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Modeling Temporal Self-Regulatory Processing in a Higher Education Biology Course 

1. Introduction 

Science education in the 21st century must not only provide students with content 

knowledge, but also the skills and dispositions necessary to be literate consumers and producers 

of scientific knowledge claims (FNBE, 2014; NRC, 2012; Rocard et al., 2007). These modern 

education goals require revisioning science instruction from traditional lecture and transmission 

models of teaching to active learning pedagogies focused upon students’ engagement in science 

practices where teachers can surface, support, and evaluate students’ ongoing conceptual 

understanding (Dirks, 2011; Haak, HilleRisLambers, Pitre, & Freeman, 2011; Kober, 2015; 

PCAST, 2012). There is growing evidence that such active pedagogies can propel students’ 

learning and ameliorate achievement gaps (e.g., Eddy & Hogan, 2014; Freeman et al., 2014), but 

students’ likelihood of capitalizing upon these pedagogies depends upon their ability to self-

regulate their learning (Greene, 2018; Sinatra & Taasoobshirazi, 2018). Self-regulated learning 

(SRL; Zimmerman, 2013) occurs when students actively pursue academic goals, and when 

necessary, effortfully enact planning, monitoring, controlling, or evaluating processes to 

maintain or adapt various aspects of learning (i.e., cognition, metacognition, motivation, affect, 

context). Such processing is not innate, but it can be acquired (Bjork, Dunlosky, & Kornell, 

2013), and students who can enact SRL effectively and efficiently are more likely to benefit from 

active learning pedagogies in science education, and to achieve academic success, than their 

peers who struggle to self-regulate (Dent & Koenka, 2016; Eilam & Reiter, 2014; Richardson, 

Abraham, & Bond, 2012; Schraw, Crippen, & Hartley, 2006). 

Modern SRL research has revealed the kinds of processing associated with success in 

science (Chen et al., 2017; Dent & Koenka, 2016), but more work is needed to understand when, 



how, and why students self-regulate or fail to do so (Ben-Eliyahu & Bernacki, 2015). Effective 

self-regulation is inherently temporal (i.e., dynamic over the various phases of learning; 

Zimmerman, 2013) and adaptive (i.e., responsive to moment-to-moment changes in context and 

performance). Investigating and understanding such SRL processing requires (a) multimodal, 

multi-channel log data regarding how students interface with content over time (Azevedo, Taub, 

& Mudrick, 2018), (b) methodologies capable of modeling these interactions, as well as (c) 

contexts in which such SRL processing has tangible effects upon academic performance 

(Bernacki, 2018). In this study, we utilized multimodal log data from a college-level, active 

learning pedagogy biology course spanning in-class (e.g., responses logged via live quizzing 

devices) and out-of-class (e.g., activity in the learning management system [LMS]) events 

alongside assessment data to understand how adaptive enactment of SRL processing over time 

could predict student performance. A better understanding of how students do and do not enact 

SRL as they move from early to later stages in a particular course, in response to changing 

internal and external conditions, is necessary for the development of the next generation of 

interventions for promoting effective self-regulation and learning in science (Johnson, Azevedo, 

& D’Mello, 2011; Schunk & Greene, 2018; Winne, 2001). 

1.2 Post-Secondary Science Education 

Despite common acknowledgment of the need for an increase in the number of science, 

technology, engineering, and mathematics (STEM) graduates, post-secondary coursework 

remains predominantly didactic, and insufficiently engaging for many students (Hurtado, Eagen, 

& Chang, 2010; Maton, Pollard, McDougall Weise, & Hrabowski, 2012; PCAST, 2012). Active 

learning pedagogies have advantages over other more traditional pedagogies by emphasizing 

student engagement during and outside of class via activities such as group work, formative 



assessments allowing instructors to surface and respond to students’ understanding, and inquiry 

as opposed to passive listening (Dirks, 2011; Freeman et al., 2014; Kober, 2015). Numerous 

researchers have found that, compared to traditional pedagogy, an active learning pedagogy is 

associated with an increase in performance for all STEM students (Crimmins & Midkiff, 2017; 

Freeman et al., 2014; Scott, Green, & Etheridge, 2016), as well as attenuation of achievement 

gaps found with underrepresented minority and first-generation college students (FGCS; Eddy & 

Hogan, 2014).  

Compared to traditional courses, many active learning courses also require students to 

engage in more and different kinds of learning activities, including online readings, inquiry, and 

formative assessments that provide students with opportunities for learning and feedback outside 

of the classroom (Scott et al., 2016). Further, in active learning courses students are responsible 

for enacting appropriate processing in through early, middle, and late phases of the course as 

well as adapting their processing across these phases accordingly. These activities are positively 

correlated with exam grades (Lieu, Wong, Asefirad, & Shaffer, 2017). Given their unfortunate 

rarity in higher education, the mere presence of active learning pedagogies and tools (e.g., 

formative assessments, online resources) does not guarantee students will know how to benefit 

from them. There is a clear need for more research on student thinking and action during active 

learning in STEM, including why students do and do not take advantage of active learning 

affordances and how such activities relate to performance (Devolder, van Braak, & Tondeur, 

2012; Eilam & Reiter, 2014; Sinatra & Taasoobshirazi, 2018; Zohar & Barzilai, 2013).  

