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Abstract—We consider the problem of allocating radio re-
sources over wireless communication links to control a series of
independent wireless control systems. Low-latency transmissions
are necessary in enabling time-sensitive control systems with
high sampling rates to operate over wireless links. Enabling low-
latency through fast data rates comes at the cost of reliability
in the form of higher packet error rates due to channel noise.
However, the impact of such communication link errors on the
control system performance depends dynamically on the control
system state. We propose a novel control-aware communication
design to the low-latency resource allocation problem. In our
proposed method, we incorporate both control and channel
state information in scheduling transmissions across time slots,
frequency bands, and data rates using the next-generation Wi-
Fi scheduling architecture. Control systems that are closer to
instability or further from a desired range in a given control
cycle are given higher packet delivery rate targets to meet.
Rather than a simple priority ranking, we derive precise adaptive
packet error rate targets for each system needed to satisfy
control-specific performance requirements. We use these adaptive
rate targets to make scheduling decisions that reduce total
transmission time. The resulting Control-Aware Low Latency
Scheduling (CALLS) method is tested in numerous simulation
experiments that demonstrate its effectiveness in meeting control-
based goals under tight latency constraints relative to control-
agnostic scheduling.

Index Terms— wireless control, low-latency, codesign,

IEEE 802.11ax

I. INTRODUCTION

The Internet-of-Things (IoT) promises enhanced modes of

interaction with the physical world through the deployment

of large numbers of sensing and control devices. Relative to

conventional communication systems, the deployment of a

control system over a communication network increases the

sensitivity to packet loss and latency. This is not a major con-

sideration if we rely on wired networks that can simultaneously

achieve very low latency and ultra high reliability. However,

the cost of installing and maintaining a wired network poses

significant challenges [1], [2] that motivate the use of wireless

communications. Consequently, there has been great effort in

the design of wireless control systems that can achieve high
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performance in terms of reliability and latency [3], [4]. While

this effort is widespread in its range of applications it is of

note that wireless control systems hold promise in streamlining

industrial control [1], [3], [5]–[7]—e.g. factory automation [8],

[9].

The primary challenge in designing this ultra reliable low

latency communications (URLLC) systems is the tradeoff

between reliability and latency. To achieve ultra-high reliability

we need significant protection against packet losses. This can

be achieved by increasing packet length, thereby increasing

latency, or by increasing bandwidth consumption. Such a

tradeoff between latency and reliability is present in any

communication medium but it is exacerbated in wireless

communications because of fading and shadowing effects.

The physical properties of a wireless channel impose inherent

limitations in achieving both ultra high reliability and low

latency. Such a mismatch has lead to the proposal of several

radio resource allocation schemes have been proposed to

improve the management of the latency reliability tradeoff

in wireless systems [10]. This include seminal works on the

design of delay-aware schedulers for communication systems in

general [11], [12] and wireless control systems in particular [13].

The exploitation of spatial and frequency diversity deserves

particular mention as a technique that is increasingly recognized

as a necessary component of URLLC [6], [14], [15].

In this paper we propose an alternative approach in which

we adapt the communication reliability to the dynamics and

state of the plant. We expect this to provide significant

advantages because high communication reliability is not a

strict requirement of control reliability. In fact, control loops

can, in general, drop packets with small impact if the plant

is not close to unsafe states. The successful transmission of a

packet becomes crucial only when in these unsafe regions. In

adapting reliability to the state of the plant we expect that the

resources that are saved with plants in safe states are available

to achieve high reliability with plants close to unsafe states. Our

specific contribution is to develop a control-aware scheduling

protocol designed to enable larger scale low latency systems.

This is done through the mathematical formulation of the

control system design goal in the form of a Lyapunov function

that ensures stability of the control system. This formulation

naturally induces a bound on the packet delivery rate each

control system needs to achieve to meet the control-based goal.

Such packet delivery rates depend upon current control and

channel states and thus dynamically change over the course

of the system life time. In particular, we use IEEE 802.11ax
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WiFi [16] to allocate bandwidth and data rates to reduce total

transmission times. As these control-based reliability targets

may be significantly lower than traditional, high reliability

communication demands, the proposed method is better suited

to find scheduling configurations that can meet strict latency

requirements imposed by the physical system.

We remark that in the context of wireless control systems,

there have been a range of works that incorporates control sys-

tem information in the networking and communication policies.

For example, control system stability under fixed periodic

protocols, e.g. round-robin, can be analyzed—see, e.g., [17]–

[20]. Periodic sequences leading to stability [21], controllability

and observability [22], or optimizing control objectives [23]–

[25] have been proposed. More sophisticated schedulers do not

rely on a predefined sequence but try to dynamically access

the communication medium at each step. Initial approaches

abstract control performance requirements in the time/frequency

domain, e.g., how often a task needs resource access, employing

algorithms from real-time scheduling theory [26], [27]. More

recent scheduling approaches often depend on the current

control system states, i.e., informally the subsystem with the

largest state discrepancy is scheduled to communicate—see,

e.g., [19], [28]–[31]. Alternatively scheduling can take into

account current wireless channel conditions opportunistically

to meet target control system reliability requirements [32].

None of these approaches, however, are explicitly designed

for low-latency communication systems, which is the subject

of our work and a key contribution with respect to previous

approaches.

The paper is organized as follows. We formulate the wireless

control system in which state information is communicated to

the control over a wireless channel. Due to the potential for

random packet drops, this is modeled as a switched dynamical

system (Section II). A Lyapunov function is used to evaluate

the stability of the control state, and the uncertainty in this

measurement grows the more consecutive packets are lost for a

particular system. We then discuss the scheduling parameters of

the IEEE 802.11ax communication model (Section II-A). From

there, we derive a mathematical formulation of the optimal

scheduling problem (Section III). This can be formulation by

minimizing a control cost with an explicitly latency constraint

(Section III-A) or minimizing transmission time with an explicit

control performance constraint (Section III-B).

