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Abstract—In a cell-free cloud radio access network (C-RAN)
architecture, uplink channel estimation is carried out by a cen-
tralized baseband processing unit (BBU) connected to distributed
remote radio heads (RRHs). When the RRHs have multiple
antennas and limited radio front-end resources, the design of
uplink channel estimation is faced with the challenges posed
by reduced radio frequency (RF) chains and one-bit analog-
to-digital converters (ADCs) at the RRHs. This work tackles
the problem of jointly optimizing the pilot sequences and the
pre-RF chains analog combiners with the goal of minimizing
the sum of mean squared errors (MSEs) of the estimated
channel vectors at the BBU. The problem formulation models the
impact of the ADC operation by leveraging Bussgang’s theorem.
An efficient solution is developed by means of an iterative
alternating optimization algorithm. Numerical results validate
the advantages of the proposed joint design compared to baseline
schemes that randomly choose either pilots or analog combiners.

Index Terms—Channel estimation, C-RAN, pilot design, analog
combining, one-bit ADC, Bussgang’s theorem.

I. INTRODUCTION

In a cell-free cloud radio access network (C-RAN) system,

a number of remote radio heads (RRHs) are deployed to

collectively serve users in the covered area. The RRHs are

connected to a baseband processing unit (BBU) that carries

out centralized baseband signal processing [1]. In a typical 5G

deployment, due to the use of wideband spectrum and massive

antenna arrays, it is generally impractical to equip the RRHs

with high-precision analog-to-digital converters (ADCs) and

with one radio frequency (RF) chain per antenna element due

to high cost and power consumption [2]-[5]. Therefore, RRHs

typically have a limited number of RF chains with limited

resolution ADCs. A well-known solution to the problem of

limited RF chains is to deploy a hybrid beamforming archi-
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tecture, whereby analog combining is applied prior to ADC

operations [2]-[4].

A key task in massive MIMO systems is acquiring channel

state information (CSI) at the BBU. This is typically done

via uplink training by leveraging channel reciprocity in Time

Division Duplex (TDD) systems. With a cell-less architecture

and centralized processing, the presence of a large number of

users in the covered area implies that the number of resources

allocated for training may not be sufficient to allocate orthog-

onal pilot sequences to all users.

In this work, we study channel estimation for a cell-free C-

RAN uplink. Following [4], specifically, we tackle the problem

of jointly optimizing the pilot sequences and the distributed

analog combiners at the RRHs with the goal of minimizing

the sum of mean squared errors (MSEs) of the estimated

channel vectors at the BBU. The problem formulation models

the impact of the ADC operation by leveraging Bussgang’s

theorem [6]. We develop an efficient solution by means of an

iterative alternating optimization algorithm. Numerical results

validate the advantages of the proposed joint design compared

to baseline schemes that randomly choose either pilots or

analog combiners.

Related works: In [7] [8], the uplink channel estimation

problem was studied for a single-cell uplink system with low-

resolution ADCs and fully-digital, instead of hybrid, beam-

forming. The problem of channel estimation for the multi-

cell uplink of massive MIMO systems in the presence of

pilot contamination was tackled in [4] under the assumptions

that the uplink channel is noiseless, the RRHs use high-

resolution ADCs, and they do not cooperate with each other.

In [9], the design of joint signal and CSI compression for

fronthaul transmission was studied for a C-RAN uplink with

finite-capacity fronthaul links under the ergodic fading channel

model. The work [10] studied the optimization of uplink

reception with mixed-ADC front-end under the assumption of

perfect CSI.

The rest of the paper is organized as follows. The system

model for uplink channel estimation in a cell-free C-RAN

system is described in Sec. II. We discuss the problems of

jointly optimizing the pilots and analog processing for channel

estimation first under the assumption that the RRHs use high-
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r es ol uti o n  A D Cs i n S e c. III a n d t h e n  wit h o n e- bit  A D Cs i n
S e c. I V. I n S e c.  V,  w e pr o vi d e n u m eri c al r es ults t h at v ali d at e
t h e a d v a nt a g es of t h e pr o p os e d j oi nt d esi g n, a n d  w e c o n cl u d e
t h e p a p er i n S e c.  VI.

