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1 Introduction

The landscape of string theory vacua has provided a rich ensemble of four dimensional
effective theories of quantum gravity, and many candidates of an ultraviolet completion of
our universe [1–3]. A large number of 4d N = 1 theories are realized by weakly-coupled
string theory on Calabi-Yau manifolds and orientifolds thereof. Such compactifications
have provided a vast set of four-dimensional effective theories enumerated by choices of
geometry and flux, and have also yielded many non-trivial computations of operators in
the low energy theory, including various candidates for BSM physics, such as interesting
cosmologies and particle spectra (see e.g. [4] for recent work).However, it is believed that
this weakly-coupled landscape is only a tiny fraction of the landscape of 4d theories coupled
to gravity that have UV completions.

In this work we endeavor to determine the prevalence or scarcity of one of the best stud-
ied corners of the landscape, weakly coupled type IIB orientifold compactifications, within
its natural larger context, F-theory. F-theory [5, 6] is an intrinsically strongly-coupled
generalization of type IIB string theory on a Calabi-Yau orientifold that incorporates a
holomorphically varying axio-dilaton in the structure of an elliptically fibered Calabi-Yau
variety X. 1 In some cases a particular limit in the complex structure moduli of X, known

1 We will be interested in d = 4 compactifications, and therefore X will be a fourfold.
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as the Sen limit [7, 8], recovers weakly coupled type IIB on the base B of X, where B is
realized as an orientifold of a Calabi-Yau threefold. Interestingly, unless a strict Sen limit
is taken in a way that will be made precise, there are always regions in B where gs is O(1),
which motivates us to also study a global weak coupling limit (GWCL) that can avoid the
existence of strongly coupled regions.Whether an F-theory geometry X admits a limit in
complex structure that gives rise to a Sen limit or GWCL is determined by the geometry
of B. We study conditions under which the topology of B forbids such limits, and the
frequency with which these conditions hold in large ensembles of geometries.

Our main result is that there are relatively simple conditions on B that determine
whether there exists a Sen limit or a GWCL, and in the ensembles of bases B that we study
the probability that such a limit exists is extremely small. Specifically, in our ensemble the
fraction of bases admitting a GWCL or a Sen limit are bounded by

NGWCL
NTotal

≤ 1.1 × 10−723 NSen
NTotal

≤ 3.0 × 10−391 . (1.1)

In the discussion at the end we will argue that this probability can only shrink in ensembles
of toric bases B larger than ours, and that the low probability of the existence of these
limits should also be a feature of other ensembles.

These results suggest that the widely studied weakly coupled type IIB landscape is
but a small fraction of F-theory, and therefore also of the landscape as whole. While its
relative scarcity has been widely anticipated, this attempt to quantify it exacerbates the
need to better understand moduli stabilization in strongly coupled limits of string theory,
as well as transitions between vacua arising in different low energy effective theories that
themselves arise from different strongly coupled compactifications.

At a technical level, our results arise from understanding how seven-brane configura-
tions are modified under topological transitions. For example, specific topological transi-
tions from B to B ′ induce a transition of the associated Calabi-Yau fourfold X to X ′ that
gives rise to so-called non-Higgsable clusters (NHC) [6, 9, 10] with high probability.These
are clusters of non-trivial intersecting seven-brane configurations that exist for generic val-
ues of the complex structure of X ′ . Moduli stabilization at generic points in moduli space
can therefore achieve gauge symmetry [11]and there is increasing evidence [12–14]that
generic bases give rise to such clusters for generic moduli. For example, in the ensemble
of 4

3 × 2.96 × 10755 geometries from our previous work [14], the fraction of geometries that
exhibited non-Higgsable clusters was

NNHC
NTotal

≥ 1 − 1.01 × 10−755 , (1.2)

i.e. essentially every geometry exhibited NHCs. Furthermore, the list of individual non-
Higgsable seven-brane (NH7) structures that can exist in a cluster is rather short, though
the building blocks can be assembled into a cluster in many ways, and most of the individ-
ual seven-brane structures are intrinsically strongly coupled; see [15] for a detailed study.
Together, these facts provide strong evidence that generic points in the complex structure
moduli space of generic F-theory geometries are strongly coupled.

– 2 –



JH
E

P 02( 2018 )11 3
However,this does not preclude the existence of a Sen limit or a GWCL, since if the

gauge factors on the seven-brane are sufficiently low rank then there could exist limits in
moduli space in which the gauge factor is actually enhanced,and can be described by N
D7-branes on top of an O7-plane at weak coupling.These arise from so-called Kodaira I∗n
singular fibers. This potential loophole is the technical focus of this work, and what we
show is that if the low rank strongly coupled NH7 is tuned to I ∗

n , those or other seven-
branes in the geometry are forced to enhance beyond I∗

n , under simple conditions that occur
with high probability. These more singular seven-branes carry exceptionalgauge groups
and forbid either of the weak coupling limits.

The outline of this paper is as follows. In section 2 we review the standard Sen limit,
and introduce a global weak coupling limit that ensures g s ≪ 1 globally on a base B.
In section 3 we determine the geometric conditions for these weak coupling limits in a
large ensemble of toric bases, and find that these conditions are almost never satisfied.
In section 4 we extend this result to more general bases,constructed via gluing local
patches together,where the local patches are crepant resolutions of orbifold singularities.
In section 5 we conclude.

2 Non-trivial weak coupling limits

In this section we review the Sen limit and introduce a stricter limit where no O(1) g s

regions occur. The Sen limit is the most well-known method of recovering weakly coupled
type IIB from F-theory, by taking the string coupling to be perturbatively small [7, 8]. We
consider an F-theory compactification on an elliptically fibered Calabi-Yau fourfold π : X →
B with section over a smooth algebraic threefold base B.By a result of Nakayama [16] such
an elliptic fibration is birational to a Weierstrass model, which is described by the equation

y2 = x 3 + fx + g (2.1)

where f ∈ Γ(O B (−4K B )), g ∈ Γ(O B (−6K B )) are generic sections of appropriate powers
of the anticanonical bundle on B. The corresponding discriminant locus is given by the
vanishing of

∆ = 4f 3 + 27g2 (2.2)

which specifies the singular fibers and location of 7-branes in B. The complex structure
modulus of the elliptic fiber corresponds to the axio-dilaton

τ = C 0 + ie −φ (2.3)

which varies over the base B.Here the vacuum expectation value of φ determines the string
coupling constant as gs = eφ. The J -invariant, defined in terms of the usual j-invariant as
J := j/1728, takes the form

J =
4f 3

4f 3 + 27g2 (2.4)

As we are interested in weak coupling we need to determine the value of the axio-dilaton
from the J -invariant. Defining q = e2πiτ , at large |q| the j-invariant admits the expansion

J ≃
1
q

+ 744 + 196884q + . . . (2.5)
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Fi l i mi ni Sing. Gi τ gs

I 0 ≥ 0 ≥ 0 0 none none H ≥ 0
I n 0 0 n ≥ 2 An−1 SU(n) or Sp(⌊n/2⌋) i∞ 0
II ≥ 1 1 2 none none e2πi/3 2/

√
3

III 1 ≥ 2 3 A1 SU(2) i 1
IV ≥ 2 2 4 A2 SU(3) or SU(2) e2πi/3 2/

√
3

I ∗
0 ≥ 2 ≥ 3 6 D4 SO(8) or SO(7) or G2 H ≥ 0

I ∗
n 2 3 n ≥ 7 Dn−2 SO(2n − 4) or SO(2n − 5) i∞ 0

IV ∗ ≥ 3 4 8 E6 E6 or F4 e2πi/3 2/
√

3
III ∗ 3 ≥ 5 9 E7 E7 i 1
II ∗ ≥ 4 5 10 E8 E8 e2πi/3 2/

√
3

Table 1. Kodaira fiber F i , singularity, and gauge group Gi on the seven-brane at xi = 0 for given
l i , m i , and n i . In the second last two columns we display the minimal gs with corresponding τ .

In particular, for small |q| we have that J ∼ 1
q where |q| = exp(− 2π

gs
), and hence studying

the weak coupling limit is equivalent to studying the conditions under which J → ∞.
One can solve for gs for each Kodaira singular fiber by inverting the J -function to solve
for τ ; see e.g.[15]. τ is defined only up to an SL(2, Z) action, and so gs is not uniquely
defined. However, each Kodaira singular fiber has a minimal associated gs that cannot be
further lowered by an SL(2, Z) transformation. This information is presented in table 1.
In this sense, each 7-brane locus corresponding to a Kodaira singular fiber in table 1 can
be thought of as a boundary condition for the axio-dilaton in the internal space, where for
a fixed SL(2, Z) frame a 7-brane along a divisor Σ uniquely specifies the axio-dilaton along
Σ. Away from these 7-brane loci the axiodilaton depends on complex structure moduli,
and can be fixed by flux.

