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Abstract—We consider the problem of allocating radio re-
sources over wireless communication links to control a series of
independent wireless control systems. Low-latency transmissions
are necessary in enabling time-sensitive control systems with
high sampling rates to operate over wireless links. Enabling low-
latency through fast data rates comes at the cost of reliability
in the form of higher packet error rates due to channel noise.
However, the impact of such communication link errors on the
control system performance depends dynamically on the control
system state. We propose a novel control-aware communication
design to the low-latency resource allocation problem. In our
proposed method, we incorporate both control and channel
state information in scheduling transmissions across time slots,
frequency bands, and data rates using the next-generation Wi-
Fi scheduling architecture. Control systems that are closer to
instability or further from a desired range in a given control
cycle are given higher packet delivery rate targets to meet.
Rather than a simple priority ranking, we derive precise adaptive
packet error rate targets for each system needed to satisfy
control-specific performance requirements. We use these adaptive
rate targets to make scheduling decisions that reduce total
transmission time. The resulting Control-Aware Low Latency
Scheduling (CALLS) method is tested in numerous simulation
experiments that demonstrate its effectiveness in meeting control-
based goals under tight latency constraints relative to control-
agnostic scheduling.

Index Terms— wireless control, low-latency, codesign,
IEEE 802.11ax

I. INTRODUCTION

The Internet-of-Things (IoT) promises enhanced modes of
interaction with the physical world through the deployment
of large numbers of sensing and control devices. Relative to
conventional communication systems, the deployment of a
control system over a communication network increases the
sensitivity to packet loss and latency. This is not a major con-
sideration if we rely on wired networks that can simultaneously
achieve very low latency and ultra high reliability. However,
the cost of installing and maintaining a wired network poses
significant challenges [1], [2] that motivate the use of wireless
communications. Consequently, there has been great effort in
the design of wireless control systems that can achieve high
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performance in terms of reliability and latency [3], [4]. While
this effort is widespread in its range of applications it is of
note that wireless control systems hold promise in streamlining
industrial control [1], [3], [5]-[7]—e.g. factory automation [8],
[9].

The primary challenge in designing this ultra reliable low
latency communications (URLLC) systems is the tradeoff
between reliability and latency. To achieve ultra-high reliability
we need significant protection against packet losses. This can
be achieved by increasing packet length, thereby increasing
latency, or by increasing bandwidth consumption. Such a
tradeoff between latency and reliability is present in any
communication medium but it is exacerbated in wireless
communications because of fading and shadowing effects.
The physical properties of a wireless channel impose inherent
limitations in achieving both ultra high reliability and low
latency. Such a mismatch has lead to the proposal of several
radio resource allocation schemes have been proposed to
improve the management of the latency reliability tradeoff
in wireless systems [10]. This include seminal works on the
design of delay-aware schedulers for communication systems in
general [11], [12] and wireless control systems in particular [13].
The exploitation of spatial and frequency diversity deserves
particular mention as a technique that is increasingly recognized
as a necessary component of URLLC [6], [14], [15].

In this paper we propose an alternative approach in which
we adapt the communication reliability to the dynamics and
state of the plant. We expect this to provide significant
advantages because high communication reliability is not a
strict requirement of control reliability. In fact, control loops
can, in general, drop packets with small impact if the plant
is not close to unsafe states. The successful transmission of a
packet becomes crucial only when in these unsafe regions. In
adapting reliability to the state of the plant we expect that the
resources that are saved with plants in safe states are available
to achieve high reliability with plants close to unsafe states. Our
specific contribution is to develop a control-aware scheduling
protocol designed to enable larger scale low latency systems.
This is done through the mathematical formulation of the
control system design goal in the form of a Lyapunov function
that ensures stability of the control system. This formulation
naturally induces a bound on the packet delivery rate each
control system needs to achieve to meet the control-based goal.
Such packet delivery rates depend upon current control and
channel states and thus dynamically change over the course
of the system life time. In particular, we use IEEE 802.11ax
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WiFi [16] to allocate bandwidth and data rates to reduce total
transmission times. As these control-based reliability targets
may be significantly lower than traditional, high reliability
communication demands, the proposed method is better suited
to find scheduling configurations that can meet strict latency
requirements imposed by the physical system.

We remark that in the context of wireless control systems,
there have been a range of works that incorporates control sys-
tem information in the networking and communication policies.
For example, control system stability under fixed periodic
protocols, e.g. round-robin, can be analyzed—see, e.g., [17]-
[20]. Periodic sequences leading to stability [21], controllability
and observability [22], or optimizing control objectives [23]—
[25] have been proposed. More sophisticated schedulers do not
rely on a predefined sequence but try to dynamically access
the communication medium at each step. Initial approaches
abstract control performance requirements in the time/frequency
domain, e.g., how often a task needs resource access, employing
algorithms from real-time scheduling theory [26], [27]. More
recent scheduling approaches often depend on the current
control system states, i.e., informally the subsystem with the
largest state discrepancy is scheduled to communicate—see,
e.g., [19], [28]-[31]. Alternatively scheduling can take into
account current wireless channel conditions opportunistically
to meet target control system reliability requirements [32].
None of these approaches, however, are explicitly designed
for low-latency communication systems, which is the subject
of our work and a key contribution with respect to previous
approaches.

The paper is organized as follows. We formulate the wireless
control system in which state information is communicated to
the control over a wireless channel. Due to the potential for
random packet drops, this is modeled as a switched dynamical
system (Section II). A Lyapunov function is used to evaluate
the stability of the control state, and the uncertainty in this
measurement grows the more consecutive packets are lost for a
particular system. We then discuss the scheduling parameters of
the IEEE 802.11ax communication model (Section II-A). From
there, we derive a mathematical formulation of the optimal
scheduling problem (Section III). This can be formulation by
minimizing a control cost with an explicitly latency constraint
(Section III-A) or minimizing transmission time with an explicit
control performance constraint (Section III-B).

Using this formulation, we develop the control-aware low
latency scheduling (CALLS) method (Section IV). The CALLS
method uses current control states and channel conditions to
derive dynamic packet success rates for each user (Section
IV-A). In this way, control systems that are closest to instability
will be given priority in the scheduling so that they may
close their control loops. The scheduling procedure consists
of a random user selection procedure to reduce the number
of required PPDUs that incur significant overhead (Section
IV-B), followed by an assignment-method based scheduling
of selected users to minimize total transmission time (Section
IV-C). The performance of the CALLS method is analyzed in
a series of simulation experiments in which its performance is
compared against a control-agnostic procedure (Section V). We
demonstrate in numerous control systems that the control-aware,

Control
System m

Control
System 2

Control
System 1

Access Point/
Controller

Figure 1: Wireless control system with m independent systems.
Each system contains a sensor that measure state information,
which is transmitted to the controller over a wireless channel.
The state information is used by the controller to determine
control policies for each of the systems.The communication is
assumed to be wireless in the uplink and ideal in the downlink.

adaptive reliability approach may support more users than the
alternative and achieve more robust overall performance.

