bound on Vyy can nonetheless still be varied through various
choices of window size M and sample draw size n. However,
because the exact nature of both VN and D;, come from statis-
tical properties not known in practice, precise selection of such
parameters n and M can be chosen via a standard backtracking
procedure.

The details of the backtracking procedure can be seen in Steps
10 and 11 in Algorithm 1. At each epoch k, the parameters n
and M are initialized to ny and M, in Step 4. In the inner loop,
in Step 10 these parameters are respectively increased and de-
creased by factors of I" and v after performing the Newton step.
In Step 11, the accuracy of the new dual iterate pt;,; is checked
to be within the intended accuracy V. Note that, while the sub-
optimality cannot be checked directly without knowledge of
RZ +1» it can be checked indirectly by checking the norm of the
gradient ||V Rj.1 (py.1)]] < (v22)V from the strong convex-
ity property in (25). If the condition in Step 11 is satisfied, the
parameters n and M require no further modification. Otherwise,
they are further modified until piy. 1 is within the target accuracy
which in turn may imply that the conditions in (33) and (34)
are satisfied. Note that the backtracking rates v, I" are standard
parameters used in the definition of a backtracking algorithm
and effectively tradeoff the speed of the backtracking search vs.
its thoroughness or accuracy. Generally speaking, values closer
to 1 will result in a slower, more careful backtracking search
while values of v and I" that are, respectively, smaller and larger
will result in a faster, more aggressive search. Tuning of these
parameters should thus reflect the desired tradeoff. With this
practical considerations in mind, we proceed by simulating a
wireless control learning problem using the proposed use of
Newton’s method on the ERM relaxation.

VII. SIMULATION RESULTS

We simulate the performance of our second order learning
method on a simple WCP. Consider the 1-dimensional switched
dynamical system in (1) governed by the transition constants
A, and A, for m = 4 systems/states. The control performance
for the ith agent J'(y') measures the mean square error per-
formance and is now given by the expression in (9). The
open and closed loop control gains for each agents are cho-
sen between [1.1, 1.5] and [0, 0.8], respectively. The probability

of successful transmission for agent ¢ is modeled as a nega-
tive exponential function of both the power and channel state,
q(h',p'(h') := 1 — e "P" (") while channel states at epoch k
are drawn from an exponential distribution with mean . The
channel varies over time by the mean u;, changing for different
times. We draw n = 200 samples and store a window of the
previous M = 5 distributions for a total of N = 1000 samples
at each epoch. As we assume the that channel statistics vary
only vary across time epochs, but stay constant within a single
epoch, we may consider it reasonable to collect 200 channel
samples within an epoch.

To demonstrate the ability of Newton’s method to instanta-
neously learn an approximately optimal power allocation as the
channel distribution varies over time, we perform Algorithm 1
over the ERM problem in (15) with the defined control perfor-
mance .J(-), transmission probabilities ¢(-) and channel distri-
butions H;,. In Fig. 3 we show the path of Newton’s method
at each time k for the dual variables uk, i, and the control
performance ;" | J'(y; ). The red line of each figure plots the
optimal values for the current distribution parameter wu; as it
changes with k. These values are obtained by solving the opti-
mization problem at each epoch offline a priori. The blue line,
alternatively, plots the values generated by Newton’s method for
each epoch k in an online manner. The channel evolves at each
iteration by a fixed rate uy1 = wu; % r for some rate r. Observe
that within some small error Newton’s method is indeed able to
quickly and approximately find each new solution as the channel
varies over time.

To compare the effect of selecting different choices of accu-
racy 1% numerically, we present in Fig. 4 the simulation perfor-
mance of two representative cases with respective accuracies
of V = 0.01 (left) and V = 0.03 (right). In the top figures, we
show the suboptimality relative to the optimal control perfor-
mance and show on the bottom figures the resulting constraint
violation (where a positive value reflect violation) over a set
of time epochs where the channel varies. Here, we see an in-
teresting case that highlights the need of proper selection or
estimation of V. Although the left hand figures strive for a bet-
ter accuracy, the performance is better on the right hand figures.
This is due to the fact that single iterations of Newton’s method
cannot reach accuracies of 0.01, resulting in a more suboptimal
trajectory of resource allocation policies. On the other hand,
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for the case of V = 0.01 (left) and V =0.03 (right). Although the right-hand
figures strive for less accuracy, they perform better because Newton’s method
can adapt to the intended accuracy more easily with single iterations.
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Fig.5. Dynamic evolution of each of the 4 state variables over the time-varying
channel. The blue curve shows the opportunistic power allocation policy found
with Newton’s method while the red curve shows the evolution assuming the
loop can always be closed.

the more moderate goal of 0.03 allows for the learning method
to reach intended accurate goals with each step of Newton’s
method as the channel varies.

Using the dual parameters found by Newton’s method, we
simulate the resulting dynamical system. The dual parameters
are used to determine the power allocation policy, which is used
to determine transmission probabilities given current channel
conditions. In Fig. 5 we show the resulting state evolution of z!
for each of the 4 state variables. The blue curve shows the pro-
cess using the opportunistic transmission policy from Newton’s
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method, while the red curve shows the process when the loop
is always closed, i.e., no packet drops. Here, we observe that
while there are some instances when the state variable grows
large when the system is in open loop, overall the system re-
mains stable over time.