Using this formulation, we develop the control-aware low

latency scheduling (CALLS) method (Section IV). The CALLS

method uses current control states and channel conditions to

derive dynamic packet success rates for each user (Section

IV-A). In this way, control systems that are closest to instability

will be given priority in the scheduling so that they may

close their control loops. The scheduling procedure consists

of a random user selection procedure to reduce the number

of required PPDUs that incur significant overhead (Section

IV-B), followed by an assignment-method based scheduling

of selected users to minimize total transmission time (Section

IV-C). The performance of the CALLS method is analyzed in

a series of simulation experiments in which its performance is

compared against a control-agnostic procedure (Section V). We

demonstrate in numerous control systems that the control-aware,
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Figure 1: Wireless control system with m independent systems.

Each system contains a sensor that measure state information,

which is transmitted to the controller over a wireless channel.

The state information is used by the controller to determine

control policies for each of the systems.The communication is

assumed to be wireless in the uplink and ideal in the downlink.

adaptive reliability approach may support more users than the

alternative and achieve more robust overall performance.

II. WIRELESS CONTROL SYSYEM

Consider a system of m independent linear control systems,

or devices, where each system i = 1, . . . ,m maintains a state

variable xi ∈ R
p. The dynamics are discretized so that the

state evolves over time index k. Applying an input ui,k ∈ R
q

causes the state and output to evolve based on the discrete-time

state space equations,

xi,k+1 = Aixi,k +Biui,k +wk (1)

where Ai ∈ R
p×p and Bi ∈ R

p×q are matrices that define the

system dynamics, and wk ∈ R
p is Gaussian noise with co-

variance Wi that captures the errors in the linear model (due

to, e.g., unknown dynamics or from linearizion of non-linear

dynamics). We further assume the state transition matrix Ai

is on its own unstable, i.e. has at least one eigenvalue greater

than 1. This is to say that, without an input, the dynamics will

drive the state xi,k → ∞ as k → ∞.

In the wireless control system model presented in Figure 1.

Each system is closed over a wireless medium, over which the

sensor located at the control system sends state information to

the controller located at a wireless access point (AP) shared

among all systems. Using the state information xi,k received

from device i at time k, the controller determines the input

ui,k to be applied. We stress in Figure 1 we restrict our

attention to the wireless communications at the sensing, or

“uplink”, while the control actuation, or “downlink, is assumed

to occur over an ideal channel. We point out that while a more

complete model may include packet drops in the downlink, in

practice the more significant latency overhead occurs in the

uplink. We therefore keep this simpler model for mathematical

coherence. In low-latency applications, a high state sampling

rate is required be able to adapt to the fast-moving dynamics

This subsequently places a tight restriction on the latency in

the wireless transmission, so as to avoid losing sampled state

information. This specific latency requirement between the
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industrial control and automation scenarios. To address the

problems with dense deployment, the draft 802.11ax amend-

ment has defined scheduling capability for Wi-Fi access points

(APs). Wi-Fi devices can now be scheduled for accessing

the channel in addition to the traditional contention-based

channel access. Such scheduled access enables more controlled

and deterministic behavior in the Wi-Fi networks. Within

each transmission window (formally referred as transmission

opportunity or TXOP in the standard), the AP may schedule

devices through both frequency and time division multiplexing

using the multi-user (MU) OFDMA technique. This to say

that devices can be slotted in various frequency bands—

formally called resource units (RUs)—and in different timed

transmission slots—formally called PPDUs. An example of

the multiplexing of devices across time and frequency is

demonstrated in Figure 2. The AP additionally sends a trigger

frame (TF) indicating which devices should transmit data in the

current TXOP and the time/frequency resources these triggered

devices should use in their transmissions.

To state this model formally, the scheduling parameters

assigned by the AP to each device consist of a frequency-

slotted RU, time-slotted PPDU, and an associated modulation

and coding scheme (MCS) to determine the transmission

format. The transmission power is assumed to be fixed and

equally divided amongst all devices. We define the following

notations to formulate these parameters. To specify an RU,

we first notate by f1, f2, . . . , f b, where n is the number of

discrete frequency bands of fixed bandwidth (typically 2 MHz)

in which a device can transmit; in a 20MHz channel, for

example, there are n = 10 such bands. For each device, we

then define a set of binary variables ςji ∈ {0, 1} if device

i transmits in band f j and collect all such variables for

device i in ςi = [ς1i ; . . . ; ς
b
i ] ∈ {0, 1}b and for all devices

in Σ := [ςi, . . . , ςm] ∈ {0, 1}b×m. A device may transmit in

bands in certain multiples of 2MHz as well, which would be

notated as, e.g. ςi = [1; 1; 0; . . . ; 0] for transmission in an RU

of size 4MHz. Note, however, that allowable RU’s contain only

sizes of certain multiples of 2MHz—namely, 2MHz, 4MHz,

8MHz, and 20MHz in the 802.11ax standard. Furthermore, it

is only permissible to transmit in adjacent bands, e.g. f j and

f j+1. We therefore define the set S ⊂ {0, 1}b as the set of

binary vectors that define permissible RUs and consider only

ςi ∈ S for all devices i. Finally, note that the RU assignment

0 ∈ S signifies a device does not transmit in this particular

transmission window.

To specify the PPDU of all scheduled devices, we define

for device i a positive integer value αi ∈ Z++ that denotes

the PPDU slot in which it transmits and collect such variables

for all devices in α = [α1; . . . ;αm] ∈ Z
m
++. Likewise,

device i is given an MCS µi from the discrete space M =
{0, 1, 2, . . . , 10}. The MCS in particular defines a pair of

modulation scheme and coding rate that subsequently determine

both the data rate and packet error rate of the transmission.

