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Abstract—The capacity of a Multiple-Input Multiple-Output
(MIMO) channel in which the antenna outputs are processed
by an analog linear combining network and quantized by a
set of threshold quantizers is studied. The linear combining
weights and quantization thresholds are selected from a set of
possible configurations as a function of the channel matrix. The
possible configurations of the combining network model specific
analog receiver architectures, such as single antenna selection,
sign quantization of the antenna outputs or linear processing of
the outputs. An interesting connection between the capacity of
this channel and a constrained sphere packing problem in which
unit spheres are packed in a hyperplane arrangement is shown.
From a high-level perspective, this follows from the fact that each
threshold quantizer can be viewed as a hyperplane partitioning
the transmitter signal space. Accordingly, the output of the set
of quantizers corresponds to the possible regions induced by the
hyperplane arrangement corresponding to the channel realization
and receiver configuration. This connection provides a number of
important insights into the design of quantization architectures
for MIMO receivers; for instance, it shows that for a given
number of quantizers, choosing configurations which induce a
larger number of partitions can lead to higher rates.1

Index Terms—MIMO, capacity, one-bit quantization, sphere
packing, hybrid analog-digital receiver.

I. INTRODUCTION

As the coupling of multiple antennas and low-resolution
quantization hold the promise of enabling millimeter-wave
communication, the effect of finite-precision output quantiza-
tion on the performance of MIMO systems has been widely
investigated in recent literature. In [1], the authors propose a
general framework to study the capacity of MIMO channels
with various output quantization constraints and derive some
initial results on the scaling of capacity in the number of
available quantization levels. In this paper, we further our
understanding of output quantization constraints in MIMO
channels by drawing a connection between a constrained
sphere packing problem and formulation in [1]. This con-
nection suggest a rather insightful geometric-combinatorial
approach to the design of receiver quantization strategies for
MIMO channel with output quantization.

Literature Review: In [2], low resolution output quantiza-
tion for MIMO channels is investigated through numerical
evaluations. The authors are perhaps the first to note that the
loss due to quantization can be relatively small. Quantization

1This work has been supported in part by NSF Grant #1527750.

for the SISO channel is studied in detail where it is shown
that, if the output is quantized using M bits, then the optimal
input distribution need not have more than M + 1 points in
its support. A cutting-plane algorithm is employed to compute
this capacity and to generate optimum input support. In [3],
the authors study the capacity of MIMO channels with sign
quantization of the outputs and reveal a connection between
a geometric-combinatorial problem and the capacity of this
model at high SNR.

Contributions: In the model of [1], the output of a MIMO
channel is processed by an analog combining network before
being fed to Ntq threshold quantizers. The combining network
is chosen among a set of possible configurations as a function
of the channel matrix: these configurations represent analog
operations that can be performed by the receiver analog front-
end. Through the problem formulation in [1], it is possible to
study the performance of different receiver architectures as a
function of the available quantization bits Ntq and transmit
power.

In this paper, we show that the capacity of the model in
[1] can be approximately characterized using the solution of a
geometric-combinatorial problem. Each threshold quantizer in
effect obtains a linear combination of the noisy channel inputs
and can thus be viewed as partitioning the transmit signal
space with a hyperplane. The output of the set of quantizers
identifies a region among those induced by the hyperplane
arrangement corresponding to the channel matrix and receiver
configuration. Transmitted points can be reliably distinguished
at the receiver when they are separated by a hyperplane in
the transmit space. Our result generalizes those of [1], [3]
and provides an intuitive approach to design effective, and
sometimes surprising, quantization strategies. For example,
one would expect that, for a receiver able to perform linear
combination before quantization, the optimal transmission
strategy is to perform Singular Value Decomposition (SVD)
followed by multilevel quantization of each sub-channel. We
show that this scheme is actually sub-optimal at high SNR
as receiver configurations which induce a larger number of
partitions may lead to higher transmission rates.

Organization: The channel model is introduced in Sec. II.
Combinatorial notions are presented in Sec. III. Prior results
and a motivating example given in Sec. IV. The main result
is presented in Sec. V. Sec. VI concludes the paper.
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Fi g. 1: S yst e m m o d el f or N t = 2 , N r = 3 , a n d N t q = 4 .

