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ABSTRACT

Estimation of the accuracy of a large-scale knowledge graph (KG)

often requires humans to annotate samples from the graph. How

to obtain statistically meaningful estimates for accuracy evaluation

while keeping human annotation costs low is a problem critical to

the development cycle of a KG and its practical applications. Sur-

prisingly, this challenging problem has largely been ignored in prior

research. To address the problem, this paper proposes an efficient

sampling and evaluation framework, which aims to provide quality

accuracy evaluation with strong statistical guarantee while mini-

mizing human efforts. Motivated by the properties of the annota-

tion cost function observed in practice, we propose the use of clus-

ter sampling to reduce the overall cost. We further apply weighted

and two-stage sampling as well as stratification for better sampling

designs. We also extend our framework to enable efficient incre-

mental evaluation on evolving KG, introducing two solutions based

on stratified sampling and a weighted variant of reservoir sampling.

Extensive experiments on real-world datasets demonstrate the ef-

fectiveness and efficiency of our proposed solution. Compared to

baseline approaches, our best solutions can provide up to 60% cost

reduction on static KG evaluation and up to 80% cost reduction on

evolving KG evaluation, without loss of evaluation quality.

PVLDB Reference Format:

Junyang Gao, Xian Li, Yifan Ethan Xu, Bunyamin Sisman, Xin Luna Dong,
Jun Yang. Efficient Knowledge Graph Accuracy Evaluation. PVLDB, 12(11):
1679-1691, 2019.
DOI: https://www.doi.org/10.14778/3342263.3342642

1. INTRODUCTION
Over the past few years, we have seen an increasing number of

large-scale KGs with millions of relational facts in the format of

RDF triples (subject,predicate,object). Examples include DBPe-

dia [1], YAGO [15, 5], NELL [25], Knowledge-Vault [13], etc.

However, the KG construction processes are far from perfect, so

these KGs may contain many incorrect facts. Knowing the accu-

racy of the KG is crucial for improving its construction process

∗Most of the work was conducted when the author was interning at
Amazon.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150­8097.
DOI: https://www.doi.org/10.14778/3342263.3342642

(e.g., better understanding the ingested data quality and defects in

various processing steps), and informing the downstream applica-

tions and helping them cope with any uncertainty in data quality.

Despite its importance, the problem of efficiently and reliably eval-

uating KG accuracy has been largely ignored by prior academic

research.

KG accuracy can be defined as the percentage of triples in the

KG being correct. Here, we consider a triple being correct if the

corresponding relationship is consistent with the real-life fact. Typ-

ically, we rely on human judgments on the correctness of triples.

Manual evaluation at the scale of modern KGs is prohibitively ex-

pensive. Therefore, the most common practice is to carry out man-

ual annotations on a (relatively small) sample of KG and compute

an estimation of KG accuracy based on the sample. A naive and

popular approach is to randomly sample triples from the KG to an-

notate manually. A small sample set translates to lower manual

annotation costs, but it can potentially deviate from the real accu-

racy. In order to obtain a statistically meaningful estimation, one

has to sample a large “enough” number of triples, so increasing cost

of annotation. Another practical challenge is that KG evolves over

time—as new facts are extracted and added to the KG, its accuracy

changes accordingly. Assuming we have already evaluated a previ-

ous version of the KG, we would like to incrementally evaluate the

accuracy of the new KG without starting from scratch.

To motivate our solution, let us examine in some detail how the

manual annotation process works. We use two annotation tasks

shown in Table 1 as examples.

Example 1.1. Mentions of real-life entities can be ambiguous. For

example, the first triple in Task1, the name “Michael Jordan” could

refer to different people — Michael Jordan the hall-of-fame basket-

ball player or Michael Jordan the distinguished computer scientist?

The former was born in New York, while the latter was born in

Los Angeles. Before we verify the relationship between subject

and object, the first task is to identify each entity.1 If we assess

a new triple on an entity that we have already identified, the total

evaluation cost will be lower compared to assessing a new triple

from unseen entities. For example, in Task2, all triples are about

the same entity of Michael Jordan. Once we identify this Michael

Jordan as the basketball player, annotators could easily evaluate

correctness of these triples without further identifications on the

subject. On the contrary, in Task1, five different triples are about

five different entities. Each triple’s annotation process is indepen-

dent, and annotators need to spend extra efforts first identifying

possible ambiguous entities for each of them, i.e., Friends the TV

1In an actual annotation task, each triple is associated with some
context information. Annotators need to spend time first identify-
ing the subject, the object or both.
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Table 1: Two annotation tasks: Task1 consists of triples regarding different entities while Task2 consists of triples about the same entity.

Task1 Task2

(Michael Jordan, graduatedFrom, UNC) (Michael Jordan, wasBornIn, LA)

(Vanessa Williams, performedIn, Soul Food) (Michael Jordan, birthDate, February 17, 1963)

(Twilight, releaseDate, 2008) (Michael Jordan, performedIn, Space Jam)

(Friends, directedBy, Lewis Gilbert) (Michael Jordan, graduatedFrom, UNC)

(The Walking Dead, duration, 1h 6min) (Michael Jordan, hasChild, Marcus Jordan)

series or Friends the movie? Twilight the movie in 2008 or Twi-

light the movie in 1998? Apparently, given the same number of

triples for annotations, Task2 takes less time. In addition, validat-

ing triples regarding the same entity would also be an easier task.

For example, a WiKi page about an actor/actress contains most of

the person’s information or an IMDb page about a movie lists its

comprehensive features. Annotators could verify a group of triples

regarding the same entity all at once in a single (or limited num-

ber) source(s) instead of searching and navigating among multiple

sources just to verify an individual fact.

Hence, generally speaking, auditing on triples about the same

entity (as Task2) can be of lower cost than on triples about differ-

ent entities (as Task1). Unfortunately, given the million- or even

billion-scale of the KG size, selecting individual triples is more

likely to produce an evaluation task as Task1.

As motivated in the above example, when designing a sampling

scheme for large KG, the number of sampled triples is no longer a

good indicator of the annotation cost—instead, we should be mind-

ful of the actual properties of the manual annotation cost function

in our sampling design. Our contributions are four-fold:

• We provide an iterative evaluation framework that is guaran-

teed to provide high-quality accuracy estimation with strong

statistical consistency. Users can specify an error bound on

the estimation result, and our framework iteratively samples

and estimates. It stops as soon as the error of estimation is

lower than user required threshold without oversampling and

unnecessary manual evaluations.