1.2 Self-Regulated Learning 

Across multiple frameworks (e.g., Pintrich, 2000; Winne & Hadwin, 2008; Zimmerman, 

2013), SRL is generally understood to involve a loosely sequential, temporal, goal-directed, 



adaptive process in which learners, when presented with a learning task, define its features, set a 

goal and a plan for achieving it, and then engage in learning by enacting strategies. Learners’ 

motivation guides their initiation and sustainment in this process, and they supervise their own 

learning through an ongoing metacognitive monitoring process in which they consider the 

efficacy of their learning strategies for bringing them closer to their learning goal. If they are 

making progress, they sustain their efforts. If not, they adapt their tactics, or consider adjusting 

their goal to one that can be met. Effective SRL processing early in the course (e.g., defining 

tasks, planning) may differ from SRL later in the course (e.g., reviewing material, self-testing, 

monitoring efficacy and efficiency). Research has shown that these SRL processes are predictive 

of academic performance and learning across a wide-variety of contexts (Dent & Koenka, 2016; 

Devolder et al., 2012; Richardson et al., 2012; Zohar & Barzilai, 2013). 

Modern models include the assumption that SRL is not a fixed attribute but rather a set of 

learnable knowledge, skills, and dispositions (Winne & Perry, 2000). Evidence of learners’ SRL 

knowledge, skills, and dispositions can be inferred from discrete, observable events such as when 

a student highlights text or takes a practice test. Such observable events can serve as traces of 

cognitive and metacognitive processing. Researchers have made inferences about SRL 

processing via other methods as well, such as concurrent self-report of mental processes (i.e., 

think-aloud protocols, Greene, Deekens, Copeland, & Yu, 2018), and unobtrusive forms of 

ambient data collection such as log-files of students’ interactions with LMSs (Bernacki, 2018). 

Observations of SRL processing, such as those used to generate trace data, allow researchers to 

assess what learners do over time, and how they might alter their processing contingent upon the 

efficacy and efficiency of their performance (e.g., Binbasaran Tüysüzoğlu & Greene, 2015). 

Compared to retrospective self-report methods, the real-time collection of these various kinds of 



trace data, either via direct observation of student behavior, or think-aloud protocol or log-file 

data, provides greater confidence in the measurement of SRL knowledge, skills, and dispositions, 

and allows for more sophisticated analysis of their temporal and adaptive nature (Ben-Eliyahu & 

Bernacki, 2015; Bernacki, 2018; Winne, 2001; Winne & Jamieson-Noel, 2003; Zhou & Winne, 

2012).  

1.3 Temporal and Adaptive SRL with Trace Data 

SRL processes are cyclical, temporal, and adaptive in the way they unfold in light of 

current goals, prior events, and learners’ metacognitive monitoring of them (Bernacki, 2018). 

Thus, it is critical that such processes are observed at a precise level of detail so that these 

adaptations can be captured in sequence. LMS trace data afford this fine-grained level of analysis 

by recording each event distinctly within a larger log. For instance, if a student in a biology class 

clicks to access a study guide in preparation for an upcoming exam, the server logs the student’s 

identification number in the system and the timing of the request with a date, hour, minute, and 

second. The name of this study guide (e.g. “Unit 1 study guide”) is recorded in another column. 

This log can be inspected to make inferences about SRL processing (e.g., students accessing 

practice test results are engaging in metacognitive monitoring), which can be used to test 

theoretical assumptions about SRL including its temporal nature (e.g., SRL enactment early in a 

course predicts performance later in the course; Zimmerman, 2013) as well as how learners adapt 

their processing contingent upon their performance (e.g., if particular strategies lead to academic 

success then they should be continued, if not, then they should be changed; Bernacki, 2018).  

These raw data can be further enriched by creating aggregate events that all typify similar 

activities into less granular classes. Such aggregation can be helpful when it matters less what 

specific example of SRL processing learners enact than whether or how often they are enacting a 



type of SRL processing. For example, prior to an exam sometimes students access the syllabus 

and other times they access the course calendar. If the specific accessed resource matters less 

than the fact that the student is thoughtfully preparing for the exam, then researchers can classify 

both events as reflecting “planning” and measure the number of times each student engages in 

that category of activity (Bernacki, 2018; Vosicka & Bernacki, 2017). Similar aggregation can 

occur for instances of monitoring (e.g., judgment of learning, feeling of knowing) and strategy 

use (e.g., elaboration, inferencing). Such LMS aggregated event data can be used to examine the 

frequency of their occurrence within various critical periods in the course (e.g., the total number 

of planning, strategy-use, or help seeking events during the first few weeks of the course, versus 

similar data collected during a subsequent unit). Given research showing that students’ early 

SRL processing can predict later performance (Bernacki et al., 2016, 2017), it is important to 

study how to understand such processing, and how to help students enact it more effectively. 