II. WIRELESS CONTROL SYSYEM

Consider a system of m independent linear control systems,
or devices, where each system ¢ = 1,...,m maintains a state
variable x; € RP. The dynamics are discretized so that the
state evolves over time index k. Applying an input u; ; € R?
causes the state and output to evolve based on the discrete-time
state space equations,

Xik+1 = Aixi p + Biug p + wy

(D

where A; € RP*P and B; € RP*Y are matrices that define the
system dynamics, and wj; € R? is Gaussian noise with co-
variance W that captures the errors in the linear model (due
to, e.g., unknown dynamics or from linearizion of non-linear
dynamics). We further assume the state transition matrix A;
is on its own unstable, i.e. has at least one eigenvalue greater
than 1. This is to say that, without an input, the dynamics will
drive the state x; , — 0o as k — oo.

In the wireless control system model presented in Figure 1.
Each system is closed over a wireless medium, over which the
sensor located at the control system sends state information to
the controller located at a wireless access point (AP) shared
among all systems. Using the state information x; j, received
from device 7 at time k, the controller determines the input
u; ;, to be applied. We stress in Figure 1 we restrict our
attention to the wireless communications at the sensing, or
“uplink”, while the control actuation, or “downlink, is assumed
to occur over an ideal channel. We point out that while a more
complete model may include packet drops in the downlink, in
practice the more significant latency overhead occurs in the
uplink. We therefore keep this simpler model for mathematical
coherence. In low-latency applications, a high state sampling
rate is required be able to adapt to the fast-moving dynamics
This subsequently places a tight restriction on the latency in
the wireless transmission, so as to avoid losing sampled state
information. This specific latency requirement between the
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sensor and AP we denote by 7,,,x, and is often considered to
be in the order of milliseconds.

Because the control loop in Figure 1 is closed over a wireless
channel, there exists a possibility at each cycle k that the
transmission fails and state information is not received by the
controller. We refer to this as the “open-loop’ configuration;
when state information is received, the system operates in
“closed-loop.” As such, it is necessary to define the system
dynamics in both configurations. Consider a generic linear
control, in which the input being determined as u; ;, = K;x;
for some matrix K; € R7*P, Many common control policies
indeed can be formulated in such a manner, such as LQR
control. In general, this matrix K is chosen such as that the
closed loop dynamic matrix A + BK is stable, i.e. has all
eigenvalues less that 1. Thus, application of this control over
time will drive the state x; ;, — 0 as &k — co. We assume that
this choice of K is given—in other words, the controller is
pre-designed with respect to ideal closed loop behavior. As the
controller does not always have access to state information,
we alternatively consider the estimate of state information of
device ¢ known to the controller at time k as

}A(;l;i‘) = (Al + BiKi)liXi,k—lm (2)

where k —[; > k — 1 is the last time instance in which control
system ¢ was closed. There are two important things to note in
(2). First, this is the estimated state before a transmission has
been attempted at time k; hence, [; = 1 when state information
was received at the previous time. Second, observe that in
(2) we assume that the AP/controller has knowledge of the
dynamics A; and B;, as well as the linear control matrix K;.
Any gap in this knowledge of dynamics is captured in the noise
w, in the actual dynamics in (35). Note that the estimated state
(2) is used in place of the true state in both the determination
of the control and the radio resource allocation decisions as
discussed later in this paper.

At time k, if the state information is received, the controller
can apply the input u; ;, = K;x; ; exactly, otherwise it applies
an input using the estimated state, i.e. u; ; = K;X; 5. Thus,
in place of (35), we obtain the following switched system
dynamics for x; j, as

(A; +B,K,)x; 1 + wy, in closed-loop,

X; = ) 3
o+l Aix; g+ BZ-KZ&EZ}C) + wy, in open-loop. ©)
The transmission counter /; is updated at time k as
1, in closed-1
Lo b in closed-loop, @

l1 + 1, in open-loop.

Observe in (3) that, when the system operates in open loop,
the control is not applied relative to the current state x; ; but
on the estimated state Xfl), which indeed may not be close
to the true state. In this case, the state may not be driven to
zero as in the closed-loop configuration. To see the effect of

operating in open loop for many successive iterations, we can

PPDU

RU

Figure 2: Multiplexing of frequencies (RU) and time (PPDU)
in IEEE 802.11ax transmission window (formally referred as
Transmission Opportunity or TXOP in the standard. The total
transmission time is the time of all PPDUs, including the
overhead of trigger frames (TF) and acknowledgments.

Trigger

write the error between the true and estimated state as

l;—1
. o (L) J
ek =Xk — X = > Alwir 1.
Jj=0

)
In (5), it can be seen that as [; grows, the error e; ; grows
with the accumulation of the noise present in the actual state
but not considered in the estimated state. Thus, if /; is large
and w; j is large (i.e., high variance), this error will become
large as well.

To conclude the development of the wireless control formula-
tion, we define a quadratic Lyapunov function L(x) := x7Px
for some positive definite P € RP*P that measures the
performance of the system as a function of the state. Because
the scheduler only has access to estimated state info, we
consider the expected value of L(x) given the state estimate,
which can be found via (5) as

E[L(x: k) [} ©)
li—l
= x')TPE) + 3 TH(ATPT AW,
=0

Thus, the control-specific goal is to keep E[L(x; ) | 5(51;6)]
within acceptable bounds for each system i. We now proceed
to discuss the wireless communication model that determines
the resource allocations necessary to close the loop.

A. IEEE 802.11ax communication model

We consider the communication model provided in the
next-generation Wi-Fi standard IEEE 802.11ax. While 3GPP
wireless systems such as LTE [33] or the next generation
5G [34] can also be considered as alternate communication
models, most factory floors are already equipped with Wi-Fi
connectivity and, moreover, Wi-Fi can operate in the unlicensed
band. It is generally considered to be cost-effective to operate
and maintain.