• Exploiting the properties of the annotation cost, we propose

to apply cluster sampling with unequal probability theory

that enables efficient manual evaluations. We quantitatively

derive the optimal sampling unit size in KGs by associating

it with approximate evaluation cost.

• The proposed evaluation framework and sampling technique

can be extended to enable incremental evaluation over evolv-

ing KGs. We introduce two efficient incremental evaluation

solutions based on stratified sampling and a weighted variant

of reservoir sampling respectively. They both enable us to

reuse evaluation results from previous evaluation processes,

thus significantly improving the evaluation efficiency.

• Extensive experiments on various real-life KGs, involving

both ground-truth labels and synthetic labels, demonstrate

the efficiency of our solution over existing baselines. For

evaluation tasks on static KG, our best solution cuts the anno-

tation cost up to 60%. For evaluation tasks on evolving KG,

incremental evaluation based on stratified sampling provides

up to 80% cost reduction.

To the best of our knowledge, this work is among the first to pro-

pose a practical evaluation framework that provides efficient, un-

biased, and high-quality KG accuracy estimation for both static

and evolving KGs. Though we mainly focus on accuracy evalua-

tion of knowledge graphs, our proposed evaluation framework and

sampling techniques are general and can be extended to relational

databases (with appropriate notions of entities and relationships).

The rest of the paper is organized as follows. Section 2 re-

views the key concepts of KG accuracy evaluation and formally

defines the problem. Section 3 proposes an evaluation model and

analyzes human annotator’s performances over different evaluation

tasks that motivate our solution. Section 4 presents our general

evaluation framework. Section 5 and Section 6 introduce a com-

prehensive suite of sampling techniques that lead to efficient quality

evaluation on both static KG and evolving KG. Section 7 experi-

mentally evaluates our solutions. Finally, we review related work

on KG accuracy evaluation in Section 8 and conclude in Section 9.

2. PRELIMINARIES

2.1 Knowledge Graphs
We model knowledge graph G as a set of triples in the form of

(subject, predicate, object), denoted by (s, p,o). Formally, G =
{t | t : (s, p,o)}. For example, in tuple (/m/02mjmr, /people/person-

/place of birth, /m/02hrh0 ), /m/02mjmr is the Freebase id for Barack

Obama, and /m/02hrh0 is the id for Honolulu. Each entity in the

KG is referred to unique id. If the object of a triple is an entity, we

call it a triple with entity property. On the contrary, a triple with

an atomic object, such as a date, number, length, etc., is called a

triple with data property. Next, let us define an entity cluster as

a set of triples with the same subject value e; i.e., G[e] = {t | t :

(s, p,o)∧ s = e}. For a knowledge graph G with n distinct entities

E = {e1,e2, · · · ,en}, we have G =
⋃

e∈E G[e].
A knowledge graph G may evolve over time. Changes to G can

be modeled using a (possibly infinite) sequence of triple-level up-

dates. In practice, updates often arrive in batches. In this paper,

we only consider triple insertions into G.2 Consider a batch ∆ of

triple-level insertions. We cluster all insertions by their subject id

such that each ∆e only contains those insertions regarding the same

subject id e, denoted as ∆e = {t | t : (s, p,o)∧ s = e}. The evolved

KG is represented as G+∆ = G∪⋃e ∆e.

2.2 KG Accuracy and Estimation
The correctness of a triple t ∈ G is denoted by a value func-

tion f : t → {0,1}, where 1 indicates correct and 0 incorrect. The

KG accuracy is defined as the mean accuracy of triples µ(G) :=
1
|G| ∑t∈G f (t).

In this paper, we compute the value of f (t) by manual anno-

tation. However, it is infeasible to manually evaluate every triple

to assess the accuracy of a large-scale KG. A common practice is

to estimate µ(G) with an estimator µ̂ calculated over a relatively

small sample G′ ⊂ G, where G′ is drawn according to a certain

sampling strategy D . For instance, the simplest estimator is the

mean accuracy of a simple random sample of the triples in G. For

the purpose of evaluating the accuracy of G, we require µ̂ to be

unbiased; that is, E[µ̂] = µ(G). To quantify the uncertainties in the

sampling procedure, a confidence interval (CI) should be provided

for a single-valued point estimator. There is no universal formula to

2We add a new entity into KG by inserting new triples regarding
the entity.
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construct CI for an arbitrary estimator. However, if a point estima-

tor µ̂ takes the form of the mean of n independent and identically

distributed (i.i.d.) random variables with equal expectation µ , then

by the Central Limit Theorem,3 an approximate 1−α CI of µ can

be constructed as

µ̂± zα/2

√

σ2

n
, (1)

where zα/2 is the Normal critical value with right-tail probability

α/2, and σ2 is the population variance. The half width of a CI is

called the Margin of Error (MoE). In (1), the MoE is zα/2

√

σ2/n.

2.3 Problem Formulation
We now formally define the task of efficient KG accuracy evalu-

ation. Let G′ = D(G) be a sample drawn using a sampling design

D , and µ̂ be an estimator of µ(G) based on G′. Let Cost(G′) denote

the manual cost of annotating the correctness of triples in G′. we

are interested in the following problem:

Definition 1 (Efficient KG Accuracy Evaluation). Given a KG G

and an upper bound of MoE ε at confidence level 1−α ,

minimize
D

E

[

Cost
(

D(G)
)

]

(2)

subject to E[µ̂] = µ(G), MoE(µ̂,α)≤ ε.

For the case of evolving KG, suppose we have already evalu-

ated G using a sample G′, and since then G has evolved to G+∆.

Our goal is to minimize the evaluation cost to estimate µ(G+∆)
given that µ(G) has been estimated. Let D(G+∆ |G′) be a sample

drawn using a sampling design D given G′, and µ̂ is the estimator

of µ(G+∆) based on D(G+∆ | G′) (also given µ(G) estimated

using G′). The problem can be stated more precisely as follows.

Definition 2 (Efficient Evolving KG Accuracy Evaluation).

minimize
D

E

[

Cost

(

D
(

(G+∆) | G′
)

)]

(3)

subject to E[µ̂] = µ(G+∆), MoE(µ̂,α)≤ ε.

3. EVALUATION COST MODEL
Prior research typically ignores the evaluation time needed by

manual annotations. In this section, we study human annotators’

performance on different evaluation tasks and propose a cost func-

tion that approximates the manual annotation time. Analytically

and empirically, we argue that annotating triples in groups of enti-

ties is more efficient than triple-level annotation.