Early research using log-file data primarily involved laboratory settings where 

researchers traced navigation and annotation behaviors (e.g., Hadwin, Nesbit, Jamieson-Noel, 

Code & Winne, 2007). Traces of classroom learning can also come from LMSs and intelligent 

tutoring systems that log students’ problem-solving performance and help-seeking behaviors 

(e.g., Azevedo et al., 2013; Bernacki, Aleven & Nokes-Malach, 2015). Our study makes a unique 

contribution to this growing literature because (1) the LMS was used in an educational context 

and thus may capture more authentic learning behaviors than tasks assigned in the lab, and (2) 

the measurement period spanned multiple units in the course, long periods of time, and 

concurrent face-to-face as well as online learning opportunities. Further, (3) materials were 

designed and posted by university instructors rather than researchers. Our data allow an 

investigation of temporal assumptions of SRL (i.e., SRL processing early in the course should 



predict subsequent performance on course assessments) as well as the adaptive nature of SRL 

(i.e., changes in SRL processing should be informed by current and predicted future 

performance). 

1.4 Purpose of this Study 

 We conducted this study to gain a better understanding of how LMS trace data can be 

used to capture the temporal and adaptive nature of SRL and how those aspects of SRL 

processing predict later course performance. Using aggregated multimodal trace and 

performance data from the first two units of an introductory college biology course, we 

investigated the following research questions: 

RQ1: Do students systematically differ in the frequency of their enactment of SRL processing 

early in the course? 

RQ2: Do these systematic differences predict course performance? 

RQ3: Do students adapt the frequency of their enactment of SRL processes over time? 

We used the first research question to determine whether there were relevant differences in 

student SRL worth investigating. Research question 2 addressed the temporal nature of SRL, 

specifically whether early SRL processing predicted later performance. Research question 3 

provided insight into whether adaptivity was associated with learning. Specifically, adaptivity 

would be supported by evidence of differences in SRL enactment across units in the biology 

course and whether those differences were associated with learning. 

2. Method 

2.1 Participants 

We examined data from a Fall 2015 Principles of Biology course (i.e., BIOL101) with 

440 registered students, but the population of our analysis was limited to the 408 students who 



registered for the course prior to the first day of class and ultimately completed the course and 

received a final letter grade. Of the 408 students, 67.16% were Female, 16.67% were members of 

an underrepresented minority group, 26.23% were a FGCS, 75% were first-year students, and 

20.10% listed biology as a primary or secondary academic major. Seven percent of students did 

not achieve the minimum course grade of 70 percent or better that was necessary for 

advancement in many of the university’s academic programs.    

2.2 Procedures 

BIOL101 was a large introductory, one-semester active learning course intended for both 

biology and non-biology majors. In addition to teaching biology concepts and competencies, the 

instructor designed the course to foster students’ learning skills. The class utilized a hybrid 

delivery model. Guided by the ICAP (i.e., interactive, constructive, active, and passive) 

framework, during class meetings students were periodically asked to work in pairs or small 

groups on active learning tasks posed by the instructor (Chi & Wylie, 2014). Outside of class, 

students were required to complete online preparatory homework assignments that provided 

immediate feedback, hints, and tutorials, as well as timed quizzes. There were four multiple 

choice exams, three unit exams and a cumulative final, all completed in-class.  

Students utilized four online systems to engage with course materials, as well as to 

communicate with peers and the professor. The university’s online LMS, Sakai (Sakai Project, 

2018), functioned as the students’ primary access to course materials. Via Sakai, students gained 

access to static course materials such as the course syllabus, active reading questions, and lecture 

notes, as well as links to the other systems and resource sites utilized throughout the course. 

Students seeking help used Sakai to contact the course instructor, make office hours 

appointments, download documents provided for regularly scheduled supplemental instruction 



sessions, and visit the websites of both the university's learning and writing centers. Students 

were also encouraged to seek and provide peer-to-peer support via the class's online discussion 

forum, called Piazza (Piazza Technologies, 2018). In addition to Sakai and Piazza, Pearson 

publishing’s (2018) dynamic learning platform, Mastering Biology, was used to deliver online, 

outside of class bi-weekly reading assessments, homework, and seven timed quizzes over the 

semester. Pearson's classroom response system, Learning Catalytics, was used to gauge student 

learning and participation during each class session. Thus, the LMS had numerous features that 

students could use to monitor and control their learning, but it did not directly teach or prompt 

SRL processing. 