VIII. CONCLUSION

In this paper we considered the wireless control system over
a non-stationary wireless channel. The problem of maximizing
a control utility subject to resource constraints can be formu-
lated as a stochastic optimization problem in the dual domain.
Because the wireless channel is random and time-varying, chan-
nel samples must be taken, resulting in a relaxed empirical risk
minimization (ERM) problem. Standard ERM techniques do not
suffice in the wireless setting because the channel is constantly
changing. We propose the use of Newton’s method, whose local
quadratic convergence property allows us to continuously learn
and adapt our optimal power allocation policies to changes in the
channel distribution. We derive specific conditions on achieving
instantaneous convergence to an approximate solution and char-
acterize the suboptimality and stability in the wireless control
problem (WCP). We additionally provide numerical simulations
that demonstrate the use of Newton’s method to learn and track
optimal power allocations over a time varying channel. While
this paper considers only resource allocation on contention-free
links, consider the scheduling problem on a shared channel with
non-stationary distributions remains an area of future work.

APPENDIX

PROOF OF LEMMA 1

We start with the definition of the Newton decrement at time
kE+ 1. We can add and subtract VRj () and upper bound
using the triangle inequality as

-1/2o 5 R
Nevt (p11,) = [ H PV Ry ()| = IV Ry ()l 1

< ”VRk(Nk)HH;L + IV Ria (1) — V Ry ()

|H;i. :
(44)

First, we will upper bound the second term in (44). By adding
and subtracting the expected losses V Ly () and V Ly (uy,)
and using the triangle inequality to obtain

HVRkH (k) — V-ék' (L)l < HVﬁkH (y,) = VL ()|
+ I VLk (py,) = VLi ()| + 1V Lia (y) = VL ().

The first two terms in the above sum are bounded by f/;/ ’ per
(26), while the third term is the difference of two consecutive
loss functions and is therefore bounded by D). from (28). The
norm weight H;jl additionally provides a bound of oV as the

strong convexity constant of Ry providing an upper bound on
the norm of Hessian inverse as in (25). Combining these, we
obtain

N 3 2V/% 4 Dy,
IV R () = VR ()11, < W- (45)

k+1
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We now can bound the first term in (44) using the Lipschitz
continuity of the gradient A + ¢V, i.e.

e\ 1/2

jii |>

Recall that p,;, is given to be a V -accurate minimizer of Ry,.
The difference ||, — f1; || can subsequently be bounded with
V, resulting in the final bound for the first term

N 1)2
2(A + V)V
||VRk(Mk)HHki1 = (%)

To be in the quadratic convergence region, i.e., A1 (1) < 1/4,
follows by summing (45) and (47) as in (30).

2(A + V)l —

- 46
aV (46)

IV R (pa g, < (

(47)

APPENDIX
PROOF OF LEMMA 2

To prove this result, we start by expanding the term Ry
( x) — R}, . By adding and subtracting Ry (p;.), R;, and

Ry (1474,), we obtain

szZ-H = Rkﬂ (pr) = Rk(ﬂk;)
+ Ry () — By

— Ry (M)

+ Ry (Bhs1) — RZH-

We now individually bound each of the four differences in (48).
Firstly, the difference Ryy1 (1) — Ry (1) becomes

Rk (H‘k) i/k (p’k)v

Using the same reasoning as in (45) with the functional statistical
accuracy bound in place of the bound for gradients in (26) and
using (27) in place of (28), we obtain the equivalent bound

Rk (H'k) < 2‘71\* + Dy

RkJrl (Hk) -

+R;
(48)

RkJrl (Mk) - = ikﬂ (HL) - (49)

Rpa (py,) — (50)

For the second term in (48), we again use the fact that p;. as

an V- -optimal solution for the sub-optimality Ry, (my) — R to
bound with the statistical accuracy as
Ri(py) — Rp < V. (51)

We proceed with bounding the third term in (48). Based on the
definition of 4 as the optimal solution of the loss Ry, the the

difference R — Ry (u 1) is always negative, i.e.,

Ry — Ry(pj.41) < 0. (52)

For the fourth term in (48), we use the triangle inequality to
bound the difference Rj (uj,,) — R}, in (48) as

Rk (MZH) - RZH = f/k (HZH) - Ek+1 (MZ:+1)

< 2Vy + Dy. (53)

Observe that (53) uses the same reasoning as (50). Replacing
the differences in (48) by the upper bounds in (50)—(53),

R (py) — Ry <4Vy +V +2D;  whp. (54)
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APPENDIX
PROOF OF LEMMA 3

The proof for this result follows from [34, Proposition 4],
which we repeat here for completeness. We proceed by bound-
ing the difference Ry (p) — R 41 in terms of the Newton
decrement parameter A1 (p). We first use the result in [39,
Theorem 4.1.11], showing that

