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ABSTRACT

We propose a model for subtrajectory clustering—the clustering

of subsequences of trajectories; each cluster of subtrajectories is

represented as a pathlet, a sequence of points that is not necessarily

a subsequence of an input trajectory. Given a set of trajectories, our

clustering model attempts to capture the shared portions between

them by assuming each trajectory is a concatenation of a small set

of pathlets, with possible gaps in between.

We present a single objective function for finding the optimal

collection of pathlets that best represents the trajectories taking

into account noise and other artifacts of the data. We show that

the subtrajectory clustering problem is NP-Hard and present fast

approximation algorithms for subtrajectory clustering. We further

improve the running time of our algorithm if the input trajectories

are “well-behaved."

Finally, we present experimental results on both real and syn-

thetic data sets. We show via visualization and quantitative analysis

that the algorithm indeed handles the desiderata of being robust to

variations, being efficient and accurate, and being data-driven.
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Figure 1. The middle black trajectory shares commonalities with different sets of
trajectories, as shown in the boxed regions. The subtrajectories inside these boxes
can be clustered together, and a representative pathlet for each cluster computed so
that the black trajectory can be (almost) obtained by a concatenation of these pathlets,
with gaps in between.
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1 INTRODUCTION

Trajectories arise in the description of any dynamic physical system.

They are being recorded or inferred from millions of sensors at an

unprecedented scale. To take full benefit of the enormous opportuni-

ties provided by these datasets for extracting useful information and

improving decision making, several computational challenges need

to be addressed. This paper focuses on one such computational

problem, namely extracting high-level shared structure that en-

codes much of the information present in a large trajectory dataset.

For specificity, we focus on GPS traces of moving objects, though

much of the work here can be extended to many other domains. We

assume that each trajectory is observed as a sequence of points. For

simplicity, we refer to the point sequences themselves as trajectories.

For such trajectories, common but unknown constraints and objec-

tives generate patterns of subtrajectories, portions of trajectories

that are commonly shared. See Figure 1 for an example. Our goal is

to cluster such shared subtrajectories and represent each cluster as

a pathlet, a sequence of points that is not necessarily a subsequence

of an input trajectory. For example, a road network contributes to

shared subtrajectories for vehicle trajectories. Intuitively, a pathlet

is a portion of a road/path that tends to be traversed as a whole by

many trajectories. The subtrajectory clustering problem is to par-

tition shared subtrajectories into a small number of clusters such

that the pathlet for each cluster is a high-quality representation of

subtrajectories in each cluster.

Subtrajectory clustering is an interesting trajectory segmenta-

tion problem from both a modeling and algorithmic standpoint.

Individual trajectories carry little information about shared struc-

tures, and it is only in the context of a collection of trajectories that

the importance of certain subtrajectories becomes evident. This



situation is different from some other cases where shared struc-

tures (motifs) are extracted from a set of curves, such as protein

backbones or speech signals. In both of these cases, motifs are more

structured, and domain knowledge provides enough information

to identify common substructures in each curve, such as secondary

structures (α-helices and β-sheets) in a protein backbone.

If trajectories correspond to traffic on a known road network,

then these trajectories can be mapped to paths on a graph that mod-

els the road network. However, in many cases there might not be an

underlying road network or it might not be known, e.g., trajectories

corresponding to pedestrian movement in an urban environment or

pixels in video data. Therefore, we focus on unmapped trajectory

point sequences in R2 sampled at discrete time stamps.

Not only do pathlets provide a compression of large trajectory

data, effectively performing non-linear dimension reduction, the

semantic information provided by pathlets have been useful for tra-

jectory analysis applications such as similarity search and anomaly

detection [34]. Furthermore, a pathlet representation of trajectories

reduces uncertainty in individual trajectories; it reduces noise, fills

missing data, and identifies outliers (see Figure 8) [25, 26]. Pathlets

have also been used for many other applications such as recon-

structing a road network from trajectory data [9, 25].

1.1 Our Contributions

There are three main contributions of the paper – a simple model for

subtrajectory clustering; efficient approximation algorithms with

provable guarantees on the quality of solution and running time

under this model; and experimental results that demonstrate the

efficacy and efficiency of our model and algorithms, respectively.

Modeling. Our first main contribution, given in Section 2, is a sim-

ple model for subtrajectory clustering. In our model, each cluster of

subtrajectories is represented as a pathlet, a sequence of points. A

subtrajectory clustering is a set P of pathlets along with an assign-

ment of subtrajectories to pathlets in P. We use a distance function

between two point sequences (e.g., discrete Fréchet distance [6]) to

measure how well a pathlet represents (covers) a subtrajectory.

Such a model is faithful to the following three desiderata. As

discussed in Section 1.2, though related work has considered some

of these desiderata, we believe we are the first to address all of these

simultaneously.

Robustness to variations.We allow trajectories to have gaps, i.e.,

we do not require that the entire trajectory is covered by pathlets.

This serves two purposes – in addition to handling noisy portions

of trajectories better (akin to how gaps in DNA sequence alignment

model mutations [14]), these gaps also model those portions of

a trajectory that may be unique to it and not shared with other

trajectories (see Figure 1 and Section 7).

Theoretical guarantees.We define a single objective function that

is a weighted sum of the number of pathlets chosen, the cluster

quality for each pathlet, and the gap penalty for each trajectory.

By varying weights, one can obtain a trade-off between the three

criteria. An optimal subtrajectory clustering that minimizes the

objective should result in a small number of good quality clusters

(pathlets) and few gaps. Further, one should be able to cover shared

portions of an input trajectory by a short sequence of pathlets

(see Figure 9). As we show, such an objective admits to efficient

approximation algorithms.

Data-driven clustering. Given the above objective, the number

of pathlets chosen, the subtrajectory assignments, and the gaps in

the trajectories are all decided by the algorithm in a data-driven

fashion, largely independent of any user input. Further, we assume

that the set P of candidate pathlets from which the set P of pathlets

is constructed is the set of all possible point sequences, and we do

not make any a priori restrictions on what the pathlets can look

like. In this sense, our model is entirely data-driven.