The allowable MCS settings provided in 802.11ax are provided

in Table I. Finally, we notate by hi := [h1
i ;h

2
i ; . . . ;h

b
i ] ∈ R

b
+

a set of channel states experienced by device i, where hj
i is

the gain of a wireless fading channel in frequency band f j .

We assume that channel conditions are constant within a single

µ Modulation type Coding rate Data rate (Mb/s)

0 BPSK 1/2 4

1 QPSK 1/2 16

2 QPSK 3/4 24

3 16-QAM 1/2 33

4 16-QAM 3/4 49

5 64-QAM 2/3 65

6 64-QAM 3/4 73

7 64-QAM 5/6 81

8 256-QAM 3/4 98

9 256-QAM 5/6 108

10 1024-QAM 3/4 122

Table I: Data rates for MCS configurations in IEEE 802.11ax

for 20MHz channel. The modulation type and coding rate in

the first 2 columns together specify a PDR function q(µ, ς) for

RU ς . The data rate in the third column specifies the associated

transmission time τ(µ, ς).

TXOP, i.e. do not vary across PPDUs.

We now proceed to define two functions that describe the

wireless communications over the channel. Firstly, we define a

function q : Rb
+×M×S → [0, 1] which, given a set of channel

conditions h, MCS µ, and RU ς , returns the probability of

successful transmission, otherwise called packet delivery rate

(PDR). Furthermore, define by τ : M×S → R+ a function

that, given an MCS µ and RU ς , returns the maximum time

taken for a single transmission attempt. Assuming a fixed

packet size, such a function can be determined from the data

rates associated with each MCS in Table I. Observe that all

functions just defined are determined independent of the PPDU

slot the transmission takes place in, while transmission time

is also independent of the channel state. Because a PPDU

cannot finish until all transmissions within the PPDU have

been completed, the total transmission time of a single PPDU

s is the maximum transmission time taken by all devices within

that time slot. We define the transmission time of PPDU slot

s as

τ̂(Σ,µ,α, s) := max
i:αi=s

τ(µi, ςi) + τ0(α, s), (7)

where τ0 : Zm
++ × Z++ → R+ is a function that specifies

the communication overhead of PPDU s. This overhead may

consist of, e.g., the time required to send TFs to scheduled

users, as seen in Figure 2.

III. OPTIMAL CONTROL AWARE SCHEDULING

Using the communication model of 802.11ax just outlined

and the control-based Lyapunov metric of (6), we can formulate

an optimization problem that characterizes the exact optimal

scheduling of transmissions with a transmission window to

maximize control performance. The optimal scheduling and

allocation selects the set of RUs Σ. MCS µ, and PPDUs α for

all devices–which in effect fully determine the schedule—such

to minimize a cost subject to scheduling design and feasibility

constraints. In particular, we discuss two related, alternative

formulations of the low-latency scheduling problem.
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A. Latency-constrained scheduling

In the latency-constrained formulation, we are interested in

minimizing a common control cost subject to strict latency

requirements. In particular, in the low-latency setting we set a

bound τmax on the total transmission time across all PPDUs

in a TXOP. This constraint is relevant in design of MAC-layer

protocols that set strict limits on transmission times. In addition,

the RU and PPDU allocation across devices must be feasible,

i.e., two devices cannot be transmitting in the same frequency

band in the same PPDU.

Recall the PDR function q(h, µ, ς) and consider that this

can alternatively be interpreted as the probability of closing the

control loop under certain channel conditions and scheduling

parameters. From there, we can now write the expected

Lyapunov value for at time k + 1 given its current state xi,k,

channel state hi,k, MCS µi, and RU ςi using the expected cost

in (6). By defining x
c
i,k+1 and x

o
i,k+1 as the closed loop and

open loop states, respectively, as determined by the switched

system in (3), this is written as

Ji(x̂
(li)
i,k ,hi,k, µi, ςi) := E(L(xi,k+1) | x̂

(li)
i,k ,hi,k, µi, ςi)

=(1− q(hi,k, µi, ςi))EL(x
o
i,k+1 | x̂

(li)
i,k )

+ q(hi,k, µi, ςi)EL(x
c
i,k+1 | x̂

(li)
i,k ). (8)

For notational convenience, we collect all current estimated

control states at time k as X̂k := [x̂
(l1)
1,k , . . . , x̂

(lm)
m,k ] and channel

states Hk = [h1,k, . . . ,hm,k]. Now, define the total control

cost, given the current states and scheduling parameters as

some aggregation of the combined expected future Lyapunov

costs across all devices, i.e.,

J̃(X̂k,Hk,µ,Σ) := (9)

g(J1(x̂
(l1)
1,k ,h1,k, µ1, ς1), . . . , Jm(x̂

(lm)
m,k ,hm,k, µm, ςm)).

Natural choices of the aggregation function g(·) are, for

example, either the sum or maximum of its arguments.

The optimal scheduling at transmission time k is formulated

as the one which minimizes this cost J̃ while satisfying low-

latency and feasibility requirements of the schedule, expressed

formally with the following optimization problem.

[Σ∗
k ,µ

∗
k,α

∗
k] := argmin

Σ,µ,α,S
J̃(X̂k,Hk,µ,Σ) (10)

s. t.
∑

i:αi=s

ςji ≤ 1, ∀j, s, (11)

S
∑

s=1

τ̂(Σ,µ,α, s) ≤ τmax, (12)

1 ≤ αi ≤ S, ∀i, (13)

ςi ∈ S, ∀i, µ ∈ Mm, α ∈ Z
m
+ , S ∈ Z+.

(14)

The optimization problem in (10) provides a precise and instant-

aneous selection of frequency allocations between devices given

their current control states X̂k and communication states Hk.

The constraints in (11)-(14) encode the following scheduling

conditions. The constraint (11) ensures that for every PPDU

s, there is only one device transmitting on a frequency slot j.

In (12), we set the low-latency transmission time constraint in

terms of the sum of all transmission times for each PPDU s.