N ot ati o ns: We d e n ot e t h e cir c ul arl y s y m m etri c c o m pl e x
G a ussi a n distri b uti o n  wit h  m e a n μ a n d c o v ari a n c e  m atri x R as
C N (μ , R ).  T h e s et of all M × N c o m pl e x  m atri c es is d e n ot e d
as C M × N , a n d E (·) r e pr es e nts t h e e x p e ct ati o n o p er at or.  We
d e n ot e t h e tr a ns p os e,  H er miti a n tr a ns p os e a n d v e ct ori z ati o n
o p er ati o ns as (·) T , (·) H a n d v e c( ·), r es p e cti v el y, a n d A ⊗ B
r e pr es e nts t h e  Kr o n e c k er pr o d u ct of  m atri c es A a n d B . We
d e n ot e b y I N a n N - di m e nsi o n al i d e ntit y  m atri x.

II.  S Y S T E M M O D E L

I n t his s e cti o n,  w e d es cri b e t h e s yst e m  m o d el u n d er st u d y.
We c o nsi d er t h e u pli n k of a c ell-fr e e  C- R A N s yst e m, i n  w hi c h
N U si n gl e- a nt e n n a us er e q ui p m e nts ( U Es) c o m m u ni c at e  wit h
a  B B U t hr o u g h N R R R Hs.  We ass u m e t h at e v er y  R R H us es M
a nt e n n as  wit h L ≤ M R F c h ai ns, e a c h e q ui p p e d  wit h a o n e-
bit  A D C.  E a c h  R R H p erf or ms a n al o g c o m bi ni n g pri or t o t h e
A D Cs.  T h e fr o nt h a ul li n ks c o n n e cti n g t h e  R R Hs t o  B B U ar e
ass u m e d t o h a v e e n o u g h c a p a cit y t o s u p p ort t h e tr a ns missi o n
of t h e  A D C o ut p uts.  We d e fi n e t h e s ets N U = { 1 , . . . , NU }
a n d N R = { 1 , . . . , NR } of  U Es’ a n d  R R Hs’ i n di c es.

A.  U pli n k  C h a n n el  M o d el f or  Pil ot Tr a ns missi o n

F or u pli n k c h a n n el esti m ati o n, e a c h  U E k s e n ds a pil ot
s e q u e n c e s k = [ s k, 1 · · · s k, τ ]T d uri n g τ s y m b ols.  We i m p os e
p er- U E tr a ns mit p o w er c o nstr ai nts as

1

τ
s H

k s k ≤ P k , f o r k ∈ N U . ( 1)

Ass u mi n g a fl at-f a di n g c h a n n el  m o d el, t h e si g n al Y i ∈ C M × τ

r e c ei v e d b y  R R H i c a n b e  m o d el e d as

Y i =
k ∈ N U

h i, k s
T
k + Z i , ( 2)

w h er e h i, k ∈ C M × 1 d e n ot es t h e c h a n n el v e ct or fr o m  U E k t o
R R H i, a n d Z i r e pr es e nts t h e a d diti v e n ois e  m atri x distri b ut e d
as z i = v e c( Z i ) ∼ C N (0 , σ2i I M τ ) .  As i n [ 4],  w e  m o d el e a c h
c h a n n el v e ct or h i, k a s

h i, k =
√

ρ i, k Q
1 / 2
i h w

i, k , ( 3)

w h er e ρ i, k = 1 / ( 1  + ( D i, k / 1 0) 3 ) d e n ot es t h e p at hl oss,  wit h
D i, k b ei n g t h e dist a n c e b et w e e n  R R H i a n d  U E k , Q i

r e pr es e nts t h e r e c ei v e c orr el ati o n  m atri x of  R R H i, a n d h w
i, k

i s a s p ati all y  w hit e c h a n n el v e ct or distri b ut e d as h w
i, k ∼

C N (0 , I M ) .  We ass u m e t h at t h e c h a n n el v e ct ors h i, k ar e
i n d e p e n d e nt a cr oss t h e i n di c es i a n d k .  T h e dis c ussi o n c a n
b e g e n er ali z e d t o t h e c as e  w h er e t h e c h a n n el v e ct ors fr o m
diff er e nt  U Es ar e c orr el at e d [ 4].