2.3 Data Sources 

All the data for this study were derived from online sources. We used three of the four 

sources of multimodal student trace data in our analyses: Sakai interaction logs, Mastering 

Biology assignment item interactions, and Learning Catalytics session results. The Sakai traces 

were generated each time students performed actions such as downloading documents, clicking 

links to external websites, or scheduling office hours within the LMS. Students’ interactions with 

Mastering Biology were acquired via a standard instructor’s report available within the learning 

platform. Finally, an instructor’s report containing a student identifier, assignment titles, and 

scores was pulled from Learning Catalytics for determining students’ class attendance.      

2.4 Data Preparation 

The primary goal of our data preparation was to create a single, uniformly formatted 

event log from our three sources of student trace data. The creation of a unified event log not 

only allowed us to more easily calculate the frequency of student actions on the various web-

based systems utilized within the course, it also allowed for the analysis of SRL assumptions 



regarding temporality (i.e., SRL processing early in the course should predict subsequent 

assessment performance; RQ2) and adaptivity (i.e., changes in SRL processing across Units 

should predict subsequent assessment performance, RQ3). The unified event log contained at 

least four primary descriptive fields for each event: student identifier, timestamp, event code, and 

data source.   

Creating the unified event log started with the processing of interaction data pulled from 

Sakai, which was already formatted to contain the desired four primary fields, but there were a 

large variety of event codes at arguably different levels of descriptive granularity. Event codes 

such as “syllabus.read “and “gradebook.studentview” were easily interpreted because they 

referenced predefined content areas within the LMS, whereas other event codes such as 

“content.read” and "webcontent.read" were much more ambiguous. To resolve this issue of 

ambiguity, the URL field of those events was used to determine the specific resource referenced 

by the event and a more detailed event code was provided for the event in our unified event log. 

Event entries for office hours appointments were also created from the Sakai trace data, based 

upon signup and cancelation activity, with the time of signup as the event timestamp. Additional 

attendance related events were generated by parsing the grades reported within Pearson's 

LearningCatalytics. Although technically not trace data, a student's class attendance on a specific 

lecture day was gleaned from the presence of non-null grade entry in the LearningCatalytics 

course administrator’s grade report for that day's assignment (see Table 1 for a list of all activity 

data). 

From this fine-grained log of student activity data, we created larger categories indicative 

of common processes in SRL. For example, information acquisition is a foundational aspect of 

learning, and there are many ways students could engage in this activity. As shown in Table 1, 



students could acquire information by attending class, accessing readings, accessing exams from 

previous semester, or a number of other activities. Differences in these fine-grained activities are 

likely idiosyncratic; one student may have extensive biology background and only need to access 

prior exams to learn necessary information, whereas another student with less background may 

need to do more of the basic reading. Each student would be enacting effective SRL processing 

based upon their own idiosyncratic information acquisition needs, therefore differences in these 

fine-grained activities are likely not informative. Instead, it is more helpful to aggregate all of the 

activity data categorized as information acquisition and look at differences in student enactment 

within this larger category. Such aggregation mirrors work Greene and Azevedo (2009) 

conducted with think-aloud protocol trace data, and they found that the aggregated categories 

were better predictors of student learning than the finer-grained activity data. Table 1 shows how 

we categorized each activity coded from the server log, and the larger categories we subjected to 

data analysis. As two other examples, Metacognitive Help Seeking was comprised of two actions 

performed to schedule a help session, which we interpreted as the result of prior enacted 

metacognitive or calibration skill, such as realizing that one’s standards were not being met, and 

some kind of adaptation was needed (Winne, 2001). Our General Metacognition category was 

based on a similar assumption that accessing the gradebook or item analyses on past exam 

performance were reflective of metacognitive monitoring of performance. 

2.5 Latent Profile Analysis  

We used latent profile analysis (LPA) to investigate whether there were unobserved 

groupings (i.e., profiles) of students who systematically differed in their pretest scores and LMS 

activity across Units 1 and 2. Then, we examined whether these profiles of students, on average, 

systematically differed on exam 2 through 4 scores, as well as on their final course grade. Given 



the large number of coded activities and their likely idiosyncratic nature, we used the smaller 

number of aggregated categories as indicator variables in our LPA (Dominguez, Uesbeck, & 

Bernacki, 2016). A series of confirmatory LPA models were estimated using Mplus 8. Data-

model fit criteria included lower information criteria values, as well as statistically non-

significant Lo-Mendell-Rubin adjusted and bootstrapped likelihood ratio tests. Models with 

higher entropy values were also considered better fitting. 

