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Modeling Temporal Self-Regulatory Processing in a Higher Education Biology Course
1. Introduction

Science education in the 21% century must not only provide students with content
knowledge, but also the skills and dispositions necessary to be literate consumers and producers
of scientific knowledge claims (FNBE, 2014; NRC, 2012; Rocard et al., 2007). These modern
education goals require revisioning science instruction from traditional lecture and transmission
models of teaching to active learning pedagogies focused upon students’ engagement in science
practices where teachers can surface, support, and evaluate students’ ongoing conceptual
understanding (Dirks, 2011; Haak, HilleRisLambers, Pitre, & Freeman, 2011; Kober, 2015;
PCAST, 2012). There is growing evidence that such active pedagogies can propel students’
learning and ameliorate achievement gaps (e.g., Eddy & Hogan, 2014; Freeman et al., 2014), but
students’ likelihood of capitalizing upon these pedagogies depends upon their ability to self-
regulate their learning (Greene, 2018; Sinatra & Taasoobshirazi, 2018). Self-regulated learning
(SRL; Zimmerman, 2013) occurs when students actively pursue academic goals, and when
necessary, effortfully enact planning, monitoring, controlling, or evaluating processes to
maintain or adapt various aspects of learning (i.e., cognition, metacognition, motivation, affect,
context). Such processing is not innate, but it can be acquired (Bjork, Dunlosky, & Kornell,
2013), and students who can enact SRL effectively and efficiently are more likely to benefit from
active learning pedagogies in science education, and to achieve academic success, than their
peers who struggle to self-regulate (Dent & Koenka, 2016; Eilam & Reiter, 2014; Richardson,
Abraham, & Bond, 2012; Schraw, Crippen, & Hartley, 2006).

Modern SRL research has revealed the kinds of processing associated with success in

science (Chen et al., 2017; Dent & Koenka, 2016), but more work is needed to understand when,



how, and why students self-regulate or fail to do so (Ben-Eliyahu & Bernacki, 2015). Effective
self-regulation is inherently temporal (i.e., dynamic over the various phases of learning;
Zimmerman, 2013) and adaptive (i.e., responsive to moment-to-moment changes in context and
performance). Investigating and understanding such SRL processing requires (a) multimodal,
multi-channel log data regarding how students interface with content over time (Azevedo, Taub,
& Mudrick, 2018), (b) methodologies capable of modeling these interactions, as well as (c)
contexts in which such SRL processing has tangible effects upon academic performance
(Bernacki, 2018). In this study, we utilized multimodal log data from a college-level, active
learning pedagogy biology course spanning in-class (e.g., responses logged via live quizzing
devices) and out-of-class (e.g., activity in the learning management system [LMS]) events
alongside assessment data to understand how adaptive enactment of SRL processing over time
could predict student performance. A better understanding of how students do and do not enact
SRL as they move from early to later stages in a particular course, in response to changing
internal and external conditions, is necessary for the development of the next generation of
interventions for promoting effective self-regulation and learning in science (Johnson, Azevedo,
& D’Mello, 2011; Schunk & Greene, 2018; Winne, 2001).
1.2 Post-Secondary Science Education

Despite common acknowledgment of the need for an increase in the number of science,
technology, engineering, and mathematics (STEM) graduates, post-secondary coursework
remains predominantly didactic, and insufficiently engaging for many students (Hurtado, Eagen,
& Chang, 2010; Maton, Pollard, McDougall Weise, & Hrabowski, 2012; PCAST, 2012). Active
learning pedagogies have advantages over other more traditional pedagogies by emphasizing
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assessments allowing instructors to surface and respond to students’ understanding, and inquiry
as opposed to passive listening (Dirks, 2011; Freeman et al., 2014; Kober, 2015). Numerous
researchers have found that, compared to traditional pedagogy, an active learning pedagogy is
associated with an increase in performance for all STEM students (Crimmins & Midkiff, 2017,
Freeman et al., 2014; Scott, Green, & Etheridge, 2016), as well as attenuation of achievement
gaps found with underrepresented minority and first-generation college students (FGCS; Eddy &
Hogan, 2014).