From table 1 we can see that the singularities that allow for weak coupling are the I n

series, the I∗n series, and I∗0 , which realize SU(n) or Sp(⌊n/2⌋), SO(2n − 4) or SO(2n − 5),
and SO(8) or SO(7) or G 2 gauge groups,respectively. In fact, it is precisely the SU(n),
Sp(⌊n/2⌋), SO(2n − 4), and SO(8) gauge groups that are realizable in weakly-coupled IIB
orientifold theories, and so we should expect the F-theory lift to reflect this somehow.

2.1 The Sen limit

Sen’s orientifold limit is achieved by taking the following ansatz

f = −3h 2 + ηϵ

g = −2h 3 + hηϵ  −
ϵ2χ
12

(2.6)

The J-invariant is then given by

J = −
64

!
3h2 − ηϵ

"3

ϵ2 (144h3χ − 144η2h2 − 72ηhχϵ + 3χ 2ϵ2 + 64η3ϵ)
(2.7)
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The Sen limit is the limit in which ϵ is taken to be small, 2 in which case the J -invariant
at leading order in ϵ is given by

J = h4

ϵ2(η2 − hχ)
(2.8)

It is important to note that we wish to carefully distinguish between the Sen limit, and
what we will call the strict Sen limit, in which ϵ → 0, strictly. The latter limit takes the
string coupling strictly to zero away from any 7-branes, while the former allows for small
but non-zero string coupling away from 7-branes.However, even if we take ϵ infinitesimally
small, but non-zero, we have O(1) gs regions along the loci where f = 0 or g = 0. These
sit between components of the residual I 1 locus, part of which collapses to an O7-plane
in the limit ϵ → 0. Thus, in the Sen limit, we may still have strongly coupled regions
along certain loci in the base. In the strict limit the resulting type IIB Calabi-Yau may be
identified as a double covering of the base B.

In fact, particular 7-branes known as non-Higgsable 7-branes (NH7) play a major role
in obstructing weak coupling limits. NH7s arise along a divisor D when f and g vanish
to a minimal non-zero order along D, for all choices ofcomplex structure moduli. This
implies we can write f = z n f̃ and g = z m g̃, where both n and m are greater than zero. A
key point is that I 1 and An fibers cannot arise on NH7s, as the multiplicities of vanishing
of f and g are already too high, and so for a weak coupling limit to exist we must tune to
I ∗

0 or D n on any NH7s.
Clusters of intersecting NH7s are aptly named non-Higgsable clusters (NHCs), and

they have been well-studied in the literature. Some references particularly relevant for this
paper were cited in the introduction, but we would like to briefly mention their applications
in broader contexts as well. In six dimensions, NHCs are particularly well-understood,
beginning with seminal first works [6, 9, 10] and also later studies [10, 13, 18–22] on a variety
of topics. Non-Higgsable clusters allow for gauge symmetry to arise in stabilized vacua
at generic points in moduli space [11],i.e. without tuning to high codimension in moduli
space [23–25], and may allow for a simple realization of the Standard Model in F-theory [11].
4d NHCs [26] are particularly interesting due to the fact that they can realize structure
not possible in high dimensions, such as loops [9].NHCs appear in the geometry with the
most number of flux vacua known [27], as well as in large ensembles of geometries [12].
Recently aspects of NHCs have been studied using supervised machine learning [28].

Let us understand this from the perspective of the J -invariant. The minimal non-
Higgsable 7-brane corresponds to the type II fiber, so suppose that we start with a divisor
with a type II fiber above it. Let the 7-brane locus be given by the vanishing of a local
coordinate z. Near z = 0 we can Taylor expand f and g as

f = f 0 + f 1z + f 2z2 + f 3z3 + . . .
g = g0 + g1z + g2z2 + g3z3 + . . . (2.9)

2 We would like to note that there are some subtleties in the geometric interpretation of the original Sen
limit in [7, 8], which are properly addressed in [17]. However this considerations will not play a crucial role
in our analysis.
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For a type II fiber we have f 0 = g 0 = 0, and so we can write f = z f̃ and g = z˜ g. The
J -invariant thus takes the form,

J =
4zf̃ 3

4zf̃ 3 + 27g̃2
(2.10)

This has strong coupling points along z = 0. In order to get rid of the strong coupling
point at z = 0 one can try to tune to remove the factors of z. The only way to do so is to
take g = z 2g̃, which gives a type III fiber. However, this leaves us with

J =
4f̃ 3

4f̃ 3 + 27zg̃2
(2.11)

so we are again left with strong coupling along z = 0. One can continue on in the same
fashion, until we hit the f = z 2f̃ , g = z 3g̃, which is the case of I∗0 . Here the J -invariant reads

J =
4f̃ 3

4f̃ 3 + 27g̃2
(2.12)

which does not necessarily have strong coupling along z = 0. However, if we start with
a type IV ∗ fiber it is easy to see in a similar manner that one cannot tune f and g to
eliminate all strong coupling points on 7-branes simultaneously.Therefore we confirm that
the singular fibers with possible Sen limits, where there are no regions of O(1) gs along
7-branes that carry a gauge group, are In , I ∗

n , and I ∗
0 .

One feature that distinguishes the Sen limit from the strict Sen limit is the allowed
gauge groups, as a monodromy action on the fibers can reduce the rank of the gauge group.
In the strict Sen limit the gauge group G 2 is not present, as the monodromy ramification
locus necessary to reduce SO(8) to G2 disappears as ϵ → 0 [29]. However, for finite but
small ϵ this locus can still be present, and G2 can still be realized.

If one insists on the stronger condition of a global weak-coupling limit, without any
regions of O(1) g s, the 7-brane charge needs to be cancelled everywhere locally, which
restricts us to a fiber of type I ∗

0 . In analogy to the Sen limit we now define the globalweak
coupling limit.

2.2 The global weak coupling limit

We say that a smooth algebraic threefold base B admits a global weak coupling limit
(GWCL), if the corresponding Weierstrass model π : X → B can be tuned so that g s ≪ 1
globally on the base B. As shown in e.g. [15], a necessary condition to achieve weak
coupling everywhere in B is to have an I∗0 fiber on all non-Higgsable seven branes.Indeed,
in the most generic such case, f and g take the following form

f = Fm 2 g = Gm 3 (2.13)

where m ∈ Γ(O B(−2K B )). Here F, G ∈ Γ(O B) can be thought of as complex constants
and we have non-Higgsable 7-branes along the vanishing lociof m. Moreover, m should

– 6 –
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be reduced, possibly with normal crossing singularities.Given such a parametrization, the
J-invariant thus takes the form

J =
4F3

4F3 + 27G2 (2.14)

which is indeed constant everywhere on the base.Thus, in order to achieve weak coupling,
we must take the expression 4F3 + 27G2 sufficiently small.

It suffices to parametrize F and G appropriately to take J to be arbitrarily large. Let
us take the following ansatz for the constants F and G

F := −3
G := −2 + ˜ϵ

(2.15)

where ϵ̃ is an arbitrary parameter. At small ϵ̃ we therefore have

J =
1
ϵ̃

(2.16)

We thus obtain the weak coupling limit by taking the parameter ˜ ϵ → 0, in other words,
taking G → −2.

We may thus generalize the Sen parametrization by taking the following ansatz

f = −3h 2 + ηϵ (2.17)

g = (−2 + ˜ϵ) h3 + hηϵ  −
ϵ2χ
12

(2.18)

where we simply take the transformation −2 .→ −2 + ϵ̃ in the original Sen parametrization.
By taking the limit ˜ ϵ → 0, we recover Sen’s original expressions, while successively taking
the limits ϵ → 0 and then ˜ϵ → 0 recovers our original ansatz and allows us to achieve weak
coupling everywhere in the base. In this simple case, the roles of the parameters ϵ and ϵ̃
are clear: the parameter ϵ parametrizes the distance from the elliptic fibration having only
smooth and I ∗

0 fibers, while ϵ̃ then simply determines the J -invariant globally on B once
we take ϵ → 0.

