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This paper presents a multi-agent flocking scheme for real-time control of homogeneous
unmanned aerial vehicles (UAVs) based on smoothed particle hydrodynamics. Swarm cohe-
sion, collision avoidance, and velocity consensus are concurrently satisfied by characterizing
the emerging macroscopic flock as a continuous fluid. Two vital implementation issues are
addressed in particular including latency in information fusion and directionality of com-
munication due to antenna patterns. Symmetric control forces are achieved by meticulous
scheduling of inter-vehicle communication to sustain the motion stability of the flock. A gener-
alized, anisotropic smoothing kernel that takes into account the relative position and attitude
between agents is adopted to address potential flocking instability introduced by communi-
cation anisotropy due to the antenna radiation pattern. The feasibility of the technique is
demonstrated experimentally using a single UAV avoiding a virtual obstacle.

I. Introduction
The evolution of robotics does not cease as highly-intelligent, fully-autonomous platforms fulfill their missions

independently at levels of sophistication that are comparable to or even superior to that of human individuals. Nature
has exhibited the power of collaboration among individuals from the same species [1, 2], regardless of their habitats,
trophic levels or stimulus, in predator evasion [3], foraging [4], migration [5], or magnification of social impact [6];
(see Fig. 1). Although far from their ultimate maturity, existing mobile robots of almost all kinds, from micro-robots [7]
to underwater vehicles [8], have been exploited to explore and reproduce the fascinating motion by those biological
swarms. More importantly, robotic networks in collaboration have shown undeniable advantages over individual
platforms in expanding the coverage of the robots, improving remote sensing efficiency, and accomplishing tasks that
are otherwise impossible for a single robot [9].

Although existing studies have achieved some success in the control of multi-robot network systems [10–14], the
presence of strong geophysical flows (Fig. 2) significantly complicates the problem. Robotic sensor nodes such as
micro aerial vehicles (MAVs) and autonomous underwater vehicles (AUVs) are often relatively small in size and limited
in actuation compared to their conventional counterparts in order to maintain cost-effective designs. Unfortunately, this
leaves them susceptible to strong environmental forces resulted from the background flows. These geophysical flows
often act as a dominating factor in sensor node mobility; therefore they can no longer be loosely treated as disturbances.
To this end, several recent studies have been focusing on the control and path planning of mobile robots in known
background flows [15–19]. However they either fail to address the complex intra-network interactions in background
flows or tackle merely agent-flow interactions, which do not reveal the macroscopic network motion under the impact
of the background flows.

Considering the recent progress in geophysical flow modeling, we believe that it is the time to start treating the
mobile sensor network and the underlying geophysical flow as a single integrated dynamical system. Due to the
relatively small sizes of the mobile agents of interest, it is reasonable to first consider the one-way coupling relationship
between the flow sub-system and the network sub-system, i.e. the sensor network motion does not alter the background
flow dynamics. The macroscopic dynamics of the sensor network as an emergent continuum is the critical link that
bridges the background flow dynamics and the local intra-network interactions. Two major sectors of this research are:
(1) understanding the emergent sensor network dynamics as a component that constitutes the integrated network-flow
dynamical system, and (2) controlling the behavior of the integrated network-flow dynamical system through altering
the sensor network configuration. To this end, it is crucial to develop a cooperative control algorithm for mobile robot
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(a) (b) (c) (d)

Fig. 1 (a) A school of smaller fish keeping their distance when a blacktip reef shark swims amongst them in
shallow water in the Maldives (Photograph by Paul Wilkinson); (b) A flock of blue-footed Booby (Sula nebouxii)
flock diving for fish around Galapagos Islands (Photograph by Winfried Wisniewski); (c) A sea of red crabs
marching down the road on Christmas Island in the Indian Ocean come to a standstill, as their annual mating
season gets underway (Photograph by Gary Tindale); (d) A Mexican wave at an American football game (taken
from [6]).