3.1 Evaluation Model
Recall that subject or non-atomic object in the KG is represented

by an id, which refers to a unique real-life entity. When manually

annotating a (s, p,o) triple, a connection between the id and the

entity to which it refers must be first established. We name this

process as Entity Identification. The next step is to collect evidence

and verify the facts stated by the triple, which is referred to as Re-

lationship Validation. To exploit the property of annotation cost

as we motivated in Example 1.1, sampled triples are prepared by

their subjects for manual evaluations. We shall refer to the task of

manually annotating true/false labels for a group of triples with the

3To be more precise, the Central Limit Theorem is applicable when
n is large. A rule of thumb is n > 30. The size restriction can be re-
laxed when the distribution of a sample is approximately Gaussian.
See a standard Statistics text book [9] for a formal definition.

Figure 1: Evaluation cost comparison of triple-level and entity-

level tasks on MOVIE. For entity-level tasks, the first triple evalu-

ated from an entity cluster is marked as solid triangle.

same subject id as an Evaluation Task. In this paper, we consider

the following general evaluation instructions for human annotators:

• Entity Identification: Besides assigning annotators an Eval-

uation Task to audit, we also provide a small set of related

information regarding to the subject of this Task. Annota-

tors are required to use the provided information to construct

a clear one-to-one connection between the subject and an

entity using their best judgement, especially when there is

ambiguity; that is, different entities share the same name or

some attributes.

• Relationship Validation: This step asks annotators for a cross-

source verification; that is, searching for evidence of subject-

object relationship from multiple sources (if possible) and

making sure the information regarding the fact is correct and

consistent. Once we have a clear context on the Evaluation

Task from the first step of Entity Identification, relationship

validation would be a straightforward yes or no judgement.

Example 3.1. We ask one human annotator to perform several an-

notation tasks on the MOVIE KG,4 and track the cumulative time

spent after annotating each triple. In the first task (which we call

“triple level”), we draw 50 triples randomly from the KG, and en-

sure that all have distinct subject ids. In the second task (which we

call “entity level”), we select entity clusters at random, and from

each selected cluster draw at most 5 triples at random; the total

number of triples is still 50, but they come from only 11 entity

clusters. The cumulative evaluation time is reported in Figure 1.

The time required by evaluating triple-level task increases ap-

proximately linearly in the number of triples, and is significantly

longer than the time required for entity-level task, as we expected.

If we take a closer look at the plot for the entity-level task, it is not

difficult to see that the evaluation cost on subsequent triples from

an identified entity cluster is much lower on average compared to

independently evaluating a triple (straight dotted lines).

3.2 Cost Function
We define a cost function based on the proposed evaluation model.

Definition 3 (Evaluation Cost Function). Given a sampled subset

G′ from KG, the approximate evaluation cost is defined as

Cost(G′) = |E ′| · c1 + |G′| · c2, (4)

4MOVIE is a knowledge graph constructed from IMDb and WiKi-
Data. More detailed information can be found in Section 7.1.1.
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5.2.1 Random Cluster Sampling

With random cluster sampling (RCS), n entity clusters are drawn

randomly, and all triples in the sampled clusters are manually eval-

uated. Let Ik be the index of the k-th sample cluster, k = 1,2, . . . ,n.

An unbiased estimator of µ(G) is given by

µ̂r :=
N

Mn

n

∑
k=1

τIk (7)

and its 1−α CI is µ̂r± zα/2

√

1
n(n−1) ∑

n
k=1(

N
M τIk
− µ̂r)2.

Since µ̂r relies on the number of correct triples τI in each sam-

pled cluster, which is positively correlated to the cluster size, the

variance of µ̂r is high when the cluster size distribution is wide,

which is the case of most real-life KGs. A more robust estimator

in such situations is based on the proportion rather than the number

of correct triples in sampled clusters.

5.2.2 Weighted Cluster Sampling

With weighted clustering sampling (WCS), clusters are drawn

with probabilities proportional to their sizes: πi =Mi/M, i= 1, ...,N.

Then all triples in sampled clusters are evaluated. An unbiased es-

timator of µ(G) is the Hansen-Hurwitz estimator [18]:

µ̂w :=
1

n

n

∑
k=1

µIk . (8)

The 1−α CI of µ̂w is µ̂w± zα/2

√

1
n(n−1) ∑

n
k=1(µIk

− µ̂w)2.

Comparing to (7), µ̂w has a smaller variance when cluster sizes

have a wide spread, because µ̂w sums over the accuracies of clusters

rather than the number of accurate triples of sampled clusters.

5.2.3 Two­Stage Weighted Cluster Sampling

The cost of WCS can be further reduced by estimating the accu-

racies of sampled clusters from samples of triples, instead of eval-

uating every single triple in the cluster. The cost saving from the

second stage within-cluster sampling is especially significant when

KG contains large entity clusters with hundreds or even thousands

of triples, which is common in most KGs. In this section, we intro-

duce two-stage weighted cluster sampling (TWCS):

1. In the first stage, we sample entity clusters using WCS.

2. In the second stage, only a small number of triples are se-

lected randomly from clusters sampled in the first stage. More

specifically, min{MIk
,m} triples are randomly drawn from

the k-th sample cluster without replacement.

Drawing without replacement in the second stage greatly reduces

sampling variances when cluster sizes are comparable or smaller

than m. The finite population correction factor is applied to subse-

quent derivations accordingly. (A similar approach can be applied

to two-stage random cluster sampling; however, due to its inferior

performance, we omit the discussion.)

Next, we show that TWCS still provides an unbiased estimation.

Let µ̂Ik
be the mean accuracy of the sampled triples (at most m) in

the k-th sampled cluster. An unbiased estimator of µ(G) is

µ̂w,m =
1

n

n

∑
k=1

µ̂Ik
. (9)

The 1−α CI of µ̂w,m is

µ̂w,m± zα/2

√

1

n(n−1)

n

∑
k=1

(µ̂Ik
− µ̂w,m)2.

Proposition 1. Using TWCS with a second-stage sample size of

m, µ̂w,m is an unbiased estimator of µ(G); that is, E[µ̂w,m] = µ(G).