Traditional Wi-Fi systems rely only on contention-based
channel access and may introduce high or variable latency
in congested or dense deployment scenarios even in a fully
managed Wi-Fi network, which is typically available in
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industrial control and automation scenarios. To address the
problems with dense deployment, the draft 802.11ax amend-
ment has defined scheduling capability for Wi-Fi access points
(APs). Wi-Fi devices can now be scheduled for accessing
the channel in addition to the traditional contention-based
channel access. Such scheduled access enables more controlled
and deterministic behavior in the Wi-Fi networks. Within
each transmission window (formally referred as transmission
opportunity or TXOP in the standard), the AP may schedule
devices through both frequency and time division multiplexing
using the multi-user (MU) OFDMA technique. This to say
that devices can be slotted in various frequency bands—
formally called resource units (RUs)—and in different timed
transmission slots—formally called PPDUs. An example of
the multiplexing of devices across time and frequency is
demonstrated in Figure 2. The AP additionally sends a trigger
frame (TF) indicating which devices should transmit data in the
current TXOP and the time/frequency resources these triggered
devices should use in their transmissions.

To state this model formally, the scheduling parameters
assigned by the AP to each device consist of a frequency-
slotted RU, time-slotted PPDU, and an associated modulation
and coding scheme (MCS) to determine the transmission
format. The transmission power is assumed to be fixed and
equally divided amongst all devices. We define the following
notations to formulate these parameters. To specify an RU,
we first notate by f1, f2,..., f°, where n is the number of
discrete frequency bands of fixed bandwidth (typically 2 MHz)
in which a device can transmit; in a 20MHz channel, for
example, there are n = 10 such bands. For each device, we
then define a set of binary variables ¢] € {0,1} if device
i transmits in band f7 and collect all such variables for
device i in ¢; = [¢};...;¢?] € {0,1}° and for all devices
in X :=[g,...,cm] € {0,1}°*™. A device may transmit in
bands in certain multiples of 2MHz as well, which would be
notated as, e.g. ¢; = [1;1;0;...;0] for transmission in an RU
of size 4MHz. Note, however, that allowable RU’s contain only
sizes of certain multiples of 2MHz—namely, 2MHz, 4MHz,
8MHz, and 20MHz in the 802.11ax standard. Furthermore, it
is only permissible to transmit in adjacent bands, e.g. f7 and
fi+1. We therefore define the set S C {0,1}" as the set of
binary vectors that define permissible RUs and consider only
G; € S for all devices 4. Finally, note that the RU assignment
0 € S signifies a device does not transmit in this particular
transmission window.

To specify the PPDU of all scheduled devices, we define
for device ¢ a positive integer value «; € Z,  that denotes
the PPDU slot in which it transmits and collect such variables
for all devices in o = [og;...;00,] € Z7T,. Likewise,
device ¢ is given an MCS p; from the discrete space M =
{0,1,2,...,10}. The MCS in particular defines a pair of
modulation scheme and coding rate that subsequently determine
both the data rate and packet error rate of the transmission.
The allowable MCS settings provided in 802.11ax are provided
in Table L. Finally, we notate by h; := [h}; h?;...;h!] € Ry
a set of channel states experienced by device i, where hf is
the gain of a wireless fading channel in frequency band f7.
We assume that channel conditions are constant within a single

4

1| Modulation type | Coding rate | Data rate (Mb/s)
0 | BPSK 172 4

1 | QPSK 172 16
2 | QPSK 3/4 24
3 16-QAM 1/2 33
4 | 16-QAM 3/4 49
5 | 64-QAM 2/3 65
6 | 64-QAM 3/4 73
7 | 64-QAM 5/6 81
8 | 256-QAM 3/4 98
9 | 256-QAM 5/6 108
10 | 1024-QAM 3/4 122

Table I: Data rates for MCS configurations in IEEE 802.11ax
for 20MHz channel. The modulation type and coding rate in
the first 2 columns together specify a PDR function ¢(p, ) for
RU ¢. The data rate in the third column specifies the associated
transmission time 7(u, ).

TXOP, i.e. do not vary across PPDUs.

We now proceed to define two functions that describe the
wireless communications over the channel. Firstly, we define a
function ¢ : R} x M xS — [0, 1] which, given a set of channel
conditions h, MCS p, and RU g, returns the probability of
successful transmission, otherwise called packet delivery rate
(PDR). Furthermore, define by 7 : M x S — R, a function
that, given an MCS p and RU g, returns the maximum time
taken for a single transmission attempt. Assuming a fixed
packet size, such a function can be determined from the data
rates associated with each MCS in Table 1. Observe that all
functions just defined are determined independent of the PPDU
slot the transmission takes place in, while transmission time
is also independent of the channel state. Because a PPDU
cannot finish until all transmissions within the PPDU have
been completed, the total transmission time of a single PPDU
s is the maximum transmission time taken by all devices within
that time slot. We define the transmission time of PPDU slot
s as

%(Evuvavs) ‘= Inax T(Miagi) +T()(a,8), (7)

Lo =S8

where 7 @ Z7', x Zy — R, is a function that specifies
the communication overhead of PPDU s. This overhead may
consist of, e.g., the time required to send TFs to scheduled
users, as seen in Figure 2.

III. OPTIMAL CONTROL AWARE SCHEDULING

Using the communication model of 802.11ax just outlined
and the control-based Lyapunov metric of (6), we can formulate
an optimization problem that characterizes the exact optimal
scheduling of transmissions with a transmission window to
maximize control performance. The optimal scheduling and
allocation selects the set of RUs Y. MCS u, and PPDUs « for
all devices—which in effect fully determine the schedule—such
to minimize a cost subject to scheduling design and feasibility
constraints. In particular, we discuss two related, alternative
formulations of the low-latency scheduling problem.
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A. Latency-constrained scheduling

In the latency-constrained formulation, we are interested in
minimizing a common control cost subject to strict latency
requirements. In particular, in the low-latency setting we set a
bound 7,4« On the total transmission time across all PPDUs
in a TXOP. This constraint is relevant in design of MAC-layer
protocols that set strict limits on transmission times. In addition,
the RU and PPDU allocation across devices must be feasible,
i.e., two devices cannot be transmitting in the same frequency
band in the same PPDU.

Recall the PDR function ¢(h, i, <) and consider that this
can alternatively be interpreted as the probability of closing the
control loop under certain channel conditions and scheduling
parameters. From there, we can now write the expected
Lyapunov value for at time k + 1 given its current state X; j,
channel state h; ,, MCS p;, and RU g; using the expected cost
in (6). By defining x5, ; and x7, ; as the closed loop and
open loop states, respectively, as determined by the switched
system in (3), this is written as

Ji&0) b g i, 6i) o= E(L(X k1) | X0 Dk, i, 1)
o N
=(1 — q(hy g, i, i) EL(xE g 41 | %112))
+q(hy g, i, 6)EL(XS 4y | %12). (8)

For notational convenience, we collect all current estimated
control states at time k as Xy, := [fcg}c ;- %, ] and channel
states Hy = [hy x,...,h,, x]. Now, define the total control
cost, given the current states and scheduling parameters as
some aggregation of the combined expected future Lyapunov

costs across all devices, i.e.,

J (X, Hy, pt, X) = 9)

(

Q(Jl (igl})» hl,k’» M1, Cl)a ceey Jm(f{mflk)v hm,k; Hm gm))'

Natural choices of the aggregation function g(-) are, for
example, either the sum or maximum of its arguments.