Compared to traditional courses, many active learning courses also require students to
engage in more and different kinds of learning activities, including online readings, inquiry, and
formative assessments that provide students with opportunities for learning and feedback outside
of the classroom (Scott et al., 2016). Further, in active learning courses students are responsible
for enacting appropriate processing in through early, middle, and late phases of the course as
well as adapting their processing across these phases accordingly. These activities are positively
correlated with exam grades (Lieu, Wong, Asefirad, & Shaffer, 2017). Given their unfortunate
rarity in higher education, the mere presence of active learning pedagogies and tools (e.g.,
formative assessments, online resources) does not guarantee students will know how to benefit
from them. There is a clear need for more research on student thinking and action during active
learning in STEM, including why students do and do not take advantage of active learning
affordances and how such activities relate to performance (Devolder, van Braak, & Tondeur,
2012; Eilam & Reiter, 2014; Sinatra & Taasoobshirazi, 2018; Zohar & Barzilai, 2013).

1.2 Self-Regulated Learning
Across multiple frameworks (e.g., Pintrich, 2000; Winne & Hadwin, 2008; Zimmerman,
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adaptive process in which learners, when presented with a learning task, define its features, set a
goal and a plan for achieving it, and then engage in learning by enacting strategies. Learners’
motivation guides their initiation and sustainment in this process, and they supervise their own
learning through an ongoing metacognitive monitoring process in which they consider the
efficacy of their learning strategies for bringing them closer to their learning goal. If they are
making progress, they sustain their efforts. If not, they adapt their tactics, or consider adjusting
their goal to one that can be met. Effective SRL processing early in the course (e.g., defining
tasks, planning) may differ from SRL later in the course (e.g., reviewing material, self-testing,
monitoring efficacy and efficiency). Research has shown that these SRL processes are predictive
of academic performance and learning across a wide-variety of contexts (Dent & Koenka, 2016;
Devolder et al., 2012; Richardson et al., 2012; Zohar & Barzilai, 2013).

Modern models include the assumption that SRL is not a fixed attribute but rather a set of
learnable knowledge, skills, and dispositions (Winne & Perry, 2000). Evidence of learners” SRL
knowledge, skills, and dispositions can be inferred from discrete, observable events such as when
a student highlights text or takes a practice test. Such observable events can serve as traces of
cognitive and metacognitive processing. Researchers have made inferences about SRL
processing via other methods as well, such as concurrent self-report of mental processes (i.e.,
think-aloud protocols, Greene, Deekens, Copeland, & Yu, 2018), and unobtrusive forms of
ambient data collection such as log-files of students’ interactions with LMSs (Bernacki, 2018).
Observations of SRL processing, such as those used to generate trace data, allow researchers to
assess what learners do over time, and how they might alter their processing contingent upon the
efficacy and efficiency of their performance (e.g., Binbasaran Tiiysiizoglu & Greene, 2015).

Compared to retrospective self-report methods, the real-time collection of these various kinds of



trace data, either via direct observation of student behavior, or think-aloud protocol or log-file
data, provides greater confidence in the measurement of SRL knowledge, skills, and dispositions,
and allows for more sophisticated analysis of their temporal and adaptive nature (Ben-Eliyahu &
Bernacki, 2015; Bernacki, 2018; Winne, 2001; Winne & Jamieson-Noel, 2003; Zhou & Winne,
2012).
1.3 Temporal and Adaptive SRL with Trace Data

SRL processes are cyclical, temporal, and adaptive in the way they unfold in light of
current goals, prior events, and learners’ metacognitive monitoring of them (Bernacki, 2018).
Thus, it is critical that such processes are observed at a precise level of detail so that these
adaptations can be captured in sequence. LMS trace data afford this fine-grained level of analysis
by recording each event distinctly within a larger log. For instance, if a student in a biology class
clicks to access a study guide in preparation for an upcoming exam, the server logs the student’s
identification number in the system and the timing of the request with a date, hour, minute, and
second. The name of this study guide (e.g. “Unit 1 study guide”) is recorded in another column.
This log can be inspected to make inferences about SRL processing (e.g., students accessing
practice test results are engaging in metacognitive monitoring), which can be used to test
theoretical assumptions about SRL including its temporal nature (e.g., SRL enactment early in a
course predicts performance later in the course; Zimmerman, 2013) as well as how learners adapt
their processing contingent upon their performance (e.g., if particular strategies lead to academic
success then they should be continued, if not, then they should be changed; Bernacki, 2018).