Proof. By linearity of expectation, E[µ̂w,m] =
1
n ∑

n
k=1 E[µ̂Ik

]. Since

SRS is applied in each selected cluster, E[µ̂Ik
] = E[µIk

]. Finally,

each cluster is sampled with probability of Mi

M ,

E[µ̂w,m] =
1

n

n

∑
k=1

E[µIk
] =

1

n

n

∑
k=1

N

∑
i=1

Mi

M
µi =

1

n

n

∑
k=1

µ(G) = µ(G).

The variance derivation of µ̂w,m is non-trivial. Because of space

limits, we move the full derivations into the extended version of

this paper [16]. The theoretical variance of µ̂w,m is

Var(µ̂w,m) =
1

nM

(

∑
N
i=1 Mi(µi−µ)2 + 1

m ∑i:Mi>m
Mi−m
Mi−1 ·Mi ·µi(1−µi)

)

(10)

Relationship to SRS. There is a close connection between SRS

and TWCS, as the following result shows. Due to space limits, see

the extended version of this paper [16] for proof.

Proposition 2. The two-stage weighted cluster sampling with m =
1 is equivalent to simple random sampling.

Cost Analysis. Now we derive the manual annotation cost re-

quired by TWCS. Due to the second-stage sampling procedure, ex-

plicitly writing the cost function under TWCS would unnecessarily

complicate the optimization objective. Instead, we minimize an

upper bound (achieved when all sample clusters contains at least m

triples) on the exact cost. The objective in (2) can be rewritten as:

minimize
n,m

nc1 +(nm)c2 (11)

subject to MoE(µ̂w,m,α)≤ ε.

Recall that the variables n and m are constrained by Var(µ̂w,m) in

(10). Thus the constraint in the optimization problem on MoE can

be used to express n as a function of m,

n≥
V (m)z2

α/2

ε2
,

where

V (m) =
1

M

( N

∑
i=1

Mi(µi−µ)2 +
1

m
∑

i:Mi>m

Mi−m

Mi−1
·Mi ·µi(1−µi)

)

.

Since the minimization objective (11) monotonically increases with

n, it is sufficient to set n =V (m)z2
α/2

/ε2. Hence, the objective can

be further rewritten as

minimize
m

V (m)z2
α/2

ε2
(c1 +mc2). (12)

Though it is hard to provide a closed-form expression for the opti-

mal m, we can easily find it via gradient descent or linear search on

the discrete variable space. In Section 7, our experimental results

confirm that optimizing the upper bound of the approximate cost

can find m very close to the empirical optimal solution.

Compared with the evaluation cost required by SRS as in (6),

the main cost saving provided by TWCS is on the triple identifi-

cation cost specified as c1. In order to achieve the MoE of esti-

mation required by users, n by TWCS is significantly smaller than

∑
N
i=1

(

1− (1− Mi

M )ns

)

. Even though TWCS might eventually an-

notate more triples than SRS (because we have to annotate up to m

triples for each sample cluster), TWCS still beats SRS in terms of

overall cost as auditing triples related to the same entity is efficient

for human annotators.
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Figure 3: Correlation between entity accuracy and cluster size in

real-life KGs, NELL and YAGO. Entity accuracy is defined as the

percentage of triples being correct in the entity cluster.

5.3 Further Optimization: Stratification
In Figure 3, we plot the relationship between entity cluster ac-

curacy and cluster size based on two real-life knowledge graphs

NELL and YAGO with human annotated labels on triple correct-

ness. We observe that larger entity clusters tend to have higher

entity accuracy and also lower variation on entity accuracies. Mo-

tivated by this example, cluster size seems to be a reasonable signal

for gauging entity accuracies; e.g., large clusters tend to be more

accurate. Such a signal would guide us to group clusters into sub-

populations, within which entity accuracies are relatively homo-

geneous compared to the overall population. Stratified sampling, a

technique of variance reduction in statistics [9], can then be applied

to further boost the efficiency of cluster sampling.

Suppose we stratify entity clusters in KG into H non-overlapping

strata. In each stratum h, we apply TWCS with second-stage sam-

pling size m to obtain an unbiased estimator µ̂w,m,h. Let M[h] be

the total number of triples in the h-th stratum, Wh = M[h]/M as the

weight of h-th stratum, an unbiased estimator for KG accuracy is:

µ̂ss = ∑
h

Wh · µ̂w,m,h, (13)

and its 1−α CI is µ̂ss± zα/2

√

∑h W 2
h
·Var(µ̂w,m,h).

If these strata are relatively homogeneous compared to the entire

population, i.e., entity cluster with similar accuracy are grouped

into the same stratum, then ∑h W 2
h Var(µ̂w,m,h) < Var(µ̂w,m). Thus,

to achieve similar variance as in objective (11), we can get a even

lower sample size n to further reduce the annotation cost.

The interested readers can refer to the extended version of this

paper [16] for additional discussions on how to apply stratified sam-

pling and optimal sample allocation.

Besides the cluster size, other signals (such as entity type, pop-

ularity, freshness) may also be useful for predicting accuracy and

guiding the stratification strategy. Applying stratified sampling to

SRS is also possible, although it would require a triple-level accu-

racy model, which is more difficult. How to design better accuracy

models to better guide stratification is a promising direction of fu-

ture work, but is beyond the scope of this paper.

6. EVALUATION ON EVOLVING KG
We discuss two methods to reduce the annotation cost in esti-

mating µ(G+∆) as a KG evolves from G to G+∆, one based on

reservoir sampling and the other based on stratified sampling.

6.1 Reservoir Incremental Evaluation
Reservoir Incremental Evaluation (RS) is based on the reservoir

sampling [28] scheme, which stochastically updates samples in a

fixed size reservoir as the population grows. To apply reservoir

sampling on evolving KG to obtain a sample for TWCS, We intro-

duce the reservoir incremental evalution procedure as follows.

For any batch of insertions ∆e ∈ ∆ to an entity e, we treat ∆e

as a new and independent cluster, despite the fact that e may al-

ready exist in the KG. This is to ensure weights of clusters stay

constant. Though we may break an entity cluster into several dis-

joint sub-clusters over time, it does not change the properties of

weighted reservoir sampling or TWCS, since these sampling tech-

niques work independently on the definition of clusters.

The Reservoir Incremental Evaluation procedure based on TWCS

reservoir sampling is described in Algorithm 1.

Algorithm 1: Reservoir-based Incremental Sample Update on

Evolving KG

Input:

A base knowledge graph G,

A TWCS sampled cluster set R = {r1, . . . ,rn} with reservoir

key value K = {k1, . . . ,kn} generated by Algorithm-A in [14],

A KG update ∆.