The constraint in (13) bounds each transmission slot by the

total number of PPDU’s S while (14) constrains each variable

to its respective feasible set. Note that S is itself treated as an

optimization variable in the above problem, so that the number

of PPDUs may vary as needed.

Observe in the objective in (10) that, by minimizing an

aggregate of local control costs, the devices with the highest

cost Ji as described by (8) will be given the most bandwidth

or most favorable frequency bands to increase probability of

successful transmission q(hi,k, µi, ςi). This in effect increases

the chances those devices will close their control loops and be

driven towards a more favorable state. Likewise, a device who

is experiencing very adverse channel conditions may not be

allocated prime transmission slots to reserve such resources

who have more favorable channel conditions. In this way, we

say this is control-aware scheduling, as it considers both the

control and channel states of the devices to determine optimal

scheduling. However, we stress that the optimization problem

described in (10)-(14) is by no means easy to solve. In fact,

the optimization over multiple discrete variables makes this

problem combinatorial in nature. In the following section, we

discuss a practical reformulation of the problem above and

develop heuristic methods to approximate the solutions in

realistic low-latency wireless applications.

B. Control-constrained scheduling

We reformulate the problem in (10)-(14) to an alternative

formulation that more directly informs the control-aware, low-

latency scheduling method to be developed. To do so, we

introduce a control-constrained formulation, in which the

Lyapunov decrease goals are presented as explicit requirement,

i.e. constraints in the optimization problem. We are interested,

then, in constraint of the form

J̃(X̂k,Hk,µ,Σ) ≤ Jmax, (15)

where Jmax is a limiting term design to enforce desired system

performance. Determining this constant is largely dependent

on the particular application of interest, needs of the control

systems, and also may be related to the choice aggregation

function g(·) in (9). For example, Jmax may represent a point

at which control systems become volatile, unsafe, or unstable.

For the scheduling procedure developed in this paper, we

focus on a particular formulation of the control constraint in

(15) that constrains the expected future Lyapunov value of each

system by a rate decrease of its current value. In particular the

following rate-decrease condition for each device i,

Ji(x̂
(li)
i,k ,hi,k, µi, ςi) ≤ ρiE[L(xi,k) | x̂

(li)
i,k ] + ci, (16)

where ρi ∈ (0, 1] is a decrease rate and ci ≥ 0 is a constant.

Recall the definition of Ji(x̂
(li)
i,k ,hi,k, µi, ςi) in (8) as the

expected Lyapunov value of time k+1 given its current estimate

and scheduling µi, ςi. The constraint in (16) ensures the future

Lyapunov cost will exhibit a decrease of at least a rate of ρi for

device i in expectation. The constant ci is included to ensure
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this condition is satisfied by default if the state x̂
(li)
i,k is already

sufficiently small.

We formulate the control-constrained scheduling problem by

substituting the latency constraint with the control constraint

in (16), i.e.,

[Σ∗
k ,µ

∗
k,α

∗
k] := argmin

Σ,µ,α,S

S
∑

s=1

τ̂(Σ,µ,α, s) (17)

s. t.
∑

i:αi=s

ςji ≤ 1, ∀j, s, (18)

Ji(x̂
(li)
i,k ,hi,k, µi, ςi) ≤ ρE[L(xi,k) | x̂

(li)
i,k ] + ci ∀i, (19)

1 ≤ αi ≤ S, ∀i, (20)

ςi ∈ S, ∀i, µ ∈ Mm, α ∈ Z
m
+ , S ∈ Z+.

(21)

Observe that the objective in (17) is now to minimize the

total transmission time, rather than being forced as an explicit

constraint. In this way, the optimization problem defined in (17)-

(21) can be viewed as an alternative to the latency constrained

problem in (10)-(14). Because the scheduling algorithm we

develop in this paper requires the ability to quickly identify

feasible solutions, we focus our attention on the control-

constrained formulation in (17)-(21). Before presenting the

details of the scheduling algorithm, we present a brief remark

regarding the addition of “safety”, or worst-case, constraints

to either problem formulation.

Remark 1 The control constraint in (19) is formulated to

guarantee an average decrease of expected Lyapunov value by

a rate of ρ. This is of interest to ensure the system states are

driven to zero over time. However, in practical systems we may

also be interested in protecting against worst-case behavior,

e.g. entering an unsafe or unstable region. Consider a vector

bi ∈ R
p as the boundary of safe operation of system i. A

constraint that protects against exceeding this boundary can be

written as

P[|xi,k+1| ≥ bi | x̂
(li)
i,k ,hi,k, µi, ςi] ≤ δ, (22)

where δ ∈ (0, 1) is small. The expression in (22) can be

included as an additional constraint to either the latency-

constrained or control-constrained scheduling problems previ-

ously discussed.

IV. CONTROL-AWARE LOW-LATENCY SCHEDULING

(CALLS)

We develop a control-aware low-latency scheduling (CALLS)

algorithm to approximately solve the control-constrained

scheduling formulation in (17)-(21). Because this problem

is combinatorial in nature, it is infeasible to solve exactly.

Instead, we focus on a practical and efficient means of

solving approximately. In particular, we identify sets of feasible

points and use a heuristic approach towards minimizing the

transmission time objective among the set of feasible points.

Additionally, within the development of the CALLS method

we identify and characterize new PDR requirements that are

defined relative to the control system requirements; these are

generally significantly less strict than the PDR requirements

often considered in general high reliability communication

systems without codesign. Overall, the CALLS method consists

of (i) the derivation of adaptive control-aware PDR targets, (ii)

a principled random selection of devices to schedule to reduce

latency, and (iii) the use of assignment based methods to find

a low-latency schedule. We discuss these three components in

detail in the proceeding subsections.