These raw data can be further enriched by creating aggregate events that all typify similar
activities into less granular classes. Such aggregation can be helpful when it matters less what

specific example of SRL processing learners enact than whether or how often they are enacting a



type of SRL processing. For example, prior to an exam sometimes students access the syllabus
and other times they access the course calendar. If the specific accessed resource matters less
than the fact that the student is thoughtfully preparing for the exam, then researchers can classify
both events as reflecting “planning” and measure the number of times each student engages in
that category of activity (Bernacki, 2018; Vosicka & Bernacki, 2017). Similar aggregation can
occur for instances of monitoring (e.g., judgment of learning, feeling of knowing) and strategy
use (e.g., elaboration, inferencing). Such LMS aggregated event data can be used to examine the
frequency of their occurrence within various critical periods in the course (e.g., the total number
of planning, strategy-use, or help seeking events during the first few weeks of the course, versus
similar data collected during a subsequent unit). Given research showing that students’ early
SRL processing can predict later performance (Bernacki et al., 2016, 2017), it is important to
study how to understand such processing, and how to help students enact it more effectively.
Early research using log-file data primarily involved laboratory settings where
researchers traced navigation and annotation behaviors (e.g., Hadwin, Nesbit, Jamieson-Noel,
Code & Winne, 2007). Traces of classroom learning can also come from LMSs and intelligent
tutoring systems that log students’ problem-solving performance and help-seeking behaviors
(e.g., Azevedo et al., 2013; Bernacki, Aleven & Nokes-Malach, 2015). Our study makes a unique
contribution to this growing literature because (1) the LMS was used in an educational context
and thus may capture more authentic learning behaviors than tasks assigned in the lab, and (2)
the measurement period spanned multiple units in the course, long periods of time, and
concurrent face-to-face as well as online learning opportunities. Further, (3) materials were
designed and posted by university instructors rather than researchers. Our data allow an

investigation of temporal assumptions of SRL (i.e., SRL processing early in the course should



predict subsequent performance on course assessments) as well as the adaptive nature of SRL
(i.e., changes in SRL processing should be informed by current and predicted future
performance).
1.4 Purpose of this Study

We conducted this study to gain a better understanding of how LMS trace data can be
used to capture the temporal and adaptive nature of SRL and how those aspects of SRL
processing predict later course performance. Using aggregated multimodal trace and
performance data from the first two units of an introductory college biology course, we
investigated the following research questions:
RQ1: Do students systematically differ in the frequency of their enactment of SRL processing
early in the course?
RQ2: Do these systematic differences predict course performance?
RQ3: Do students adapt the frequency of their enactment of SRL processes over time?
We used the first research question to determine whether there were relevant differences in
student SRL worth investigating. Research question 2 addressed the temporal nature of SRL,
specifically whether early SRL processing predicted later performance. Research question 3
provided insight into whether adaptivity was associated with learning. Specifically, adaptivity
would be supported by evidence of differences in SRL enactment across units in the biology
course and whether those differences were associated with learning.

2. Method

2.1 Participants

We examined data from a Fall 2015 Principles of Biology course (i.e., BIOL101) with
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registered for the course prior to the first day of class and ultimately completed the course and
received a final letter grade. Of the 408 students, 67.16% were Female, 16.67% were members of
an underrepresented minority group, 26.23% were a FGCS, 75% were first-year students, and
20.10% listed biology as a primary or secondary academic major. Seven percent of students did
not achieve the minimum course grade of 70 percent or better that was necessary for
advancement in many of the university’s academic programs.

2.2 Procedures

BIOL101 was a large introductory, one-semester active learning course intended for both
biology and non-biology majors. In addition to teaching biology concepts and competencies, the
instructor designed the course to foster students’ learning skills. The class utilized a hybrid
delivery model. Guided by the ICAP (i.e., interactive, constructive, active, and passive)
framework, during class meetings students were periodically asked to work in pairs or small
groups on active learning tasks posed by the instructor (Chi & Wylie, 2014). Outside of class,
students were required to complete online preparatory homework assignments that provided
immediate feedback, hints, and tutorials, as well as timed quizzes. There were four multiple
choice exams, three unit exams and a cumulative final, all completed in-class.

Students utilized four online systems to engage with course materials, as well as to
communicate with peers and the professor. The university’s online LMS, Sakai (Sakai Project,
2018), functioned as the students’ primary access to course materials. Via Sakai, students gained
access to static course materials such as the course syllabus, active reading questions, and lecture
notes, as well as links to the other systems and resource sites utilized throughout the course.
Students seeking help used Sakai to contact the course instructor, make office hours
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sessions, and visit the websites of both the university's learning and writing centers. Students
were also encouraged to seek and provide peer-to-peer support via the class's online discussion
forum, called Piazza (Piazza Technologies, 2018). In addition to Sakai and Piazza, Pearson
publishing’s (2018) dynamic learning platform, Mastering Biology, was used to deliver online,
outside of class bi-weekly reading assessments, homework, and seven timed quizzes over the
semester. Pearson's classroom response system, Learning Catalytics, was used to gauge student
learning and participation during each class session. Thus, the LMS had numerous features that
students could use to monitor and control their learning, but it did not directly teach or prompt
SRL processing.
2.3 Data Sources