In the subtrajectory-clustering problem, we assume that the can-

didate pathlets is the set of all possible point sequences. We also

consider the variant in whichP is chosen from a given finite set P of

b pathlets. We refer to this variant as the pathlet-cover problem. Be-

sides being interesting in its own right, our subtrajectory-clustering

algorithm will need an algorithm for this problem. For both vari-

ants, we are given a set T of n trajectories containingm points in

total.

Algorithms. We show (Section 3) that both pathlet cover and sub-

trajectory clustering are NP-Hard by a simple reduction from the

standard Facility-Location problem in Euclidean space.

We then turn to our main algorithmic results – approximation

algorithms for pathlet cover and subtrajectory clustering. Our algo-

rithm for pathlet-cover (Section 4) finds an O (logm)-approximate

pathlet dictionary in Õ (bm3) time1. To obtain this result, we show

that the construction of P can be formulated as an instance of the

weighted Set-Cover problem so that a greedy algorithm can be

used to construct a pathlet dictionary of the appropriate cost. How-

ever, the size of the set system can be as large as Ω(2n ). The main

technical contribution is to show how the greedy algorithm can be

executed efficiently without constructing the set system explicitly;

a similar idea was employed in inventory management [27].

Next we describe approximation algorithms for subtrajectory

clustering (Section 5). Here we use discrete Fréchet distance, a

widely used method for measuring similarity between two point

sequences, to measure the quality of a pathlet covering a subtrajec-

tory; see Section 5 for the formal definition. By a simple reduction to

the pathlet-cover problem, we obtain a polynomial-time O (logm)-

approximation. We simply use the set of all O (m2) contiguous

subtrajectories of input trajectories as the candidate set P. However,

such a “brute-force" enumeration of candidate pathlets makes the

running time prohibitive. In essence, this algorithm considers too

many possible assignments between subtrajectories and candidate

pathlets, and neither takes full advantage of the freedom in our

choice of pathlets nor does it exploit the underlying geometry fully.

We first show via a geometric grouping argument that by paying

an extra logm factor in the approximation quality, we canworkwith

a set P ofO (m) candidate pathlets.We then describe how to expedite

the algorithm further and prove that if the input trajectories are

κ-packed 2 for a constant κ > 0, then the algorithm runs in Õ (m2)

time. Intuitively, a trajectory is κ-packed if it is not a space-filling

1We use the notation Õ to hide polylogarithmic factors in n,m, b , and σ , the spread
of the trajectories’ points. The spread of a point set is defined as the ratio of largest
to smallest pairwise distance. The exponent on the polylog may depend upon the

dimension d of the underlying space when our algorithms are generalized beyond R2 .
2A trajectory is κ-packed if the length of its intersection with any disk of radius r is
at most κr . See Section 5 for details.



curve or a fractal. In practice, GPS trajectories are κ-packed with

small values of κ; see Section 7 and [38]. The main technical result,

which is quite surprising, is to show that for κ-packed curves for

constant κ, the number of subtrajectories of any trajectory that can

be mapped to a single pathlet is Õ (1); this pruning of subtrajectories

also leads to a more robust solution. By use of appropriate data

structures, the corresponding steps of the greedy algorithm can

therefore be significantly speeded up.

Preprocessing and Experiments. We briefly discuss two addi-

tional preprocessing steps that improve our algorithms’ perfor-

mance in practice (Section 6). The first step is designed to han-

dle lossy or sparse data sets for which many trajectories are only

partially observed. We describe a method to fill in the missing ob-

servations not through a simple linear interpolation, but instead

using observations from other input trajectories. The second step

is designed to even further reduce the size of the set P of candidate

pathlets. Our method sparsifies the set P by first projecting them

to an Euclidean space and then applying a clustering technique to

remove redundant candidate pathlets.

We conclude with an empirical evaluation of our algorithms

and the properties of our model in Section 7. We perform our ex-

periments on both synthetic and real data sets, and show that the

algorithm handles the desiderata of being robust to variations, be-

ing efficient and accurate, and being data-driven. In particular, it

finds pathlets that cover the dense areas of the data sets, and indi-

vidual trajectories can be recovered from a subset of the pathlets

with few gaps that capture variations in individual trajectories. We

also show that meaningful pathlets can be found even on instances

where there is no underlying road network, and further, the result-

ing pathlets gracefully handle noise in the individual trajectories.

In addition to examining the quality of our algorithm’s output vi-

sually, we also demonstrate that the parameters can be tuned for

different balances between dictionary size, coverage of trajectories,

and similarity between pathlets and their assigned subtrajectories.

1.2 Prior Work

Though there has been a recent line of work on subtrajectory clus-

tering [10, 15, 21, 24, 34, 40], all of this only considers a subset

of the desiderata we consider. In particular, none of these algo-

rithms provide any guarantee on their performance in the worst

case. In contrast, our goal was to develop an algorithm with prov-

able guarantees on its performance. Further, either the works aim

for complete coverage without the notion of gaps, or are not data-

driven, imposing particular structure on either the trajectories or

pathlets. In some more detail, the algorithm in Chen et al. [15]

assumes the trajectories to be paths in a graph with no noise and

they do not consider gaps. Though the approach in Panagiotakis

et al. [29] appears superficially similar to ours, their method seg-

ments trajectories based on the representativeness of individual

trajectory edges, which is based on density near the edge (irrespec-

tive of which trajectories contribute to the density). The algorithm

in Lee et al. [24] requires pathlets to be line segments, and the

algorithm in Sankararaman et al. [33] is effective only if data is

dense, not too noisy, and not too big. The algorithm in Buchin

et al. [10] requires the user to specify two of the following three

parameters – size, length or diameter of the cluster; their algorithm

finds the single cluster that optimizes for the third. Their approach

is slightly modified in [9] to detect multiple subtrajectory clusters

from trajectories; however they assume the trajectories are points

sampled from an unknown, underlying road network; and they

do not have a notion of gaps. In summary, our work encompasses

the desiderata that previous work either partially covers or omits

entirely.