A. Control adaptive PDR

Due to the complexity of the scheduling problem in (17)-(21),

we first focus our attention on identifying scheduling parameters

{Σk,µk,αk} that are feasible, i.e. satisfy the constraints in

(18)-(21). In particular, the Lyapunov control constraint in

(19) is of significant interest. Recall that the control cost

function Ji(x̂
(li)
i,k ,hi,k, µi, ςi) is itself determined by the PDR

q(hi,k, µi, ςi), as per (8). Thus, the constraint in (19) can be

seen as indirectly placing a constraint on the required PDR

necessary to achieve a ρi-rate decrease in expectation. The

equivalent condition on PDR q(hi,k, µi, ςi) is presented in the

following proposition.

Proposition 1 Consider the Lyapunov control constraint in

(19) and the definition of Ji(x̂
(li)
i,k ,hi,k, µi, ςi) given in (8).

Define the closed-loop state transition matrix Ac
i := Ai+BiKi

and j-accumulated noise ωj
i := Tr[(AT

i P
1/j

Ai)
j
Wi]. The

control constraint in (19) is satisfied for device i if and only

if the following condition on PDR q(hi,k, µi, ςi) holds,

q(hi,k, µi, ςi) ≥ q̃i(x̂
(li)
i,k ) := (23)

1

∆i





∥

∥

∥
(Ac

i − ρiI)x̂
(li)
i,k

∥

∥

∥

2

P
1
2
+ (1− ρi)

li−1
∑

j=0

ωj
i + ωli

i − ci



 ,

where we have further defined the constant

∆i :=

li−1
∑

j=0

[ωj+1
i − Tr(AcT

i (AT
i P

1/j
Ai)

j
A

c
iWi)]. (24)

Proof: Consider the Lyapunov decrease constraint as written

in (19). As the same logic holds for all i and k, for ease of

presentation we remove all subscripts when presenting the

details of this proof. We further introduce the simpler notation

q := q(h, µ, ς). Now, we may expand the left hand side of

(19) be rewriting the definition in (8) as

J(x̂(l),h, µ, ς) = qEw[L(Acx+w)] (25)

+ (1− q)Ew[L(Ax+BKx̂+w)].

Recall the definition of the quadratic Lyapunov function

L(x) := x
T
Px for some positive definite P. Further recall

the relation x = x̂+ e as described by (5). Combining these,

we expand the right hand size of (25) as

J(x̂(l),h, µ, ς) = (26)

qEw [Ac (x̂+ e) +w]
T
P [Ac (x̂+ e) +w]

+ (1− q)Ew [Acx̂+Ae+w]
T
P [Acx̂+Ae+w] .

To evaluate the expectations in (26), recall the random noise w

follows a Gaussian distribution with zero mean and covariance
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W. Thus, the expectation can be evaluated over w and

expanded as

J(x̂(l),h, µ, ς) = (27)

q



‖Acx̂‖
2

P
1
2
+ Tr(PW) +

l−1
∑

j=0

Tr(Ac(A
T
P

1
j A)jAcW)



+

(1− q)



‖Acx̂‖
2

P
1
2
+ Tr(PW) +

l
∑

j=1

Tr((AT
P

1
j A)jW)



 .

From here, we rearrange terms and substitute the notation

ωj := Tr[(AT
P

1/j
A)jW] to obtain that the control cost can

be written as

J(x̂(l),h, µ, ς) =



‖Acx̂‖
2

P
1
2
+ Tr(PW) +

l
∑

j=1

ωj



 (28)

+ q
l−1
∑

j=0

[Tr(Ac(A
T
P

1
j A)jAcW)− ωj+1].

With (28), we have expanded the control cost in terms of the

PDR q. Now, we return to the constraint in (19). Recall the

expansion for E[L(x) | x̂(l)] via (6). By combining this with

the expansion in (28), the terms in(19) can be rearranged to

obtain the inequality in (23). �

In Proposition 1 we establish a lower bound q̃i(x̂
(li)
i,k ) on the

PDR of device i that is dependent upon the current estimated

state x̂
(li)
i,k and system dynamics determined by A

c
i ,Ai, and

W
i. We may note the following intuitions about the constraint

in (23). The PDR condition naturally grows stricter as the

bound q̃i(x̂
(li)
i,k ) defined on the right hand side of (23) gets

larger. The first term on the right hand side reflects the current

estimated channel state, and will become larger as the state

gets larger. Similarly, the latter two terms on the right hand

side together reflect the size of the noise that has accumulated

by operating in open loop. When the noise variance Wi is

high and when the last-update counter li is large, these latter

two noise terms will both be large. Thus, both the current

magnitude of the control state and the growing uncertainty

from infrequent transmissions together determine how large is

the PDR requirement in (23).

We stress the value of the PDR condition in (23) is both in

its adaptability to the control system state and dynamics, as

well as its identification of precise target delivery rates that

are necessary to keep the control systems moving towards

stability on average. Depending on the particular system

dynamics as described in (35), such PDR’s may be, and

often are considerably more lenient than the default target

transmission success rates used in practical wireless systems

(e.g. q = 0.999). Thus, through (23) we make a claim that,

with knowledge of the control system dynamics and targeted

control performance, we can effectively soften the targeted

communication performance—or “reliability”— accordingly

to something more easily obtained in low-latency constrained

systems.

Remark 2 It is worthwhile to note that by placing a stricter

Lyapunov decrease constraint with smaller rate ρi in (19),

then the first term on the right hand side of (23) also grows

larger and increases the necessary PDR. Generally, selecting a

smaller ρ will result in a faster convergence to stability but will

require stricter communication requirements. In fact, we may

use the inherent bound on the probability q(hi,k, µi, ςi) ≤ 1
to find a lower bound on the Lyapunov decrease rate ρi that

can be feasibly obtained based upon current control state and

system dynamics. This bound, however, may not be obtainable

in practice due to the scheduling constraints. In practice, we

select ρi to be in the interval [0.90, 0.1).