B.  R e d u c e d  R F  C h ai n a n d  A n al o g  C o m bi ni n g

Si n c e e a c h  R R H i us es o nl y L R F c h ai ns, a n al o g c o m bi ni n g
is c arri e d o ut at  R R H i vi a a  m atri x W i ∈ C L × M .  A n al o g

c o m bi ni n g  m a ps t h e M r e c ei v e d si g n als i nt o a n L - di m e nsi o n al
v e ct or

Ỹ i = W i Y i , ( 4)

wit h Ỹ i ∈ C L × τ .  T h e c o n diti o n o n t h e a n al o g c o m bi ni n g
m atri x W i d e p e n ds o n t h e s p e ci fi c ar c hit e ct ur e of t h e a n al o g
n et w or k [ 3] [ 4]. I n t his  w or k,  w e c o nsi d er f ull y- c o n n e ct e d
p h as e s hift ers n et w or k s o t h at t h e  m atri x W i i s s u bj e ct t o
c o nst a nt  m o d ul us c o nstr ai nts st at e d as [ 2]

|W i ( a, b )|
2

= 1 , f o r a ∈ L , b ∈ M , ( 5)

w h er e W i ( a, b ) i n di c at es t h e (a, b )t h el e m e nt of W i , a n d
M = { 1 , . . . , M } a n d L = { 1 , . . . , L} d e n ot e t h e s ets of
a nt e n n as’ a n d  R F c h ai ns’ i n di c es, r es p e cti v el y.

F or  m at h e m ati c al c o n v e ni e n c e,  w e als o i ntr o d u c e t h e v e c-
t ori z e d v ersi o n ỹ i ∈ C L τ × 1 of t h e si g n al Ỹ i a s

ỹ i = v e c( Ỹ i ) =
k ∈ N U

B k, i h i, k + z̃ i , ( 6)

w h er e  w e d e fi n e d t h e n ot ati o ns B k, i = s k ⊗ W i a n d
z̃ i = v e c( W i Z i ) = ( I τ ⊗ W i ) v e c( Z i ) .  H er e t h e eff e cti v e
n ois e v e ct or z̃ i i s distri b ut e d as z̃ i ∼ C N (0 , C z̃ i ) wit h
C z̃ i = σ 2

i ( I τ ⊗ W i ) ( I τ ⊗ W i )
H .  We n ot e t h at t h e c o v ari a n c e

C ỹ i = E [ỹ i ỹ
H
i ] of v e ct or ỹ i i s

C ỹ i =
k ∈ N U

ρ i, k B k, i Q i B
H
k, i + C z̃ i . ( 7)

C.  O n e- Bit  A D C

E a c h  R R H i q u a nti z es t h e i n- p h as e a n d q u a dr at ur e (I Q)
c o m p o n e nts of t h e el e m e nts of t h e v e ct or ỹ i u si n g o n e- bit
A D Cs.  As i n [ 7] [ 8],  w e  m o d el t h e i m p a ct of o n e- bit  A D C
usi n g  B uss g a n g’s t h e or e m [ 6].  A c c or di n gl y, t h e  A D C o ut p ut
v e ct or, d e n ot e d b y ŷ i , is st atisti c all y e q ui v al e nt t o

ŷ i = A i ỹ i + q i , ( 8)

w h er e t h e tr a nsf or m ati o n  m atri x A i i s e q u al t o

A i =
1

2
Σ

− 1 / 2
ỹ i

, ( 9)

a n d v e ct or q i r e pr es e nts t h e q u a nti z ati o n n ois e u n c orr el at e d t o
t h e i n p ut si g n al ỹ i .  T h e  m atri x Σ ỹ i d e n ot es a di a g o n al  m atri x
t h at c o nt ai ns o nl y t h e di a g o n al el e m e nts of C ỹ i . F urt h er m or e,
t h e c o v ari a n c e  m atri x C q i = E [q i q

H
i ] of v e ct or q i i s e q u al t o

C q i = C ŷ i
− A i C ỹ i A

H
i , ( 1 0)

wit h t h e c o v ari a n c e  m atri x C ŷ i
= E [ŷ i ŷ

H
i ] gi v e n b y

C ŷ i
=

2

π

⎡

⎣
a r c si n Σ

− 1 / 2
ỹ i

{ C ỹ i } Σ
− 1 / 2
ỹ i

+

j a r c si n Σ
− 1 / 2
ỹ i

{ C ỹ i } Σ
− 1 / 2
ỹ i

⎤

⎦ . ( 1 1)