For a GWCL, any seven-brane must have an associated singular fiber that is I∗
0 , but in

general this does not uniquely determine the gauge group, due to monodromy effects.In the
case of an I∗0 fiber along a locus Σ the gauge group is determined from a monodromy-cover
Σ̃ of Σ, which takes the form ψ 3 + (f /z 2)|z=0 ψ + (g/z 3)|z=0 , where ψ is a generic section
of a particular line bundle on X [30]. If F, G ∈ Γ(O B) then the monodromy-cover has no
monodromy, and the gauge group is necessarily SO(8), as opposed to SO(7) or G2, which are
also possible with an I∗0 fiber. This is true even in the presence of multiple I∗

0 loci, as one can
explicitly check that each Dynkin node is invariant under any possible monodromy action.

We now turn to studying the geometric requirements for both of these weak coupling
limits. We first examine this in the toric setting, from which most examples so far have
been drawn.

3 Weak coupling limits on toric bases

In this section we derive rather constraining requirements for a toric base to admit either of
the two weak coupling limits. In [14] an ensemble of43 ×2.96×10 755 toric bases for F-theory

– 7 –
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was generated by crepant fourfold transitions induced by base changes from certain minimal
geometries that we will discuss. We will discuss both general toric bases and those that
are part of this ensemble.We will begin by reviewing the construction of the ensemble and
then proceed by analyzing the GWCL first as it is more restrictive and therefore simpler
than the Sen’s limit.

We first review some basic facts about toric varieties.Let B be a smooth toric variety,
corresponding to a fan Σ, and denote the rays of Σ as u i ∈ Σ(1). Writing D =

#
i ai D i ,

where the D i are the toric divisors corresponding to the rays u i , global sections Γ(O(D))
are given by points m in a lattice denoted M such that m · ui ≥ −a i for all i. In particular,
global sections of O(−6K B ) are given by m such that m · u i ≥ −6 for all i, and global
sections of O(−4K B ) are given by m such that m · u i ≥ −4. The m’s that satisfy these
conditions form lattice polytopes, which we denote ∆ g and ∆ f :

∆ f = {m ∈ Z 3 | m · vi + 4 ≥ 0 ∀ i} ∆ g = {m ∈ Z 3 | m · vi + 6 ≥ 0 ∀ i} (3.1)

which correspond to monomials via

mf ∈ ∆ f .→
$

i
xm f ·vi +4

i mg ∈ ∆ g .→
$

i
xmg ·vi +6

i (3.2)

where each xi is a homogenous coordinate on B corresponding to each vi . The most generic
forms for the sections f and g thus take the following form

f =
%

m f ∈∆ f

am f

$

i
xm f ·vi +4

i g =
%

m g∈∆ g

amg

$

i
xmg ·vi +6

i (3.3)

with the a f and ag generic complex coefficients.In the following we will be interested in
generating a large ensemble of geometries from crepant base-changing resolutions of some
minimal geometries. The minimal geometries we consider are smooth weak Fano toric
varieties associated with a fine regular star triangulation (FRST) of a 3d reflexive polytope
∆ ◦, with corresponding face fan Σ. Here fine means that all points on the polytope are
included in the triangulation, which ensures smoothness. Regularity of a triangulation
ensures that the corresponding variety is projective, and star means that every simplex
in the triangulation includes the origin, and therefore the triangulation defines a fan. A
variety V of this form is quite nice; a generic elliptic fibration over V is smooth, and thus
has no non-Higgsable clusters.The physics of such a base is then the most general, as one
can choose to tune or not to tune various gauge groups on a generic V .Therefore such V
serve as reasonable minimal geometries to generate an ensemble by blowing up.

Of key interest in this work will be the Cox ring, or the homogenous coordinate ring,
of the toric variety; in particular, the behavior of sections of line bundles under a crepant
resolution. Each of these toric varieties can be viewed as a crepant resolution of a singular
toric variety B̃, whose coordinate ring is generated by the corners (vertices) of ∆ ◦. This
toric variety may not even be simplicial, though one can make it so by appropriately
subdividing the associated fan. Resolving B̃ by triangulating ∆ ◦ introduces exceptional
toric divisors, that correspond to points interior to edges and facets of ∆ ◦. These divisors
are rigid, in the sense that they have no normal bundle deformations. This structure will
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be important both in determining if there are non-Higgsable clusters, and the presence of
either weak coupling limit.

On a toric base it will often be the case that a single base-changing resolution introduces
at least a type II fiber on one of these crepant exceptional divisors D.Therefore, to realize
either of the weak coupling limits we must tune to an I ∗

n fiber for n ≥ 0, as the type II
non-Higgsable 7-branes eliminate the possibility of an In fiber.3 This requires f and g to
factorize as

f = c f F
$

i
s2

i g = cgG
$

i
s3

i (3.4)

where the si are irreducible polynomials that satisfy
#

i 2[si ] − F = −4K B ,
#

i 3[si ] − G =
−6K B . F and G are non-trivial polynomials that parametrize a possible I 1 locus, and cf
and cg are constants.However, as a single blowup generically forces type II on many toric
divisors, we will be mainly interested in the case that the si correspond to toric coordinates
x i .

In the following we will find that the existence of a generic toric blowup on a toric
base B naturally induces type II fibers on nearby crepant exceptional divisors.As singular
fibers can only be enhanced,we must engineer transitions to tune to singular fibers sup-
porting a GWCL or Sen limit along the starting type II fibers. It then follows, via simple
combinatorics and using necessary conditions on orders of vanishing for transitions in the
Weierstrass model, that such bases supporting either limit are scarce, and always admit
multiple transitions to bases prohibiting either limit.

On the level of the geometry, as we blowup and move away from the Fano regime,
we can picture the space of sections of the anticanonicalbundle gradually shrinking, and
its base locus, i.e. the common locus of all the sections, enlarging simultaneously. Such a
base locus will typically correspond (in our case) to rigid crepant exceptional divisors, and
therefore the existence of rigid crepant exceptional divisors is crucial to an obstruction of
either of the weak coupling limits.

3.1 Trees of F-theory geometries

In this section we give a brief overview of the ensemble of F-theory geometries constructed
in [14]. This is the largest ensemble of Calabi-Yau fourfolds known, and the scarcity of
weak coupling limits in this ensemble provides strong evidence against the existence of
weak coupling limits for a generic Calabi-Yau fourfold. We will henceforth refer to the
corresponding bases of the elliptic fibration as toric tree bases.

Let B be a smooth weak Fano toric threefold induced by a crepant resolution of a Fano
toric threefold corresponding to a 3d reflexive polytope ∆ ◦ via an FRST. Associated to
such a B is a fan consisting of 2d and 3d cones corresponding to edges and faces on facets of
∆ ◦. For a fixed facet, the number of such edges and faces is completely determined by the
number of vertices and boundary lattice points interior to each edge which is independent

3 A 1 and A 2 gauge algebras may arise from type III and IV Kodaira fibers, but these do not exist at
weak coupling. See [11, 15] for related discussion.
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v1 v2

0

2

3 3

Figure 1. A height-2 and two height-3 blowups of an edge generated by the vertices {v1, v2}.

of the choice of triangulation. Beginning from a fixed weak Fano toric threefold, transitions
to topologically distinct threefolds will be obtained via smooth toric blowups of curves or
points. These birational morphisms can be interpreted purely combinatorially at the level
of polytopes. For instance, to blowup a curve, given 2 cones with generators (v0, v1, v2) and
(v1, v2, v3) we add an additional ray ve := v 1 + v2 which replaces the original 2 cones with 4
cones given by the generators (v0, v1, ve), (v0, v2, ve), (v1, ve, v3), (v2, ve, v3). We can repeat
this procedure by recursively subdividing, which yields the diagram shown in figure 1 in
two dimensions, where the edge between v1 and v2 corresponds to an edge contained in a
facet, and we subdivide this edge by adding additional rays. In particular, we will refer
to the cones corresponding to a sequence of blowups as illustrated above colloquially as
“trees” which is further emphasized from the green dashed lines corresponding to new edges
resulting from these subdivisions. From such a procedure, it is clear that any additional
ray ve must take the form v e =

#
i ai vi which is a linear combination of two vertices if it

lies over an edge,or three vertices if it lies over a face, where each vi is a lattice point of
B i . Such additional rays will also be informally called “leaves” with “height” h defined by
h =

#
i ai where the heights of the leaves are labeled in the above diagram. The leaves

with h = 1 correspond to lattice points on the facet which we will refer to as “roots”.
Given a tree obtained from a sequence of subdivisions, we will refer to the height of the
tree as the height of a highest leaf.