The optimal scheduling at transmission time k is formulated
as the one which minimizes this cost .J while satisfying low-
latency and feasibility requirements of the schedule, expressed
formally with the following optimization problem.

(X%, pp, af] = argmin J (X, Hg, p, ) (10)
DINTN N

sty o<1, Vs, (11)
=

D ATy 8) < Taxs (12)
s=1

1<a; <8, Vi (13)

eSS, Vi, peM™, acZ}, Sclii.
(14)

The optimization problem in (10) provides a precise and instant-
aneous selection of frequency allocations between devices given
their current control states Xk and communication states Hj.
The constraints in (11)-(14) encode the following scheduling
conditions. The constraint (11) ensures that for every PPDU
s, there is only one device transmitting on a frequency slot j.

In (12), we set the low-latency transmission time constraint in
terms of the sum of all transmission times for each PPDU s.
The constraint in (13) bounds each transmission slot by the
total number of PPDU’s S while (14) constrains each variable
to its respective feasible set. Note that S is itself treated as an
optimization variable in the above problem, so that the number
of PPDUs may vary as needed.

Observe in the objective in (10) that, by minimizing an
aggregate of local control costs, the devices with the highest
cost J; as described by (8) will be given the most bandwidth
or most favorable frequency bands to increase probability of
successful transmission q(h; x, pt;, ;). This in effect increases
the chances those devices will close their control loops and be
driven towards a more favorable state. Likewise, a device who
is experiencing very adverse channel conditions may not be
allocated prime transmission slots to reserve such resources
who have more favorable channel conditions. In this way, we
say this is control-aware scheduling, as it considers both the
control and channel states of the devices to determine optimal
scheduling. However, we stress that the optimization problem
described in (10)-(14) is by no means easy to solve. In fact,
the optimization over multiple discrete variables makes this
problem combinatorial in nature. In the following section, we
discuss a practical reformulation of the problem above and
develop heuristic methods to approximate the solutions in
realistic low-latency wireless applications.

B. Control-constrained scheduling

We reformulate the problem in (10)-(14) to an alternative
formulation that more directly informs the control-aware, low-
latency scheduling method to be developed. To do so, we
introduce a control-constrained formulation, in which the
Lyapunov decrease goals are presented as explicit requirement,
i.e. constraints in the optimization problem. We are interested,
then, in constraint of the form

J(Xi, Hig, 1, 2) < Ty (15)

where Jy,ax is a limiting term design to enforce desired system
performance. Determining this constant is largely dependent
on the particular application of interest, needs of the control
systems, and also may be related to the choice aggregation
function g(+) in (9). For example, Jy,.x may represent a point
at which control systems become volatile, unsafe, or unstable.
For the scheduling procedure developed in this paper, we
focus on a particular formulation of the control constraint in
(15) that constrains the expected future Lyapunov value of each
system by a rate decrease of its current value. In particular the
following rate-decrease condition for each device i,

N )

Ji(%X; 1 Rk, iy 6i) < plE[L(x45) | X5,)] + e (16)

where p; € (0,1] is a decrease rate and ¢; > 0 is a constant.
Recall the definition of J;(X\%) h; 4, pi,s;) in (8) as the
expected Lyapunov value of time k+1 given its current estimate
and scheduling (;, ¢;. The constraint in (16) ensures the future
Lyapunov cost will exhibit a decrease of at least a rate of p; for
device ¢ in expectation. The constant ¢; is included to ensure
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this condition is satisfied by default if the state fcflk)

sufficiently small.

We formulate the control-constrained scheduling problem by
substituting the latency constraint with the control constraint
in (16), i.e.,

is already

S

(X%, pr, o] == argminZ%(Z,u,a, s) (17)
2»/»4:0‘:35:1

sty o<1, Vs, (18)

;=8
T hi g, piy i) < PE[L(xix) | %3] + ¢ Vi, (19)
1<a; <85, Vi, (20)

eS8, Vi, peM™, S€ely.
(2D

acZ,

Observe that the objective in (17) is now to minimize the
total transmission time, rather than being forced as an explicit
constraint. In this way, the optimization problem defined in (17)-
(21) can be viewed as an alternative to the latency constrained
problem in (10)-(14). Because the scheduling algorithm we
develop in this paper requires the ability to quickly identify
feasible solutions, we focus our attention on the control-
constrained formulation in (17)-(21). Before presenting the
details of the scheduling algorithm, we present a brief remark
regarding the addition of ‘“safety”, or worst-case, constraints
to either problem formulation.

Remark 1 The control constraint in (19) is formulated to
guarantee an average decrease of expected Lyapunov value by
a rate of p. This is of interest to ensure the system states are
driven to zero over time. However, in practical systems we may
also be interested in protecting against worst-case behavior,
e.g. entering an unsafe or unstable region. Consider a vector
b, € RP as the boundary of safe operation of system ¢. A
constraint that protects against exceeding this boundary can be
written as

Pllx is1] > bi | %3 By, i) <6, (22)

where § € (0,1) is small. The expression in (22) can be
included as an additional constraint to either the latency-
constrained or control-constrained scheduling problems previ-
ously discussed.

IV. CONTROL-AWARE LOW-LATENCY SCHEDULING
(CALLS)

We develop a control-aware low-latency scheduling (CALLS)
algorithm to approximately solve the control-constrained
scheduling formulation in (17)-(21). Because this problem
is combinatorial in nature, it is infeasible to solve exactly.
Instead, we focus on a practical and efficient means of
solving approximately. In particular, we identify sets of feasible
points and use a heuristic approach towards minimizing the
transmission time objective among the set of feasible points.
Additionally, within the development of the CALLS method
we identify and characterize new PDR requirements that are
defined relative to the control system requirements; these are
generally significantly less strict than the PDR requirements

6

often considered in general high reliability communication
systems without codesign. Overall, the CALLS method consists
of (i) the derivation of adaptive control-aware PDR targets, (ii)
a principled random selection of devices to schedule to reduce
latency, and (iii) the use of assignment based methods to find
a low-latency schedule. We discuss these three components in
detail in the proceeding subsections.