Fig. 2 Left: Hurricane Isabel. (Credit: Earth Sciences& Image Analysis Laboratory, Johnson Space Center.)
Right: General ocean circulation. (Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio.)

networks that allows emerging macroscopic dynamics resembling the underlying environment while facilitating the
control of preferable flocking behavior.

II. Abstraction in Swarm Robotics
Many techniques have been introduced in the past for vehicle swarm control include flocking, formation control,

and hierarchical cooperation control [14, 20, 21]. With few exceptions [18, 22, 23], these techniques do not account for
large background flows. Previously, we proposed a multi-vehicle control algorithm that combines both flocking control
and flock guidance [24]. Vehicles are treated as fluid particles under this control scheme. Fundamental conservation
laws governing fluid motion are applied to the vehicle fleet through smoothed particle hydrodynamics (SPH) [25],
ensuring flock cohesion and collision avoidance by satisfying the underlying conservation laws. Macroscopic fluid
properties are assigned to vehicles through local smoothing, resulting in a fully distributed control law.

III. Smoothed Particle Hydrodynamics
A complete description of fluid dynamics includes the conservation of mass, momentum, and energy, and an

equation of state that relates density, temperature and pressure. For inviscid fluids, the relevant equations are the Euler
equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂

∂t
(ρv) + ∇ · (v × (ρv)) + ∇P + Fext = 0. (2)

Here, ρ is density, v is fluid velocity, P is pressure, Fext is any external force, and t is time. Typically, an equation of
state relating the fluid density to pressure is also needed. These partial differential equations represent the fluid as a
continuum with an infinite number of degrees of freedom. SPH discretizes continuous fluid properties into individual
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particles through smoothing kernel functions W (ri j ,h), where h is the smoothing width of the kernel, and ri j = ri − r j

is the relative position vector between particles i and j. Such an approximation scheme is known to have second-order
accuracy or h2 accuracy [25, 26]. Under such a discretization scheme, the particle density equation and the conservation
of momentum can be derived from the Navier-Stokes equations as

ρi =
∑
j

W (ri j ,h)m j , (3)

dvi
dt

= −
∑
j

m j
*
,

Pi

ρ2
i

+
Pj

ρ2
j

+
-
∇iW (ri j ,h)

+
∑
j

m j
2µ
ρi ρ j

vi j
| |ri j | |

dWi j

d | |ri j | |
, (4)

for mass m and viscosity coefficient µ. The velocity vector is the time derivative of the position vector vi = ṙi . The
operator ∇i represents the gradient with respect to the coordinates of particle i, and the relative velocity between two
different particles is vi j = vi − v j . The SPH algorithm allows controlling heterogeneous vehicle swarms under the
same control scheme. Different fluid properties and behavior can be achieved through adjusting individual vehicle
properties such as smoothing length and particle mass, which allows us to introduce a reduced density particle to create
a low-pressure region that generates attractive forces for the purpose of flock guidance.

To the best of our knowledge, the first implementation of SPH in robotic swarm control was reported by [27], who
studied a sensor coverage problem with obstacle avoidance using SPH to generate local control for a robot swarm. Later,
[28] developed a two-level robot swarm control scheme using SPH to accomplish missions including robot swarm
deployment, dispatching, and flocking. Many other previous works have also used SPH in a cooperative control context
for different applications with generally good results [24, 29–33]. In many ways, SPH control is similar to control
using artificial potential fields. However, since SPH provides a complete description of fluid dynamics, it includes
more properties that are beneficial to multi-vehicle control problems. For instance, SPH includes viscous forces that
provide velocity consensus effect, which would need to be added to other artificial potential based control schemes.
Additionally, with similar force-distance potentials, the density variable in the SPH-based control scheme provides
more consistent inter-vehicle spacing control than artificial potential based control schemes.

IV. Implementation Consideration
The distributed nature of SPH makes it well-suited for practical implementations with real-time robotic systems.