All the data for this study were derived from online sources. We used three of the four
sources of multimodal student trace data in our analyses: Sakai interaction logs, Mastering
Biology assignment item interactions, and Learning Catalytics session results. The Sakai traces
were generated each time students performed actions such as downloading documents, clicking
links to external websites, or scheduling office hours within the LMS. Students’ interactions with
Mastering Biology were acquired via a standard instructor’s report available within the learning
platform. Finally, an instructor’s report containing a student identifier, assignment titles, and
scores was pulled from Learning Catalytics for determining students’ class attendance.
2.4 Data Preparation

The primary goal of our data preparation was to create a single, uniformly formatted
event log from our three sources of student trace data. The creation of a unified event log not
only allowed us to more easily calculate the frequency of student actions on the various web-
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regarding temporality (i.e., SRL processing early in the course should predict subsequent
assessment performance; RQ2) and adaptivity (i.e., changes in SRL processing across Units
should predict subsequent assessment performance, RQ3). The unified event log contained at
least four primary descriptive fields for each event: student identifier, timestamp, event code, and
data source.

Creating the unified event log started with the processing of interaction data pulled from
Sakai, which was already formatted to contain the desired four primary fields, but there were a
large variety of event codes at arguably different levels of descriptive granularity. Event codes
such as “syllabus.read “and “gradebook.studentview” were easily interpreted because they
referenced predefined content areas within the LMS, whereas other event codes such as
“content.read” and "webcontent.read" were much more ambiguous. To resolve this issue of
ambiguity, the URL field of those events was used to determine the specific resource referenced
by the event and a more detailed event code was provided for the event in our unified event log.
Event entries for office hours appointments were also created from the Sakai trace data, based
upon signup and cancelation activity, with the time of signup as the event timestamp. Additional
attendance related events were generated by parsing the grades reported within Pearson's
LearningCatalytics. Although technically not trace data, a student's class attendance on a specific
lecture day was gleaned from the presence of non-null grade entry in the LearningCatalytics
course administrator’s grade report for that day's assignment (see Table 1 for a list of all activity
data).

From this fine-grained log of student activity data, we created larger categories indicative
of common processes in SRL. For example, information acquisition is a foundational aspect of
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students could acquire information by attending class, accessing readings, accessing exams from
previous semester, or a number of other activities. Differences in these fine-grained activities are
likely idiosyncratic; one student may have extensive biology background and only need to access
prior exams to learn necessary information, whereas another student with less background may
need to do more of the basic reading. Each student would be enacting effective SRL processing
based upon their own idiosyncratic information acquisition needs, therefore differences in these
fine-grained activities are likely not informative. Instead, it is more helpful to aggregate all of the
activity data categorized as information acquisition and look at differences in student enactment
within this larger category. Such aggregation mirrors work Greene and Azevedo (2009)
conducted with think-aloud protocol trace data, and they found that the aggregated categories
were better predictors of student learning than the finer-grained activity data. Table 1 shows how
we categorized each activity coded from the server log, and the larger categories we subjected to
data analysis. As two other examples, Metacognitive Help Seeking was comprised of two actions
performed to schedule a help session, which we interpreted as the result of prior enacted
metacognitive or calibration skill, such as realizing that one’s standards were not being met, and
some kind of adaptation was needed (Winne, 2001). Our General Metacognition category was
based on a similar assumption that accessing the gradebook or item analyses on past exam
performance were reflective of metacognitive monitoring of performance.
2.5 Latent Profile Analysis

We used latent profile analysis (LPA) to investigate whether there were unobserved
groupings (i.e., profiles) of students who systematically differed in their pretest scores and LMS
activity across Units 1 and 2. Then, we examined whether these profiles of students, on average,
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the large number of coded activities and their likely idiosyncratic nature, we used the smaller
number of aggregated categories as indicator variables in our LPA (Dominguez, Uesbeck, &
Bernacki, 2016). A series of confirmatory LPA models were estimated using Mplus 8. Data-
model fit criteria included lower information criteria values, as well as statistically non-
significant Lo-Mendell-Rubin adjusted and bootstrapped likelihood ratio tests. Models with
higher entropy values were also considered better fitting.
3. Results