Instead of considering all possible trees above a fixed facet, which is computationally
infeasible, we will consider trees built above individual simplices on the facet.Thus, we will
refer to trees above a fixed face or edge as face trees or edge trees, respectively.Given a fixed
height, all trees with height at most h can be classified purely via combinatorial techniques.
In particular, to visualize such a combinatorial procedure, it is fruitful to picture each tree
with its leaves projected to the base edge or face.To illustrate this, given a ground edge

v1 v2

1 1
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N # Edge Trees # Face Trees

3 5 2
4 10 17
5 50 4231
6 82 41, 873, 645

Table 2. The number of possible edge trees and face trees as a function of the maximal height h.

we may subdivide by adding a point on the edge and its corresponding height as pictured

1 1 1 2 1

1 2 3 1

1 23 1

1 3 2 3 1

where the last subdivided edge is the above tree with all its leaves projected down. In a
completely analogous fashion, a subdivision of a face may be pictured as follows

1

1 1

1

1 1
3

where the additional point with height 3 corresponds to adding a ray by summing all three
of the roots.

There is a strong constraint on the full moduli space of elliptically fibered Calabi-
Yau fourfolds which give consistent F-theory compactifications, namely the exclusion of
fourfolds containing (4, 6) divisors. It is easy to see, via a completely combinatorial argu-
ment [14], that this (4, 6) condition is satisfied by imposing an upper bound h ≤ 6 on the
height of all trees. Thus, for all heights 3 ≤ h ≤ 6, we may enumerate all possible trees
which gives the numbers in table 2.

Given a 3d reflexive polytope, we may define a corresponding ensemble S∆ ◦ . Let T (∆ ◦)
be an FRST of ∆◦. For each face or edge, we add a face or edge tree with maximal height 6.
Then, from the above table, one finds that the number of possibilities in the ensemble S∆ ◦ is

|S∆ ◦ | = 82# Ẽ on T (∆ ◦) × (41, 873, 645)# F̃ on T (∆ ◦) , (3.5)

where we define #Ẽ and # F̃ as the number of total edges and faces on T (∆◦).
Thus, for each ∆◦ of the 4, 319 reflexive polytopes, we have a corresponding ensemble

S∆ ◦ . By comparing the cardinality of all 4, 319 ensembles, there are two distinct polytopes
∆ ◦

1 and ∆ ◦
2 which give a dominating contribution to the total number of trees. The vertex
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Figure 2. The largest facets for ∆ ◦
1 and ∆ ◦

2, respectively, each with an arbitrary triangulation.

sets of these polytopes are given by

S1 = {(−1, −1, −1), (−1, −1, 5), (−1, 5, −1), (1, −1, −1)}
S2 = {(−1, −1, −1), (−1, −1, 11), (−1, 2, −1), (1, −1, −1)}

By computing the total number of edges and faces of any triangulation for both ∆ ◦
1 and

∆ ◦
2, we find that they have the same number of total edges and faces given by #Ẽ = 108

and # F̃ = 72. We find that the cardinality of each ensemble is given by

|S∆ ◦
1
| =

2.96
3

× 10755 |S∆ ◦
2
| = 2.96 × 10755 , (3.6)

where the additional factor of 1
3 in |S ∆ ◦

1
| corresponds to an order 3 symmetry obtained

by rotating one of the facets of ∆ ◦
1. Adding these numbers gives a lower bound of 4

3 ×
2.96 × 10755 threefold bases supporting topologically distinct F-theory geometries. The
ensemble generated by building trees over ∆◦

1 and ∆ ◦
2 completely dominate the ensemble

of tree geometries.These geometries will therefore serve as the “ground” on which we will
build our trees, yielding a vast number of topologically distinct bases for elliptically fibered
Calabi-Yau fourfolds. In particular, ∆ ◦

1 and ∆ ◦
2 each have a facet with 63 edges and 36

faces,which determine much of the structure of the ensemble, including the scarcity of
weak coupling limits, as we will find. The corresponding facets are shown in figure 2.

While the tree ensemble is the largest set of algorithmically-constructible threefold
bases known to date, it is important to ask whether this ensemble is an accurate repre-
sentation of the set of all threefolds that serve as good F-theory bases. We would first
like to note that it was recently shown that the number of elliptically fibered Calabi-Yau
fourfolds is finite [31]. Second, by a result of Koll´ar and Larsen [32], any base of an elliptic
Calabi-Yau variety that is not a product must be rationally connected. Toric threefold
bases, such as the ones that we have constructed, are rational,4 and although they possibly
only form a small subset of all such bases,these serve as a natural and feasible starting
point for explicit computations.

4 Rational varieties are birational to projective space, and all rational varieties are rationally connected,
though the converse is not true.
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3.2 The global weak coupling limit

As discussed above we will concentrate on the case where our I ∗
0 loci are located on the

vanishing of single toric coordinates, as opposed to the vanishing of more general polynomi-
als thereof. This will actually provide rather strict requirements on toric bases that admit
GWCLs, as blowups generically results in non-Higgsable type II fibers over particular toric
divisors, as we will discuss.

Since the existence of GWCL requires that the only singular fibers are I ∗
0 fibers, it is

natural to group the toric divisors into two sets: those that support an I ∗
0 singularity, and

those that do not. Then f and g factorize as

f = x 2
1 . . . x2pF

g = x 3
1 . . . x3pG (3.7)

Here F, G ∈ Γ(O B ), and we have I ∗
0 loci on the toric coordinates x 1, . . . , xp, and smooth

elliptic fibers over x p+1 , . . . , xn . Denote the former coordinates xa, and the latter x i . It is
simple to see that, for all m corresponding to monomials in g, we have

⟨m, ua⟩ = −3
⟨m, ui ⟩ = −6 (3.8)

The −6 condition is necessary for a smooth fiber over Di and no I1 fiber anywhere, where
the latter is necessary for a GWCL.

We now consider which toric bases B allow for a GWCL. We will see that under simple
geometric conditions on B the GWCL condition (3.8) is violated and F-theory on B does
not admit a GWCL. Let us take our base B to be obtained by a sequence of toric blowups
from one of the smooth weak Fano toric threefolds given by an FRST of a reflexive 3d
polytope ∆ ◦.

First consider a point p interior to a facet F , corresponding to a toric coordinate x p
with divisor D p. Assume that we have a type II fiber on D p, and so to realize a GWCL we
need to tune an I∗0 on Dp, then we need to include only monomials in g whose corresponding
m (see eq. (3.2)) satisfy m · p f = −3. Suppose that B indeed admits a GWCL. Then by
linearity across F , these monomials must also satisfy m · v = −3, for all v ∈ F . To see
this, express p = a 1v1 + a 2v2 + (1 − a 1 − a 2)v3, where v1, v2, v3 are vertices of F , and
a1, a2 > 0. By assumption of the existence of the GWCL we have v i · m ∈ {−3, −6} for
all m ∈ ∆ g, i = 1, 2, 3, One then sees that the only solution consistent with the GWCL is
that v i · m = −3 for all m, i = 1, 2, 3.

This immediately shows that if we start with a type II fiber on D p, we must tune an
I ∗

0 on every point on F to realize a GWCL. A similar result holds for any point p e interior
to edges: if we tune an I ∗

0 on pe, then we must have I ∗
0 on the entire edge.

Let us now start with a toric base geometry corresponding to an FRST of a 3d reflexive
polytope, and consider the effect of toric blowups. Here we are simply blowing up in a
coordinate patch, so that the blowup divisors are generated by two or three rays in Σ that
belong to a common cone.Each blowup ray can then be written as ve =

#
i ai ui . In general,
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the blowing up of B will reduce the number of sections of O(−4K B ) and O(−6K B ), since
adding rays to the fan induces more hyperplane constraints on ∆f and ∆ g. Without loss of
generality we will concentrate on ∆g, since the result for ∆f is nearly identical. Assume that
we have an I∗0 on a point interior to a facet F , which implies I ∗

0 fibers on all toric divisors
corresponding to points on F .Now consider two intersecting toric divisors D1 and D2, with
corresponding rays v1 and v2 on F . Let us build a tree above the edge defined by {v1, v2}.
There will then be corresponding divisors of the form D = a 1D1 + a2D2, and we have

mult D (g) = ⟨m, a 1v1 + a 2v2⟩ + 6 = −3(a 1 + a2) + 6 = −3h + 6 (3.9)

for all m ∈ ∆ g. Thus, for any h ≥ 3 blowup, it must be the case that m /∈ ∆ g and therefore
that the monomials supporting I ∗

0 fibers above all points in F are absent. That is, the
condition (3.8) is violated and the GWCL is spoiled, as the multiplicity of vanishing in f
and g is greater than that in I ∗

0 ; i.e. a IV ∗ , III ∗ , or II ∗ fiber is obtained, all of which
correspond to seven-branes with exceptional geometric gauge group, none of which admit
a weak coupling limit. An even stricter result holds for face blowups:any face blowup nec-
essarily has h ≥ 3, and so any face blowup necessarily eliminates the monomials allowing
for I ∗

0 fibers, and therefore also spoils the GWCL.
A similar result hold for a point interior to a polytope edge e.Let us assume we have at

least a type II fiber on the divisor corresponding to such a point, which implies that there
are I ∗

0 fibers on all toric divisors corresponding to points on e. Now consider two of these
toric divisors D 1 and D2, with corresponding rays v1 and v2. If we perform a blowup using
these rays, such that D = a 1D1 + a 2D2, it is simple to see that mult D (g) = −3h + 6, and
therefore any h ≥ 3 blowup will eliminate the monomials that give the correct multiplicity
of vanishing for the points interior for e to support I ∗

0 fibers. Then the GWCL is spoiled.
Summarizing, we have a strong constraint on the toric tree bases that admit a GWCL:

a GWCL can only exist if the base is a weak Fano toric variety, or a toric resolution of a
weak Fano toric variety with blowups of height-2.