Output: A weighted random entity cluster sample R of G+∆.

1 for ∆e ∈ ∆ do

2 G← G∪∆e;

3 Find the smallest reservoir key value in K as k j;

4 Compute update key value ke = [Rand(0,1)]1/|∆e| ;

5 if ke > k j then

6 r j← ∆e;

7 k j← ke;

8 return R;

Two properties of RS make it preferable for dynamic evaluation

on evolving KGs. First, as G evolves, RS allows an efficient one-

pass scan over the insertion sequence to generate samples. Sec-

ondly, compared to re-sampling over G + ∆, RS retains a large

portion of annotated triples in the new sample, thus significantly

reduces annotation costs.

After incremental sample update using Algorithm 1, it happens

that the MoE of estimation becomes larger than the required thresh-

old ε . In this case, we again run Static Evaluation process on G+∆

to draw more batches of cluster samples from the the current state

of KG iteratively until MoE is no more than ε .

Cost Analysis. As KG evolves from G to G+∆, Algorithm 1

incrementally updates the random sample G′ to (G+ ∆)′, which

avoids a fresh round of manual annotation. Our estimation process

only needs an incremental evaluation on these (potentially small)

newly sampled entities/triples. Also in [14], the authors pointed out

that the expected number of insertions into the reservoir (without

the initial insertions into an empty reservoir) is

# of insertions =
N j

∑
i=Ni

Pr[cluster i is inserted into reservoir]

= O

(

|R| · log

(

N j

Ni

))

,

(14)

where |R| is the size of reservoir, and Ni,N j is the total number of

clusters in G,G+∆, respectively.

Proposition 3. The incremental evaluations on new samples in-

curred by weighted sample update on evolving KG is at most

O

(

|R| · log
(N j

Ni

)

)

, where R is the origin sample pool, and Ni,N j is

the total number of clusters in the origin KG and the evolved KG,

respectively.
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6.2 Stratified Incremental Evaluation
We now consider an even more efficient incremental evaluation

method based on stratified sampling. KG updates come in batches,

and it is natural to view each batch of updates as a stratum. More

specifically, when G evolves to G+∆, G and ∆ are two independent

and non-overlapping strata. Stratified sampling enables us to com-

bine the estimation results from G and ∆ to calculate the unbiased

estimation of overall accuracy of G+∆. Suppose that from previ-

ous round of evaluation on G, we have already collected a set of

samples, and calculated µ̂(G) and Var[µ̂(G)]. To evaluate overall

accuracy of G+∆, we can fully reuse the samples drawn from G

(or more precisely, µ̂(G) and Var[µ̂(G)]), and only sample and an-

notate a few more triples on ∆. Guaranteed by stratified sampling,

we can still have an unbiased estimation of the overall accuracy.

The full description of Stratified Incremental Evaluation procedure

is shown as Algorithm 2.

Algorithm 2: Stratified Incremental Evaluation on Evolving

KG

Input: A base knowledge graph G, a batch of KG update ∆,

user-required MoE threshold ε .

Output: An unbiased estimation µ̂(G+∆) of overall accuracy

of G+∆, with MoE≤ ε .

1 From accuracy evaluation on G, get µ̂(G) and Var[µ̂(G)];

2 Calculate strata weight: wG =
|G|
|G+∆| , w∆ =

|∆|
|G+∆| ;

3 Initialization: µ̂(G+∆)← 0,MoE← 1,S∆← /0 ;

4 while MoE > ε do

5 Randomly draw a batch of samples B∆ using TWCS on ∆

and append to sample set S∆ :

S∆← S∆∪B∆ ;

6 Calculate µ̂(∆) and Var[µ̂(∆)] from S∆ using Eq(9);

7 Update µ̂(G+∆) and MoE using Eq(13);

8 return µ̂(G+∆), MoE;

Though Algorithm 2 only shows how to handle a single update

batch, it can be extended straightforwardly to handle a sequence of

KG updates over time. Suppose we need to monitor the overall ac-

curacy of evolving KG over a sequence of updates: ∆1,∆2, ...,∆n.

Each ∆i will be treated as an independent stratum for stratified sam-

pling evaluation. For example, after applying ∆i, there is a total

number of i+1 strata: {G,∆1, ...,∆i}. Similarly as in Algorithm 2,

we reuse the evaluation results from strata G,∆1, ...,∆i−1 and only

incrementally draw samples from ∆i.

Compared with RS, Stratified Incremental Evaluation (SS) fully

leverages annotations and evaluation results from previous rounds,

without discarding any annotated triples. That is the main reason

why SS can be more efficient than RS. Our experiments in Sec-

tion 7 suggests that SS can bring a 20% to 67% improvement in

evaluation efficiency compared to RS. On the other hand, precisely

because SS reuses all previously annotated triples, it is more sus-

ceptible to the problem that a subset of samples may have a long-

term impact on the quality of subsequent estimations. This trade-

off between SS and RS is further evaluated in Section 7.

7. EXPERIMENTS
In this section, we comprehensively and quantitatively evaluate

the performance of all proposed methods. Section 7.1 elaborates

the experiment setup. Section 7.2 focuses on the accuracy evalua-

tion on static KGs. We compare the evaluation efficiency and esti-

mation quality of various methods on different static KGs with dif-

ferent data characteristics. Section 7.3 evaluates the performance

of the proposed incremental evaluation methods on evolving KGs.

Table 3: Data characteristics of various KGs.

NELL YAGO MOVIE MOVIE-FULL

Number of entities 817 822 288,770 14,495,142

Number of triples 1,860 1,386 2,653,870 130,591,799

Average cluster size5 2.3 1.7 9.2 9.0

Gold Accuracy 91% 99% 90% (MoE: 5%) N/A

We simulate several typical scenarios of evolving KG evaluations

in practice, and demonstrate the efficiency and effectiveness of our

proposed incremental evaluation solutions.

7.1 Experiment Setup

7.1.1 Dataset Description

We use real-life knowledge graphs, as summarized in Table 3

and described in detail below.

NELL & YAGO are small sample sets drawn from the origi-

nal knowledge graph NELL-Sports [3, 25] and YAGO2 [15, 5], re-

spectively. NELL is a domain-specific KG with sports-related facts

mostly pertaining to athletes, coaches, teams, leagues, stadiums

etc; while YAGO is not domain-specific. Ojha and Talukdar [26]

collected manual annotated labels (true/false), evaluated by recog-

nized workers on Amazon Mechanical Turk, for each fact in NELL

and YAGO. We use these labels as gold standard. The ground-truth

accuracies of NELL and YAGO are 91% and 99%, respectively.