B. Selective scheduling

We now proceed to describe the procedure with which we

can find a set of feasible scheduling decisions {Σk,µk,αk}.

To begin, we first consider a stochastically selective scheduling

protocol, whereby we do not attempt to schedule every device

at each transmission cycle, but instead select a subset to

schedule a principled random manner. Define by νi,k ∈ [0, 1]
the probability that device i is included in the transmission

schedule at time k and further recall by q(hi,k, µi, ςi) to be

the packet delivery rate with which it transmits. Then, we may

consider the effective packet delivery rate q̂ as

q̂(hi,k, µi, ςi) = νi,kq(hi,k, µi, ςi) (29)

Selective scheduling is motivated by the ultimate goal of

minimizing total transmit time as described in the objective

in (17). As we consider a large number of total devices m,

scheduling all such devices will require a larger number of

PPDU slots—a maximum of 9 devices can transmit within a

single PPDU. Recall in (7) that each additional PPDU requires

unavoidable overhead in τ0, which in aggregation over multiple

PPDUs may become a significant bottleneck in minimizing τ̂ or

meeting a strict latency requirement τmax. Thus, by decreasing

the amount of scheduled devices, we may decrease the number

of total PPDUs and the overhead that is added to the total

transmission time.

Observe that by introducing the term νi to the evaluation

of effective PDR q̃i in (29), we would thus need to transmit

with higher PDR q(hi,k, µi, ςi) ≥ q̃i(x̂
(li)
i,k )/νi,k to meet the

condition in (23). While imposing a tighter PDR requirement

will indeed require longer transmission times, this added

time cost is generally less than the transmission overhead

of additional PPDUs. In this work, we use the determine

scheduling probability of device i through its PDR requirement

q̃i(x̂
(li)
i,k ) as

νi,k := eq̃i(x̂
(li)

i,k
)−1. (30)

With (30), the probability of scheduling device i increases as

the required PDR increases. Notice that, when a transmission

is required, i.e. q̃i(x̂
(li)
i,k ) = 1, then device i is included in the

scheduling with probability 1. In general, devices with very

high PDR requirements, e.g. > 0.99, will be scheduled with

very high probability. Thus, the transmission time gains that

are provided through selective scheduling using (30) would be

minimal, if non-existent, in high-reliability settings in which

PDR requirements remain high at all times. However, with the
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lower PDR requirement obtained through the control-aware

scheduling in (23), selective scheduling as the potential to create

significant time savings, as will be later shown in Section V

of this paper.

C. Assignment-based scheduling

We now proceed to discuss how the PDR requirements

previously derived are used to schedule the devices during a

TXOP. Rather than employing a greedy method as is commonly

done in wireless scheduling problems, in the proposed method

we use assignment-type methods. In such assignment-type

methods, we assign all scheduled devices to a PPDU and RU

at the beginning of the TXOP rather than make scheduling

decisions after each PPDU. To begin, we must determine a

set of schedules that satisfy the constraints in (18)-(21). Recall

each device i is selected to be scheduled at cycle k with

probability νi,k and define the set of mk devices to selected be

scheduled as Ik ⊆ {1, 2, . . . ,m} where |Ik| = mk. To specify

the sets of RUs that we consider in our scheduling, we first

define some notation necessary in the description. We define

Ŝ(n) ⊂ S to be an arbitrary set of RUs that do not intersect

over any frequency bands (i.e. satisfy the constraint in (18))

with exactly n elements. To accommodate the mk devices to

be scheduled, we consider a set of Sk such sets Ŝ(ns) with size

ns, whose combined elements total
∑Sk

s=1 ns = mk. In other

words, we identify a set Sk PPDUs in which the sth PPDU

contains ns non-intersecting PPDUs. We define this full set of

assignable RUs at cycle k as

S ′
k := Ŝ1

(n1)
∪ Ŝ1

(n2)
∪ . . . ∪ ŜSk

(nSk
). (31)

Note that in (31) we further superindex each set by a PPDU

index s, in order to stress that elements are distinct between sets.

That is, an RU ς present in sets Ŝx
(nx)

and Ŝy
(ny)

is considered

as two distinct elements in S ′
k, denoted ςx and ςy , respectively.

In this way (31) defines a complete set of combinations of

frequency-allocated RU and time-allocated PPDUs to assign

devices during this cycle. We point out that there are numerous

ways in which to define such sets of RUs in each PPDU that

total mk assignments. There are various heuristic methods that

may be employed to quickly identify a permissible assignment

pool S ′
k, and various simple heuristics may be developed to

make this selection in a manner that reduces the overall latency

of the transmission window. An example of the set S ′
k for

scheduling mk = 14 devices is shown in Table II.

For all i ∈ Ik and RU ς ∈ S ′
k, define the largest affordable

MCS given the modified PDR requirement q̃i(x̂
(li)
i,k )/νi,k by

µi,k(ς) :=

{

max{µ | q(hi,k, µ, ς) ≥ q̃i(x̂
(li)
i,k )/νi,k}

1, if q(hi,k, µ, ς) < q̃i(x̂
(li)
i,k )/νi,k ∀µ

(32)

Observe in (32) that, when no MCS achieves the desired PDR

in a particular RU, this value is set to µ = 1 by default.

The above adaptive MCS selection can be achieved based

on channel conditions using the techniques outlined in [35].

This MCS selection subsequently then yields a corresponding

time cost τ(µi,k(ς), ς) for assigning device i to RU ς . Further

PPDU 1 PPDU 2 PPDU 3

RU 1
RU 10

RU 13
RU 2

RU 3
RU 11

RU 4

RU 5

RU 12 RU 14
RU 6

RU 7

RU 8

RU 9

Table II: Example of RU selection with mk = 14 devices.

There are a total of Sk = 3 PPDUs, given n1 = 9, n2 = 3,

n3 = 2 RUs, respectively.