A. Control adaptive PDR

Due to the complexity of the scheduling problem in (17)-(21),
we first focus our attention on identifying scheduling parameters
{ Xk, i, } that are feasible, i.e. satisfy the constraints in
(18)-(21). In particular, the Lyapunov control constraint in
(19) is of significant interest. Recall that the control cost
function Ji(fcl(.f;;), h; x, (i, <) is itself determined by the PDR
q(h; &, 115, 5:), as per (8). Thus, the constraint in (19) can be
seen as indirectly placing a constraint on the required PDR
necessary to achieve a p;-rate decrease in expectation. The
equivalent condition on PDR q(h; j, 15, ;) is presented in the
following proposition.

Proposition 1 Consider the Lyapunov control constraint in
(19) and the definition of Ji(f(z(-f;),hi,k,m,g) given in (8).
Define the closed-loop state transition matrix A§ := A;+B;K;
and j-accumulated noise w} = Tr[(ATPYIA;)W,]. The
control constraint in (19) is satisfied for device i if and only
if the following condition on PDR q(h; k, 11;,;) holds,

A(lz‘)) —

q(hy g, i, i) > Gi(%; ), (23)

1 c N5
A H(Ai - PiI)XZ(-,k)

l;—1

2 l .

Ly =p) Yo ol — el
=0

where we have further defined the constant

lifl
A=) Wl = TH AT (ATPYI A AW,
j=0

(24)

Proof: Consider the Lyapunov decrease constraint as written
in (19). As the same logic holds for all < and k, for ease of
presentation we remove all subscripts when presenting the
details of this proof. We further introduce the simpler notation
q := q(h, u,s). Now, we may expand the left hand side of
(19) be rewriting the definition in (8) as

JEY b, 6) = qEw[L(Ax + w)]
+ (1 - ¢Ew[L(Ax + BKx + w)].

(25)

Recall the definition of the quadratic Lyapunov function
L(x) := xTPx for some positive definite P. Further recall
the relation x = X + e as described by (5). Combining these,
we expand the right hand size of (25) as

J(xW b, p,6) =
Ew A (k+e)+w] P[A, (X +e)+w
+(1-Ew [A%+Ae+w] P[A X+ Ae+ w].

(26)

To evaluate the expectations in (26), recall the random noise w
follows a Gaussian distribution with zero mean and covariance
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W. Thus, the expectation can be evaluated over w and
expanded as

J(xW b, p,6) = 27)
-1 o i

q [1AK]2, + Ti(PW) + > Tr(A(ATPTAYAW)| +
j=0

l
(1=q) ||AXI2 ) +Tr(PW) + > Tr(A"P7AYW)

=1

From here, we rearrange terms and substitute the notation
Wl := Tr[(ATP'/7 A)IW] to obtain that the control cost can
be written as

!
A2 i
HACXHP% + Tr(PW) + E w’

j=1

J(xW h,p,6) = (28)

-1
+¢) [Tr(A(ATPIA) A W) — wit].
=0

With (28), we have expanded the control cost in terms of the
PDR q. Now, we return to the constraint in (19). Recall the
expansion for E[L(x) | V)] via (6). By combining this with
the expansion in (28), the terms in(19) can be rearranged to
obtain the inequality in (23). ]

In Proposition 1 we establish a lower bound (jl(fcglk)) on the
PDR of device ¢ that is dependent upon the current estimated
state f(Elk) and system dynamics determined by A¢, A;, and
W?. We may note the following intuitions about the constraint
in (23). The PDR condition naturally grows stricter as the
bound ¢; ()?:EZ}C)) defined on the right hand side of (23) gets
larger. The first term on the right hand side reflects the current
estimated channel state, and will become larger as the state
gets larger. Similarly, the latter two terms on the right hand
side together reflect the size of the noise that has accumulated
by operating in open loop. When the noise variance W; is
high and when the last-update counter [; is large, these latter
two noise terms will both be large. Thus, both the current
magnitude of the control state and the growing uncertainty
from infrequent transmissions together determine how large is
the PDR requirement in (23).

We stress the value of the PDR condition in (23) is both in
its adaptability to the control system state and dynamics, as
well as its identification of precise target delivery rates that
are necessary to keep the control systems moving towards
stability on average. Depending on the particular system
dynamics as described in (35), such PDR’s may be, and
often are considerably more lenient than the default target
transmission success rates used in practical wireless systems
(e.g. ¢ = 0.999). Thus, through (23) we make a claim that,
with knowledge of the control system dynamics and targeted
control performance, we can effectively soften the targeted
communication performance—or ‘reliability”— accordingly
to something more easily obtained in low-latency constrained
systems.

Remark 2 It is worthwhile to note that by placing a stricter

7

Lyapunov decrease constraint with smaller rate p; in (19),
then the first term on the right hand side of (23) also grows
larger and increases the necessary PDR. Generally, selecting a
smaller p will result in a faster convergence to stability but will
require stricter communication requirements. In fact, we may
use the inherent bound on the probability g(h; g, p,6;) <1
to find a lower bound on the Lyapunov decrease rate p; that
can be feasibly obtained based upon current control state and
system dynamics. This bound, however, may not be obtainable
in practice due to the scheduling constraints. In practice, we
select p; to be in the interval [0.90,0.1).

B. Selective scheduling

We now proceed to describe the procedure with which we
can find a set of feasible scheduling decisions { X, py, o }.
To begin, we first consider a stochastically selective scheduling
protocol, whereby we do not attempt to schedule every device
at each transmission cycle, but instead select a subset to
schedule a principled random manner. Define by v; j € [0, 1]
the probability that device ¢ is included in the transmission
schedule at time k and further recall by ¢q(h; g, 1, ;) to be
the packet delivery rate with which it transmits. Then, we may
consider the effective packet delivery rate ¢ as

G(hs &, i, Si) = vi kgD i, i, Si) (29)

Selective scheduling is motivated by the ultimate goal of
minimizing total transmit time as described in the objective
in (17). As we consider a large number of total devices m,
scheduling all such devices will require a larger number of
PPDU slots—a maximum of 9 devices can transmit within a
single PPDU. Recall in (7) that each additional PPDU requires
unavoidable overhead in 7y, which in aggregation over multiple
PPDUs may become a significant bottleneck in minimizing 7 or
meeting a strict latency requirement 7,,,4,. Thus, by decreasing
the amount of scheduled devices, we may decrease the number
of total PPDUs and the overhead that is added to the total
transmission time.

Observe that by introducing the term v; to the evaluation
of effective PDR ¢; in (29), we would thus need to transmit
with higher PDR q(h; , i, ;) > q*i(&l(.)l,ic))/yi,k to meet the
condition in (23). While imposing a tighter PDR requirement
will indeed require longer transmission times, this added
time cost is generally less than the transmission overhead
of additional PPDUs. In this work, we use the determine
scheduling probability of device ¢ through its PDR requirement

()

‘ji(ki,k ) as

= B, (30)

Vi,k .