MOVIE, based on IMDb6 [2] and WiKiData [4], is a knowledge

base with entertainment-related facts mostly pertaining to actors,

directors, movies, TV series, musicals etc. It contains more than 2

million factual triples. To estimate the overall accuracy of MOVIE,

we randomly sampled and manually evaluated 174 triples. The un-

biased estimated accuracy is 88% within a 5% margin of error at

the 95% confidence level. MOVIE-FULL is the full version of

MOVIE, which contains more than 130 million triples. For cost

consideration, we cannot afford manually evaluate the accuracy of

MOVIE-FULL in its entirety; we primarily use it to test scalability

of the proposed methods.

7.1.2 Synthetic Label Generation

Collecting human annotated labels is expensive. We generate

a set of synthetic labels for MOVIE in order to perform in-depth

comparison of different methods. MOVIE-SYN refers to a set of

synthetic KGs with different label distributions. We introduce two

synthetic label generation models as follows.

Random Error Model. The probability that a triple in the KG

is correct is a fixed error rate rε ∈ [0,1]. This random error model

(REM) is simple, but only has limited control over different error

distributions and can not properly simulate real-life KG situations.

Binomial Mixture Model. Recall in Figure 3, we find that

larger entities in the KG are more likely to have higher entity ac-

curacy. Based on this observation, we synthetically generate labels

that better approximate such distribution of triple correctness. First,

we assume that the number of correct triples from the i-th entity

cluster follows a binomial distribution parameterized by the entity

cluster size Mi and a probability p̂i ∈ [0,1]; that is, f (t)∼B(Mi, p̂i).
Then, to simulate real-life situations, we assume a relationship be-

tween Mi and p̂i specified by the following sigmoid-like function:

p̂i =

{

0.5+ ε, if Mi < k
1

1+e−c(Mi−k) + ε, if Mi ≥ k
(15)

5Average cluster size =
number of triples
number of entities .

6IMDb terms of service: https://www.imdb.com/conditions
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Table 5: Performance comparison of various solutions on static KGs.

MOVIE
(gold acc. 90%, 5% MoE)

NELL
(gold acc. 91%)

YAGO
(gold acc. 99%)

Annotation
Time(hours)

Estimation
Annotation

Time (hours)
Estimation

Annotation
Time(hours)

Estimation‡

SRS 3.53* 90% 2.3±0.45 91.5%±2.1% 0.45±0.17
99.6%

(96.7%-100%)

RCS > 5* 95%† 8.25±2.55 90.5%±2.4% 10±0.56
98.9%

(95.3%-100%)

WCS > 5* 93%† 1.92±0.62 91.6%±2.3% 0.49±0.04
99.2%

(96.7%-100%)

TWCS 1.4* 88% 1.85±0.6 91.6%±2.2% 0.44±0.07
99.2%

(96.7%-100%)

* Actual manual evaluation cost; other costs are estimated using Eq(4) and averaged over
1000 random runs.

† For economic considerations, we stop manual annotation process at 5 hours for RCS and
WCS. Note that estimations in these two cases (95% and 93%) do not satisfy the 5% MoE
with 95% confidence level.

Table 6: Performance comparison of TWCS and KGEval

on NELL and YAGO.

NELL
(gold acc. 91%)

YAGO
(gold acc. 99%)

KGEval TWCS KGEval TWCS

Machine Time
(sample generation)

12.44
hours

<1 second
18.13
hours

<1 second

# of triples
annotated

140 149±47 204 32±5

Annotation
Time (hours)

2.3 1.85±0.6 3.17 0.44±0.07

Estimation 91.84%
91.63%
±2.3%

99.30%
99.2%‡

(96.7%-100%)

‡ For the highly accurate KG YAGO, we report empirical confi-

dence interval instead of mean and standard deviation. Since
accuracy is always capped at 100%, empirical confidence inter-
val can better represent the data distribution in this case.

7.2.1 Evaluation Efficiency

TWCS vs. All. We start with an overview of performance com-

parison of various solutions on evaluation tasks on Static KGs. Re-

sults are summarized in Table 5. Best results in evaluation effi-

ciency are colored in blue. We highlight the following observa-

tions. First, TWCS achieves the lowest evaluation cost across dif-

ferent KGs, speeding the evaluation process up to 60% (on MOVIE

with actual human evaluation cost), without evaluation quality loss.

TWCS combines the benefits of weighted cluster sampling and

multi-stage sampling. It lowers entity identification costs by sam-

pling triples in entity groups and applies the second-stage sampling

to cap the per-cluster annotation cost. As expected, TWCS is the

best choice for efficient KG accuracy evaluation overall. Further-

more, as shown in the Estimation column of Table 5, all four pro-

posed solutions provide unbiased accuracy estimations with small

(< 3%) deviation from ground-truth accuracy.

TWCS vs. KGEval. We further compare the performance of

our best solution TWCS with KGEval on NELL and YAGO. See

Section 8 for a detailed description of KGEval. As shown in Ta-

ble 6, TWCS could significantly improve the evaluation process

both in machine time (up to 10,000× speedup) and manual anno-

tation cost (up to 80% cost reduction) without estimation quality

loss. Due to KGEval’s scalability issue, we also find it infeasible

to apply KGEval on large-scale KGs. In addition, TWCS gives

unbiased estimation with user-required confidence interval, while

KGEval does not have such a feature.

TWCS vs. SRS. Since SRS is the only solution that has compa-

rable performance to TWCS, we dive deeper into the comparison

of SRS and TWCS. Figure 5 shows the comparison in terms of

sample size and annotation cost on all three KGs with various eval-

uation tasks. We summarize the important observations as follows.