The physics of the height-2 blowups has simple interpretation as the splitting of branes.
Consider a base B with intersecting I ∗

0 singularities, that admits a GWCL. Such an in-
tersection over a curve C has M OV C (f, g) = (4, 6), and therefore admit a crepant base
change, to produce a base B′ without such intersections. The change of base to B′ intro-
duces a new divisor in B′ , which one can shrink to zero size to recover B, and so we should
not be surprised that the resolved geometry admits a GWCL as well. However, B ′ also
admits another GWCL, distinct from that of B, that results in non-intersecting I ∗

0 fibers.
Clearly, such a phenomena only occurs for height 2 blowups, as B would not admit further
base changes obtained by blowing up intersections between the exceptional divisor and the
original I ∗

0 singularities. In particular, such a B must have order of vanishing (OOV) of
(6, 9) at triple intersections p of I ∗

0 singularities which is not sufficient to admit a base
change by blowing up p. For that to occur, the OOV must be ≥ (8, 12); see the appendix
of [14] for a detailed discussion.

Let us now turn to bounding the fraction of tree toric bases that admit a GWCL. The
ensemble is overwhelmingly generated by trees over ∆◦1 and ∆ ◦

2, where a triangulation of
each of these polytopes has 72 2-simplices and 108 1-simplices.Out of the 82 possible edge
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Dn−2 Dn−1 Dn Dn+1 Dn+2

−2 + 2p −2 + p −2 −2 − p −2 − 2p

Figure 3. An edge e in ∆ ◦ with several interior points, with the corresponding dot products m · v i

labeled. For some m we have m · vn = −2. The dot products m · v i for the rest of the v i on e are
constrained by linearity. Here p is an integer.

trees 80 of them have a leaf of at least height 3, and of the 41,873,645 face trees 41,873,644
have a leaf of at least height 3, The fraction of geometries that admit a GWCLis therefore
calculated as

NGWCL
NTotal

=
&

1
41873645

' 72
×

&
2
82

' 108
≤ 1.1 × 10−723 . (3.10)

Therefore, the fraction of geometries in the tree ensemble that allow for a GWCL make
up an absolutely minuscule fraction of the total geometries.

3.3 The Sen limit

Recall from section 2 that a Sen limit is possible when all the fibers are either smooth,
I n , I ∗

0 , or I ∗
n , which is more general than the GWCL. However, we will find that the

bases that allow for a Sen limit are still very constrained. We will proceed in the same
manner as before.We consider the effect of a base-changing resolution, which forces certain
multiplicities of vanishing of f and g on divisors corresponding to points interior to faces
and edges.As before, any blowup along an edge or a face forces at least type II fibers on
every point interior to that edge or face. Let the divisors corresponding to such interior
points be Di . Assume such a blowup has been done, in which case the fiber type is at least
type II for all D i . Then each fiber above the D i must be tuned to I ∗

n to allow for a Sen
limit. A necessary condition is then f and g vanish to at least orders 2 and 3, respectively,
with M OV (∆) = 6, and so we have a similar set of conditions as in the case of the GWCL,
the only difference being that we allow for an I 1 locus in the case of a Sen limit.

First we consider an edge e of the polytope with at least one interior point. Let the
points along the edge correspond to coordinates xi , with corresponding divisors D i . Then
there must be an m f ∈ ∆ f , corresponding to a monomial in f , such that m f · vn = −2,
or there must be an mg ∈ ∆ g, corresponding to a monomial in g, such that m g · vn = −3.
Without loss of generality let us first assume the former is true, since both analyses are
nearly identical and yield the same constraints. Linearity constrains the dot products
between such an m and the rest of the vi as displayed in figure 3.

First assume that p > 0 for this m. If we perform a height-2 blow up along a one-
simplex to the right of vn then this eliminates such an m, as m · (vn + v n+1 ) = (−2) +
(−2 − p) < −4 for p > 0. Similarly, if p < 0 then a height-2 blowup to the left of vn
will eliminate such an m. Let us perform height-2 blowups on both the left and right of
vn , i.e. p = 0. It then must be the case that m · v i = −2 for all vi ∈ e. However,under
this hypothesis, a subsequent height ≥ 3 blowup anywhere along e will eliminate any such
m. Indeed, any height 3 blowup leads to a ray of the form 2v i + v i+1 and hence we have
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v0

Figure 4. The largest facet F 1 of the 3d reflexive polytope ∆ ◦
1, with an arbitrary triangulation.

A type II fiber above the divisor corresponding to v 0 places strong constraints on the existence of
the Sen limit.

m · (2vi + v i+1 ) = −6. This violates the condition for m to correspond to a monomial in f :
m · va ≤ −4 ∀ v a ∈ ∆ ◦, and therefore the monomials protecting higher than I ∗

0 vanishing
along the vi are eliminated by such a blowup.

If there are at least three points interior to an edge e one can say more.Let us consider
a divisor D corresponding to a point p in the interior of e that is not adjacent to either of
the vertices of e. Assume there is a monomial, corresponding to mf ∈ ∆ f , that has MOV
of 2 along D in f , which protects against higher than I ∗

0 MOV in f. Blowing up along
e then forces at least type II vanishing along D, and any other divisors corresponding to
interior points of e. However, linearity then requires m, ·v i = −2 for all vi interior to e,
which brings us to the same situation as in a GWCL. Therefore a single blowup of height
≥ 3 above e will spoil a Sen limit.

There is a similar condition for 2-simplex blowups, where the 2-simplices are interior
to a facet F . A 2-simplex blowup involving only points interior to a face will force > I ∗

n
vanishing in both f and g on at least one divisor.

An even stronger condition occurs nearly universally in the tree ensemble. First con-
sider trees built over ∆ ◦

1. The largest facet F1 of ∆ ◦
1 is shown in figure 4. After a height

≥ 2 blowup anywhere on the face all of the points interior to F 1 will have at least type
II fibers above them. Therefore, to admit a Sen limit, we must tune to at least I ∗

0 on all
of these points. The point in the middle v 0, corresponding to a divisor D 0, has neighbors
in both the vertical and horizontal directions with I ∗

0 fibers. This implies that there is at
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v0
⟨m, ·⟩ = −2

⟨m, ·⟩ = −3

⟨m, ·⟩ = −4

⟨m, ·⟩ = −1

Figure 5. The largest facet F 2 of the 3d reflexive polytope ∆ ◦
2, with an arbitrary triangulation.

The dot products of the special monomial in ∆ f with the points along each horizontal line are
shown to the right of F 2.

least one monomial in f that vanishes to multiplicity 2 along D 0, or at least one monomial
in g that vanishes to multiplicity 3 along D 0. Without loss of generality let us assume the
former is true. We then have m · v0 = −2 for some m. However, the fact that we have all
I ∗

0 on the points vi interior to F 1 implies m · vi = −2, and therefore m · F1 = −2. It is clear
then any height ≥ 3 blowup on F 1 will eliminate this monomial, and force greater than I ∗

0
on the divisor D 0. Therefore a height ≥ 3 blowup on F 1 will obstruct the Sen limit.