There is a fair bit of work on extracting common movement

patterns. This line of work either pre-specifies the portion of trajec-

tories where to find a pattern or pre-specifies the pattern. For ex-

ample, given a set of trajectories and a query time-interval, Pelekis

et al. [30, 31] cluster the subtrajectories having points lying in the

query interval. This is equivalent to clustering trajectories, obtained

by restricting each trajectory in the query interval. The algorithms

in [19, 35, 36, 39] search for pre-defined patterns, such as groups

or crowds, in trajectory data. In contrast, our goal is to identify

shared structures determined by the data, while being robust to

noise, missing data, and non-uniform sampling.

The work on multiple sequence alignment (MSA) in computa-

tional biology [28], on functional clustering in statistics [32], and

on topic modeling [7] or dictionary learning [18] in machine learn-

ing and signal processing focus on identifying shared structures,

and thus relate to the problem studied here. However, MSA deals

with one dimensional sequences over a finite alphabet, and thus the

setting is much simpler. The work on functional clustering assumes

a (known) global parametrization over the data, and the range of

functions is one dimensional which makes the problem simpler.

Topic modeling/dictionary learning if applied to trajectory data will

not return subtrajectories as “topics” or words in the dictionary, as

they do not concern themselves with locality.

Finally, there is work on computing a mean or a median trajec-

tory as a representative of a given set of “similar” trajectories [11],

computing basis trajectories to recover structure from motion [5],

and segmenting individual trajectories using certain geometric cri-

teria [13]. The work on trajectory clustering [20, 22, 37] focuses on

partitioning a set of trajectories into clusters of similar trajectories,

and possibly computing a representative trajectory for each cluster

using the aforementioned work. This line of work, however, does

not discover shared structures among otherwise dissimilar trajec-

tories. There is some work on partial matching between a pair of

trajectories, i.e., finding most similar subtrajectories between two

trajectories [12].

2 THE CLUSTERING MODEL

A trajectory or pathlet is a polygonal curve defined by a finite se-

quence of points 〈p1,p2, . . .〉 in R
2 (again, our results can be gener-

alized to trajectories in Rd for any constant d). Let T = {T1, . . . ,Tn }

be a set of n trajectories and P = {P1, . . . , Pb } be a set of b candidate

pathlets. For simplicity, we assume the points in each trajectory

are distinct and let X =
⋃n
i=1Ti be the set of all trajectory points.

Set m = |X|. Let T [p,q] denote the subtrajectory of T lying be-

tween points p and q ofT . For positive integers i, j , letT (i, j ) denote

T [pi ,pj ].

A subtrajectory clustering is a pathlet dictionary, that is, a (multi)

subset P ⊆ P, along with an assignment of a subset T(P ) of subtra-

jectories to each P ∈ P such that there is at most one subtrajectory



S ∈ T(P ) of each trajectoryT ∈ T. In turn, for each trajectoryT ∈ T,

we letTP ∈ T(P ) denote the subtrajectory ofT assigned to P , assum-

ing one exists. We say that each S ∈ T(P ) is assigned to or covered

by P . We want to compute a multi set of pathletsP (and their assign-

ments)3 that is succinct and captures the shared portions between

trajectories.

In our model, a good clustering minimizes an objective function

consisting of three terms. The first term is proportional to |P|, the

number of pathlets. The second term consists of the fraction of

points of each trajectory that are not assigned to any pathlet in

P, summed over all trajectories in T. In other words, the second

term measures the size of the gaps left uncovered by P. We focus

on the fraction of uncovered points in each trajectory instead of

the absolute number, because we do not wish to optimize only for a

small number of especially long or densely sampled trajectories. The

third term captures how well the assigned subtrajectories resemble

the pathlets in the dictionary.

To formally define the third term in our objective, we use a

distance function, denoted by d(T1,T2), to measure the distance

between two point sequencesT1 andT2. To eliminate the possibility

of certain assignments, we may have d(S, P ) = ∞ in some cases.

We say an assignment is permissible if d(S, P ) , ∞.

For a trajectoryT ∈ T, let τ (T ) be the fraction of the trajectory’s

points that is not covered any pathlet. The cost of covering T by P

is defined as:

µ (T,P, d) = c1 |P| + c2

∑

T ∈T

τ (T ) + c3

∑

P ∈P

∑

S ∈T (P )

d(S, P ),

where c1, c2 and c3 are user-defined parameters.

Given a tuple (T,P, d), the pathlet-cover problem is to compute

P∗ ⊆ P and permissible assignments of subtrajectories to pathlets,

to minimize µ (T,P, d). We let π (T,P, d) = µ (T,P∗, d).

The subtrajectory-clustering problem is to solve the pathlet-cover

instance (T,P, d) with P being the (uncountably infinite) set of all

point sequences and d again being an arbitrary distance function

between point sequences.

The subtrajectory-clustering problem is hard for arbitrary dis-

tance functions, even from an approximation point of view, because

of the infinitely large set of candidate pathlets. It is helpful to con-

sider distance functions that are metrics, i.e., distance functions

satisfying the triangle inequality, as it allows us to restrict ourselves

to a finite set of candidate pathlets for computing an approximate

solution of the above objective function4. In particular, we use

the discrete Fréchet distance fr, a widely used metric for point se-

quences. Given two point sequences A and B, a correspondence is

a subset C ⊆ A × B such that for all a ∈ A (resp. b ′ ∈ B), there

exists b ∈ B (resp. a′ ∈ A) such that (a,b) ∈ C (resp. (a′,b ′) ∈ C).