Algorithm 1 Control-Aware Low Latency Scheduling (CALLS)

at cycle k

1: Parameters: Lyapunov decrease rate ρ
2: Input: Channel conditions Hk and estimated states X̂k

3: Compute target PDR q̃i(x̂
(li)
i,k ) for each device i [cf. (23)].

4: Determine selection probabilities νi,k for each device [cf.

(30)].

5: Select devices Ik with probs. {ν1,k, . . . , νm,k}
6: Determine set of RUs/PPDUs S ′

k [cf. (31)].

7: Determine maximum MCS for each device/RU assignment

[cf. (32)].

8: Schedule selected devices via assignment method.

9: Return: Scheduling variables {Σk,µk,αk}

define an 3-D assignment tensor V —where vsij = 1 when

device i is assigned to RU ςsj and 0 otherwise—and V as

the set of all possible assignments. Recalling the form of the

total transmission time given PPDU arrangements in (7), the

assignment that minimizes total transmission time is given by

V ∗ = argmin
V ∈V

S
∑

s=1

max
j

[

vsijτ(µi,k(ς
s
j ), ς

s
j )
]

. (33)

The expression in (33) can be identified as a particular

form of the assignment problem, a common combinatorial

optimization problem in which the selection of mutually

exclusive assignment of agents to tasks incurs some cost.

Here, the cost is the total transmission time across all

PPDUs necessary for scheduled devices to meet the target

PDRs. Assignment problems are generally very challenging

to solve—there are mk! combinations—although polynomial-

time algorithms exist for simple cases. The Hungarian method

[36], for example, is a standard method for solving linear-

cost assignment problems. While the cost we consider in

(33) is nonlinear, the Hungarian method may be used as

an approximation. Alternatively, other heuristic assignment

approaches may be designed to approximate the solution to

(33). We note that, for the simulations performed later in this

paper, we apply such a heuristic method, the details of which

are left out for proprietary reasons.

By combining these methods with the control-based PDR
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horizontal cart. While conceptually simple, the highly unstable

dynamics of the inverted pendulum make it a representative

example of control system that requires fast control cycles,

and subsequently low-latency communications when being

controlled over a wireless medium. Consider a series of m
identical inverted pendulums, as pictured in Figure 3. Each

pendulum of length L is attached at one end to a cart that

can move along a single, horizontal axis. The position of the

pendulum changes by the effects of gravity and the force

applied to the linear cart. For our experiments, we use the

modeling of the inverted pendulum as provided by Quanser

[38]. The state is p = 4 dimensional vector that maintains

the position and velocity of the cart along the horizontal axis,

and the angular position and velocity of the pendulum, i.e.

xi,k := [xi,k, ẋi,k, θi,k, θ̇i,k]. The system input ui,k reflects a

horizontal force placed upon ith pendulum. By applying a

zeroth order hold on the continuous dynamics with a state

sampling rate of 0.01 seconds and linearizing, we obtained the

following discrete linear dynamic matrices of the pendulum

system

Ai =









1 0.037 3.477 0.042
0 2.055 −0.722 4.828
0 0.023 0.91 0.037
0 0.677 −0.453 2.055









,Bi =









0.034
0.168
0.019
0.105









. (34)

Because the state xi,k measures the angle of the ith pendulum

at time k, the goal is to keep this close to zero, signifying

that the pendulum remains upright. The input matrix K is

computed to be a standard LQR-controller.

We perform a set of simulations scheduling the transmissions

to control a series of inverted pendulums, varying both the

latency threshold τmax and number of devices m. We perform

the scheduling using the proposed CALLS method for control-

aware low latency scheduling an, as a point of comparison,

consider scheduling using a fixed “high-reliability” PDR of

0.99 for all devices. Each simulation is run for a total of 1000
seconds and is deemed “successful” if all pendulums remain

upright for the entire run. We perform 100 such simulations for

each combination of latency threshold and number of devices

to determine how many devices we can support at each latency

threshold using both the CALLS and fixed-PDR methods for

scheduling.

In Figure 4 we show the results of a representative simulation

of the control of m = 25 pendulum systems with a latency

bound of τmax = 10−3 seconds. In both graphs we show the

average distance from the center vertical of each pendulum

over the course of 1000 seconds. In the top figure, we see

by using the control-aware CALLS method we are able to

keep each of the 25 pendulums close to the vertical for the

whole simulation. Meanwhile, using the standard fixed PDR,

we are unable to meet the scheduling limitations imposed by

the latency threshold, and many of the pendulums swing are

unable to be kept upright, as signified by the large deviations

from the origin. This is due to the fact that certain pendulums

were not scheduled when most critical, and they subsequently

became unstable.

We present in Figure 5 the final capacity results obtained over

all the simulations. We say that a scheduling method was able

0
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0.1

0 5 10 15 20 25

0

0.05

0.1

0 5 10 15 20 25

Figure 4: Average pendulum distance to center vertical for

m = 25 devices using (top) CALLS and (bottom) fixed-PDR

scheduling with τmax = 1 ms latency threshold. The proposed

control aware scheme keeps all pendulums close to the vertical,

while fixed-PDR scheduling cannot.
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Figure 5: Total number of inverted pendulum devices that can

be controlled using Fixed-PDR and CALLS scheduling for

various latency thresholds.

to successfully serve m′ devices if it keeps all devices within

a |θi,k| ≤ 0.05 error region for 100 independent simulations.

Observe that the proposed approach is able to increase the

number of devices supported in each case, with up to 1.5
factor increase over the standard fixed PDR approach. Indeed,

the proposed CALLS method is able to allocate the available

resource in a more principled manner, which allows for the

support of more devices simultaneously being controlled.