With (30), the probability of scheduling device ¢ increases as
the required PDR increases. Notice that, when a transmission
is required, i.e. (ji(kgl;)) =1, then device ¢ is included in the
scheduling with prot;ability 1. In general, devices with very
high PDR requirements, e.g. > 0.99, will be scheduled with
very high probability. Thus, the transmission time gains that
are provided through selective scheduling using (30) would be
minimal, if non-existent, in high-reliability settings in which
PDR requirements remain high at all times. However, with the
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lower PDR requirement obtained through the control-aware
scheduling in (23), selective scheduling as the potential to create
significant time savings, as will be later shown in Section V
of this paper.

C. Assignment-based scheduling

We now proceed to discuss how the PDR requirements
previously derived are used to schedule the devices during a
TXOP. Rather than employing a greedy method as is commonly
done in wireless scheduling problems, in the proposed method
we use assignment-type methods. In such assignment-type
methods, we assign all scheduled devices to a PPDU and RU
at the beginning of the TXOP rather than make scheduling
decisions after each PPDU. To begin, we must determine a
set of schedules that satisfy the constraints in (18)-(21). Recall
each device ¢ is selected to be scheduled at cycle k£ with
probability v; ;, and define the set of my, devices to selected be
scheduled as 7, C {1,2,...,m} where |Z;| = my. To specify
the sets of RUs that we consider in our scheduling, we first
define some notation necessary in the description. We define
S(n) C S to be an arbitrary set of RUs that do not intersect
over any frequency bands (i.e. satisfy the constraint in (18))
with exactly n elements. To accommodate the my, devices to
be scheduled, we consider a set of S}, such sets S(ns) with size
ns, whose combined elements total Z L, ns = my. In other
words, we identify a set S PPDUs in which the sth PPDU
contains ng non-intersecting PPDUs. We define this full set of
assignable RUs at cycle k as
uS

. a4l 51
Sk 1= Sy US(ng) U --- U S, - GD

Note that in (31) we further superindex each set by a PPDU

index s, in order to stress that elements are distinct between sets.

That is, an RU ¢ present in sets S(n and S is considered

as two distinct elements in S}, denoted G and c” respectively.

In this way (31) defines a complete set of combinations of
frequency-allocated RU and time-allocated PPDUs to assign
devices during this cycle. We point out that there are numerous
ways in which to define such sets of RUs in each PPDU that
total my, assignments. There are various heuristic methods that
may be employed to quickly identify a permissible assignment
pool S;, and various simple heuristics may be developed to
make this selection in a manner that reduces the overall latency
of the transmission window. An example of the set S, for
scheduling mj = 14 devices is shown in Table II.

For all ¢ € Z;, and RU ¢ € S,;, define the largest affordable

MCS given the modified PDR requirement ql( ) /Vir by
() o il abie 6 = G5 )
" L if g(hyg, ,6) < QX)) vk Vi
(32)

Observe in (32) that, when no MCS achieves the desired PDR

in a particular RU, this value is set to u = 1 by default.

The above adaptive MCS selection can be achieved based

on channel conditions using the techniques outlined in [35].

This MCS selection subsequently then yields a corresponding
time cost 7(u; 1(s), ) for assigning device i to RU . Further

8

[PPDU 1 | PPDU 2 | PPDU 3 |

RU 1
RU 2
RU 3
RU 4
RU 5
RU 6
RU 7
RU 8
RU 9

RU 10
RU 13

RU 11

RU 12 RU 14

Table II: Example of RU selection with mj = 14 devices.
There are a total of S, = 3 PPDUs, given n; = 9, ny = 3,
ns = 2 RUs, respectively.

Algorithm 1 Control-Aware Low Latency Scheduling (CALLS)
at cycle k
1: Parameters: Lyapunov decrease rate p
2: Input: Channel conditions H;, and estimated states Xk
3: Compute target PDR g; (&Elk)) for each device ¢ [cf. (23)].

4: Determine selection probabilities v; ;, for each device [cf.
(30)].

5. Select devices Zy, with probs. {v1 k..., Um i}

6: Determine set of RUs/PPDUs S;. [cf. (31)].

7: Determine maximum MCS for each device/RU assignment
[cf. (32)].

8: Schedule selected devices via assignment method.

9: Return: Scheduling variables { X, g, o }

define an 3-D assignment tensor V—where v;; = 1 when
device i is assigned to RU ¢7 and 0 otherwise—and V as
the set of all possible assignments. Recalling the form of the
total transmission time given PPDU arrangements in (7), the
assignment that minimizes total transmission time is given by

V= argmmg max
vev

Sr(ie(ss), <)) . (33)

The expression in (33) can be identified as a particular
form of the assignment problem, a common combinatorial
optimization problem in which the selection of mutually
exclusive assignment of agents to tasks incurs some cost.
Here, the cost is the total transmission time across all
PPDUs necessary for scheduled devices to meet the target
PDRs. Assignment problems are generally very challenging
to solve—there are my! combinations—although polynomial-
time algorithms exist for simple cases. The Hungarian method
[36], for example, is a standard method for solving linear-
cost assignment problems. While the cost we consider in
(33) is nonlinear, the Hungarian method may be used as
an approximation. Alternatively, other heuristic assignment
approaches may be designed to approximate the solution to
(33). We note that, for the simulations performed later in this
paper, we apply such a heuristic method, the details of which
are left out for proprietary reasons.

By combining these methods with the control-based PDR
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targets and selective scheduling procedure, we obtain the com-
plete control-aware low-latency scheduling (CALLS) algorithm.
The steps as performed by the centralized AP/controller are
outlined in Algorithm 1. At each cycle k, the AP determines
the scheduling parameters based on the current channel states
H;, (obtained via pilot signals) and the current estimated
control states Xk (obtained via (2) for each device 7). With
the current state estimates, the AP computes target PDRs
q](f(ilk)) for each device via (23) in Step 3. In Step 4, the
target PDRs are used to establish selection probabilities v; j
for each agent with (30). After randomly selecting devices Zj,
with their associated probabilities in Step 5, the set of RUs and
PPDUs S, are determined in Step 6 as in (31) , based upon
the number of devices selected to be scheduled |Z|. In Step
7, the associated MCS values are determined each possible
assignment of device to RU via (32). Finally, in Step 8 the
assignment is performed using either the Hungarian method
[36] or other user-designed heuristic assignment method. The
resulting assignment determines the scheduling parameters
Xk, i, o for the current cycle.