LetT1 = 〈p1,p2, . . . ,pk 〉 andT2 = 〈q1,q2, . . . ,qℓ〉 be a pair of point

sequences. A correspondence C between T1 and T2 is monotone if

for (pi ,qj ), (pi′ ,qj′ ) ∈ C with i ≤ i ′ we have j ≤ j ′. The discrete

3We allow P to contain the same point sequence multiple times so that each copy
may be assigned to different portions of a single trajectory.
4Using a metric as a distance function makes it possible to cover every point in X by
simply making each of the n trajectories its own pathlet. Our goal of course is to find
a much smaller pathlet dictionary that pulls pathlets from the commonly traversed
portions of the trajectory collection.

Fréchet distance between T1 and T2 is defined as

fr(T1,T2) = min
C ∈Ξ

max
(p,q )∈C

| |p − q | |,

whereΞ is the set of all monotone correspondences between {p1,p2, . . . ,pk }

and {q1,q2, . . . ,qℓ }.

3 HARDNESS

In this section, we show that the pathlet-cover and subtrajectory-

clustering problems are both NP-Hard, even when we restrict

the distance function d to be the discrete Fréchet distance fr. The

decision version of the pathlet-cover problem can be formulated as

follows: given an instance (T,P, d) of pathlet-cover and a value k ,

determine whether π (T,P, d) ≤ k . We define the decision version

of subtrajectory-clustering similarly.

We reduce the Facility-Location problem, known to be NP-

Complete [23], to the pathlet-cover problem. Given two sets of

points F and C referred to as the facilities and customers, respec-

tively, a facility cost c > 0, and a real number k ′ > 0, the Facility-

Location problem asks if there exists a subset F ′ ⊆ F of facilities

and an assignment of customers to facilities f : C → F ′ such that

c |F ′ | +
∑

p∈C | | f (p) − p | | ≤ k ′.

Consider the following reduction to the pathlet-cover problem

from Facility-Location. Initially, we set T and P to be empty.

For each customer p ∈ C , we add a trajectory Tp = 〈p〉 to T. For

each facility f ∈ F , we add a candidate pathlet Pf = 〈f 〉 to P.

Finally, we let c1 = c , c2 > k ′, and c3 = 1, and we solve the

decision version of pathlet-cover over (T,P, fr)withk = k ′. Observe

fr(Tp , Pf ) = | |p − f | |. We derive the following theorem5.

Theorem 3.1. The pathlet-cover problem is NP-Complete.

Similarly, we can reduce the variant of Facility-Locationwhere F

is implicitly defined as all points inR2 to the subtrajectory-clustering

problem using essentially the same reduction6.

Theorem 3.2. The subtrajectory-clustering problem is NP-Hard.

4 PATHLET-COVER

In this section, we describe an approximation algorithm for the

pathlet-cover problem: the algorithm relies on a reduction to the

standard Set-Cover problem. We define a set system as a pair

(X , S), where X = {e1, . . . , eℓ } is the ground set of elements and S

is a family of subsets of X . Given a set system (X , S) and a weight

function w : S→ R+, the optimization version of the Set-Cover

problem asks for a subset C ⊆ S of minimum total weight such

that
⋃

C = X . Below, we describe an approximation-preserving re-

duction from the pathlet-cover problem to the Set-Cover problem.

Running the classic greedy algorithm for Set-Cover as described

below results in anO (logm)-approximation for both the Set-Cover

and original pathlet-cover instances. Unfortunately, the reduction

constructs an exponentially large set system. Our main algorithmic

5The proof uses the discrete Fréchet distance for the distance function d used to
measure similarity between pathlets and subtrajectories. If we allow arbitrary distance
functions instead, then we can show the stronger result that there exists no o (logm)-
approximation for pathlet-cover unless P = NP.
6While we are able to prove hardness for subtrajectory-clustering, we do not have a
proof that the problem is in NP because we do not know if the number of bits required
to describe optimal dictionary pathlets is polynomial in the input size.



challenge is to implicitly run the greedy algorithm without having

to explicitly create the whole set system.

4.1 From pathlet-cover to set-cover

Fix an instance (T,P, d) of the pathlet-cover problem. Let X be the

set of points in T as defined earlier; |X| = m. We define a family

of subsets S to create a weighted set system (X, S). There are two

types of subsets in our family; the first represents trajectory points

being covered by pathlets, and the second represents uncovered

trajectory points. Formally, the sets are defined as follows.

(1) For every P ∈ P and for any set of input subtrajectories R

drawn from distinct trajectories of T such that d(S, P ) , ∞

for all S ∈ R, family S contains a set S (P ,R) = {p ∈ S | S ∈

R} with w(S (P ,R)) = c1 + c3
∑

S ∈R d(S, P ).

(2) For a point p ∈ X, letT (p ) ∈ T denote the trajectory contain-

ing p. Then for every p ∈ X, family S contains a singleton

set {p} with w({p}) = c2/|T
(p ) |.

As mentioned above, the first step of this reduction constructs a

set system of exponential size. The following lemma expresses the

correctness of our reduction.

Lemma 4.1. There exists a bijection between set covers of (X, S)

and solutions to the pathlet-cover problem for (T,P, d) so that cost

and weight remain equal across the bijection.

Proof. Consider a solution to the pathlet-cover problem, con-

sisting of the pathlet dictionary P and assignments T(P ), for all

P ∈ P. We will create a solution C to the Set-Cover instance (X, S).

For each uncovered trajectory point p, we add the singleton set {p}

to C. For each P ∈ P, we add the set S (P ,T(P )) to C. One may easily

verify that the total weight of C is equal to the cost of P.

Conversely, consider a solution C to the Set-Cover instance. For

each set in C of the form S (P ,R), we add the pathlet P to P and

assign all the subtrajectories of R to P . We leave any points p such

that {p} ∈ C uncovered by our pathlet dictionary. Again, the cost

of our pathlet dictionary is the same as the total weight of C. �

4.2 Greedy set cover

We would like to use the standard greedy algorithm to solve the

Set-Cover instance described above. The greedy algorithm picks

the set that maximizes the ratio of newly covered elements to the

weight of the set. We refer to these ratios as the sets’ coverage-

cost ratios. The algorithm continues picking sets in this manner

until every element is covered. It is well-known that the greedy

algorithm has an approximation ratio ofO (logm) when run on the

set system (X, S).