N ot ati o n: All l o g arit h ms ar e t a k e n i n b as e t w o. T h e v e ct or
di a g { M } is t h e di a g o n al of t h e m atri x M w hil e λ (M ) is t h e
v e ct or of ei g e n v al u es of M . T h e i d e ntit y m atri x of si z e n is
I n , t h e all – z er o/ all – o n e m atri x of si z e n × m is 0 n × m /1 n × m ,
r es p e cti v el y. Di m e nsi o ns f or t h es e m atri c es ar e o mitt e d w h e n

i m pli e d b y t h e c o nt e xt. We a d o pt t h e c o n v e 1 nti o n t h at
n
i

=

0 f or i > n.

II. C H A N N E L M O D E L

C o nsi d er t h e dis cr et e-ti m e MI M O c h a n n el wit h N t /N r

tr a ns mit/r e c ei v e a nt e n n as i n w hi c h a n i n p ut v e ct or X n =
[X 1 , n . . . XN t , n]

T r es ults i n t h e o ut p ut v e ct or W n =
[W 1 , n . . . WN r , n]

T a c c or di n g t o t h e r el ati o ns hi p

W n = H X n + Z n , 1 ≤ n ≤ N, ( 1)

w h er e Z n is a n i.i. d. G a ussi a n v e ct or of si z e N r wit h z er o
m e a n a n d u nit v ari a n c e a n d H is a f ull r a n k m atri x of
si z e N r × N t (i. e. r a n k(H ) = mi n( N t , Nr )), fi x e d t hr o u g h
t h e tr a ns missi o n bl o c k-l e n gt h a n d k n o w n at t h e r e c ei v er a n d
tr a ns mitt er.2 T h e i n p ut is s u bj e ct t o t h e p o w er c o nstr ai nt

N
n = 1 E [|X n |22 ] ≤ N P w h er e |X n |2 is t h e 2- n or m. We st u d y

a v ari ati o n of t h e m o d el i n ( 1) s h o w n i n Fi g. 1 i n w hi c h t h e
o ut p ut v e ct or W n is pr o c ess e d b y a r e c ei v er a n al o g fr o nt- e n d
a n d f e d t o N t q t hr es h ol d o n e- bit q u a nti z ers. T his r es ults i n t h e
v e ct or Y n = [ Y 1 , n . . . YN t q , n]

T ∈ { − 1 , + 1 } N t q gi v e n b y

Y n = si g n( V W n + t ), 1 ≤ n ≤ N, ( 2)

w h er e V is t h e a n al o g c o m bi ni n g m atri x of si z e N t q × N r , t is
a t hr es h ol d v e ct or of l e n gt h N t q a n d si g n( u ) is t h e f u n cti o n
pr o d u ci n g t h e si g n of e a c h c o m p o n e nt of t h e v e ct or u as pl us
or mi n us o n e. T h e m atri x V a n d t h e v e ct or t ar e s el e ct e d
a m o n g a s et of a v ail a bl e c o n fi g ur ati o ns F [ 1]:

{ V , t } ∈ F ⊆ R N t q × N r , R N t q . ( 3)

F or a fi x e d r e c ei v er c o n fi g ur ati o n, { V , t } , t h e c a p a cit y of t h e
c h a n n el i n ( 2) is o bt ai n e d as

C (V , t ) =  m a x
P X ( x ) , E [|X |22 ]≤ P

I (X ; Y ). ( 4)

We ar e i nt er est e d i n d et er mi ni n g t h e l ar g est att ai n a bl e p erf or-
m a n c e o v er all p ossi bl e c o n fi g ur ati o ns, l e a di n g t o

C (F ) = m a x
{ V ,t } ∈ F

C (V , t ). ( 5)

2 T h e f ull r a n k ass u m pti o n is j usti fi e d f or ri c hl y s c att eri n g e n vir o n m e nts.

I n t h e f oll o wi n g, w e pr o vi d e a n a p pr o xi m at e c h ar a ct eri z a-
ti o n of t h e s ol uti o n of t h e m a xi mi z ati o n i n ( 5) u n d er t h e as-
s u m pti o n t h at di a g { H H T } = di a g { V V T } = 1 1 × N r . U n d er
t his ass u m pti o n, t h e d eri v ati o n of t h e r es ults is p arti c ul arl y
s u c ci n ct a n d t h us fitti n g t o t h e a v ail a bl e s p a c e. T h e m or e
g e n er al c as e of a n y ar bitr ar y c h a n n el m atri x H a n d a n y
c o m bi ni n g m atri x V is pr es e nt e d i n [ 4].