Remark 3 Observe that the CALLS method as outlined
in Algorithm 1 seeks to minimize the total latency of the
transmission but does not explicitly prevent latency from
exceeding some specific threshold 7,,,x. In practical systems,
this limit may need to be enforced. In such a setting, the
CALLS method can be modified so that all devices scheduled
in PPDUs whose transmission end after 7,,,x seconds do not
transmit.

Remark 4 In practical systems, the channel state information
H;. is often obtained with some estimation errors, which
may impact the channel aware scheduling approach taken
here. Observe, however, that the computation of adaptive
PDR targets in (23) does not depend upon channel state
information. Thus, the primary component of the CALLS
method—namely Steps 3-6 in Algorithm 1— is unaffected
by inaccurate channel estimation. Likewise, the assignment
method-based scheduling in Step 8 does also not directly
depend upon channel information—see the formulation of
the assignment problem in (33). The only component that
may be negatively impacted by estimation errors is Step 7,
i.e. the maximum MCS selection in (32). Here, estimation
errors may result in the selection of an MCS that cannot meet
the target PDR targets. Such an effect can be mitigated by
selecting a smaller, more conservative MCS to account for
channel estimation errors. Such a conservative scheme would
tradeoff latency to the benefit of reliability or robustness.

V. SIMULATION RESULTS

In this section, we simulate the implementation of both
the control-aware CALLS method and a standard “control-
agnostic” scheduling methods for various low-latency control
systems over a simulated wireless channel. We point out the
low-latency based scheduling/assignment approaches of both
methods being compared are identical, with the distinguishing
features being the dynamic control-aware packet delivery rates

Channel model
Sensor to AP distances

IEEE Model E (indoor) [37]
Random (1 to 50 meters)

Transmit power 23 dbm
Channel bandwidth 20 MHz

RU sizes 2,4, 8,20 MHz
# of antennas at AP 2

# of antennas at sensors | 1

MCS options See Table 1
State sampling period 10 ms

Table III: Simulation setting parameters.
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Figure 3: Inverted pendulum-cart system ¢. The state x; , =
[%i.k, Ti k, 0k, 03 k] contains specifies angle 6; ;, of the pendu-
lum to the vertical, while the input w; j reflects a horizontal

force on the cart.
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incorporated in the CALLS method. In doing so, we may
analyze the performance of the control-aware design outlined
in the previous section relative to a standard latency-aware
approach in terms of, e.g., number of users supported with
fixed latency threshold or best latency achieved with fixed
number of users. As we are interested primarily in low latency
settings that tightly restrict the communication resources,
we consider two standard control systems whose rapidly
changing state requires high sampling rates, and consequently
a communication latency on the order of milliseconds. The
parameters for the simulation setup are provided in Table
III. The wireless fading channel modeled using IEEE Indoor
Channel Model E. In our performance analysis, we use link
layer abstractions commonly used for wireless system level
simulations (SLS) to model the wireless physical layer. In this
approach, the AWGN SINR-BLER curves are used to evaluate
the packet delivery rate function g(h, xt, ¢); note that the curves
are evaluated at the effective SNR (ESINR) values that take
into account the instantaneous fading channel conditions and
selected MCS. The transmission time 7(u, ) is computed in
the simulations using the associated data rates of an MCS in
Table I for a 100 byte packet and overhead (e.g. TFs) of the
802.11ax specifications. The latency overhead for this setting
amounts to approximately 79 ~ 100us.

A. Inverted pendulum system

We perform an initial set of simulations on the well-studied
problem of controlling a series of inverted pendulums on a
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horizontal cart. While conceptually simple, the highly unstable
dynamics of the inverted pendulum make it a representative
example of control system that requires fast control cycles,
and subsequently low-latency communications when being
controlled over a wireless medium. Consider a series of m
identical inverted pendulums, as pictured in Figure 3. Each
pendulum of length L is attached at one end to a cart that
can move along a single, horizontal axis. The position of the
pendulum changes by the effects of gravity and the force
applied to the linear cart. For our experiments, we use the
modeling of the inverted pendulum as provided by Quanser
[38]. The state is p = 4 dimensional vector that maintains
the position and velocity of the cart along the horizontal axis,
and the angular position and velocity of the pendulum, i.e.
X 1= [Ii,k,ii,kﬁi,k,éi,k]- The system input u; j, reflects a
horizontal force placed upon ith pendulum. By applying a
zeroth order hold on the continuous dynamics with a state
sampling rate of 0.01 seconds and linearizing, we obtained the
following discrete linear dynamic matrices of the pendulum
system

1 0.037 3477 0.042 0.034

0 2.055 —0.722 4.828 0.168
Ai=10 0023 001 0037 B = o019 OP

0 0.677 —0.453 2.055 0.105

Because the state x; ;, measures the angle of the ¢th pendulum
at time k, the goal is to keep this close to zero, signifying
that the pendulum remains upright. The input matrix K is
computed to be a standard LQR-controller.

We perform a set of simulations scheduling the transmissions
to control a series of inverted pendulums, varying both the
latency threshold 7,,,x and number of devices m. We perform
the scheduling using the proposed CALLS method for control-
aware low latency scheduling an, as a point of comparison,
consider scheduling using a fixed “high-reliability” PDR of
0.99 for all devices. Each simulation is run for a total of 1000
seconds and is deemed “successful” if all pendulums remain
upright for the entire run. We perform 100 such simulations for
each combination of latency threshold and number of devices
to determine how many devices we can support at each latency
threshold using both the CALLS and fixed-PDR methods for
scheduling.

In Figure 4 we show the results of a representative simulation
of the control of m = 25 pendulum systems with a latency
bound of Tymax = 1073 seconds. In both graphs we show the
average distance from the center vertical of each pendulum
over the course of 1000 seconds. In the top figure, we see
by using the control-aware CALLS method we are able to
keep each of the 25 pendulums close to the vertical for the
whole simulation. Meanwhile, using the standard fixed PDR,
we are unable to meet the scheduling limitations imposed by
the latency threshold, and many of the pendulums swing are
unable to be kept upright, as signified by the large deviations
from the origin. This is due to the fact that certain pendulums
were not scheduled when most critical, and they subsequently
became unstable.

We present in Figure 5 the final capacity results obtained over
all the simulations. We say that a scheduling method was able
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Figure 4: Average pendulum distance to center vertical for
m = 25 devices using (top) CALLS and (bottom) fixed-PDR
scheduling with 7, = 1 ms latency threshold. The proposed
control aware scheme keeps all pendulums close to the vertical,
while fixed-PDR scheduling cannot.