We now describe the process in more detail for our setting. In

the Set-Cover instance above, each set is either a pathlet with cor-

responding subtrajectory assignments or a singleton set containing

a trajectory point. Choosing a set S (P ,R) of the first type results in

covering the trajectory points within subtrajectories R assigned to

the pathlet P . Choosing a set {p} of the second type is implemented

as marking a trajectory point p ∈ X as permanently uncovered. We

refer to all trajectory points covered by some pathlet or marked

permanently uncovered as processed.

Consider the state of the greedy algorithm immediately following

an iteration. Let C ⊆ S be the family of sets chosen so far by the

greedy algorithm, and let X̂ := X(C) ⊆ X be the subset of points

not processed by C. For a subtrajectory S , let Ŝ = S ∩ X̂ be the set

of unprocessed points in S .

We now consider the next iteration of the greedy algorithm. For

a family of subtrajectoriesR and a pathlet P , define its coverage-cost

ratio (with respect to C), ρ (P ,R), as

ρ (P ,R) =

∑

S ∈R |Ŝ |

c1 +
∑

S ∈R c3d(S, P )
,

and set

TP = argmax
R:S (P,R)∈S

ρ (P ,R); P∗ = argmax
P ∈P

ρ (P ,TP ).

Similarly, for each unprocessed point p ∈ X̂, we define its

coverage-cost ratio as ρ (p) = |T (p ) |/c2 and setp
∗
= argmax

p∈X̂
ρ (p).

Note that ρ (P ,R) depends on X̂ and thus on C, while ρ (p) is inde-

pendent of C.

In the next iteration, the algorithm chooses the set S (P∗,TP ∗ ) or

{p∗}, whichever has higher coverage-cost ratio. After adding the

set to C, we update the set X̂ of unprocessed points, the values

ρ (P ,R), and the sets TP . To implement each step of the greedy

algorithm, we store all pathlets and unprocessed points in a (max)

priority queue with their coverage-cost ratios as the keys. At each

step, we delete newly processed points from the priority queue and

update the priority queue as pathlets’ keys get updated. Note that

pathlets remain in the priority queue even when they are added to

the dictionary so that multiple copies of the same pathlet may be

added to the dictionary with distinct assignments.

The main challenge in implementing a step of the greedy al-

gorithm efficiently is the computation of TP for each pathlet P

since there are an exponential number of sets S (P ,R) in S. Notwith-

standing |S| = Ω(2n ), we describe below an efficient procedure for

computing TP .

4.3 Computing TP

Let SP (T ) denote the set of subtrajectories S of trajectory T where

d(P , S ) , ∞. For a set S (P ,R), we define the set of variables xS,T ∈

{0, 1} for each S ∈ SP (T ) and T ∈ T which indicate whether S ∈ R.

We also have
∑

S ∈SP (T ) xS,T ≤ 1 for all T ∈ T, i.e., at most one

subtrajectory of each trajectory can be in R.

Thus, for a fixed pathlet P , computing the set TP is equivalent

to solving the following optimization problem.

max

∑

T ∈T
∑

S ∈S (T ) |Ŝ |xS,T

c1 + c3
∑

T ∈T
∑

S ∈S (T ) d(S, P )xS,T
.

s.t.
∑

S ∈S (T )

xS,T ≤ 1 ∀T ∈ T.

xS,T ∈ {0, 1} ∀S ∈ S (T ),T ∈ T.

The maximum objective value is ≥ γ iff there exist feasible values

of the variables x such that
∑

T ∈T

∑

S ∈S (T )

(

|Ŝ | − c3γd(S, P )
)

xS,T ≥ c1γ . (1)

Define γ ∗ as the maximum value of γ such that there exists a valid

assignment of values to the variables x that satisfy (1). We have

ρ (P ,TP ) = γ
∗.
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Figure 2. Functions fS,P for subtrajectories S ofT1 (dashed blue) andT2 (dashed red),
functionsFP,T1 (blue) andFP,T2 (red), function ζP (green), and its intersection with

the line of slope c1 at γ
∗ .

For a fixed value of γ , in order to maximize the left hand side of

1, for each trajectoryT we should pick the subtrajectory S ∈ SP (T )

maximizing the quantity
(

|Ŝ | − c3γd(S, P )
)

provided it is greater

than 0. We do not pick any subtrajectory of T if all of them make

the quantity less than 0.

For a subtrajectory S , let fS,P be a real-valued function of γ de-

fined as fS,P (γ ) = |Ŝ | −c3γd(S, P ). For each pathlet P and trajectory

T , we define the function FP,T : R≥0 → R≥0 as

FP,T (γ ) = max{0, max
S ∈SP (T )

fS,P (γ )}.

Function FP,T is a monotonically non-increasing, piecewise-linear,

convex function with at most |SP (T ) | + 1 linear pieces. Next, we

define ζP (γ ) =
∑

T ∈T FP,T (γ ). Function ζP is also a monotonically

non-increasing, piecewise-linear, convex function with at most
∑

T ∈T |SP (T ) | +m pieces.

Since the graph of ζP , which we also denote by ζP , is a mono-

tonically non-increasing, convex chain, the optimal point γ ∗ is the

intersection point of ζP with the line of slope c1 and passing through

the origin. See Figure 2. Furthermore, TP = {T ∈ T | FP,T (γ
∗) > 0}.

We now describe a data structure that will aid us in a binary search

for γ ∗.

4.4 Data structure

The projection of FP,T on the γ -axis partitions it into |SP (T ) | + 1

intervals. Let IP,T denote the set of these intervals, and let IP =
⋃

T IP,T . We store IP in a segment tree ΨP ; see [16] for details on

the segment tree. Roughly speaking, ΨP is a balanced binary tree.