A similar analysis can be done for ∆◦
2. The largest facet F2 of ∆ ◦

2 is shown in figure 5.
However, there is no interior point that is bounded both horizontally and vertically by inte-
rior points. Instead we consider a point in the second from the top horizontal row of points
h2, that is bounded horizontally by interior points. An example of such a point is labelled
v0 in figure 5. Taking the same approach as above, for there to exist a Sen limit there must
be a monomial in f , corresponding to a vector m, such that m·v0 = −2. To have I∗0 on each
point interior to F 2 then implies m · h2 = −2, and furthermore m · h3 = −3, where h 3 is the
row of horizontal points third from the top, and so forth. The corresponding dot products
are displayed on the right in figure 5.This is fairly constraining, but one can make the same
argument for a point in h 3, which switches the ordering of dot products vertically. Then
one can immediately conclude that a height ≥ 3 blowup on F 2 will obstruct a Sen limit.

Therefore, we are able to provide a rather strict upper bound on the probability of
finding a base that admits a Sen limit in our ensemble, similar to what we found in the
GWCL case. Since either a single height-3 blowup internal to one of the large facets F 1
or F 2 eliminates the possibility of a Sen limit, an upper bound on the a fraction of tree
geometries admit a weakly coupled Sen limit is calculated to be:

NSen
NTotal

=
&

1
41873645

' 36
×

&
2
82

' 63
≤ 1.0 × 10−376 . (3.11)
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We can strengthen this slightly by using the additional constraints that the other facets

provide. By requiring that there are height-2 blowups along two 1-simplices on the same
edge, coupled with a height-3 blowup along that same edge, on the three edges away from
F1 and F2, one picks up an additional factor of 3 × 10−15 , yielding a fraction of 3 × 10−391 .
There are other constraints that significantly reduce this number further, but these are
triangulation dependent.

Let us summarize the results. The Sen limit is spoiled in general for

• A height-2 blowup along two 1-simplices on the same edge, coupled with a height-3
blowup along that same edge.

• A height-3 blowup along a 2-simplex strictly interior to a face.

The conditions in the tree ensemble are even stricter, as we can simply consider the largest
facets F1 and F2 of the largest 3d reflexive polytopes ∆ ◦

1 and ∆ ◦
2. For the tree ensemble,

the Sen limit is spoiled for any height-3 blowup along F 1 or F2.

3.3.1 An explicit example

We find it useful to illustrate a simple example of our results. Consider the polytope
∆ ◦

1, with vertices given by {{-1,-1,-1},{-1,-1,5},{-1,5,-1},{1,-1,-1}}. From such a lattice
polytope, it is straightforward to computationally construct the corresponding sections
for f and g and associated minimal orders of vanishing. Let us perform a blowup along
a curve on the corresponding toric variety by adding the rays successively {−2, −2, −1}
and {−3, −3, −1}. These correspond to height 2 and height 3 blowups, respectively, along
the edge defined by vertices {−1, −1, −1} and {−1, −1, 0}, which necessarily exists in
any FRST of this polytope since this edge is itself on an edge of the polytope. Direct
computation yields the gauge group F 4 along the surfaces corresponding to the divisors
{{−1, −1, 0}, {−1, −1, 1}, {−1, 0, 0}} and hence both the Sen limit and the strict weak
coupling limit are clearly spoiled.

4 Weak coupling limits on more general algebraic bases

In the previous section we considered toric threefold bases, as the combinatorial properties
of toric varieties allowed us to greatly simplify the computation for determining whether a
base admits either of the weak coupling limits. One of the key structures of toric varieties
that allowed us to determine this was that the smooth toric varieties could be interpreted
as crepant resolutions of a singular, more minimal toric variety. The resolution then in-
troduced rigid exceptional divisors, and further base-changing resolutions forced NH7s on
these exceptional divisors. The toric case can be viewed as a two-step process. First,
we start with a singular base B ′ , and crepantly resolve it to a smooth base B, without
introducing any NH7.

We then build trees of geometries on top of B by performing base-changing resolution.
We follow the same procedure in the non-toric case.We will start with a possibly singular
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B ′ , and resolve it to a new space B. Our assumption, without loss of generality, will
be that resolving to B does not produce any non-Higgsable 7-branes, so that the generic
Calabi-Yau elliptic fibration over B is smooth. In performing these blowups we naturally
generalize the notion of the “height” of a divisor, which we can define inductively. Let a
divisor be a blowup along the intersection n divisors. The height of the blowup divisor is
given by the sum of the n heights of the divisors whose intersection defines the locus to be
blown up. The induction terminates by defining the divisors of a ground geometry to have
height-1. Here a geometry is a ground geometry if the generic elliptic fibration over it has
no non-Higgsable 7-branes.

The structure of B will be partially determined by the fact that B is a crepant reso-
lution of B ′ , which will allow us to analyze whether blowups of B allow for weak coupling
limits. This itself is quite convenient: while a singular variety may admit many crepant
resolutions, some of the features of the resolved spaces can be read off from the singular
space itself, without needing to explicitly resolve. The toric examples in the previous sec-
tion are such an example; the sections of O(−nK B ) are calculated only using the data of
∆ ◦, and the existence of weak-coupling limits did not strongly depend on the resolution,
i.e. on the choice of a FRST. We wish to proceed in a similar manner, in the spirit of
minimal models, with base geometries that are non-toric.

We will generalize this procedure by constructing global geometries via gluing together
local patches. In some cases this will allow us to use the tools of toric geometry locally,
without requiring the global, compact variety to be toric. We will consider local patches of
the form C3/G, where G is a finite subgroup of SL(3, C). Local patches will then be glued
together to form a global K¨ahler manifold X. This type of orbifold is especially convenient
to work with because it is known to admit a crepant resolution [33]. In addition, if G is
abelian then C3/G can be resolved using toric methods [34]. Let X be such an orbifold.
The singular points of X can be divided into two categories [35]:

1. Singular points modeled on (C2/H) × C, where H is a finite subgroup of SU(2).

2. Singular points not of the first type.

The singular points of the second type are actually discrete isolated points, which implies
that G is abelian [36], and therefore locally admit a toric description.This is proven in [37],
where the authors classified the fixed points of all subgroups of SL(3, Z). Singularities of
the first type correspond to ADE singularities fibered over a curve. Only the A-type
singularities are realizable as toric.

Since we do not have a global description of X we do not have a way to determine
global sections of the anticanonical bundle and its powers. Instead, we will assume the
most general local form and understand the behavior of sections as we resolve. This is
sufficient because the general form can only be further restricted by gluing the local patch
into a compact variety.

4.1 Isolated singularities

We begin by discussing the isolated rational points, which admit a toric description. The
space is locally Calabi-Yau, and since we will be considering only crepant resolutions all
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rays, including those corresponding to blowups, can be taken to lie on a 2d plane, which
we will informally refer to as a facet F . The singular point is located at x 1 = x 2 = x 3 = 0,
which corresponds to 3d cone C formed by the rays v1, v2, v3.

As an illustrative example we first consider the case where there is a single interior
point vz to F , such that vz = (v x 1 +v x 2 +v x 3 )/3. Resolution of C then involves introducing
the ray vz, and subdividing F . Let us take a local section of O(−4K) of the form 5 xa

1xb
2xc

3.
The toric resolution promotes this to x a

1xb
2xc

3z(a+b+c)/3 . If we tune an I ∗
0 fiber on D z,

such that f vanishes to order 2 along z = 0, then we find a + b + c = 6, which with the
assumption I∗

0 or smooth fibers along the other divisors, then implies a = b = c = 2. There
is an analogous story for the monomials in g. Therefore, we find that introducing an I ∗

0
fiber on D z forces an I∗0 fiber on D x 1 , D x2 , and D x 3 .

This generalizes readily to more generalsingularities. Consider a facet F with many
interior points. All points in F can be written as v zi = α i vx 1 + β i vx 2 + (1 − α i − β i )vx 3 for
non-negative αi , βi . Under a resolution, a section xa

1xb
2xc

3 is promoted to

xa
1xb

2xc
3 → x a

1xb
2xc

3z(aα 1 +bβ 1 +c(1−α 1 −β 1 ))
1 . . . z(aα n +bβ n +c(1−α n −β n ))

n (4.1)

where z1, . . . , zn are the projective coordinates introduced in the resolution.Let us tune an
I ∗

0 on Dz1 . We then have aα1 + bβ1 + c(1 − α1 −β 1) = 2. In order to have a GWCL we need
a, b, c ∈ {0, 2}, and we see that aα1 + bβ1 + c(1 − α1 − β1) = 2 then requires a = b = c = 2,
which implies the section is of the form

x2
1x2

2x2
3z2

1 . . . z2n (4.2)

Therefore, the existence of an I∗0 on any of the D zi , along with requiring a GWCL, forces
an I ∗

0 on all divisors corresponding to points on F .
We now study the existence of a GWCL after building trees above such a patch.First

let us blow up a point. Blowing up the intersection of any three of the D zi requires us to
tune f to order 8 along the intersection. From eq. (4.1) we can see by demanding any order
of vanishing along an intersection of the Dzi this clearly forces at least a type II fiber on all
the Dzi , as the powers of the zi in eq. (4.1) all become non-zero.We must therefore tune an
I ∗

0 on all of Dzi to get a GWCL. This forces an I∗0 on Dx 1 , Dx 2 , and Dx 3 as well, as requiring
the absence of an I 1 locus forces a = b = c = 2. Thus, by contradiction we see that a
GWCL is not compatible with such a blowup.However, we immediately see the assumption
of only I ∗

0 on each of these divisors is incompatible with the required OOV of (8, 12) to
crepantly blowup the point, and so we see that this height-3 blowup spoils the GWCL.