III. C O M B I N A T O R I A L I N T E R L U D E

T his s e cti o n bri e fl y i ntr o d u c es a f e w c o m bi n at ori al c o n c e pts
us ef ul i n t h e r e m ai n d er of t h e p a p er.

A h y p er pl a n e arr a n g e m e nt A is a fi nit e s et of n af fi n e
h y p er pl a n es i n R m f or s o m e n, m ∈ N . A h y p er pl a n e
arr a n g e m e nt A = { x ∈ R m , a T

i x = b i }
n
i = 1 c a n b e e x pr ess e d

as A = { x , A x = b } w h er e A is o bt ai n e d b y l etti n g e a c h
r o w i c orr es p o n d t o a T

i a n d d e fi ni n g b = [ b 1 . . . bn ]T . A pl a n e
arr a n g e m e nt is s ai d t o b e i n G e n er al P ositi o n ( G P) if a n d o nl y
if e v er y n × n s u b- m atri x of A h as n o n z er o d et er mi n a nt [ 5].

L e m m a III. 1. A h y p er pl a n e arr a n g e m e nt of siz e n i n R m

di vi d es R m i nt o at m ost r ( m, n ) = m
i = 0

n
i

≤ 2 n r e gi o ns.

L e m m a III. 2. A h y p er pl a n e arr a n g e m e nt of siz e n i n R m

w h er e all t h e h y p er pl a n es p ass t hr o u g h t h e ori gi n di vi d es R m

i nt o at m ost r 0 ( n, m ) = 2 m
i = 0

n − 1
i

r e gi o ns.

L e m m a III. 3. L et A b e a h y p er pl a n e arr a n g e m e nt of siz e l i n
R m a n d c o nsi d er a h y p er pl a n e arr a n g e m e nt B of siz e dl wit h
d ∈ N h y p er pl a n es p ar all el t o e a c h of t h e h y p er pl a n es i n A .
T h e n B di vi d es R m i nt o at m ost r p (m, n, d ) =

m
i = 0

l
i d i ≤

( 1 + d ) l r e gi o ns.

A n e c ess ar y c o n diti o n t o att ai n t h e q u aliti es i n L e m. III. 1,
L e m. III. 2 a n d L e m. III. 3 is f or t h e h y p er pl a n e arr a n g e m e nt
A t o b e i n G P.

A u nit ar y s p h er e p a c ki n g i n R m is d e fi n e d as

P =
N

i = 1

S m (c i , 1) , ( 6)

w h er e S m (c, r ) is t h e m - di m e nsi o n al h y p er-s p h er e wit h c e nt er
c a n d r a di us r . A h y p er pl a n e s e p ar at es t w o s p h er es if e a c h
s p h er e b el o n gs t o o n e of t h e h alf-s p a c es i n d u c e d b y t h e
h y p er pl a n e. A s p h er e p a c ki n g P is s ai d t o b e s e p ar a bl e b y t h e
h y p er pl a n e arr a n g e m e nt A if a n y t w o s p h er es ar e s e p ar at e d
b y at l e ast o n e h y p er pl a n e i n A . A s p h er e p a c ki n g i n a s p h er e
is a p a c ki n g P f or w hi c h P ⊆ S (c, r ) f or s o m e c, r .

O ur ai m is t o s h o w a c o n n e cti o n b et w e e n t h e c a p a cit y i n
( 5) a n d t h e f oll o wi n g s p h er e p a c ki n g pr o bl e m.