First, in Figure 5-1, TWCS draws fewer entity clusters than SRS

does, even though the number of triples annotated in total by TWCS

is slightly higher than that of SRS. Considering that the dominant

factor in annotation process is of entity identification, TWCS still

saves a fair amount of annotation time. Second, Figure 5-2 quanti-

fies the cost reduction ratio (shown on top of the bars) provided by

TWCS. Simulation results suggest that TWCS outperforms SRS by

a margin up to 20% on various evaluation tasks with different con-

fidence level on estimation quality and across different KGs. Even

on the highly accurate YAGO, TWCS still can save 3% of the time

compare to SRS when the estimation confidence level is 99%. It

is worth mentioning that on highly accurate KGs, like YAGO with

99% accuracy, there is no notable performance difference between

TWCS and SRS. Figure 5-1-c shows that both methods require only

20 to 30 triples to get accurate estimations. In such case, sampling

individual triples or sampling triples grouped by their subjects does

not differ much in terms of manual annotation cost. In fact, when

the evaluation task only requires a few triples, the annotation over-

head of TWCS makes it potentially less efficient than SRS, which

explains why TWCS gives a negative reduction ratio at 90% confi-

dence level for YAGO in Figure 5-2-c.

7.2.2 Optimal Sampling Unit Size of TWCS

So far, we run experiments using TWCS with the best choice

of second-stage sample size m. In this section, we discuss the op-

timal value of m for TWCS and provide some guidelines on how

to choose the (near-) optimal m in practice. We present the per-

formance of TWCS on NELL and two instances of MOVIE-SYN

as the second-stage sampling size m varies from 1 to 20 in Fig-

ure 6, using SRS as a reference. Since the ground-truth labels are

available, we also compare the theoretical results (blue ribbon with

upper/lower bound in Figure 6) based on Eq (10) with the simula-

tion results. For each setting, numbers are reported averaging over

1K random runs. Standard deviation is shown as error bar and grey

ribbon in all plots in Figure 6.

For sample size comparison: First, when m = 1, TWCS is equiv-

alent to SRS (recall Proposition 2), so the sample size (and evalu-

ation time) reported by TWCS is very close to SRS. Second, as m

increases, the sample cluster size would first drop significantly and

then quickly hit the plateau, showing that a large value of m does

not help to further decrease the number of sample clusters.

For annotation time, the theoretical results are shown as blue rib-

bon with the upper bound (assuming all selected sample clusters are

larger than m) and the lower bound (assuming all selected sample

clusters have size of 1). Again, when m = 1, the evaluation cost

of SRS and TWCS are roughly the same. Then, on two instances

of MOVIE-SYN (Figure 6-2 and Figure 6-3), the annotation time

decreases as m increases from 1 to around 5 and then starts to go

up, which could be even higher than SRS when m ≥ 10 (see Fig-

ure 6-2). A larger value of m potentially leads to more triples to be

annotated, as it can not further reduce the number of sample clus-

ters but we are expected to choose more triples from each selected

cluster. On NELL, things are little different: the annotation time

drops as m increases from 1 to around 5 but then roughly stays the

same. That is because NELL has a very skewed long-tail distri-

bution on cluster size - more than 98% of the clusters have size
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Table 7: Evaluation cost (hours) by TWCS with stratification using cumulative
√

F ; NELL has two strata and MOVIE/MOVIE-SYN has four

strata. A good stratification strategy could further boost the efficienty of basic TWCS up to 40%.

NELL

(gold acc. 91%)

MOVIE-SYN

(c = 0.01,σ = 0.1, gold acc. 62%)

MOVIE

(gold acc. 90%)

Annotation Cost

(hours)
Estimation

Annotation Cost

(hours)
Estimation

Annotation Cost

(hours)
Estimation

SRS 2.3±0.45 91.5%±2.1% 6.99±0.1 61.7%±2% 3.53* 90%

TWCS 1.85±0.6 91.6%±2.2% 5.25±0.46 62%±2.3% 1.4* 88%

TWCS w/ Size Stratification 1.90±0.53 91.9%±2.3% 3.97±0.5 61.8%±2% 1.3* 88%

TWCS w/ Oracle Stratification 1.04±0.06 91.4%±2.4% 2.87±0.3 61.5%±2% N/A† N/A†

* Actual manual evaluation cost; other evaluation costs are estimated using Eq(4) and averaged over 1000 random runs.
† Since we do not collect manually evaluated labels for all triples in MOVIE, oracle stratification is not applicable here.

130K 265K 530K 796K

KG update size (triples)

0

0.5

1

1.5

2

2.5

e
v
a
lu

a
ti
o
n
 t
im

e
 (

h
o
u
rs

)

Baseline RS SS

90% 90% 90% 90%

(1) Varying update size.

20% 40% 60% 80%

KG update accuracy

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

e
v
a

lu
a

ti
o

n
 t

im
e

 (
h

o
u

rs
)

Baseline RS SS

85%79%71%64%

(2) Varying accuracy.

Figure 8: Comparing evaluation cost for various solutions on

evolving KG with a single update batch. Overall accuracy after

update is shown on top of bars.

lion triples. On the other hand, we vary the overall accuracy from

10% to 90% on MOVIE-FULL and report the evaluation cost in

Figure 7-2. The cost peaks at 50% accuracy, where the variance

among triples’ correctness (1 or 0) reaches the maximum.

To summarize, the TWCS evaluation cost is affected by the un-

derlying KG accuracy (and reaches the highest when accuracy is

around 50%), but this cost is not sensitive to the KG size.

7.3 Incremental Evaluation on Evolving KG
In this section, we present an in-depth investigation on evolving

KG evaluations. First, we set the base KG to be a 50% subset ran-

domly selected from MOVIE. Then, we draw multiple batches of

random sets from MOVIE-FULL as KG updates. This setting bet-

ter approximates the evolving KG behavior in real-life applications,

as KG updates consist of both introducing new entities and enrich-

ing existing entities. Our evaluation framework can handle both

cases. Since the gold accuracy of MOVIE is about 90%, we syn-

thetically generate labels for the base KG using REM with rε = 0.1,

which also gives an overall accuracy around 90%.

7.3.1 Single Batch of Update

We start with a single update batch to the base KG to understand

comparison of the proposed solutions.

In the first experiment, we fix the update accuracy at 90%, and

vary the update size (number of triples) from 130K (∼ 10% of

base KG) to 796K (∼ 50% of base KG). Figure 8-1 shows the

comparison of annotation time of three solutions. The Baseline

performs the worst because it discards the annotation results col-

lected from previous round of evaluation and applies static eval-

uation from scratch. For RS, recall from Proposition 3 that the

expected number of new triples replacing annotated triples in the

reservoir would increase as the size of update grows; hence, the

corresponding evaluation cost also goes up as applying larger KG

update. SS, based on stratified sampling, keeps all annotated triples

from the previous rounds of evaluation, thus gives the lowest eval-

uation cost. The cost of SS also slowly increases as KG update

size increases, because a larger KG update makes its correspond-

ing stratum constitute a larger weight among all strata, requiring

more samples in this stratum to further reduce its own variance.