B. Balancing board ball system

We perform another series of experiments on the wireless

control of a series of balancing board ball systems developed by

Acrome [39]. In such a system, a ball is kept on a rectangular

board with a single point of stability in the center of the

board. Two servo motors underneath the board are used to

push the board in the horizontal and vertical directions, with the

objective to keep the ball close to the center of the board. The

state here reflects the position and velocity in the horizontal
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and vertical axes, i.e. xi,k := [xi,k, ẋi,k, yi,k, ẏi,k]. The input

ui,k = [vx, vy] reflects the voltage applied to the horizontal

and vertical motors. As before, we apply a zeroth order hold

on the continuous dynamics with a state sampling rate of 0.01
seconds and linearize, thus obtaining the following dynamic

system matrices,

Ai =









1 0.01 0 0
0 1 0 0
0 0 1 0.01
0 0 0 1









,Bi =









−0.0001 0
−0.02 0

0 −0.00008
0 −0.01









.

(35)

As before, we compute the control matrix K using standard

LQR-control computation.

In the simulations performed with the balancing board

system, in addition to making comparisons of the CALLS

method to a fixed PDR low latency scheduling scheme, we

perform additional comparisons to a standard control-aware

scheduling approach—namely, the event-triggered scheduling

approach [28], [29]. In event triggered scheduling, we schedule

devices only when its estimated control state goes above some

threshold value. When such an event occurs, this device is

scheduled with a fixed high reliability PDR using a low-latency

assignment based scheduling method. This, in effect, combines

the selective scheduling approach of CALLS with fixed high

reliability PDR targets commonly used in URLLC.

In Figure 6 we show the results of a representative simulation

of the control of m = 50 balancing board ball systems with

a latency bound of τmax = 10−3 seconds. Observe that, in

this system, even with a large number of users, both the event-

triggered scheduling and the CALLS method can keep all

systems very close to the center of the board, while the fixed

PDR scheduler loses a few of the balls due to the agnosticism

of the scheduler.

To dive deeper into the benefits provided by control aware

scheduling, we present in Figure 7 a histogram of the actual

packet delivery rates each of the devices achieved over the

representative simulation. It is interesting to observe that, for the

CALLS method, the achieved PDRs are closely concentrated,

ranging from 0.3 to 0.44. On the other hand, using either event-

triggered or a fixed PDR scheduling scheme, the non-variable

rates are too strict for the low-latency system to support, and

without control-aware scheduling the achieved PDRs range

wildly from close to 0 to close to 1. In this case, some devices

are able to transmit almost every cycle while others are almost

never able to successfully transmit their packets. This suggests

that, by using control aware scheduling, we indirectly achieve a

sense of fairness across users over the long term. Further note

that the PDRs required to keep the balancing board ball stable,

e.g. 0.4, are relatively small. This is due to the fact that the

balancing board ball features relatively slow moving dynamics,

making it easier to control with less frequent transmissions.

This is comparison to the inverted pendulum system, in which

the pendulums were kept stable with PDRs in the range 0.6-

0.75.

We present in Figure 8 the final capacity results obtained over

all the simulations for the balancing board ball system. Observe

0
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Figure 6: Average ball distance to center for m = 50 devices

using (top) CALLS, (middle) event-triggered, and (bottom)

fixed-PDR scheduling with τmax = 1 ms latency threshold.

The control aware schemes keeps all balancing balls close to

center, while fixed-PDR scheduling cannot.

Figure 7: Histogram of achieved PDRs in m = 50 balancing

board systems (top) CALLS, (middle) event-triggered, and

(bottom) fixed-PDR scheduling with τmax = 1 ms latency

threshold. The proposed CALLS method achieves similar

PDRs for all devices, while the fixed-PDR and event-triggered

scheduling results in large variation in packet delivery rates.

that proposed approach increases the number of supported

devices by factor of 2 relative to the standard fixed PDR

approach. The even greater improvement here relative to the

inverted pendulum simulations can be attributed to the slower

dynamics of the balancing board ball, which allows for even

more gains using control-aware PDRs due to the lower PDR

requirements of the system. Likewise, the Lyapunov-based

adaptive PDR requirements allow for even greater scalability

than the more standard event-triggered approach, which can

service only 17 and 50 users with 0.5 and 1 ms latency

thresholds, respectively.
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Figure 8: Total number of balancing ball board devices that can

be controlled using Fixed-PDR, Event-Triggered, and CALLS

scheduling for various latency thresholds.

VI. DISCUSSION AND CONCLUSIONS

In this paper we proposed a novel control-communication co-

design approach to solving the radio resource allocation prob-

lem for time-sensitive wireless control systems. Given a channel

state and control state, we mathematically derive a minimum

packet delivery rate a device must meet to maintain a control-

orientated target, as defined by a stability-inducing Lyapunov

function. By dynamically assigning variable packet delivery rate

targets to each device based on its current conditions, we are

able to more easily meet feasibility requirements of a latency-

constrained wireless control problem and maintain stability

and strong performance. We perform simulations on numerous

well-studied low-latency control problems to demonstrate the

benefits of using the control-aware approach, which can include

a 2x gain on number of devices that can be supported. In future

research, we aim to investigate how more sophisticated and

realistic modeling, such as non-linear control or actuation over

wireless links, may be used in this control-aware framework.

The results presented in this paper suggest an interesting

potential for control-aware resource allocation and scheduling,

particularly in low-latency industrial systems. By considering

the control-specific targets such as maintaining stability or an

error margin, we observe that the standard high reliability

targets considered in URLLC (e.g. packet delivery rates

≥ 0.999) can in some cases be substantially stricter than

necessary for adequate performance. Wireless control systems

with sufficiently slow dynamics can be kept stable with much

lower packet delivery rates, which in turn make low-latency

communications more achievable. Furthermore, in realistic

industrial systems there will be many heterogeneous devices

being controlled, whose variation in communication needs is

well-served by control-aware adaptivity proposed in this paper.

This suggests the potential for wireless communications to

be adopted using a smart control-communication co-design

approach even while ultra-reliable wireless system technology

remains under development.
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