We n ot e t h at t h e  m atri c es A i a n d C q i d e p e n d b ot h o n t h e
pil ots S = { s k } k ∈ N U

a n d t h e a n al o g c o m bi ni n g  m atri x W i ,
si n c e t h e c o v ari a n c e  m atri x C ỹ i d e fi n e d i n ( 7) is a f u n cti o n
of { B k, i } k ∈ N U wit h B k, i = s k ⊗ W i .
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D.  C h a n n el  Esti m ati o n

T h e  B B U esti m at es all t h e c h a n n el v e ct ors
{ h i, k } i ∈ N R , k∈ N U

b a s e d o n t h e q u a nti z e d si g n als
ŷ = [ ŷ H

1 · · · ŷ H
N R

]H c oll e ct e d fr o m t h e  R R Hs:

ŷ =
k ∈ N U

A B k h k + A z̃ + q , ( 1 2)

w h er e  w e d e fi n e d t h e n ot ati o ns A = di a g ( A 1 , . . . , A N R
) ,

B k = di a g ( B k, 1 , . . . , B k, N R
) , h k = [ h H

1 , k · · · h H
N R , k ]

H , z̃ =

[z̃ H
1 · · · z̃ H

N R
]H ∼ C N (0 , C z̃ ) a n d q = [ q H

1 · · · q H
N R

]H ∼
C N (0 , C q ) wit h C z̃ = di a g ( C z̃ 1 , . . . , C z̃ N R

) a n d C q =
di a g ( C q 1 , . . . , C q N R

) .
A s i n [ 4],  w e ass u m e t h at t h e  B B U a p pli es a li n e ar c h a n n el

esti m at or t o t h e si g n al ŷ s o t h at t h e esti m at e ĥ k of h k i s gi v e n
as

ĥ k = F k ŷ , ( 1 3)

wit h a li n e ar filt er  m atri x F k ∈ C M N R × L τ  N R . F or gi v e n S ,
W = { W i } i ∈ N R

a n d F k , t h e  M S E ε k = E [||ĥ k − h k ||2 ] is
e q u al t o

ε k = e k ( S , W , F k ) ( 1 4)

=t r (F k A B k − I M N R
) Θ k ( F k A B k − I M N R

)
H

+
l∈ N U \ { k }

t r F k A B l Θ l B
H
l A H F H

k

+ t r F k A C z̃ A H F H
k + t r F k C q F H

k ,

wit h t h e d e fi niti o n Θ k = di a g ( { ρ i, k Q i } i ∈ N R
) .  We ai m at

mi ni mi zi n g t h e s u m- M S E ε s u m = k ∈ N U
ε k o v er t h e pil ots

S , t h e a n al o g c o m bi n ers W a n d t h e di git al filt er  m atri c es F =
{ F k } k ∈ N U .

III.  O P T I M I Z A T I O N W I T H H I G H- R E S O L U T I O N A D C S

I n t his s e cti o n,  w e dis c uss t h e j oi nt o pti mi z ati o n of t h e pil ots
S a n d a n al o g pr o c essi n g W u n d er t h e ass u m pti o n t h at t h e
R R Hs us e hi g h-r es ol uti o n  A D Cs (i. e., A i = I L τ , C q i = 0
a n d ŷ i = ỹ i f or i ∈ N R ). F urt h er m or e, as i n [ 4],  w e ass u m e
t h at t h e u pli n k c h a n n el is n ois e-fr e e, i. e., σ 2

i = 0 , i ∈ N R .
D e fi n e t h e c h a n n el v e ct or h R, i = [ h H

i, 1 · · · h H
i, N U

]H f or

R R H i a n d  w h ol e c h a n n el v e ct or h R = [ h H
R, 1 · · · h H

R, N R
]H .