However, deliberation is typically required before real-world implementation of a cooperative control algorithm in order
to account for the physical limitations of a robotic system. In this paper, we focus on addressing two implementation
issues that prevents generic SPH algorithm from being applied to a multi-UAV network. Firstly, a scheduling scheme is
designed to address the latency within inter-agent communication. Secondly, a generalized smoothing kernel function
for approximating SPH quantities is adopted to tackle the directivity constraint of inter-agent communication resulted
from the 3D dipole antenna pattern. It is known that the force calculation must be symmetric in agent-i and agent- j in
order to ensure that momentum is globally conserved [34]. Therefore, the proposed solutions to both issues guarantee
symmetry of SPH forces generation by interacting agents.

A. Communication Latency
We focus on the case where all N agents are synchronized and inter-agent communication is through schedule

broadcasting where only one agent is scheduled to broadcast its data packet to its reachable neighbors. At the end of
each broadcast cycle, a silence period is allocated for all agents to computed virtual interaction forces based on the
SPH formulation. Figure 3 briefly illustrates the communication scheduling scheme where ti indicates the time stamp
when the packet being broadcast by agent-i is generated. The span between consecutive time stamps are allocated to be
sufficiently large to accommodate the transmission of the data packet.

To enforce symmetry of the virtual interaction force, each agent uses approximated ego-state and neighbor-state
during SPH computation. We denote the data packet broadcast by agent-i at time ti as Pti ≡ dρti ,r

ti
i ,v

ti
i , v̇

ti
i c. Assuming

that the change in local flock density is negligible within one communication cycle, i.e. ρ̂tsph
i u ρtii ∀ i = 1, · · · ,N ,

agent-i performs dead-reckoning for its ego-state from ti and and for its neighbor j’s state from t j assuming the
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ji· · · · · · · · · SPH1 N

ti tjt

Fig. 3 Illustration of broadcasting schedule proposed for ensuring symmetric interaction control decision.

acceleration remains constant during dead-reckoning:

v̂i sph
i = vtii + v̇tii · ∆tsph

i , (5)

r̂i sph
i = rtii + vtii · ∆tsph

i +
1
2
· v̇tii ·

(
∆tsph

i

)2
, (6)

where the superscript “i sph" indicates dead-reckoning quantities from ti to tsph and will be omitted for the rest of
the paper. The SPH control law (4) for agent-i at tsph can be rewritten as

v̇tsph
i = −

N∑
j=1

m j
*
,

P̂i

ρ̂2
i

+
P̂j

ρ̂2
j

+
-
∇iW (r̂i j ,h)

+
∑
j

m j
2µ
ρ̂i ρ̂ j

v̂i j
| |r̂i j | |

dWi j

d | |r̂i j | |
, (7)

where pressure can be computed based on the corresponding density as P̂i = B[ ρ̂i/ρ0 − 1] with B the bulk number and
ρ0 being the natural density.

All information used in (7) is shared between agent-i and its interacting neighbor j. Therefore, virtual interaction
forces computed independently by agent-i and agent- j are symmetric, i.e. v̇tsph

i j = v̇tsph
j i . It has been pointed out by

Shapiro et al. [34] that this is a vital criterion to ensure the conservation of momentum of the macroscopic fluidic
behavior. It also helps preserve the stability characteristics of the agent network from a control perspective since
previous studies on swarm stability of a SPH-controlled swarm depends heavily on symmetry in interactions.

It is worth mentioning that the control law (7) is not an exact implementation of the SPH formulation given the actual
states of the agent network. Instead, it is an approximated realization the accuracy of which depends on the duration of
a scheduled communication cycle. For applications with aerial vehicles where inter-agent communication are through
radio frequency, we expect the approximation error to be negligible. For agent networks with large communication
delays such as underwater applications, further investigation is required justify the validity of this scheduling scheme.
Potential adversary effect due to packet loss is also not considered here and will be addressed individually in a future
effort.