3.1 Descriptive Statistics

On average, exam scores rose over the course of the semester, culminating with a fairly
high final grade in the course (see Table 2). However, there were relatively large standard
deviations for each exam, as well, implying variance that we attempted to model using LPA. In
terms of LMS activity in each Unit, there was a general decrease from Unit 1 to Unit 2, except in
the case of information acquisition activity, which rose almost 700% from Unit 1 to Unit 2.
Metacognitive activity remaining fairly consistent in frequency across Units, whereas course
management activity dropped. The latter finding is not surprising given that course management
activities are expected to be higher in the beginning of the course, as students become familiar
with the syllabus and schedule, and download necessary materials. Exam and final grade scores
were strongly correlated, but not to the degree that multicollinearity was a concern.
3.2 Latent Profile Analyses

Our first research question was: Do students systematically differ in the frequency of
their enactment of SRL processing early in the course? A series of LPAs, each increasing the
number of tested profiles, were conducted. The latent profile indicators for each analysis

included pretest and Exam 1 scores, as well as cognitive and metacognitive category variables



from both Unit 1 and Unit 2. We utilized Mplus’s auxiliary function to include exams 2-4 scores
and final course grade as outcome variables. As shown in Table 3, all information criteria,
entropy, and likelihood-ratio tests showed improved data-model fit as the number of profiles
were increased. However, the 4-profile analyses, despite replicating the best loglikelihood value,
produced a model with a non-positive definite first-order derivative product matrix, indicative of
a poor solution. The 3-profile analysis also replicated the best loglikelihood value but had no
estimation errors. In addition, the sample sizes for the 3-profile analysis were 324, 14, and 70,
respectively, whereas for the 4-profile analysis they were 313, 70, 19, and 6. Again, the very
small sample sizes for the third and fourth profiles suggested this model was inferior to the three
profile solution. An argument could be made for a 2-profile model being the best model, given
the small sample size of one of the profiles in the 3-profile model. However, Table 3 shows that
there were notable improvements in all indicators of data-model fit from the 2- to 3-profile
model, thus we concluded that the 3-profile model was the optimal solution. Therefore, we were
able to answer research question 1 in the affirmative: there were systematic differences in SRL
processing worth investigating via research questions 2 and 3.
3.3 Predicting Course Performance

Our second research question addressed whether the systematic differences in early SRL
processing found in research question 1 were predictive of course performance, and therefore
supported one aspect of the assumption of temporality in SRL. Our LPA estimation included
auxiliary prediction of the Exam score outcomes, similar to an ANOVA with profiles as the
levels of the categorical independent variable. For each unit exam (i.e., exam 2, 3, and 4) as well
as the final grade, the overall test of profile differences was statistically significant (all ps <.05),

with Profile 3 outperforming Profile 1, which in turn outperformed Profile 2 (all ps <.05). This



indicates that, on average, students in Profile 1 earned the highest score on each assessment,
followed by Profile 3, with Profile 2 students earning the lowest scores (see Table 4). However,
Profile 3 did not statistically significantly outperform Profile 1 on Exams 3 or 4 (p > .05). Given
Profile 2’s relatively low sample size, we erred on the side of caution and focused our analyses
on Profiles 1 and 3. Hedge’s g for Profile 1 versus Profile 3, for exams 2, 3, and 4, and for final
grade were .304, .210, .061, and .307 respectively. These are small to medium effect sizes.
Therefore, we found support for our second research question: on average, the systematic
differences in early SRL processing in the course predicted subsequent course assessment
performance. In other words, we found support for the temporality assumption of SRL models.
The LPA results indicated overall differences in latent profile indicators across profiles.
Descriptively, students’ average pretest and Exam 1 scores did not differ greatly between
Profiles 1 and 3 (see Table 5 and Figure 1). On the other hand, differences in the frequency of
SRL processing across profiles were predictive of subsequent course assessment performance
(see Table 5 and Figure 1). During the period comprising Unit 1, students in Profile 3 interacted
much more often in the LMS than students in Profile 1, and the same was true for the period for
Unit 2. This difference in overall activity was mirrored in two other indicators, where students in
Profile 3, compared to those in Profile 1, more frequently engaged in course management and
metacognitive activities. A slight difference in information acquisition behaviors, with Profile 3
students engaging in this more often than Profile 1, was present during the Unit 1 time period,
but not in the Exam 2 time period. Thus, we found evidence of the temporality of SRL: the
students in Profile 3 engaged in more frequent course management, information acquisition, and
metacognitive activity early in the course compared to students in Profile 1, and these differences

were associated with subsequent assessment performance, particularly for Exam 2 and final



course grade. Our last research question was focused upon the nature of those systematic
differences, and whether there was evidence of adaptivity in the data.
3.4 Adaptivity in the Frequency of SRL Enactment Over Time