F oll o wi n g t h e s a m e st e ps as i n [ 4, S e c. III],  w e c a n  writ e t h e
M M S E esti m at e of t h e  w h ol e c h a n n el v e ct or h R a s

ĥ R, M M S E = R̄ B̄ H
R B̄ R R̄ B̄ H

R

− 1
ŷ , ( 1 5)

w h er e  w e h a v e d e fi n e d t h e n ot ati o ns R̄ = di a g ({ R i } i ∈ N R )
a n d B̄ R = di a g ({ B R, i } i ∈ N R

) wit h R i = P i ⊗ Q i , P i =
di a g ({ ρ i, k } k ∈ N U ) , B R, i = S̄ ⊗ W i a n d S̄ = [ s 1 · · · s N U ].  T h e
esti m at e i n ( 1 5) c a n b e d e c o u pl e d a cr oss  R R Hs, i. e.,

ĥ R, i, M M S E = R i B
H
R, i B R, i R i B

H
R, i

− 1
ŷ i , ( 1 6)

f or i ∈ N R , d u e t o t h e i n d e p e n d e n c e of t h e c h a n n el v e ct ors
h R, 1 , . . . , h R, N R a n d distri b ut e d a n al o g pr o c essi n g at  R R Hs.

T h e s u m- M S E ε s u m = i ∈ N R
E ||h R, i − ĥ R, i, M M S E ||2 c a n

h e n c e b e d e c o m p os e d as

ε s u m =
i ∈ N R

t r ( R i ) − t r ( J i ) · t r ( K i ) , ( 1 7)

wit h  m atri c es J i = W i Q
2
i W H

i ( W i Q i W i )
− 1 a n d K i =

S̄ P 2
i S̄ H ( S̄ P i S̄

H ) − 1 . Si n c e t h e c o v ari a n c e  m atri c es R i ar e
fi x e d, t h e pr o bl e m of  mi ni mi zi n g t h e s u m- M S E i n ( 1 7) is
e q ui v al e nt t o t h at of  m a xi mi zi n g i ∈ N R

t r ( J i ) · t r( K i ) .
I n or d er t o  mi ni mi z e t h e s u m- M S E ε s u m , t h e a n al o g c o m-

bi n er W i of e a c h  R R H i c a n b e s e p ar at el y o pti mi z e d a c c or d-
i n g t o t h e pr o bl e m:

m a xi mi z e
W i

t r ( J i ) s .t. ( 5). ( 1 8)

T h e pr o bl e m ( 1 8) is t h e s a m e as t h at i n [ 4,  E q. ( 1 6)] a n d h e n c e
c a n b e t a c kl e d b y usi n g t h e a p pr o a c h pr o p os e d i n [ 4, S e c. I V].

Gi v e n t h e o pti m al a n al o g c o m bi n ers, t h e o pti mi z ati o n o v er
t h e pil ots S a m o u nts t o t h e  m a xi mi z ati o n of i ∈ N R

w i ·t r( K i ) ,
w h er e w i = t r( J i ) is n o w a fi x e d c o nst a nt.  T o t h e b est of o ur
k n o wl e d g e, as  w as als o r e p ort e d i n [ 4], t h er e is n o k n o w n
s ol uti o n t o t his pr o bl e m e x c e pt f or s p e ci al c as es  wit h N R = 1
or τ = 1 or P i = P f or all i ∈ N R . I nst e a d,  w e pr o p os e t o
a d o pt t h e gr e e d y s u m of r ati o tr a c es  m a xi mi z ati o n ( G S R T M)
al g orit h m [ 4, S e c.  V- C] t o fi n d a n ef fi ci e nt s ol uti o n of t h e
pr o bl e m.

I V.  O P T I M I Z A T I O N W I T H O N E - BI T A D C S

I n t his s e cti o n,  w e t a c kl e t h e pr o bl e m of j oi ntl y o pti mi zi n g
t h e pil ots S , t h e a n al o g c o m bi n ers W a n d t h e di git al filt er
m atri c es F u n d er t h e  m or e c h all e n gi n g s c e n ari o  wit h o n e- bit,
i nst e a d of hi g h-r es ol uti o n,  A D Cs.  Als o, u nli k e S e c. III,  w e
ass u m e t h at t h e u pli n k c h a n n el is n ois y, i. e., σ 2

i > 0 , i ∈ N R .
T h e pr o bl e m at h a n d c a n b e st at e d as

mi ni mi z e
S ,W ,F k ∈ N U

e k ( S , W , F k ) ( 1 9 a)

s .t.
1

τ
s †

k s k ≤ P k , f o r k ∈ N U , ( 1 9 b)

|W i ( a, b )|
2
= 1 , f o r a ∈ L , b ∈ M , i ∈ N R . ( 1 9 c)