3. Results 

3.1 Descriptive Statistics 

 On average, exam scores rose over the course of the semester, culminating with a fairly 

high final grade in the course (see Table 2). However, there were relatively large standard 

deviations for each exam, as well, implying variance that we attempted to model using LPA. In 

terms of LMS activity in each Unit, there was a general decrease from Unit 1 to Unit 2, except in 

the case of information acquisition activity, which rose almost 700% from Unit 1 to Unit 2. 

Metacognitive activity remaining fairly consistent in frequency across Units, whereas course 

management activity dropped. The latter finding is not surprising given that course management 

activities are expected to be higher in the beginning of the course, as students become familiar 

with the syllabus and schedule, and download necessary materials. Exam and final grade scores 

were strongly correlated, but not to the degree that multicollinearity was a concern. 

3.2 Latent Profile Analyses 

Our first research question was: Do students systematically differ in the frequency of 

their enactment of SRL processing early in the course? A series of LPAs, each increasing the 

number of tested profiles, were conducted. The latent profile indicators for each analysis 

included pretest and Exam 1 scores, as well as cognitive and metacognitive category variables 



from both Unit 1 and Unit 2. We utilized Mplus’s auxiliary function to include exams 2-4 scores 

and final course grade as outcome variables. As shown in Table 3, all information criteria, 

entropy, and likelihood-ratio tests showed improved data-model fit as the number of profiles 

were increased. However, the 4-profile analyses, despite replicating the best loglikelihood value, 

produced a model with a non-positive definite first-order derivative product matrix, indicative of 

a poor solution. The 3-profile analysis also replicated the best loglikelihood value but had no 

estimation errors. In addition, the sample sizes for the 3-profile analysis were 324, 14, and 70, 

respectively, whereas for the 4-profile analysis they were 313, 70, 19, and 6. Again, the very 

small sample sizes for the third and fourth profiles suggested this model was inferior to the three 

profile solution. An argument could be made for a 2-profile model being the best model, given 

the small sample size of one of the profiles in the 3-profile model. However, Table 3 shows that 

there were notable improvements in all indicators of data-model fit from the 2- to 3-profile 

model, thus we concluded that the 3-profile model was the optimal solution. Therefore, we were 

able to answer research question 1 in the affirmative: there were systematic differences in SRL 

processing worth investigating via research questions 2 and 3. 

3.3 Predicting Course Performance 

Our second research question addressed whether the systematic differences in early SRL 

processing found in research question 1 were predictive of course performance, and therefore 

supported one aspect of the assumption of temporality in SRL. Our LPA estimation included 

auxiliary prediction of the Exam score outcomes, similar to an ANOVA with profiles as the 

levels of the categorical independent variable. For each unit exam (i.e., exam 2, 3, and 4) as well 

as the final grade, the overall test of profile differences was statistically significant (all ps < .05), 

with Profile 3 outperforming Profile 1, which in turn outperformed Profile 2 (all ps < .05). This 



indicates that, on average, students in Profile 1 earned the highest score on each assessment, 

followed by Profile 3, with Profile 2 students earning the lowest scores (see Table 4). However, 

Profile 3 did not statistically significantly outperform Profile 1 on Exams 3 or 4 (p > .05). Given 

Profile 2’s relatively low sample size, we erred on the side of caution and focused our analyses 

on Profiles 1 and 3. Hedge’s g for Profile 1 versus Profile 3, for exams 2, 3, and 4, and for final 

grade were .304, .210, .061, and .307 respectively. These are small to medium effect sizes. 

Therefore, we found support for our second research question: on average, the systematic 

differences in early SRL processing in the course predicted subsequent course assessment 

performance. In other words, we found support for the temporality assumption of SRL models.  

The LPA results indicated overall differences in latent profile indicators across profiles. 

Descriptively, students’ average pretest and Exam 1 scores did not differ greatly between 

Profiles 1 and 3 (see Table 5 and Figure 1). On the other hand, differences in the frequency of 

SRL processing across profiles were predictive of subsequent course assessment performance 

(see Table 5 and Figure 1). During the period comprising Unit 1, students in Profile 3 interacted 

much more often in the LMS than students in Profile 1, and the same was true for the period for 

Unit 2. This difference in overall activity was mirrored in two other indicators, where students in 

Profile 3, compared to those in Profile 1, more frequently engaged in course management and 

metacognitive activities. A slight difference in information acquisition behaviors, with Profile 3 

students engaging in this more often than Profile 1, was present during the Unit 1 time period, 

but not in the Exam 2 time period. Thus, we found evidence of the temporality of SRL: the 

students in Profile 3 engaged in more frequent course management, information acquisition, and 

metacognitive activity early in the course compared to students in Profile 1, and these differences 

were associated with subsequent assessment performance, particularly for Exam 2 and final 



course grade. Our last research question was focused upon the nature of those systematic 

differences, and whether there was evidence of adaptivity in the data. 