Each node v of ΨP is associated with an interval δv—the leaves

are associated with “atomic” intervals between two consecutive

endpoints of intervals in IP , and for an interval nodev with children

w and z, δv = δw ∪ δz . An interval I ∈ IP is stored at a node

v if δv ⊆ I and δp (v ) * I , where p (v ) is the parent of v . An

interval is stored at O (log |IP |) nodes. Let IP,v ⊆ IP denote the

subset of intervals stored at v . We define the function ζP,v (γ ) =
∑

T :IP,T ∩IP,v,∅ FP,T (γ ). The restriction of ζP,v in the interval δv is

a linear function. We store this linear function atv . Let α (w ) denote

the set of nodes encountered on the path in ΨP tow . Finally, for a

given leaf w , let ζ ′
P,w

(γ ) =
∑

v ∈α (w ) ζP,v (γ ). We have ζ ′
P,w

(γ ) =

ζP (γ ) for all γ ∈ δw . Computing ζ ′
P,w

takes O (log |IP |) time. An

interval can be inserted into or deleted from ΨP inO (log |IP |) time.

Returning to the greedy algorithm, whenever a new point is

processed for some trajectory T ∈ SP (T ), we update FP,T , the set

IP,T , and the segment tree ΨP . In the worst case, these updates may

take O ( |SP (T ) | log |IP |) time. We then perform a binary search for

γ ∗ as mentioned earlier over the O ( |IP |) leaves. When searching

over a leaf w of ΨP , we compute the intersection of ζ ′
P,w

with

the line of slope c1 passing through the origin. If the intersection

occurs to the left (resp. right) of δw , then we continue the search

over leaves to the left (resp. right) ofw . Otherwise, the intersection

occurs in δw . The binary search takes O (log2 |IP |) time.

4.5 Analysis

We now analyze the running time of our algorithm. We will do

so in terms of a value χ = maxP ∈P,T ∈T |SP (T ) |. While this value

can be as high as O (m2), we show in the next section how to re-

duce the value greatly when solving the subtrajectory-clustering

problem for collections of κ-packed trajectories. Selecting a pathlet

or point from the priority queue takes O (log(b + m)) time. Up-

dating the pathlets in the queue at the end of each greedy step

takes O (b log(b +m)) time, and each point member of the queue is

updated at most once in O (log(b +m)) time. Therefore, the algo-

rithm spends O (bm log(b +m)) time total updating and searching

the queue.

We also have |IP | = O (nχ ) for any P . If a pathlet P is selected at

the beginning of a greedy step, the subtrajectories it covers can be

computed in O (log(nχ ) + k ) time, where k is the number of newly

covered subtrajectories. Therefore, finding these subtrajectories

takes O (m log(nχ ) +m) time total. It takes O (b log2 (nχ )) time to

run the binary searches to recompute ρ (P ,TP ) for each candidate

pathlet P at the end of a greedy step.

Finally, at the end of a greedy step, it takes O (χ log χ ) time to

recompute the function FP,T for each pathlet P and trajectory T

that has a newly processed point. There are at mostm instances

where a trajectory sees one or more of its points covered at the end

of a greedy step, so the total time spent updating FP,T functions

isO (bmχ log χ ). By the same argument, the total number of updates

needed for each segment tree ΨP over all iterations is O (mχ ), for

a total update time of O (bmχ log(nχ )) for all pathlets. This later

bound is the bottleneck of our algorithm.

We thus have the following theorem.

Theorem 4.2. Let T be a set of n trajectories havingm points in to-

tal, P a set ofb candidate pathlets, and d any distance function between

point sequences. Let χ be the maximum number of subtrajectories

of any one trajectory T ∈ T for which there are permissible assign-

ments for any one P ∈ P. Then there is an O (logm)-approximation

algorithm for the pathlet-cover problem that runs in Õ (bmχ ) time,

provided there is an oracle that computes the distance function d in

constant time.

5 SUBTRAJECTORY CLUSTERING

Wenow describe our approximation algorithm for the subtrajectory-

clustering problem. As mentioned in the introduction, we assume

trajectories to be κ-packed and the underlying distance function to

be the discrete Fréchet distance. A curve is said to be κ-packed if

the length of its intersection with any disk of radius r is at most κr .

A point sequence is κ-packed if the polygonal curve obtained by

joining its points in sequence is κ-packed.

The algorithm relies on two main ideas. First, using the fact

that discrete Fréchet distance is a metric, we quickly construct a

small set S of candidate pathlets so that the cost of the optimal



pathlet cover of T with respect to S is close to that of an optimal

subtrajectory clustering of T (Section 5.1)7. Using properties more

specific to discrete Fréchet distance, we then reduce the set of

candidate pathlets further to a subset C. Next, we take advantage of

our use of Fréchet distance and the input trajectories beingκ-packed

to quickly compute an approximation of the Fréchet distance for

pathlet-cover’s distance function (Section 5.2). This approximation

enables us to consider only a small number of assignments between

each remaining pathlet and trajectory, thereby greatly speeding up

the algorithm without sacrificing the quality of the clustering.

5.1 Candidate pathlets

Let T be the set of n input trajectories with a total ofm points, and

let P be the set of all point sequences in R2. We first show how to

construct a candidate set S ofO (m2) pathlets such that π (T,S, fr) ≤

2π (T,P, fr), and then show how to construct a candidate set C of

O (m) pathlets such that π (T,C, fr) = O (logm)π (T,P, fr).

Let P ⊂ P be an optimal pathlet dictionary of T, i.e., P =

argminP⊂P µ (T,P, fr). Recall that for any P ∈ P, T(P ) is the family

of subtrajectories assigned to P . Let d(P ,T(P )) denote the cost of

assigning subtrajectories in T(P ) to P , i.e.,

d(P ,T(P )) = c3

∑

S ∈T (P )

fr(S, P ).