Our last research question required an investigation of differences in SRL enactment
across the first two units of the course. In both profile groups, the frequency of SRL enactment,
as captured by our trace log, decreased from Unit 1 to Unit 2 except in the case of information
acquisition, which showed a sharp increased from Unit 1 to Unit 2. This does suggest adaptivity,
as students in both Profile groups decreased activities such as course management and help-
seeking and increased their attempts to learn material. Metacognition remained relatively
consistent across units, which is not surprising given the pivotal role it plays in SRL and student
success (Winne, 2001). However, we did not find evidence of differences in adaptivity between
Units 1 and 2 across Profiles. For the most part, students in each Profile decreased their overall
activity. Profile differences persisted in terms of overall activity level, course management, and
metacognition.

4. Discussion

In this study, we analyzed multimodal trace data from college students’ online activity
during a biology course to investigate whether early SRL activity predicted subsequent
assessment performance (i.e., temporality) as well as whether students changed their SRL
processing after the first exam (i.e., adaptivity). Utilizing aggregated trace data within a person-
centered analysis approach, we found that when and how students engaged with active learning
pedagogies predicted their subsequent exam performance. We found that more successful
students engaged in more overall activity, specifically more course management and

metacognition, their less successful peers. There was evidence of adaptivity between Unit 1 and



Unit 2, as on average students decreased their level of activity while also increasing their
information acquisition behaviors, but there was no evidence that this adaptivity differed across
groups or predicted assessment performance.

Our temporality findings align with theory and research on SRL regarding the importance
of early task definition activities as well as the pervasive importance of metacognition
throughout learning (Dent & Koenka, 2016; Winne, 2001; Zimmerman, 2018), providing
additional evidence that students’ facility at this type of higher-order thinking is a powerful tool
in 21% century learning environments (Azevedo et al., 2018). Equally as important, our findings
further demonstrated the viability of using trace data from online course resources (i.e., LMS
data) to inform early warning systems that might identify students who may struggle in the
course. In our data, patterns of activity predictive of poor performance were evident within the
first and second exam period, which is early enough for educators to intervene and change
students’ performance trajectory (Dominguez, Bernacki, & Usebeck, 2016; Eddy & Hogan,
2014).

These findings support continued calls for finer-grained analyses of not only the kinds of
SRL activities students enact, but also when and under what conditions (Schunk & Greene,
2018). SRL theory has focused upon the phases of learning, and optimal processing during those
phases. Expansion of SRL theory will require understanding the conditions under which optimal
adaptation are and are not made, as well as how the timing of those adaptations affects learning
efficiency and efficacy. Overall, our findings provide support for continued theory development
in SRL (i.e., expanding upon the temporal, adaptive, and contingent nature of SRL; Ben-Eliyahu
& Bernacki, 2015) as well as the importance of course management and metacognitive activities

early in the semester, including efforts to bolster such activities when it is still possible to deliver



remediation interventions capable of changing students’ performance trajectory (Dominguez et
al., 2016).
4.1 Limitations

The fine-grained tracing of digital learning events and the analysis of their temporal and
adaptive natures can further inform SRL theory and methodological advancements but are also
not without limitations. These data were collected in a single context (i.e., one semester of
biology coursework at a single university) and thus conclusions are constrained to that sample
and course. Latent profiles are sample dependent and are a product of the context and individuals
observed; solutions are likely to differ when those contexts and individuals differ. Results are
further influenced by instructional design choices in terms of resources provided (i.e., LMS and
e-texts) and learning objectives addressed and assessed on exams. Further, it is critical to
acknowledge this was a face-to-face lecture course. Much of learning activity (i.e., all events
involving printed or downloaded materials and those during face-to-face interactions in lecture
sessions) went unobserved with this trace method.

From a theoretical perspective, further validation studies must be conducted to confirm
our inferences about students’ resources use, so that we can confidently discuss the SRL events
described in these analyses (Vosicka & Bernacki, 2017). These threats to validity extend to
events where students clearly engage with digital content, but the concurrent mental processes
that unfold are not directly observed. A final threat to validity is the nature of data-driven
analyses such as LPA. In each set of analyses, we applied a theoretical lens to determine which
variables were appropriate to include in initial feature sets for models. Data-driven methods are

an efficient method for handling the immense scope of data on digital learning produced by



traced methods. It is imperative that researchers maintain a theoretical lens in developing
targeted models and in their appraisal, validation, and reporting.
4.2 Future Directions for Research and Practice

Based on our findings, a key area for future research and practice involves developing
and testing supports for learners' SRL in science learning both inside and outside of the
classroom by (a) building prompts in the curriculum to encourage behaviors predictive of better
course performance and (b) collaborating with campus partners to reinforce active learning
strategies. These initiatives could be studied using randomized-control trials, with conditions
hidden to students and instructors by using the LMS as the delivery mechanism.