3.4 Adaptivity in the Frequency of SRL Enactment Over Time 

Our last research question required an investigation of differences in SRL enactment 

across the first two units of the course. In both profile groups, the frequency of SRL enactment, 

as captured by our trace log, decreased from Unit 1 to Unit 2 except in the case of information 

acquisition, which showed a sharp increased from Unit 1 to Unit 2. This does suggest adaptivity, 

as students in both Profile groups decreased activities such as course management and help-

seeking and increased their attempts to learn material. Metacognition remained relatively 

consistent across units, which is not surprising given the pivotal role it plays in SRL and student 

success (Winne, 2001). However, we did not find evidence of differences in adaptivity between 

Units 1 and 2 across Profiles. For the most part, students in each Profile decreased their overall 

activity. Profile differences persisted in terms of overall activity level, course management, and 

metacognition.  

4. Discussion 

 In this study, we analyzed multimodal trace data from college students’ online activity 

during a biology course to investigate whether early SRL activity predicted subsequent 

assessment performance (i.e., temporality) as well as whether students changed their SRL 

processing after the first exam (i.e., adaptivity). Utilizing aggregated trace data within a person-

centered analysis approach, we found that when and how students engaged with active learning 

pedagogies predicted their subsequent exam performance. We found that more successful 

students engaged in more overall activity, specifically more course management and 

metacognition, their less successful peers. There was evidence of adaptivity between Unit 1 and 



Unit 2, as on average students decreased their level of activity while also increasing their 

information acquisition behaviors, but there was no evidence that this adaptivity differed across 

groups or predicted assessment performance.  

Our temporality findings align with theory and research on SRL regarding the importance 

of early task definition activities as well as the pervasive importance of metacognition 

throughout learning (Dent & Koenka, 2016; Winne, 2001; Zimmerman, 2018), providing 

additional evidence that students’ facility at this type of higher-order thinking is a powerful tool 

in 21st century learning environments (Azevedo et al., 2018). Equally as important, our findings 

further demonstrated the viability of using trace data from online course resources (i.e., LMS 

data) to inform early warning systems that might identify students who may struggle in the 

course. In our data, patterns of activity predictive of poor performance were evident within the 

first and second exam period, which is early enough for educators to intervene and change 

students’ performance trajectory (Dominguez, Bernacki, & Usebeck, 2016; Eddy & Hogan, 

2014).  

These findings support continued calls for finer-grained analyses of not only the kinds of 

SRL activities students enact, but also when and under what conditions (Schunk & Greene, 

2018). SRL theory has focused upon the phases of learning, and optimal processing during those 

phases. Expansion of SRL theory will require understanding the conditions under which optimal 

adaptation are and are not made, as well as how the timing of those adaptations affects learning 

efficiency and efficacy. Overall, our findings provide support for continued theory development 

in SRL (i.e., expanding upon the temporal, adaptive, and contingent nature of SRL; Ben-Eliyahu 

& Bernacki, 2015) as well as the importance of course management and metacognitive activities 

early in the semester, including efforts to bolster such activities when it is still possible to deliver 



remediation interventions capable of changing students’ performance trajectory (Dominguez et 

al., 2016). 

4.1 Limitations 

The fine-grained tracing of digital learning events and the analysis of their temporal and 

adaptive natures can further inform SRL theory and methodological advancements but are also 

not without limitations. These data were collected in a single context (i.e., one semester of 

biology coursework at a single university) and thus conclusions are constrained to that sample 

and course. Latent profiles are sample dependent and are a product of the context and individuals 

observed; solutions are likely to differ when those contexts and individuals differ. Results are 

further influenced by instructional design choices in terms of resources provided (i.e., LMS and 

e-texts) and learning objectives addressed and assessed on exams. Further, it is critical to 

acknowledge this was a face-to-face lecture course. Much of learning activity (i.e., all events 

involving printed or downloaded materials and those during face-to-face interactions in lecture 

sessions) went unobserved with this trace method.  

From a theoretical perspective, further validation studies must be conducted to confirm 

our inferences about students’ resources use, so that we can confidently discuss the SRL events 

described in these analyses (Vosicka & Bernacki, 2017). These threats to validity extend to 

events where students clearly engage with digital content, but the concurrent mental processes 

that unfold are not directly observed. A final threat to validity is the nature of data-driven 

analyses such as LPA. In each set of analyses, we applied a theoretical lens to determine which 

variables were appropriate to include in initial feature sets for models. Data-driven methods are 

an efficient method for handling the immense scope of data on digital learning produced by 



traced methods. It is imperative that researchers maintain a theoretical lens in developing 

targeted models and in their appraisal, validation, and reporting. 