We n ot e t h at,  wit h t h e c h a n n el n ois e a n d q u a nti z ati o n dist or-
ti o n, t h e s u m- M S E i n ( 1 9 a) d o es n ot d e c o u pl e as i n ( 1 7) e v e n if
w e pl u g t h e o pti m al ( M M S E) filt er F i nt o ( 1 9 a).  T h er ef or e,  w e
pr o p os e h er e t o s ol v e t h e pr o bl e m alt er n at el y o v er t h e v ari a bl es
S , W a n d F .

A.  Pr o p os e d  O pti miz ati o n

T o st art,  w e o bs er v e t h at, if  w e fi x i n ( 1 9) t h e tr a nsf or m ati o n
m atri c es A a n d t h e c o v ari a n c e  m atri c es C q a n d r el a x t h e
c o nstr ai nt ( 1 9 c) as |W i ( a, b ) |

2
≤ 1 f or a ∈ L , b ∈ M

a n d i ∈ N R , t h e pr o bl e m b e c o m es s e p ar at el y c o n v e x  wit h
r es p e ct t o t h e v ari a bl es S , W a n d F [ 1 1].  T his o bs er v ati o n
m oti v at es us t o d eri v e a n alt er n ati n g o pti mi z ati o n al g orit h m.
N ot e t h at fi xi n g  m atri c es A a n d C q i g n or es t h eir d e p e n d e n c e
o n v ari a bl es S a n d W as i n ( 9) a n d ( 1 0).

T h e al g orit h m,  w hi c h is d es cri b e d i n  Al g orit h m 1, s ol v es
s e q u e nti all y t h e c o n v e x pr o bl e ms o bt ai n e d fr o m ( 1 9) b y r e-
stri cti n g t h e o pti mi z ati o n v ari a bl es o nl y t o W , S a n d F .  W h e n
s ol vi n g t h e c o n v e x pr o bl e ms  wit h r es p e ct t o W , c o nstr ai nt
( 1 9 c) is r el a x e d as |W i ( a, b ) |

2
≤ 1 f or a ∈ L , b ∈ M a n d

i ∈ N R , a n d t h e r es ulti n g pr o bl e m c a n b e s ol v e d s e p ar at el y
f or e v er y  R R H i wit h o ut l oss of o pti m alit y.  A f e asi bl e s ol uti o n
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Al g o rit h m 1 It er ati v e o pti mi z ati o n al g orit h m f or pr o bl e m ( 1 9)

I niti ali z ati o n:
1. I niti ali z e t h e pil ot s e q u e n c e S ( 1 ) a n d a n al o g c o m bi ni n g
v ari a bl es W ( 1 ) s u c h t h at t h e c o n diti o ns ( 1 9 b) a n d ( 1 9 c) ar e
s atis fi e d.
2. I niti ali z e t h e  m atri c es A

( 1 )
i a n d C

( 1 )
q i , i ∈ N R , a c c or di n g

t o ( 9) a n d ( 1 0), r es p e cti v el y, f or fi x e d S ( 1 ) a n d W ( 1 ) , a n d s et
t ← 1 .
3. I niti ali z e t h e filt er  m atri c es F

( 1 )
k , k ∈ N U , a c c or di n g t o ( 2 0)

f or fi x e d S ( 1 ) , W ( 1 ) , A ( 1 ) a n d C
( 1 )
q .

It e r ati o n:
4. U p d at e t h e pil ot s e q u e n c es S ( t + 1 ) a s S ( t + 1 ) ← S ( t ) +
γ t ( S − S ( t ) ) ,  w h er e S d e n ot es a s ol uti o n of t h e pr o bl e m

( 1 9) f or fi x e d W ( t ) , A ( t ) , C
( t )
q a n d F ( t ) .