Akt () = In (1 + A (1)
< RkH (p) — RZH
=t () = In (1 = Apsa (p)) - (55)

We can use the Taylor’s expansion of In(l + a) for a = A1
(n) to show that Agpiq(p) — In(1 4+ Agya(pe)) is bounded
below by (1/2)Aki1 (1)° — (1/3)Aesa (1)° for 0 < Ayt (1)
< 1/4. Likewise, we have that (1/6)\y1(p)? < (1/2)Aks
()? — (1/3)M\g1(p)® and subsequently Mj.p(p) —In(1 +
Mer1(p)) is bounded below by (1/6)A\*. We again use Tay-
lor’s expansion of In(l —a) for a = A1 () to show that
~Apr1 () —In (1 — A\jyq(p)) is bounded above by gy (p)?
for Ap1(p) < 1/4; see e.g., [27, Ch. 9]. Considering these
bounds and the inequalities in (55) we obtain that

1 _
6>\k+1 (1)* < Ria () —

Because we assume that A1 (1)) < 1/4, the quadratic con-
vergence rate of Newton’s method for self-concordant functions
[27] implies that the Newton decrement has a quadratic conver-
gence and we can write

Ry < M (w)®. (56)

Nt (Br1) < 2001 (k) (57
We combine the results in (56) and (57) to show that the op-
timality error Ry (ft.q) — Rk .1 has an upper bound which
is proportional to (R (ur) — Rjy)?
write Ryi1 () — RZH < Ags1 (pr41)? based on the second

inequality in (56). This observation in conjunction with the re-
sult in (57) implies that

. In particular, we can

Rt (pa1) — Riy < W ()" (58)

The first inequality in (56) implies that Ay (p2,)* < 36(Rip1
(py) — Rp.1)?. Thus, we can substitute A1 (p,)* in (58) by
36(Ry+1 (1) — Rj,,)? to obtain the result in (32).

APPENDIX
PROOF OF PROPOSITION 2

We begin by bounding the gradient of the expected dual loss
L(py) at the kth dual iterate p;, by using Lipschitz continuity,
ie.

IV Ly () 1* < 2A(Li () — L) (59)

We expand the sub-optimality L(u;,) — L* by adding and sub-

tracting terms as follows
1 2
oA IV () [I7 < Lie(

) — Li () + Ly (o)

— Ri(mi) + Ri(my,) — R + Ry, —

(60)
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where we recall the notation R} := Ry (fi}). We now proceed
by bounding each successive pair of terms in (60). The first dif-
ference Ly (pt;) — Ly, (11, ) comes from the sampling and is thus
bounded by the statistical accuracy Vi . The second difference
Ly (1) — Ry, (p,) can be bounded by the regularizers as
: : . o

Ly (i) — Ry (py) < BV log, () — THI%H . (6D
The second term on the right hand side of (61) is negative and can
be ignored. Because the dual variable ||, || was upper bounded
in Corollary 1, we can place a finite bound on 17 log, (1) < &
and then bound the term BV17 log, (u;) < 3Vk. The third
difference Ry (p1,) — R} is bounded by the suboptimality V
from the main result in (35) and the fourth difference R — L}

can be bounded by pf/ from (23). We can therefore bound the

gradient of the dual loss as
IV L ()] < 2A(Vy +CV), (62)

where C':= 1+ p+ fmlog k. From here, consider that the
norm of the dual gradient |V Ly (p;,)||? is the sum of squares of
each constraint violation in (WCP},), i.e.,

m 2 m
Z Ehj€ (pl(h)) — Pmax| + Z (Z/ - Ehﬁc {q(h,pl(h))})2

<2A(Vy +CV).
The results in (36) and (37) then follow from here.

(63)

APPENDIX
PROOF OF THEOREM 2

Consider that, using the definitions of the primal maximizers
p(h, p;,) and y(p;,) at a dual point g, we can write the dual
function as

L(py,) = J(y () + pf (Ené(p(h, ) — (1)) - (64)

Likewise, we know from strong duality that the optimal dual
values Lj is equivalent to the optimal primal objective value
J(y; ). Therefore, we can write the suboptimality of dual func-
tions as

L(py) — Ly, = J(y(pr)) — J(yi)
+ pi (Ena(p(b, ) — y(my)) -

Using the bound on dual suboptimality that comes from com-
bining strong convexity and the gradient bound in (62), we can
upper bound (65) as

(1+C)A/a > J(y (i) — J(yi)

+ pi (Ena(p(h, ) — () -

We can lower bound the right hand side of (66) by taking the
negative of the absolute value of the final term. Rearranging
terms we obtain

(14+C)A/Ja+ |pi (Ena(p(h, py)) — ¥ (1) |
> J(y(py)) = J(yi)-

(65)

(66)

(67)
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From here, we can upper bound the second term on the left hand
side using the Cauchy-Schwartz inequality. The norm ||z ||
is bounded by /2/a + K from Corollary 1 while the norm

IEna(p(h, ) — ¥(p)|| is bounded by 2A(1 + C)V from
(37). This provides us the final result as

1+ )8 (5 420+ K)) 2 Jyam) - T30
(68)
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