B. Communication directivity
Similar to many existing cooperative control algorithms, the SPH-based flocking law does not consider the potential

communication directivity by applying an isotropic smoothing kernel function, the most popular form of which is the
cubic spline devised by Monaghan and Lattanzio [35]

W (ri j ,h) =
C
hd




4 − 6s2 + 3s3 if 0 ≤ s ≤ 1

(2 − s)3 if 1 < s ≤ 2

0 if s > 2

, (8)

where d is the dimension of the problem, h is the smoothing width, s = ‖ri j ‖/h, and C is the normalizing coefficient
that takes the value of 1/6, 5/(14π), and 1/(4π) for d = 1, 2, 3, respectively. In the case of d = 3, the smoothing kernel
shapes as a sphere, defining the region of impact (RoI) of the corresponding agent on its neighbors.

In practice, however, the RoI is dictated by the range of communication. For aerial vehicles using radio frequency
for communication, the range of communication often shows strong directivity due to the antenna radiation pattern [36].
The radiation pattern for a dipole antenna can be characterized by the normalized radiation pattern

E(θ) =

������

cos( πLλ cos θ) − cos( πLλ )
sin θ

������

2

, (9)
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x

y

z

θ

Fig. 4 Coordinate system defining used to define the radiation pattern of an antenna. Along the axis of the
antenna (i.e. the z-axis), the gain has a null value.

where L is the length of the antenna, λ is the radio signal wavelength, and θ is the polar angle (see Figure 4). The RoI
of a uniaxial antenna can be approximated by the three-dimensional radiation pattern of a half-wave dipole. Due to
the directivity of RF communication with a dipole antenna, simply defining the RoI as an isotropic sphere will lead
to potential issue when agents appear in the RoI of on another but cannot exchange information given their relative
attitude.

To account for the anisotropy of inter-agent communication and define an attitude-aware RoI for each agent, a
generalized three-dimensional smoothing kernel function is adopted such that the approximation of continuous fluid
quantities depends not only on the relative distance between interacting agents but also on their attitude. Such a
generalization was inspired by the anisotropic smoothing kernel first used by Shapiro [37, 38] for cosmological gas
dynamics, where a one-dimensional, planar, cosmological pancake collapse was simulated with a three-dimensional,
SPH code. The SPH formulation with anisotropic smoothing kernel was often named adaptive SPH (ASPH) for it
allowing the smoothing kernel to be dynamically evolving during numerical simulation.

The anisotropic smoothing scheme starts with a linear transformation G : r 7→ η such that η = Gr, where r is the
position vector of the agent and η can be considered as the normalized position vector [39]. The linear transformation is
a function of smoothing length and dictates the anisotropy of the RoI. Denoting the earth-fixed frame as {n} and the
body-fixed frame of an agent as {b}, the transformation matrix in the body frame is G {b } = diag(h1, h2, h3) in three-
dimensional case. Here hi dictates the range of RoI along each principal axis of the vehicle’s body-fixed coordinates.
The 3D RoI becomes an ellipsoid when hi are not equivalent (anisotropic) and a sphere otherwise (isotropic). In
practice, the values of hi can be properly chosen to reflect the antenna radiation pattern. Given the Euler angles (φ, θ,
ψ) of the vehicle, the transformation matrix in the inertial frame can be easily computed as

G ≡ G {n } = Rn
b · G

{b } ·
(
Rn
b

)>
, (10)

where Rn
b
∈ SO(3) is the rotational matrix determined by the Euler angles.

Implementing the generalized kernel function merely requires replacing the original isotropic kernel W (r, h) with
W (η). Similarly, a feasible form of the generalized kernel function can be

W (η) =

det(G)
4π




4 − 6‖η‖2 + 3‖η‖3 if 0 ≤ ‖η‖ ≤ 1

(2 − ‖η‖)3 if 1 < ‖η‖ ≤ 2

0 if ‖η‖ > 2

. (11)

One complexity introduced by this generalization appears when computing its gradient, which is required by the SPH
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Fig. 5 Left: The delta wing flock on display. Right: Close-up on the autopilot embarked on the delta wing.

calculation. Based on the chain rule, one can find

∇W (η) = G
∂W
∂η

+

�
�
�
��>

0

r
∂G
∂r

∂W
∂η

u G
η

‖η‖

∂W
∂‖η‖

. (12)