5. U p d at e t h e a n al o g c o m bi n ers W ( t + 1 ) a s W ( t + 1 ) ←
p r oj( W ( t ) + γ t ( W − W ( t ) ) ) ,  w h er e W d e n ot es a s ol uti o n

of t h e pr o bl e m ( 1 9) f or fi x e d S ( t + 1 ) , A ( t ) , C
( t )
q a n d F ( t ) , a n d

p r oj( ·) d e n ot es t h e pr oj e cti o n o nt o t h e s p a c e of  m atri c es t h at
s atisf y ( 1 9 c).

6. U p d at e t h e  m atri c es A
( t + 1 )
i a n d C

( t + 1 )
q i , i ∈ N R , a c c or di n g

t o ( 9) a n d ( 1 0), r es p e cti v el y, f or fi x e d S ( t + 1 ) a n d W ( t + 1 ) .

7. U p d at e t h e filt er  m atri c es F
( t + 1 )
k , k ∈ N U , a c c or di n g t o

( 2 0) f or fi x e d S ( t + 1 ) , W ( t + 1 ) , A ( t + 1 ) a n d C
( t + 1 )
q .

8. St o p if a c o n v er g e n c e crit eri o n is s atis fi e d.  Ot h er wis e, s et
t ← t + 1 a n d g o b a c k t o St e p 4.

is o bt ai n e d b y usi n g t h e pr oj e cti o n a p pr o a c h i n [ 4,  E q. ( 1 8)].
Als o, t h e o pti m al li n e ar filt er F k , k ∈ N U , f or fi x e d ot h er
v ari a bl es is o bt ai n e d i n cl os e d f or m as

F k, M M S E = E h k ŷ H E ŷ ŷ H − 1
( 2 0)

= Θ k B H
k A H

l∈ N U

A B l Θ l B
H
l A H + A C z̃ A H + C q .

T h e st e p si z e s e q u e n c e γ t i s s el e ct e d t o b e d e cr e asi n g  wit h t h e
it er ati o n n u m b er t as i n [ 1 2,  E q. ( 5)], as a  m e a ns t o i m pr o v e
t h e e m piri c al c o n v er g e n c e pr o p erti es of t h e al g orit h m.

V.  N U M E R I C A L R E S U L T S

I n t his s e cti o n,  w e pr o vi d e n u m eri c al r es ults t h at v ali d at e
t h e eff e cti v e n ess of t h e pr o p os e d j oi nt d esi g n of t h e pil ot
s e q u e n c es a n d a n al o g c o m bi ni n g  m atri c es f or t h e u pli n k of
c ell-fr e e  C- R A N  wit h o n e- bit  A D Cs. F or p erf or m a n c e e v al u-
ati o n,  w e ass u m e t h at N U U Es a n d N R R R Hs ar e u nif or ml y
distri b ut e d  wit hi n a s q u ar e ar e a of t h e si d e l e n gt h e q u al t o
1 0 0  m.  As i n [ 1 3] [ 1 4], t h e c orr el ati o n  m atri x R i, k i n ( 3)
is gi v e n as R i, k ( a, b ) = J 0 ( 2 π |a − b | si n( d i / λ i ) / Δ i ) , w h er e
J 0 ( ·) d e n ot es t h e z er o-t h or d er  B ess el f u n cti o n, a n d  w e s et
d i / λ i = 0 .5 a n d Δ i = 2 5 [ 1 4].

F or c o m p aris o n,  w e c o nsi d er t h e p erf or m a n c e of t h e f ol-
l o wi n g r ef er e n c e s c h e m es: i)  F ull y r a n d o m: Pil ot s e q u e n c es
S a n d a n al o g c o m bi ni n g  m atri c es W ar e r a n d o ml y c h os e n;
ii)  O pti miz e d a n al o g c o m bi ni n g  wit h r a n d o m pil ots: A n al o g
c o m bi ni n g  m atri c es W ar e o pti mi z e d f or r a n d o ml y s el e ct e d
pil ot s e q u e n c es S ; iii)  O pti miz e d pil ots  wit h r a n d o m a n al o g
c o m bi ni n g: Pil ot si g n als S ar e o pti mi z e d f or r a n d o ml y s el e ct e d
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Fi g. 1.  A v er a g e s u m- M S E v ers us t h e n u m b er of it er ati o ns ( N U = 6 , N R =
2 , M = 4 , τ = 2 a n d 1 0 d B S N R).
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Fi g. 2.  A v er a g e s u m- M S E v ers us t h e n u m b er L of  R F c h ai ns ( N U = 6 ,
N R = 2 , M = 4 , τ = 2 a n d 1 0 d B S N R).

a n al o g c o m bi ni n g  m atri c es W ; a n d i v)  Pr o p os e d j oi nt d esi g n:
Pil ot s e q u e n c es S a n d a n al o g c o m bi ni n g  m atri c es W ar e
j oi ntl y o pti mi z e d.