D e fi niti o n III. 4. S e p ar a bl e s p h er e p a c ki n g i n a s p h er e: Gi v e n
a h y p er pl a n e arr a n g e m e nt A a n d a c o nst a nt r ∈ R + , d e fi n e
r s s p s (A , r) as t h e l ar g est n u m b er of u nit s p h er es i n a p a c ki n g
P c o nt ai n e d i n t h e s p h er e S (0 , r) a n d s e p ar a bl e b y A .

I V. P R I O R R E S U L T S A N D A M O T I V A T I N G E X A M P L E

T h e m a xi mi z ati o n i n ( 5) yi el ds t h e o pti m al p erf or m a n c e
f or a n y s et of p ossi bl e r e c ei v er c o n fi g ur ati o ns. O n e is oft e n
i nt er est e d i n st u d yi n g a n d c o m p ari n g t h e p erf or m a n c e f or

2 0 1 8 I E E E I nt er n ati o n al S y m p o si u m o n I nf or m ati o n T h e or y (I SI T)

1 3 5 6



s p e ci fi c cl ass es of r e c ei v er c o n fi g ur ati o ns: t hr e e s u c h cl ass es
ar e st u di e d i n d et ail i n [ 1]: si n gl e a nt e n n a s el e cti o n a n d
m ultil e v el q u a nti z ati o n, si g n q u a nti z ati o n of t h e o ut p uts a n d
li n e ar c o m bi ni n g a n d m ultil e v el q u a nti z ati o n.

A. Pri or R es ults

T h e si m pl est r e c ei v er ar c hit e ct ur e of i nt er est is p er h a ps t h e
o n e i n w hi c h a si n gl e a nt e n n a o ut p ut is s el e ct e d b y t h e r e c ei v er
a n d q u a nti z e d t hr o u g h a hi g h-r es ol uti o n q u a nti z er. T his is
o bt ai n e d i n t h e m o d el of S e c. II b y s etti n g

F = V = 0 N t q × i 1 N t q × 1 0 N t q × N r − i − 1 , 0 ≤ i ≤ N r − 1

t ∈ R N t q , ( 7)

w h er e t h e t er m 1 N t q × 1 s el e cts t h e a nt e n n a wit h t h e hi g h est
c h a n n el g ai n.

P r o p ositi o n 1. [ 1, P r o p. 2]. T h e c a p a cit y of t h e MI M O c h a n-
n el wit h si n gl e a nt e n n a s el e cti o n a n d m ultil e v el q u a ntiz ati o n
is u p p er – b o u n d e d as

C s el e c t ≤
1

2
l o g mi n 1 + |h T

m a x |22 P, (N t q + 1) 2 , ( 8)

w h er e h T
m a x is t h e r o w of H wit h t h e l ar g est 2- n or m. T h e u p p er

b o u n d i n ( 8) c a n b e att ai n e d t o wit hi n 2 bits- p er- c h a n n el- us e
(b p c u) .

O ur m ai n r es ult, dis c uss e d i n d et ail i n S e c. V, is i ns pir e d b y
a n i ntri g ui n g c o n n e cti o n b et w e e n L e m. III. 2 a n d t h e i n fi nit e
S N R c a p a cit y of t h e MI M O c h a n n el wit h si g n q u a nti z ati o n
of t h e o ut p uts [ 3]. N ot e t h at t h e m o d el i n [ 3] is o bt ai n e d b y
s etti n g N t q = N r a n d l etti n g F b e t h e s et of all m atri c es
o bt ai n e d b y p er m uti n g t h e r o ws of [I , 0 ].

P r o p ositi o n 2. [ 3, P r o p. 3]. T h e c a p a cit y of t h e MI M O
c h a n n el wit h si g n q u a ntiz ati o n of t h e o ut p uts i n w hi c h H is
i n G P at i n fi nit e S N R is b o u n d e d as

l o g (r0 (N r , Nt )) ≤ C S N R → ∞
si g n ≤ l o g (r0 (N r , Nt ) + 1) .