4.2 Future Directions for Research and Practice 

Based on our findings, a key area for future research and practice involves developing 

and testing supports for learners' SRL in science learning both inside and outside of the 

classroom by (a) building prompts in the curriculum to encourage behaviors predictive of better 

course performance and (b) collaborating with campus partners to reinforce active learning 

strategies. These initiatives could be studied using randomized-control trials, with conditions 

hidden to students and instructors by using the LMS as the delivery mechanism.  

Instructors of STEM courses could be encouraged to use frequent prompts, via classroom 

instruction or the LMS, to promote more frequent and spaced online activity. In the classroom, 

instructors, teaching assistants, and recitation leaders could repeatedly prompt students to 

download lecture notes, monitor grades, and schedule an appointment with the instructor. Within 

the LMS, automatic alerts could be created for students to self-test or download materials in a 

timely manner. Similarly, an alert could be created to prompt students who do not check grades 

within hours of a new grade posting.  

Collaborations with campus partners can be built to intentionally support active learning 

pedagogies. For example, advisors and other instructional support staff could stress the 

importance of accessing course notes, reviewing outlines, and taking practice exams. We also 

recommend partnering with campus support services such as undergraduate learning centers to 

offer SRL instruction and tutoring across multiple subject areas and content-based services. The 

research literature shows that both automated and personalized, direct intervention are needed to 



help students enact appropriate temporal and contingent SRL to benefit from active learning 

pedagogies in science (Bernacki et al., 2016, 2017). 

4.3 Conclusion 

 In this study, involving college students in an introductory, active learning STEM course, 

we demonstrated relations among SRL processing measured via LMS activity and academic 

performance in the course. Specifically, we found that students who engaged in more activity 

early in the course had higher assessment scores, on average, than their peers who engaged less 

frequently with the LMS. This demonstrated evidence of temporality in SRL: early activity did 

indeed predict subsequent performance. Likewise, we showed that students did adapt their SRL 

processing from the first to second unit, but that the most successful students maintained higher 

levels of overall activity, as well as higher levels of metacognition. Students seemed to 

redistribute their activity from the first to second Unit, focusing less on course management and 

more on information acquisition. Such changes illustrate the adaptive nature of SRL, and our 

findings suggest researchers should focus on analyses of SRL processing via multiple levels of 

aggregation and across multiple modalities. Practical implications of our findings include 

directions for intervention, including systems that promote thoughtful adaptation over time. 
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Table 1 

Trace Data Category, Activity, and Description 

Category Activity Description 
Pretest Pretest Baseline assessment of biology knowledge 
Exam 1 Score Exam 1 Student’s Exam 1 grade on a scale from 0 to 100 
General Activity Presence Online session count -  login or logout of Sakai session 
Course Management   
 Announcement Read announcements in Sakai 
 Messages Interacted with message tool  
 Calendar Interacted with calendar  
 Syllabus Accessed course syllabus page   
 Lecture Notes  Accessed lecture notes ppt   

 
Class 
Objectives Accessed list of learning objectives per course unit 

 Class Outlines Accessed unit's class outline 

 
Discussion 
Board Clicked link to Piazza discussion board 

Cognitive Help Seeking   

 
Homework 
Correct Homework problem hint correct 

 
Homework 
Incorrect Homework problem hint incorrect 

Information Acquisition   
 Attendance Attended class meeting or office hours appointment 
 Current Exams Reviewed current semester exam material 

 
Previous 
Exams Reviewed previous semester exam materials   

 
Course 
Material  Clicked link to Mastering Biology 

 

Guided 
Reading 
Question Accessed units’ guided reading questions   

 
Additional 
Readings Accessed additional readings 

 

Supplemental 
Instruction 
Resources Reviewed materials provided by SI 

 
Homework 
Item Viewed homework problem without submitting 

 
Homework 
Solution Viewed solution to a homework problem 

 
Submitted 
Correct Submitted a correct homework response 



 
Submitted 
Incorrect Submitted an incorrect homework response 

 
Quiz Problem 
Correct Submitted a correct quiz response 

 
Quiz Problem 
Incorrect Submitted an incorrect quiz response 

Metacognitive Help 
Seeking   

 
Help 
Resources Clicked link to writing or learning center information 

  Signup Interacted with office hours scheduler    
General Metacognition   
 Gradebook Accessed personal gradebook   
 Item Analysis Accessed exam item analysis for exam review 
  



Table 2 

Descriptive statistics and correlations of assessments and unit 1-2 activities 

  Mean SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1) Pretest 52.88 14.56                  