Instructors of STEM courses could be encouraged to use frequent prompts, via classroom
instruction or the LMS, to promote more frequent and spaced online activity. In the classroom,
instructors, teaching assistants, and recitation leaders could repeatedly prompt students to
download lecture notes, monitor grades, and schedule an appointment with the instructor. Within
the LMS, automatic alerts could be created for students to self-test or download materials in a
timely manner. Similarly, an alert could be created to prompt students who do not check grades
within hours of a new grade posting.

Collaborations with campus partners can be built to intentionally support active learning
pedagogies. For example, advisors and other instructional support staff could stress the
importance of accessing course notes, reviewing outlines, and taking practice exams. We also
recommend partnering with campus support services such as undergraduate learning centers to
offer SRL instruction and tutoring across multiple subject areas and content-based services. The

research literature shows that both automated and personalized, direct intervention are needed to



help students enact appropriate temporal and contingent SRL to benefit from active learning
pedagogies in science (Bernacki et al., 2016, 2017).
4.3 Conclusion

In this study, involving college students in an introductory, active learning STEM course,
we demonstrated relations among SRL processing measured via LMS activity and academic
performance in the course. Specifically, we found that students who engaged in more activity
early in the course had higher assessment scores, on average, than their peers who engaged less
frequently with the LMS. This demonstrated evidence of temporality in SRL: early activity did
indeed predict subsequent performance. Likewise, we showed that students did adapt their SRL
processing from the first to second unit, but that the most successful students maintained higher
levels of overall activity, as well as higher levels of metacognition. Students seemed to
redistribute their activity from the first to second Unit, focusing less on course management and
more on information acquisition. Such changes illustrate the adaptive nature of SRL, and our
findings suggest researchers should focus on analyses of SRL processing via multiple levels of
aggregation and across multiple modalities. Practical implications of our findings include

directions for intervention, including systems that promote thoughtful adaptation over time.
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Table 1

Trace Data Category, Activity, and Description

Category Activity Description
Pretest Pretest Baseline assessment of biology knowledge
Exam 1 Score Exam 1 Student’s Exam 1 grade on a scale from 0 to 100
General Activity Presence Online session count - login or logout of Sakai session
Course Management

Announcement Read announcements in Sakai

Messages Interacted with message tool

Calendar Interacted with calendar

Syllabus Accessed course syllabus page

Cognitive Help Seeking

Information Acquisition

Lecture Notes
Class
Objectives
Class Outlines
Discussion
Board

Homework
Correct
Homework
Incorrect

Attendance
Current Exams
Previous
Exams
Course
Material
Guided
Reading
Question
Additional
Readings
Supplemental
Instruction
Resources
Homework
Item
Homework
Solution
Submitted
Correct

Accessed lecture notes ppt

Accessed list of learning objectives per course unit
Accessed unit's class outline

Clicked link to Piazza discussion board

Homework problem hint correct
Homework problem hint incorrect

Attended class meeting or office hours appointment
Reviewed current semester exam material

Reviewed previous semester exam materials

Clicked link to Mastering Biology

Accessed units’ guided reading questions

Accessed additional readings

Reviewed materials provided by SI
Viewed homework problem without submitting
Viewed solution to a homework problem

Submitted a correct homework response



Metacognitive Help
Seeking

General Metacognition

Submitted
Incorrect
Quiz Problem
Correct

Quiz Problem
Incorrect

Help
Resources
Signup

Gradebook
Item Analysis

Submitted an incorrect homework response
Submitted a correct quiz response

Submitted an incorrect quiz response

Clicked link to writing or learning center information
Interacted with office hours scheduler

Accessed personal gradebook
Accessed exam item analysis for exam review




Table 2

Descriptive statistics and correlations of assessments and unit 1-2 activities

Mean SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1) Pretest 52.88  14.56
Unit 1