The Sen limit case is most constrained for isolated singularities that require at least
three exceptional divisors to crepantly resolve, similar to the toric case. A height ≥ 2
blowup on F will force at least II vanishing on all of the exceptional divisors, and we
therefore need to tune to I ∗

0 vanishing on such divisors.In this case tuning to I ∗
0 vanishing

on all the exceptional divisors forces an I∗
0 above Dx 1 , D x 2 , and D x 3 . One can see this by

5 In this section we suppress all factors that do not include the local coordinates, as they will not affect
the calculations.
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noting that tuning an I ∗

0 on three exceptional divisors is done by solving the equations, for
instance, for vanishing to multiplicity two in f :

aα1 + bβ1 + c(1 − α 1 − β 1) = 2
aα2 + bβ2 + c(1 − α 2 − β 2) = 2
aα3 + bβ3 + c(1 − α 3 − β 3) = 2 (4.3)

The unique solution is a = b = c = 2, and so any height-3 blowup on F , including above a
curve, spoils a Sen limit, as one must then turn off all the monomials with a = b = c = 2
to obtain the necessary multiplicity eight vanishing in f , thereby tuning to > I ∗

0 vanishing
in f . A similar argument applies for monomials in g. This confirms the results for the
∆ ◦

i that we found at the end of section 3.3, for which the large facets F i are examples of
resolutions of isolated singularities, from a more general framework.

4.2 A n over a curve

Let us now turn to the singularities of type (1). We begin with A-type singularities, as these
admit toric resolutions locally. The toric description of an A n singularity is well-known;
the fan has rays (1, 0) and (1, n + 1), with corresponding coordinates x1 and x2, and the
resolution introduces the rays (1, 1), . . . , (1, n), with corresponding exceptional coordinates
zi . Let a curve C be the intersection of Dz1 with another divisor, which could be Dx 1 , D x2 ,
or another exceptional divisor. In order for the base change to be crepant we require that
the MOV C (f, g) ≥ (4, 6). Let us focus on monomials in f , which are all of the form

xa
1xb

2zα 1 a+(1−α 1 )b
1 . . . zαn a+(1−α n )b

n (4.4)

for positive αi . First, let us tune a (4, 6) curve C on x1 = z 1 = 0 by tuning toric monomials
in f and g, and then perform a base changing resolution over C by blowing up the locus
x1 = z 1 = 0, which is depicted in figure 6. Note that 0 < α i < 1, and so we see that the
tuning required for a crepant resolution forces at least a type II fiber on D z1 , because the
mentioned tuning forces a ̸= 0 or b ̸= 0. In this case, performing the crepant base change
promotes eq. (4.4) to

xa
1xb

2zα 1 a+(1−α 1 )b
1 e(1+α 1 )a+(1−α 1 )b−4 . . . zαn a+(1−α n )b

n (4.5)

where the −4 arises from the crepant base changing resolution.6

In a similar way, we could also tune a (4, 6) fiber above the curve z 1 = z 2 = 0 and
perform a base changing resolution, as depicted in figure 6. This also results in type II
fibers above all of the Dzi , and so we see that blowing any curve C that is the intersection
of a zi with another divisor forces at least a type II fiber on all of the resolution divisors
D zi . In this case, performing the crepant base change promotes eq. (4.4) to

xa
1xb

2zα 1 a+(1−α 1 )b
1 zα 2 a+(1−α 2 )b

2 e(α 1 +α 2 )a+(2−α 1 −α 2 )b−4 . . . zαn a+(1−α n )b
n (4.6)

6 See [14] for further details.
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x1 z1 z2

e

Figure 6. A blowup of the curve x1 = z 1 = 0, which introduces the exceptional coordinate e. This
forces at least type II fibers above all of the D z i .

x1 z1 z2

e

Figure 7. A blowup of the curve z1 = z 2 = 0, which introduces the exceptional coordinate e. This
forces at least type II fibers above all of the D z i .

Having performed either resolution, we can now discuss weak coupling limits.We first
discuss the GWCL. As the resolution forces a type II fiber over all the Dzi we then require
an I ∗

0 fiber above Dz1 , . . . , Dzn . Requiring only smooth or I ∗
0 fibers then forces an I∗0 above

D x1 and Dx 2 , and so any monomial in f takes the form

x2
1x2

2z2
1 . . . z2n (4.7)

Note that by demanding a GWCL the exceptional coordinate e arising from the resolution
does not appear in eq. (4.7) due to the −4, since a = b = 2. If we then wish to perform a
height-3 blowup along De ∩ D i , for some divisor D i , we would need to tune a (4, 6) curve
along De ∩ D i . This would clearly spoil the form of eq. (4.7), as those monomials would no
longer appear in the Weierstrass equation, and therefore a height-3 blowup over any such
C spoils the GWCL.

In the case of a Sen limit then we demand an I ∗
0 or I ∗

n fiber above Dz1 , . . . , Dzn . Let
us assume that there is a monomial in f preventing M OV za (f ) > 2. The powers of the
other variables are constrained by linearity, in the exact same way as the toric edge case,
demonstrated in figure 3. Such a monomial takes the form

. . . z2−2p
a−2 z2−p

a−1 z2
az2+p

a+1 z2+2p
a+2 . . . (4.8)

for integer p, which may be positive or negative. Blowing up along two different curves
that arise from the resolution of the A n singularity forces p = 0, in order to satisfy the
assumption of I ∗

0 on all the D zi . The argument for this is identical to the one made below
figure 3. A height ≥ 3 blowup will then eliminate this monomial, eliminating the possibility
of the Sen limit. A similar argument holds for a monomial in g preventing MOV of 4 in g.

Remarkably, using only local models we have reproduced the results of section 3 on
weak coupling limits on toric bases, in the case of isolated singularities and An singularities
fibered over curves. This should come as no surprise, as both of these cases admit toric
descriptions locally. However, the local model approach has allowed us understand the
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effects of the base-changing resolutions on the sections ofline bundles from the point of
view of the Cox ring, or the homogenous coordinate ring,as opposed to the toric-specific
structure of fans and polytopes. With this in hand we can now approach the more general
case of Dn and En singularities fibered over curves.

4.3 D n and E n over a curve

We are finally left with singularities of type (1) for the D and E series. We will find
that a single blowup removes the possibility of either weak coupling limit. The D and E
series singularities, as well as their resolutions, are most conveniently expressed as complete
intersections in affine space. We first consider the case of a D n singularity, that can be
realized as a hypersurface in A3 embedded as

X 2 + ZY 2 + Z n−1 = 0 (4.9)

When n = 2k, k ≥ 2, the Cox ring is generated by [38]:

Z1 = x 2
1z2k−2

0 zk
1zk−1

2 z2k−3
3 z2k−4

4 . . . z2k−1 (4.10)
Z2 = x 2

2z2k−2
0 zk−1

1 zk
2z2k−3

3 z2k−4
4 . . . z2k−1

Z3 = x 2
2k−1 z2

0z1z2z2
3z2

4 . . . z22k−1

W = x 1x2x2k−1 z2k−1
0 zk

1zk
2z2k−2

3 z2k−3
4 . . . z22k−1

Here the z i correspond to the exceptional coordinates that arise in the resolution. Let
us consider a generalmonomial Z a

1 Z b
2Z c

3W d, as a section of O(−4K). From the form of
eq. (4.10) one sees that z0, z1, z2, and z3 appears in any monomial with at least power
1, and so any crepant resolution of a D 2k singularity already has non-Higgsable 7-branes
in the general Weierstrass model over that patch, and therefore Dz0 , . . . , Dz3 have at least
type II fibers above them. We therefore need to tune I ∗

0 fibers above these divisors in
order to realize either weak coupling limit. The multiplicities of each coordinate in a given
monomial are:

mult(z 0) = (2k − 2)a + (2k − 2)b + 2c + (2k − 1)d
mult(z 1) = ka + (k − 1)b + c + kd
mult(z 2) = (k − 1)a + kb + c + kd
mult(z 3) = (2k − 3)a + (2k − 3)b + 2c + (2k − 2)d (4.11)

In particular, note that mult(z 0) − mult(z 3) = a + b + d. Therefore, in order to tune an I ∗
0

fiber above both z0 and z3, there must be a monomial in f that is multiplicity 2 in z 0, and
multiplicity ≥ 2 in z 3. This monomial must then satisfy a = b = d = 0, and c = 1, as one
can see from the form of Z3. However, this monomial would result in a type II fiber above
z1 and z2, which contradicts the assumptions of I ∗

0 above all of the exceptional divisors.
Therefore crepant resolutions of D2k singularities do not admit either weak coupling limit.
The same result follows in a similar manner for the case of odd n = 2k + 1.