R e c all t h at t h e m ost g e n er al ar c hit e ct ur e i n S e c. II h as

F = V ∈ R N t q × N r , t ∈ R N t q , ( 9)

a n d c orr es p o n ds t o a r e c ei v er a n al o g fr o nt- e n d w hi c h is a bl e t o
p erf or m a n y li n e ar c o m bi n ati o n of t h e a nt e n n a o ut p uts b ef or e
q u a nti z ati o n.

P r o p ositi o n 3. [ 1, P r o p. 6]. T h e c a p a cit y of a MI M O c h a n n el
wit h li n e ar c o m bi ni n g a n d m ultil e v el q u a ntiz ati o n is u p p er –
b o u n d e d as

C li n e a r ≤ R (λ (H ), P, Nt q ) + K. ( 1 0)

T h e c a p a cit y is t o wit hi n a g a p of 3 K b p c u fr o m t h e u p p er
b o u n d i n ( 1 0) f or

R ( λ ( H ) , P, Nt q ) =





K
i = 1

1
2

l o g ( 1 + λ i P i )

if K
i = 1 1 + λ 2

i P i − 1 ≤ N t q

K l o g
N t q

K
+ 1

o t h e r wi s e ,

( 1 1)

wit h K = m a x { N t , Nr } , P i = ( µ − λ − 2
i ) + a n d µ ∈ R + is

t h e s m all est v al u e f or w hi c h i P i = P .

T o est a blis h t h e a c hi e v a bilit y of Pr o p. 3, t h e S V D c a n
b e us e d t o tr a nsf or m t h e c h a n n el i nt o K = mi n { N t , Nr }
p ar all el s u b- c h a n n els wit h i n d e p e n d e nt u nit- v ari a n c e a d diti v e
n ois e a n d g ai ns λ (H ). Aft er S V D, t h e q u a nti z ati o n str at e g y is
c h os e n d e p e n di n g o n w h et h er t h e p erf or m a n c e is b o u n d e d b y
t h e eff e ct of t h e a d diti v e n ois e or b y t h e q u a nti z ati o n n ois e.

B. M oti v ati n g E x a m pl e f or t h e C o m bi n at ori al A p pr o a c h

L et us c o nsi d er t h e t hr e e ar c hit e ct ur es i n Pr o p ositi o ns 1-
3 f or t h e c as e of N t = 2 , N r = 3 a n d N t q = 4 , als o
s h o w n i n Fi g. 1, a n d pr o vi d e s o m e hi g h-l e v el i nt uiti o n o n t h e
r el ati o ns hi p b et w e e n c a p a cit y a n d t h e s p h er e p a c ki n g pr o bl e m
i n D ef. III. 4.

P r o p. 1: Si n c e t h e t hr es h ol d q u a nti z ers ar e us e d t o s a m pl e
t h e s a m e a nt e n n a o ut p ut, t h e n u m b er of p ossi bl e o ut p uts is at
m ost N r + 1 s o t h at t h e p erf or m a n c e i n Pr o p. 1 is b o u n d e d b y
l o g (N t q + 1) = l o g 5 ≈ 2 .3 2 b p c u at hi g h S N R. T his r e c ei v er
c o n fi g ur ati o n c a n b e i nt er pr et e d as f oll o w: a n a nt e n n a o ut p ut
r e pr es e nts a li n e i n t h e t w o- di m e nsi o n al tr a ns mit si g n al s p a c e;
e a c h t hr es h ol d q u a nti z er c orr es p o n ds t o a tr a nsl ati o n of t his
li n e a n d t h es e N t q p ar all el li n es p artiti o n t h e si g n al s p a c e i nt o
at m ost N t q + 1 s u br e gi o ns.

P r o p. 2: Si g n q u a nti z ati o n of t h e o ut p uts c orr es p o n ds t o t h e
h y p er pl a n e arr a n g e m e nt i n w hi c h all h y p er pl a n es p ass t hr o u g h
t h e ori gi n: t h e n u m b er of r e gi o ns i n d u c e d b y t his arr a n g e m e nt
is o bt ai n e d t hr o u g h L e m. III. 2. T h er e ar e r 0 = 8 p artiti o ns, as
als o s h o w n i n Fi g. 2 b, yi el di n g a m a xi m u m r at e of 3 b p c u ,
att ai n a bl e at hi g h S N R.