We can see in Figure 8-1 that SS further reduces the annotation

cost by about 50% compared to RS.

In the second experiment, we fix the update size at 796K triples,

and vary the update accuracy from 20% to 80%. Note in this case,

after applying the update, the overall accuracy also changes ac-

cordingly. Evaluation costs of all three methods are shown in Fig-

ure 8-2. It is not surprising to see that Baseline performs better as

KG update is more accurate (or more precisely, the overall KG ac-

curacy after applying update is more accurate). RS also performs

better when update is more accurate. Even though we fix the up-

date size, which makes the number of new triples inserted into the

reservoir roughly remains the same, as overall KG is more accu-

rate, we still can expect to annotate less additional triples to reduce

the variance of estimation after sample update. Lastly, the eval-

uation cost of SS depends on the accuracy of the KG update: it is

more expensive when the update accuracy is close to 50%, and less

when update accuracy is close to 0% and 100%. This observation

also echoes Figure 7-2, showing that a highly accurate KG requires

fewer samples to produce an estimation with low variance. Over-

all, SS still outperforms RS with cost reduction ratios ranging from

20% to 67%.

To conclude this section, incremental evaluation methods, RS

and SS, are more efficient on evolving KGs. RS depends both on

update size and overall accuracy, while SS is relatively independent

on update size and more impacted by update accuracy. In terms of

efficiency of evolving KG evaluation, SS is the clear winner.

7.3.2 Sequence of Updates

In practice, we are more likely to continuously monitor the KG

accuracy as it evolves. In this section, we consider the scenario

of applying a sequence of updates to the base KG and compare

the performance of RS and SS. Suppose 30 update batches with

similar sizes (about 10% of the base KG) and 90% accuracy are

sequentially applied to the base KG, and an evaluation is required

after each batch. Figure 9-1 demonstrates that both RS and SS

provide unbiased estimation at every state of evolving KG.

However, if by chance the initial accuracy estimation on the base

KG is significantly off, RS corrects the estimation faster than SS

in a sequence of updates, because SS reuses all samples collected

in the base KG, while RS stochastically refreshes the pool with

samples from the updates. This is demonstrated in Figure 9-2 and

Figure 9-3, which show two specific runs of evolving KG evalu-

ation starting with an initial over-estimation and under-estimation

respectively. It is clear that SS hardly recovers from the bad es-
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timation at the beginning, while RS is more fault-tolerant, quickly

jumping away from the bad estimation and converging to the ground-

truth after 5 to 10 batches of updates.

Based on the experimental results, we recommend applying RS

when the quality of KG is fairly high, update is frequent and stable

over time, and the update size is small comparing with the base; this

is because RS cost is comparable to SS in such cases, but RS avoids

the complexity of recording update history and is more robust. In

other cases, we recommend SS as it may significantly reduce eval-

uation cost.

8. RELATED WORK
As discussed earlier, SRS is a simple but prevalent method for

KG accuracy evaluation. Beyond SRS, Ojha et al. [26] were the

first to systematically tackle the problem of efficient accuracy eval-

uation of large-scale KGs. One key observation is that, by explor-

ing dependencies (i.e., type consistency, Horn-clause coupling con-

straints [7, 25, 21] and positive/negative rules [27]) among triples in

KG, one can propagate the correctness of evaluated triples to other

non-evaluated triples. The main idea of their solution is to select

a set of triples such that knowing the correctness of these triples

could infer correctness for the largest part of KG. Then, KG accu-

racy is estimated using all labelled triples. Their inference mecha-

nism based on Probabilistic Soft Logic [8] could significantly save

manual efforts on evaluating triples’ correctness. However, there

are some issues in applying their approach to our setting. First, the

inference process is probabilistic and might lead to erroneous prop-

agations of true/false labels. Therefore, it is difficult to assess the

bias introduced by this process into the accuracy estimation. Sec-

Table 8: Summary of existing work on KG accuracy evaluation.

Property

Method
SRS KGEval Ours

Unbiased Evaluation ✓ ✗ ✓

Efficient Evaluation ✗ ✓ ✓

Incremental Evaluation

on Evolving KG
✗ ✗ ✓

ond, KGEval relies on expensive7 (machine time) inference mech-

anism, which does not scale well on large-scale KGs. Finally, they

do not address accuracy evaluation for evolving KGs. We summa-

rize the comparison between these existing approaches in Table 8.

Accuracy evaluation on KGs is also closely related to error de-

tection and fact validation on KGs or “Linked Data” [19]. Re-

lated work includes numerical error detection [22], error detection

through crowdsourcing [6], matchings among multiple KGs [23],

fact validation through web-search [17], etc. However, previous

work mentioned above all have their own limitations, and have so

far not been exploited for efficient KG accuracy evaluation.

Another line of related work lies in data cleaning [11], where

sampling-based methods with groundings in statistical theory are

used to improve efficiency. In [24], the authors designed a novel

sequential sampler and a corresponding estimator to provide effi-

cient evaluations (F-measure, precision and recall) on the task of

entity resolution [10]. The sampling framework sequentially draws

samples (and asks for labelling) from a biased instrumental dis-

tribution and updates the distribution on-the-fly as more samples

are collected, in order to quickly focus on unlabelled items pro-

viding more information. Wang et al. [29] considered combin-

ing sampling-based approximate query processing [20] with data

cleaning, and proposed a sample-and-clean framework to enable

fast aggregate queries on dirty data. Their solution takes the best of

both worlds and provides accurate query answers with fast query

time. However, the work mentioned above did not take advantage

of the properties of the annotation cost function that arise in prac-

tice in our setting—they focused on reducing the number of records

to be labelled or cleaned by human workers, but ignored opportu-

nities of using clustering to improve efficiency.

9. CONCLUSION
In this paper, we have initiated a comprehensive study into the

important problem of efficient and reliable knowledge graph ac-

curacy evaluation. We presented a general evaluation framework

that works on both static and evolving KGs. We devised a suite of

sampling techniques for efficient accuracy evaluation on these two

scenarios. As demonstrated by experiments on various KGs with

real and synthetic labels on triple correctness, our solutions can

significantly speed up the accuracy evaluation process compared to

existing baseline approaches. Future work includes extending the

proposed solution to enable efficient evaluation on different granu-

larity, such as accuracy per predicate or per entity type.
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