The absence of weak coupling limits for E6, E7, and E8 singularities follows in the same
way. For each case the generators of the Cox ring are presented in table 3.Let us consider
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n Generators

6 Z1 = z 2
0z2

1z2
2z3z2

4z5x1
Z2 = z 4

0z2
1z3

2z2
3z3

4z2
5x3x5

Z3 = z 6
0z3

1z4
2z2

3z5
4z4

5x3
3

Z4 = z 6
0z3

1z5
2z4

3z4
4z2

5x3
5

7 Z1 = z 4
0z2

1z3
2z2

3z3
4z2

5z6x3

Z2 = z 12
0 z7

1z8
2z4

3z9
4z6

5z3
6x2

1
Z3 = z 9

0z5
1z6

2z3
3z7

4z5
5z3

6x1x6

Z4 = z 6
0z3

1z4
2z2

3z5
4z4

5z3
6x2

6

8 Z1 = z 15
0 z8

1z10
2 z5

3z12
4 z9

5z6
6z3

7x1

Z2 = z 6
0z3

1z4
2z2

3z5
4z4

5z3
6z2

7x7

Z3 = z 10
0 z5

1z7
2z4

3z8
4z6

5z4
6z2

7x3

Table 3. Generators of the Cox ring for the resolutions of the E n singularities.

the E6 case as an example.From table 3 we can read off that in order to prevent a greater
than I ∗

0 vanishing along z0 there must be a monomial in f of the form rZ 1 ⊂ f , where
r ∈ C. However, this would imply a type II fiber above z 3 and z5, spoiling both weak
coupling limits. The same conclusion follows trivially for E7 and E8, from the multiplicity
of vanishing of the z0 coordinate.

5 Discussion

In this paper we determined conditions on the base space B of an F-theory geometry that
are sufficient to preclude the existence of a Sen limit, or of a GWCL. In the toric case, the
conditions sufficient for the absence of the limits are

• GWCL: any height-3 blowup on a face or an edge with at least one interior point.

• Sen: a height-3 blowup of a point above three exceptional divisors, or a height-
2 blowup along two different curves represented by 1-simplices on the same edge,
coupled with a height-3 blowup on that edge.

In the tree ensemble the conditions for the Sen limit were also quite restrictive, as a height-3
blowup along either of the large facets is enough to spoil the existence of a Sen limit.Our
strong tree ensemble constraints could be further strengthened by a more detailed study
of the facets.

By understanding the geometry behind these conditions in the toric case, we were also
able to move beyond the toric case to more general bases. The bases we considered are
generalizations of the toric case, where local patches are constructed via crepant resolutions
of orbifold singularities and then glued together. In the cases of a) isolated singularities
and b) A n singularities fibered over curves, the conditions sufficient for the absence of the
weak coupling limits are the same as the toric case. This was expected,as these types of
singularities admit a toric description and resolution. In the case of Dn and En singularities
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fibered over curves, we found that there ware no weak coupling limits, due to the behavior
of the Cox ring under the resolution.

We then performed a geometric analysis of a class of4
3 ×2.96×10 755 bases that are built

from crepant base-changing resolutions of elliptic fibrations over weak Fano toric threefolds;
i.e. a set of 10755 elliptic fourfolds that are related by topological transitions. Using the con-
ditions we derived, we showed that nearly all of these geometries do not admit weak coupling
limits. Specifically, the fraction admitting a GWCL or a Sen limit are bounded above by

NGWCL
NTotal

≤ 1.1 × 10−723 NSen
NTotal

≤ 3.0 × 10−391 . (5.1)

This strengthens the previous weak coupling result of [14] that was based on non-Higgsable
clusters. While that work showed that generic points in the complex structure moduli of
X over generic bases are strongly coupled, this work showed that essentially none of them
admit weak coupling limits; i.e. not only are the generic points strongly coupled, but fur-
thermore there are no subloci in complex structure that become weakly coupled.This was
not forbidden a priori, as the bases that give rise to NHC in principle could all be enhanced
to I ∗

n fibers and admit a Sen limit or GWCL limit.
It is likely that Sen limits or GWCLs are similarly rare in the complete set of bases for

four-dimensional F-theory compactifications, which is currently unknown. The reasoning
is that the prevalence of NHC is correlated strongly with moving away from Fano or weak-
Fano threefolds via topological transitions. Once a cluster exists, the existence of a Sen
limit or GWCL requires that the singular fibers that exist for generic moduli are less
singular than Kodaira I ∗

0 (which is 4 D7s on an O7, from a type IIb perspective) or are
I ∗

0 , and then furthermore that there exists a limit in moduli space in which all of these
enhance to I∗

n , n ≥ 0. This is a very strong condition to satisfy, and we find it extremely
implausible that it is satisfied very often, an expectation that is buttressed by our results.
It would be interesting to study this in the future to determine whether there is a no-go
for this to occur once an NHC exists.

It is interesting to consider whether F-theory geometries with O(1) g s regions have
physics that nevertheless admits weakly coupled descriptions. As a point of comparison,
consider the E6 point that naturally arises inside SU(5) seven-brane stacks in F-theory [39,
40], which is relevant for particle physics applications. At this point in the geometry the
axiodilation takes a value associated with O(1) g s. However, in [41] it was shown that
the same physics can instead be thought of as arising from Euclidean D1-brane instanton
corrections in type IIB theories. Is the physics of F-theory secretly arising from the weakly
coupled type IIB theory? 7

In our opinion, the answer is in general no, and the example given is demonstrative of a
more general idea for what is meant by strong coupling in F-theory:geometrically the O(1)
gs regions arise explicitly, but could instead be thought of as non-perturbative corrections
to a perturbative theory that force the coupling to be O(1) somewhere. Consider, as an
analogy, 8D F-theory compactifications from the point of view of a D3 probe.The D3 probe
is an N = 2 Yang-Mills theory on its Coulomb branch. The theory is entirely determined

7 We thank the referee for posing this question and the specific example mentioned.
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by its quantum prepotential, which has a classical contribution, but also one-loop and in-
stanton corrections. Famously, this information is encoded in an elliptic fibration that has
strongly coupled regions in the Coulomb branch, but can be thought of as non-perturbative
corrections (the instantons) to a perturbative theory (classical and one-loop prepotential).
To us, this seems analgous to the result of [41] relative to the strongly coupled E 6 point:
in both cases, instanton corrections play a central role and non-trivial O(1) couplings arise
in the geometric description of the physics. By definiton, this is not weakly coupled, and
more specifically the D3-brane is strongly coupled near the origin of its Coulomb branch.
Furthermore, the only known open string description of adjoint representations of excep-
tional Lie algebras is either open strings that lace through O(1) gs regions, or equivalently,
via Hanany-Witten moves, string junctions. In both of the examples we have given it seems
there are aspects of F-theoretic physics that cannot be recovered by only a weakly coupled
IIB description. It is also interesting to note that in both cases, the strongly coupled geo-
metric picture that intrinsically includes the instanton corrections was understood ([39, 40]
and [42]) before the details of the instanton corrections themselves ([41] and [43]).

More broadly, non-Higgsable clusters clearly play a role in obstructing weak coupling
limits. However, the precise details of the microphysics that does so is not known, even
though the mathematics is clear. It would be interesting to further understand the physics
of the obstruction, including the interpretation of the exceptional divisors that arise from
crepant resolutions of ADE singularities.Uncovering this mechanism is likely an important
step in fully understanding strong coupling in F-theory.
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