P r o p. 3: W h e n t h e r e c ei v er c a n p erf or m li n e ar c o m bi ni n g
b ef or e q u a nti z ati o n, t h e S V D c a n b e us e d t o tr a nsf or m t h e
c h a n n el i nt o t w o p ar all el s u b- c h a n n els. T his str at e g y c orr e-
s p o n ds t o t h e h y p er pl a n e arr a n g e m e nt i n L e m. III. 3 a n d t h e
n u m b er of p artiti o ns i n d u c e d is 9 , as als o s h o w n i n Fi g. 2 c.

L e m. III. 1: T his l e m m a a ct u all y i n di c at es t h at t h e l ar g est
n u m b er of r e gi o ns is 1 1 s o t h at t h e r at e l o g ( 1 1) = 3.4 6 b p c u
c a n b e o bt ai n e d t hr o u g h t h e r e c ei v er c o n fi g ur ati o n i n Fi g. 2 d
at hi g h S N R. 3

Gi v e n t h e a b o v e i nt er pr et ati o n of t h e c a p a cit y at hi g h S N R,
a f e asi bl e fi nit e S N R str at e g y is t h e o n e i n w hi c h, f or a
gi v e n r e c ei v er c o n fi g ur ati o n, t h e c h a n n el i n p uts ar e c h os e n
as t h e c e nt er of t h e s p h er es wit h s uf fi ci e ntl y l ar g e r a di us
i nsi d e e a c h p artiti o n s u bj e ct t o t h e p o w er c o nstr ai nt. T h e
a v er a g e a c hi e v a bl e r at e of t h e f o ur str at e gi es dis c uss e d a b o v e
is pl ott e d i n Fi g. 3. E a c h li n e i n Fi g. 3 c orr es p o n ds t o o n e
of t h e s p h er e p a c ki n g c o n fi g ur ati o ns i n Fi g. 2. F or a gi v e n
c h a n n el r e ali z ati o n, V a n d t ar e c h os e n t o r es ult i n t h e
p artiti o ni n gs of t h e tr a ns mitt er s p a c e c orr es p o n di n g t o e a c h of
t h e s u b fi g ur es i n Fi g. 2, a p pr o pri at el y s c al e d b y t h e a v ail a bl e
tr a ns mit p o w er. N ot e t h at t h e c o n fi g ur ati o ns ar e n ot o pti mi z e d.
T h e c h a n n el i n p uts ar e t h e n c h os e n as u nif or ml y distri b ut e d
o v er t h e c e nt er of t h e s p h er es p a c k e d i n t h e p artiti o ni n gs.

3 N ot e t h at t his d o es n ot c o ntr a di ct t h e r es ult of Pr o p. 3 si n c e t h e i n n er
b o u n d is 2 b p c u fr o m t h e o ut er b o u n d.
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( a) C o n fi g ur ati o n c orr es p o n di n g t o Pr o p. 1
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( b) C o n fi g ur ati o n c orr es p o n di n g t o Pr o p. 2
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( c) C o n fi g ur ati o n c orr es p o n di n g t o Pr o p. 3
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( d) C o n fi g ur ati o n i ns pir e d b y L e m. III. 1

Fi g. 2: Diff er e nt r e c ei v er o ut p ut q u a nti z ati o n str at e gi es.
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Fi g. 2 d

O ut er b o u n d

Fi g. 3: Si m ul ati o n r es ults f or N t q = 4 , N r = 3 , a n d N t = 2
dis c uss e d i n S e c. I V- B.

T h e a v er a g e p erf or m a n c e is c al c ul at e d o v er r e al i.i. d. z er o-
m e a n, u nit ar y v ari a n c e G a ussi a n c h a n n el g ai ns, f urt h er s c al e d
t o g u ar a nt e e t h at e a c h r o w h as u nit ar y 2- n or m. T h e c a p a cit y
of t h e c h a n n el wit h o ut q u a nti z ati o n c o nstr ai nt is als o pr o vi d e d
as a r ef er e n c e.