Unit 1                    

2) activity 29.39 17.47 -.03                 

3) course management 34.06 17.33 -.08 .60                

4) cognitive help-seeking 0.86 1.71 -.10 .28 .42               

5) information acquisition 3.47 1.48 -.10 .61 .34 .24              

6) metacognitive help-seeking 4.18 6.88 -.07 .08 .14 .13 .46             

7) metacognition 6.29 6.17 -.06 .54 .55 .36 .23 .02            

8) Exam 1 score 73.54 14.72 .30 .09 .05 -.02 -.01 -.02 .04           

Unit 2                    

9) activity 15.54 11.05 -.04 .77 .45 .23 .53 .06 .40 .11          

10) course management 13.03 10.62 -.09 .38 .53 .25 .23 .08 .32 .04 .54         

11) cognitive help-seeking 0.35 1.24 -.06 .04 .09 .23 .04 .01 .02 -.08 .16 .20        

12) information acquisition 20.42 3.83 -.11 .13 .00 .00 .22 .02 -.04 -.22 .08 .02 -.03       

13) metacognitive help-seeking 0.93 3.41 -.08 .10 .14 .18 .39 .72 .02 -.08 .09 .04 .05 .11      

14) metacognition 6.20 4.87 -.02 .50 .40 .27 .25 .14 .54 .14 .58 .34 .03 -.02 .12     

15) Exam 2 score 79.70 14.02 .22 .08 .01 .02 -.02 -.03 .02 .59 .15 .15 -.04 -.27 -.06 .09    

16) Exam 3 score 77.42 12.91 .25 .06 .02 -.06 -.03 -.04 -.03 .56 .12 .05 -.05 -.22 -.06 .06 .53   

17) Exam 4 score 77.60 11.79 .34 .02 -.01 -.04 -.10 -.05 -.03 .70 .07 .05 -.02 -.27 -.09 .03 .65 .68  

18) Final Grade 83.41 8.99 .30 .09 .05 .00 -.04 -.04 .04 .79 .16 .13 -.02 -.33 -.08 .11 .83 .76 .88 
Note: Unit 1 or Unit 2 designation indicates that the indicator occurred during that particular time period.
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Table 3 

Latent Profile Analysis Fit Indices 

Number  

of Profiles 

AIC BIC SABIC LMR  

p-value 

bLRT  

p-value 

Entropy 

2 39323.348 39495.832 39359.386 .142 <.001 .927 

3 38728.219 38960.872 38776.829 .269 <.001 .952 

4 38307.421 38600.244 38368.603 .419 <.001 .963 

Note: AIC = Akaike Information Criteria; BIC = Bayesian Information Criteria; SABIC: sample-

adjusted Bayesian Information Criteria; LMR = Lo-Mendell-Rubin adjusted likelihood ratio test; 

bLRT = bootstrapped Likelihood Ratio Test 

  



MODELING SELF-REGULATORY PROCESSING  

   
 

33 

Table 4 

3-Profile Average Scores on Exams 2-4 and Final Grade 

Profile Sample 

Size 

Exam 2  

M(SE) 

Exam 3  

M(SE) 

Exam 4 

M(SE) 

Final Grade 

M(SE) 

 

1 324 79.048(.789) 77.189(.743) 77.720(.662) 83.085(.511)  

2 14 75.712(2.115) 70.235(3.239) 70.376(2.297) 78.402(1.831)  

3 70 83.470(1.883) 79.901(1.485) 78.484(1.551) 85.874(1.072)  

Overall Chi-

Square test 

valuesa 

 c2(2) = 7.803 c2(2) = 7.750 c2(2) = 

10.119 

c2(2) = 12.984  

a All chi-square tests statistically significant p < .05 
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Table 5 

Latent Profile Mean Estimates 

Indicator Profile 1 M(SE) Profile 2 M(SE) Profile 3 M(SE) 

Pretest 53.511(.840) 44.649(2.418) 51.613(1.968) 

Exam 1 score 73.445(.875) 63.604(3.956) 75.900(1.889) 

Unit 1 activity 23.641(1.290) 37.115(5.609) 53.687(5.717) 

Unit 1 course management 29.195(.850) 44.745(5.745) 53.845(6.799) 

Unit 1 cognitive help-seeking .521(.090) 1.925(.695) 2.164(.430) 

Unit 1 information acquisition 3.067(.096) 6.591(.501) 4.651(.347) 

Unit 1 metacognitive help-seeking 3.226(.254) 31.000(2.772) 3.245(.544) 

Unit 1 metacognition 4.607(.359) 6.422(1.363) 13.848(2.284) 

Unit 2 activity 11.857(.962) 23.043(2.786) 30.626(2.844) 

Unit 2 course management 10.54(.577) 20.046(3.382) 22.853(3.202) 

Unit 2 cognitive help-seeking .279(.070) .927(.448) .547(.194) 

Unit 2 information acquisition 20.221(.222) 22.211(1.037) 20.968(.617) 

Unit 2 metacognitive help-seeking .442(.069) 15.265(2.615) .354(.139) 

Unit 2 metacognition 4.773(.434) 9.771(2.103) 11.905(1.117) 

Note: Unit 1 or Unit 2 designation indicates that the indicator occurred during that particular 

time period. 
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