In the case where the antenna radiation is independent from the position of the vehicle, which is generally the case, the
second term of (12) goes to zero. Then the gradient of kernel function (11) can be calculated as

∇W (η) = det(G) G ·

1
4π

η

‖η‖




4 − 6‖η‖2 + 3‖η‖3 if 0 ≤ ‖η‖ ≤ 1

(2 − ‖η‖)3 if 1 < ‖η‖ ≤ 2

0 if ‖η‖ > 2

. (13)

Another complexity brought by the anisotropic kernel function is its dependency on the agent’s attitude. To guarantee
the symmetry of SPH interaction among agents, two extra steps are required. Firstly, the data packet transmitted among
agents is augmented to include the the Euler angles. Secondly, a symmetrization step is required for interacting agent
pairs since they possess kernel functions with different coefficients, which are functions of their own Euler angle. This
can be accomplished utilizing the symmetrization scheme introduced by Hernquist and Katz [40] such that

Wi j =
1
2

[
W (ηi ) + W (η j )

]
, (14)

where ηi ≡ Giri j and η j ≡ G jr j i .

V. Field Deployment
The experimental platform used to demonstrate the feasibility of the SPH control algorithm is described in this

section. A complete description of the system can be found in [41]. Following the description of the system, the results
from the field deployment are presented.

The platform used in the experimental validation is shown in Fig. 5, left. The aircraft has a wingspan of 37 inches
and weighs less than 0.5 kg. The UAV is equipped with the AMP custom autopilot [42]. The autopilot (Fig. 5, right)
is a collection of electronic devices, namely a GPS receiver, a radio transceiver, a barometer, an atmospheric sensor
and an MARG sensor. A MARG sensor is a single IC that houses a magnetometer, an accelerometer, and a rate gyro.
Additionally, an Xbee wireless radio can plug into headers on the underside of the autopilot board; the Xbee is used
to transmit and receive information. The autopilot controls the horizontal position of the aircraft by varying the roll
angles. Pitch and throttle are varied in order to control the altitude. The autopilot system also includes a complementary
groundstation which is comprised of a laptop and an Xbee radio.

UAV guidance is effected through a combination of two schemes: vector field guidance and SPH guidance. Let
~qfield represent the guidance vector from the vector field and let ~aSPH represent the acceleration due to the SPH force. To
obtain the total guidance vector, the guidance vector from the vector field is normalized and added to a scaled version of
the SPH acceleration vector:

~qtot = β~aSPH +
~qfield

| |~qfield | |
. (15)
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The scaling factor β allows us to control the relative strength of the two guidance schemes. For the test presented herein,
β is set to 0.2.

For this test, the vector field is used to guide the UAV to a loiter circle with a radius of 100 meters. A virtual obstacle
is placed on the eastward side of the loiter circle. The smoothing width of the obstacle is 40 meters. When the vehicle is
outside the domain of influence of the obstacle, the SPH acceleration is zero and the UAV is guided solely by the vector
field. However, when the UAV enters the domain of the obstacle, the resulting SPH pressure force repels the vehicle,
pushing it off the loiter circle. The ground track from this experiment is shown in Fig. 6.

East (m)

N
o

rt
h

 (
m

)

−200 −100 0 100 200
−150

−50

50

150

250

Fig. 6 Single vehicle avoiding a virtual obstacle. The vector field is used to guide the UAV to the loiter circle,
represented by the black dashed line. The black solid line denotes the domain of influence of the obstacle.

VI. Conclusion
This paper presents a multi-agent flocking scheme for real-time control of homogeneous unmanned aerial vehicles

(UAVs) based on smoothed particle hydrodynamics. We address two implementation issues that prevents the generic
SPH algorithm from being applied to a multi-UAV network. Firstly, we develop a scheduling scheme designed to
address the latency within inter-agent communication. Secondly, we propose a generalized smoothing kernel function
for approximating SPH quantities in order to tackle the directivity constraint of inter-agent communication resulted
from the 3D dipole antenna pattern. We succesfully implement the SPH based controller on an autonomous UAV with
limited processing capabilities.
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