The lemma below states that P can be replaced by a subtrajectory

of T(P ) while only doubling the cost.

Lemma 5.1. There exists a subtrajectory S ′ ∈ T(P ) such that

d(S ′,T(P )) ≤ 2d(P ,T(P )).

Proof. Let S ′ = argminS ∈T (P ) fr(S, P ). We then have for any

S ∈ T(P ),

fr(S, S ′) ≤ fr(S, P ) + fr(S ′, P ) ≤ 2 fr(S, P ).

Thus replacing P by S ′ increases the cost by at most a factor of

2. �

In any solution to the pathlet-cover instance (T,P, fr), we can re-

place all dictionary pathlets by input subtrajectories using Lemma 5.1,

increasing the total cost by a factor of at most 2.

Corollary 5.2. Let P be the set of all point sequences in R2, and

let S be the set of all subtrajectories of T. We have |S| = O (m2) and

π (T,S, fr) ≤ 2π (T,P, fr).

Corollary 5.2 immediately implies a polynomial time approxi-

mation algorithm for subtrajectory-clustering. However, we can

further reduce the number of candidate pathlets by another factor

ofm with only an O (logm)-factor increase in the approximation

ratio.

Canonical pathlets. To further restrict the set of candidate path-

lets beyond the set of all subtrajectories, we introduce the notion

of canonical pathlets. Consider a trajectory T ∈ T. For simplicity,

we assume that |T | is a power of 2. Consider a balanced binary tree

over the interval [1, |T |]. Each node in the tree corresponds to an in-

terval [i, j], with its left and right children associated with intervals

[i, ⌊(i + j + 1)/2⌋] and [⌊(i + j + 1/2⌋ + 1, j] respectively. The leaves

7This step works for any distance function that is a metric, but for simplicity we focus
on the discrete Fréchet distance.

correspond to singleton intervals. The height of the tree is log2 |T |,

and the total number of nodes is 2|T |. Each interval induces a sub-

trajectory T (i, j ) of T . These subtrajectories of T corresponding to

the intervals of the tree nodes are called the canonical pathlets of

T , which we denote by C(T ). Applying the same procedure to all

the trajectories, we get a set C of O (m) canonical pathlets.

We can replace a subtrajectory pathlet P by a set of O (logm)

canonical pathlets C (P ) while increasing the assignment cost by

at most a factor of O (logm). Recall d(P ,T(P )) =
∑

S ∈T (P ) fr(S, P ).

The lemma below formalizes the prior observation.

Lemma 5.3. For a pathlet P and any set of subtrajectories T(P ),

there exists a set ofO (logm) canonical pathletsC (P ) = {P1, . . . , P |C (P ) | }

and a family of subtrajectory sets {T(P1), . . . ,T(P |C (P ) | )}, the union

of whose points equals the points in T(P ), such that
∑

Pi ∈C (P )

d(Pi ,T(Pi )) = O (logm) · d(P ,T(P )).

Proof. Let P be a subtrajectory of trajectory T . It is not hard to

see that P can bewritten as the concatenation of pathlets P1, P2, . . . , P |C (P ) |

in order, where each Pi ∈ C(T ) and |C (P ) | = O (log |T |). Consider a

subtrajectory S ∈ T(P ). Since there is a monotone correspondence

between P and S with discrete Fréchet distance fr(P , S ), there exist

monotone correspondences between each Pi and some subtrajec-

tory Si of S such that fr(Pi , Si ) ≤ fr(P , S ) and the Si ’s concate-

nated in order cover S . We construct the family of sets T(Pi ) by

including the subtrajectory Si of S in T(Pi ), for all S ∈ T(P ) and

i ∈ {1, . . . , |C (P ) |}. We then have

∑

Pi ∈C (P )

d(Pi ,T(Pi )) =
∑

S ∈T (P )

|C (P ) |
∑

i=1

fr(Pi , Si )

≤ |C (P ) |
∑

S ∈T (P )

fr(P , S )

= O (logm) · d(P ,T(P )).

�

As before, we can perform the above substitution for every sub-

trajectory pathlet in a (nearly) optimal dictionary with little cost in

the approximation ratio.

Corollary 5.4. Let P be the set of all point sequences in R2 and

let C be the set of all canonical pathlets of T. We have π (T,C, fr) =

O (logm) · π (T,P, fr).

5.2 Approximate distances

We use the set of canonical pathlets C as the set of candidate path-

lets in our reduction to pathlet-cover. Rather than use the discrete

Fréchet distance as our distance function directly, however, we in-

stead compute a distance function d that approximates the Fréchet

distances between a subset of pairs of canonical pathlets and sub-

trajectories, without decreasing the cluster quality by much. Other

pairs are given a distance of ∞ to mark them as not being per-

missible assignments. Using d dramatically reduces the number of

permissible assignments considered by the pathlet-cover approxi-

mation algorithm, and we are able to compute approximate Fréchet

distances much faster than we can compute them exactly. Our



Figure 3. Sets Q1
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as the thick red points inside the left and right balls,
respectively.

algorithm for computing these distances is based upon a simple

trajectory simplification scheme as described below.

For any r > 0, an r -simplification of a trajectoryT is a trajectory S

consisting of a subsequence of points from T such that fr(T , S ) ≤ r .

The following is a well-known linear-time greedy algorithm to

compute an r -simplification of T . We include the first point of T .

We then iterate along the points of T in order, and include in our

simplification each point that is at a distance of at least r from the

previously included point. Finally, we include the last point ofT . We

denote the resulting trajectory by
−→
Tr . We can similarly start from

the last point ofT and proceed in reverse. We denote this trajectory

by
←−
Tr . Finally, let Tr denote the merger of

−→
Tr and

←−
Tr obtained by

including each point that appears in either trajectory in the order

they originally appeared in T . The following lemma follows from

the construction:

Lemma 5.5. (i) Let p′ and q′ appear in Tr in order. We have

fr(T [p′,q′],Tr [p
′,q′]) ≤ r .