T h e al g orit h m pr o p os e d i n S e c. I V- A is us e d f or t h e l ast
s c h e m e,  w hil e t h e ot h er r ef er e n c e a p pr o a c h es ar e i m pl e m e nt e d
a d di n g t h e i n di c at e d li n e ar c o nstr ai nts t o t h e o pti mi z ati o n
pr o bl e m ( 1 9).

We first o bs er v e i n Fi g. 1 t h e c o n v er g e n c e b e h a vi or of t h e
pr o p os e d al g orit h m b y pl otti n g t h e a v er a g e s u m- M S E v ers us
t h e n u m b er of it er ati o ns f or N U = 6 U Es, N R = 2 R R Hs,
M = 4 R R H a nt e n n as, τ = 2 pil ot s y m b ols a n d 1 0 d B
S N R. Fr o m t h e fi g ur e,  w e o bs er v e t h at t h e pr o p os e d al g orit h m
c o n v er g es  wit hi n a f e w it er ati o ns.

I n Fi g. 2,  w e i n v esti g at e t h e i m p a ct of t h e n u m b er L of  R F
c h ai ns f or t h e s a m e c o n fi g ur ati o n as i n t h e pr e vi o us fi g ur e.
A first o bs er v ati o n is t h at o pti mi zi n g a n al o g c o m bi n er yi el ds
l ar g er p erf or m a n c e g ai n f or s m all er v al u es of L ,  w h er e f e w er
si g n al di m e nsi o ns ar e a v ail a bl e f or c h a n n el esti m ati o n at t h e
r e c ei v er. I n c o ntr ast, o pti mi zi n g t h e pil ots o nl y pr o vi d es  m or e
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significant performance gain for larger values of L. In this

regime, the channel estimation performance is dominated by

the variance due to channel noise rather than by the bias caused

by a small number L of RF chains. Joint optimization allows

both gains of optimizing pilots and analog combiners to be

harnessed. Finally, we note that, with one-bit ADCs, optimized

analog combining design offers performance gains even when

L = M . This is because the analog combiners can pre-process

the received signal in order to enable the one-bit ADCs to

extract the most useful information for channel estimation.

In Fig. 3, we plot the average sum-MSE versus the pilot

length τ for NU = 6 UEs, NR = 2 RRHs, M = 4 RRH

antennas, L = 3 RF chains and 10 dB SNR. It is observed

that the impact of pilot optimization is more significant in the

regime where τ is smaller, which calls for the use of well-

designed pilot signals.

Lastly, Fig. 4 plots the average sum-MSE versus the SNR

for NU = 6 UEs, NR = 2 RRHs, M = 10 RRH antennas,

L = 2 RF chain and τ = 3 pilot symbols. We note that the

pilot optimization has a negligible impact on the performance

in the low SNR regime, where the performance is limited by

additive noise. In contrast, the design of analog combiners

provides relevant performance gains even for low SNRs,

since it can provide array beamforming gains to increase the

effective SNR at the combiners’ output signals.

VI. CONCLUSIONS

The joint design of the pilot signals and analog combining

matrices was addressed for a cell-free C-RAN system with the

goal of minimizing the sum-MSE metric of all the channel

vectors in the presence of high-resolution or one-bit ADCs.

We observed that, with high-resolution ADCs and noiseless

uplink channel, the analog combining matrix of each RRH

can be separately optimized. For the optimization with one-

bit ADCs, we modeled the impact of ADC by leveraging

Bussgang’s theorem, and proposed an iterative algorithm that

alternately optimizes the pilots, analog combiners and digital

filter matrices. As a future work, we mention the analysis of

the impact of fronthaul compression techniques for cell-free

massive MIMO systems with finite-capacity fronthaul links.
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