2) activity 29.39 1747  -.03

3) course management 34.06 17.33 -.08 .60

4) cognitive help-seeking 0.86 1.71 -10 .28 42

5) information acquisition 3.47 1.48 -10 .61 34 24

6) metacognitive help-seeking 4.18 6.88 -.07 .08 .14 13 46

7) metacognition 6.29 6.17 -.06 .54 55 .36 23 .02
8) Exam 1 score 73.54  14.72 .30 .09 .05  -02 -01 -02 .04
Unit 2

9) activity 15.54  11.05 -04 .77 45 23 .53 .06 40 A1

10) course management 13.03 10.62  -.09 .38 53 25 23 .08 32 .04 54

11) cognitive help-seeking 0.35 1.24 -.06 .04 .09 23 .04 .01 .02 -08 .16 .20

12) information acquisition 20.42 3.83 -11 13 .00 .00 22 02 -04 -22 .08 .02 -03

13) metacognitive help-seeking 0.93 341 -.08 .10 .14 18 .39 72 .02  -08 .09 .04 .05 A1

14) metacognition 6.20 4.87 -02 .50 40 27 25 .14 .54 .14 .58 34 03 -02 .12
15) Exam 2 score 79.70  14.02 22 .08 .01 .02 -02 -03 .02 .59 15 A5 -04  -27  -06 .09
16) Exam 3 score 7742 1291 25 .06 02 -06 -03 -04 -03 .56 12 05 -05 -22 -06 .06 .53
17) Exam 4 score 77.60  11.79 34 .02 -01 -04 -10 -05 -03 .70 .07 05 -02 -27 -09 .03 .65 .68
18) Final Grade 83.41 8.99 .30 .09 .05 .00  -04 -04 .04 .79 .16 A3 -02  -33  -08 .11 .83 .76 .88

Note: Unit 1 or Unit 2 designation indicates that the indicator occurred during that particular time period.



Table 3

Latent Profile Analysis Fit Indices

Number AIC BIC SABIC LMR  bLRT  Entropy
of Profiles p-value p-value

2 39323.348 39495.832 39359.386 .142 <001  .927

3 38728.219 38960.872 38776.829 .269 <001  .952

4 38307.421 38600.244 38368.603 .419 <001  .963

Note: AIC = Akaike Information Criteria; BIC = Bayesian Information Criteria; SABIC: sample-
adjusted Bayesian Information Criteria; LMR = Lo-Mendell-Rubin adjusted likelihood ratio test;

bLRT = bootstrapped Likelihood Ratio Test
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Table 4

3-Profile Average Scores on Exams 2-4 and Final Grade

33

Profile Sample  Exam 2 Exam 3 Exam 4 Final Grade
Size M(SE) M(SE) M(SE) M(SE)

1 324 79.048(.789)  77.189(.743)  77.720(.662)  83.085(.511)

2 14 75.712(2.115) 70.235(3.239) 70.376(2.297) 78.402(1.831)

3 70 83.470(1.883) 79.901(1.485) 78.484(1.551) 85.874(1.072)

Overall Chi- r2(2)=7.803 »*2)=7.750 y*(2)= 1(2) =12.984

Square test 10.119

values®

2 All chi-square tests statistically significant p < .05
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Table 5

Latent Profile Mean Estimates

Indicator

Profile 1 M(SE) Profile 2 M(SE) Profile 3 M(SE)

Pretest

Exam 1 score

Unit 1 activity

Unit 1 course management

Unit 1 cognitive help-seeking
Unit 1 information acquisition
Unit 1 metacognitive help-seeking
Unit 1 metacognition

Unit 2 activity

Unit 2 course management

Unit 2 cognitive help-seeking
Unit 2 information acquisition
Unit 2 metacognitive help-seeking

Unit 2 metacognition

53.511(.840)
73.445(.875)
23.641(1.290)
29.195(.850)
521(.090)
3.067(.096)
3.226(.254)
4.607(.359)
11.857(.962)
10.54(.577)
279(.070)
20.221(.222)
442(.069)

4.773(.434)

44.649(2.418)
63.604(3.956)
37.115(5.609)
44.745(5.745)
1.925(.695)
6.591(.501)
31.000(2.772)
6.422(1.363)
23.043(2.786)
20.046(3.382)
927(.448)
22.211(1.037)
15.265(2.615)

9.771(2.103)

51.613(1.968)
75.900(1.889)
53.687(5.717)
53.845(6.799)
2.164(.430)
4.651(.347)
3.245(.544)
13.848(2.284)
30.626(2.844)
22.853(3.202)
547(.194)
20.968(.617)
354(.139)

11.905(1.117)

Note: Unit 1 or Unit 2 designation indicates that the indicator occurred during that particular

time period.
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