(ii) Let p and q appear in T in order. There exist p′,q′ ∈ Tr such

thatT [p,q] is a subsequence ofT [p′,q′] and fr(T [p,q],Tr [p
′,q′]) ≤

r .

(iii) The lengths of the edges in
−→
Tr (resp.

←−
Tr ), except possibly the

last (resp. first) edge, is at least r .

As described below, computing r -simplifications of trajectories

allows us to quickly compute Fréchet distances within an additive

error of O (r ). In addition, for any pair P ∈ C,T ∈ T, the number of

subtrajectories ofTr , the r -simplification ofT , within distanceO (r )

of P is a constant, assuming κ is a constant.

Let σ denote the spread of the trajectories’ point sets, i.e., the

ratio between the maximum and the minimum pairwise point dis-

tances. (Recall our assumption that points are distinct; while the

assumption aids in our presentation, the algorithm can be easily

adapted to the case when a point appears in multiple trajectories.)

We now construct a distance function d that gives a 4-approximation

for the discrete Fréchet distance fr for some pathlet-subtrajectory

pairs. For others, their distance will be set so corresponding assign-

ments are not permissible. Let r (resp. r̄ ) be the minimum (resp.

maximum) pairwise distance between trajectory points: r̄ = σ r.

For each T ∈ T, r ∈ 〈r̄ , r̄/2, . . . , r〉, we do the following. We

compute Tr in |T | time as described above. We want to efficiently

decide which subtrajectories of Tr are within distance O (r ) of each

pathlet P . To do so, we preprocess the set of points in Tr into an

approximate spherical range query data structure of size O ( |Tr |)

inO ( |Tr |) time; see Aronov et al. [6]. The data structure can answer

queries of the following form: Let B(p, r ) = {x ∈ R2 | | |x −p | | ≤ r }

denote a ball of radius r aroundp. Given a pointp, the data structure

returns a subset of points of B(p, 2r ) ∩ Tr , including all points

of B(p, r ) ∩ Tr . It returns no points outside B(p, 2r ) ∩ Tr . Each

query takes constant time8, plus additional time proportional to

the number of points returned. For each P ∈ C, let p and q be the

start and end points of P , respectively. Let Q1
T Pr
= B(p, 3r ) ∩ Tr

and Q2
T Pr
= B(q, 3r ) ∩ Tr (see Figure 3). We compute Q1

T Pr
and

Q2
T Pr

using the approximate spherical range query data structure,

and then for every pair (p′,q′) such that p′ ∈ Q1
T Pr

and q′ ∈ Q2
T Pr

,

we invoke a decision procedure that checks if fr(Tr [p
′,q′], P ) is at

most 3r ; see [17, Lemma 3.1]. Suppose fr(Tr [p
′,q′], P ) ≤ 3r . We set

d(T [p′,q′], P ) = 4r . We do the above for all triples (T , r , P ), and we

let all other values of d(·, ·) not assigned above be equal to∞. For our

algorithm, we return an O (logm)-approximate pathlet dictionary

for the pathlet-cover instance (T,C, d) using Theorem 4.2.

5.3 Analysis

We now turn to analyzing the running time and approximation

factor of our subtrajectory-clustering algorithm.

Running time. Our main goals are to bound the number of per-

missible assignments per pathlet-trajectory pair and the time it

takes to compute their Fréchet distances. The following lemma

helps with both goals.

Lemma 5.6. For each P ∈ C, T ∈ T, and r ∈ {r̄ , r̄/2, . . . , r}, we

have |Q1
T Pr
|, |Q2

T Pr
| ≤ O (κ).

Proof. Let p be the starting point of P . By Lemma 5.5(iii), each

pair of consecutive points along
−→
Tr (resp.

←−
Tr ) are distance at least

r apart (except possibly at the endpoints). In particular, there is at

least r length of curve from
−→
Tr (resp.

←−
Tr ) lying in B(p, 4r ) between

every pair of consecutive points inQ1
T Pr
∩
−→
Tr (respQ

1
T Pr
∩
←−
Tr ). By

the definition of κ-packed curves, there are only O (κ) such curve

portions within that ball. A similar argument holds for Q2
T Pr

. �

As in the previous section, for each canonical pathlet P ∈ C

and trajectory T ∈ T, let SP (T ) denote the set of subtrajecto-

ries S of trajectory T where d(P , S ) , ∞. Recall the value χ =

maxP ∈C,T ∈T |SP (T ) |. The following lemma bounds χ .

Lemma 5.7. For each P ∈ C,T ∈ T, we have |SP (T ) | ≤ O (κ2 logσ ).

Proof. By Lemma 5.6, for a fixed value r ∈ {r̄ , r̄/2, . . . , r}, the

total number of subtrajectories for which d(T , P ) is set to be fi-

nite is O ( |Q1
T Pr
|.|Q2

T Pr
|) = O (κ2). There are O (logσ ) values of r

considered by the algorithm. �

The algorithm spendsO (m logσ ) time total simplifying trajecto-

ries. Fix a canonical pathelet P , trajectory T , and resolution r . Let p

and q be the first and last points of P . One can show B(p, 6r ) ∩Tr
andB(q, 6r )∩Tr both containO (κ) points. Therefore, it takesO (κ)

time to compute Q1
T Pr

and Q2
T Pr

using the approximate spher-

ical range-query data structure. For any subtrajectory S of Tr ,

testing if fr(S, P ) ≤ 3r can be done in O (κ |P |) time [17]. There

are b = O (m) canonical pathlets, and their total length (i.e., number

of points) isO (m logm). Summing over all permissible assignments

between pathlets and subtrajectories, it takes O (κmnχ logm) =

O (κ3mn logσ logm) time to compute approximate Fréchet distances.

Finally, it takes Õ (bmχ ) = Õ (κ2m2 logσ ) time to run our algorithm

8This constant is exponential in the ambient dimension.
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