60 7
55
50 0O Fixed PDR 0O CALLS |
el
2
% 40 - 36 |
2
§ 30 + 28 |
5 19
° | .
- 20
12
10 ﬁﬂ i
T T |
0.5 ms 1 ms 1.5 ms

Figure 5: Total number of inverted pendulum devices that can
be controlled using Fixed-PDR and CALLS scheduling for
various latency thresholds.

to successfully serve m’ devices if it keeps all devices within
a |0; x| < 0.05 error region for 100 independent simulations.
Observe that the proposed approach is able to increase the
number of devices supported in each case, with up to 1.5
factor increase over the standard fixed PDR approach. Indeed,
the proposed CALLS method is able to allocate the available
resource in a more principled manner, which allows for the
support of more devices simultaneously being controlled.

B. Balancing board ball system

We perform another series of experiments on the wireless
control of a series of balancing board ball systems developed by
Acrome [39]. In such a system, a ball is kept on a rectangular
board with a single point of stability in the center of the
board. Two servo motors underneath the board are used to
push the board in the horizontal and vertical directions, with the
objective to keep the ball close to the center of the board. The
state here reflects the position and velocity in the horizontal
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and vertical axes, i.e. X; k = [Tk, ©i .k, Yi.k, Yi,k)- The input
u; ; = [vg, v, reflects the voltage applied to the horizontal
and vertical motors. As before, we apply a zeroth order hold
on the continuous dynamics with a state sampling rate of 0.01
seconds and linearize, thus obtaining the following dynamic
system matrices,

1 001 0 0 —0.0001 0
0 1 0 0 —0.02 0
A=y o 1 om| BT 0 —0.00008

0 0 0 1 0 —0.01

(35)

As before, we compute the control matrix K using standard
LQR-control computation.

In the simulations performed with the balancing board
system, in addition to making comparisons of the CALLS
method to a fixed PDR low latency scheduling scheme, we
perform additional comparisons to a standard control-aware
scheduling approach—namely, the event-triggered scheduling
approach [28], [29]. In event triggered scheduling, we schedule
devices only when its estimated control state goes above some
threshold value. When such an event occurs, this device is
scheduled with a fixed high reliability PDR using a low-latency
assignment based scheduling method. This, in effect, combines
the selective scheduling approach of CALLS with fixed high
reliability PDR targets commonly used in URLLC.

In Figure 6 we show the results of a representative simulation
of the control of m = 50 balancing board ball systems with
a latency bound of T,.x = 10~3 seconds. Observe that, in
this system, even with a large number of users, both the event-
triggered scheduling and the CALLS method can keep all
systems very close to the center of the board, while the fixed
PDR scheduler loses a few of the balls due to the agnosticism
of the scheduler.

To dive deeper into the benefits provided by control aware
scheduling, we present in Figure 7 a histogram of the actual
packet delivery rates each of the devices achieved over the
representative simulation. It is interesting to observe that, for the
CALLS method, the achieved PDRs are closely concentrated,
ranging from 0.3 to 0.44. On the other hand, using either event-
triggered or a fixed PDR scheduling scheme, the non-variable
rates are too strict for the low-latency system to support, and
without control-aware scheduling the achieved PDRs range
wildly from close to O to close to 1. In this case, some devices
are able to transmit almost every cycle while others are almost
never able to successfully transmit their packets. This suggests
that, by using control aware scheduling, we indirectly achieve a
sense of fairness across users over the long term. Further note
that the PDRs required to keep the balancing board ball stable,
e.g. 0.4, are relatively small. This is due to the fact that the
balancing board ball features relatively slow moving dynamics,
making it easier to control with less frequent transmissions.
This is comparison to the inverted pendulum system, in which
the pendulums were kept stable with PDRs in the range 0.6-
0.75.

We present in Figure 8 the final capacity results obtained over
all the simulations for the balancing board ball system. Observe
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Figure 6: Average ball distance to center for m = 50 devices
using (top) CALLS, (middle) event-triggered, and (bottom)
fixed-PDR scheduling with 7,,x = 1 ms latency threshold.
The control aware schemes keeps all balancing balls close to
center, while fixed-PDR scheduling cannot.
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Figure 7: Histogram of achieved PDRs in m = 50 balancing
board systems (top) CALLS, (middle) event-triggered, and
(bottom) fixed-PDR scheduling with 7,.x = 1 ms latency
threshold. The proposed CALLS method achieves similar
PDRs for all devices, while the fixed-PDR and event-triggered
scheduling results in large variation in packet delivery rates.

that proposed approach increases the number of supported
devices by factor of 2 relative to the standard fixed PDR
approach. The even greater improvement here relative to the
inverted pendulum simulations can be attributed to the slower
dynamics of the balancing board ball, which allows for even
more gains using control-aware PDRs due to the lower PDR
requirements of the system. Likewise, the Lyapunov-based
adaptive PDR requirements allow for even greater scalability
than the more standard event-triggered approach, which can
service only 17 and 50 users with 0.5 and 1 ms latency
thresholds, respectively.
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Figure 8: Total number of balancing ball board devices that can
be controlled using Fixed-PDR, Event-Triggered, and CALLS
scheduling for various latency thresholds.

VI. DISCUSSION AND CONCLUSIONS

In this paper we proposed a novel control-communication co-
design approach to solving the radio resource allocation prob-
lem for time-sensitive wireless control systems. Given a channel
state and control state, we mathematically derive a minimum
packet delivery rate a device must meet to maintain a control-
orientated target, as defined by a stability-inducing Lyapunov
function. By dynamically assigning variable packet delivery rate
targets to each device based on its current conditions, we are
able to more easily meet feasibility requirements of a latency-
constrained wireless control problem and maintain stability
and strong performance. We perform simulations on numerous
well-studied low-latency control problems to demonstrate the
benefits of using the control-aware approach, which can include
a 2x gain on number of devices that can be supported. In future
research, we aim to investigate how more sophisticated and
realistic modeling, such as non-linear control or actuation over
wireless links, may be used in this control-aware framework.

The results presented in this paper suggest an interesting
potential for control-aware resource allocation and scheduling,
particularly in low-latency industrial systems. By considering
the control-specific targets such as maintaining stability or an
error margin, we observe that the standard high reliability
targets considered in URLLC (e.g. packet delivery rates
> 0.999) can in some cases be substantially stricter than
necessary for adequate performance. Wireless control systems
with sufficiently slow dynamics can be kept stable with much
lower packet delivery rates, which in turn make low-latency
communications more achievable. Furthermore, in realistic
industrial systems there will be many heterogeneous devices
being controlled, whose variation in communication needs is
well-served by control-aware adaptivity proposed in this paper.
This suggests the potential for wireless communications to
be adopted using a smart control-communication co-design
approach even while ultra-reliable wireless system technology
remains under development.
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