Fr o m Fi g. 3 w e s e e t h at, at hi g h S N R, t h e b est p erf or m a n c e
is att ai n e d b y t h e c o n fi g ur ati o n c orr es p o n di n g t o L e m. III. 1,
si n c e at hi g h S N R t h e p erf or m a n c e is d et er mi n e d b y t h e
n u m b er of tr a ns mitt e d p oi nts. As t h e S N R d e cr e as es, c o n fi g-
ur ati o ns wit h l ess tr a ns mitt e d p oi nts p erf or m b ett er.

V. M A I N R E S U L T

S e c. I V- B pr o vi d es a g e o m etri c- c o m bi n at ori al i nt er pr et ati o n
of t h e c a p a cit y of t h e m o d el i n ( 1)-( 2) f or t h e r e c ei v er
ar c hit e ct ur es c o nsi d er e d i n [ 1]. T h e m ai n r es ult of t h e p a p er is
t o m a k e s u c h i nt er pr et ati o n m or e ri g or o us a n d m or e g e n er al.

T h e o r e m 1. T h e c a p a cit y e x pr essi o n i n ( 5) w h e n
di a g { H H T } = di a g { V V T } = 1 1 × N r

is u p p er b o u n d e d as

C (F ) ≤ m a x
A

l o g rs s p s (A ,
√

P ) +
3

2
K + 3 , ( 1 2)

f or

A ∈ { x , V H x = t , (V , t ) ∈ F } , ( 1 3)

a n d K = m a x { N t , Nr } . T h e c a p a cit y is wit hi n 2 .5 N t b p c u
fr o m t h e o ut er b o u n d i n ( 1 2).

Pr o of: O nl y t h e c o n v ers e pr o of is pr es e nt e d h er e w hil e t h e
a c hi e v a bilit y pr o of is pr o vi d e d i n [ 4]. L et us c h o os e t h e i n p ut

a n d o ut p ut al p h a b ets as X = Y = [ 0 : r( N t , Nt q )] a n d l et t h e
c h a n n el tr a nsiti o n pr o b a bilit y b e d et er mi n e d b y t h e c h a n n el
i n p ut s u p p ort a n d t h e r e c ei v er a n al o g c o n fi g ur ati o n. Als o, l et
us d e fi n e si g n ∗ (x ) as

si g n ∗ (x ) =
x |x | < 1

si g n( x ) |x | ≥ 1 ,

a n d t h e s et N
m

as

N
m

= { n n , n n ∈ S m (n , 1) , ∀ n ∈ N m } , ( 1 4)

t h at is N
m

is c o m p os e d of a s et of p oi nts s el e ct e d fr o m t h e u nit
s p h er e ar o u n d t h e i nt e g er p oi nts i n N m . Fi n all y, l et Q N

m (x )
b e t h e m a p pi n g w hi c h assi g ns e a c h p oi nt i n R m t o t h e cl os est
p oi nt i n N

m
a n d

W
N

= H Q
N

N
t

(X N ), Y
N

= si g n ∗ V W
N

+ t ,

E N = W N − W
N

.

Usi n g F a n o’s i n e q u alit y, w e writ e

N (R − N ) ≤ I (Y
N

, E N ; X N ) ( 1 5 a)

≤ I (Y
N

; X N ) + H (E N ) − H (Z N )

= I (Y
N

; X N ) +
N N r

2
l o g

3

2
, ( 1 5 b)

w h er e, i n ( 1 5 a), w e h a v e us e d t h e f a ct t h at w e c a n r e c o nstr u ct

Y N fr o m Y
N

a n d t h e v al u e of E N . I n ( 1 5 b), w e us e d t h e f a ct
t h at si n c e di a g { H H T } = 1 , c o m p o n e nts of H (X − Q N t

m (X ))
h a v e s u p p ort at m ost [− 1 , + 1] . T h e l ar g est v ari a n c e of a
r a n d o m v ari a bl e wit h fi nit e s u p p ort is f or t h e c as e i n w hi c h
t h e pr o b a bilit y distri b uti o n is e v e nl y distri b ut e d at t h e e n d
p oi nts, s o t h at V ar[ E i ] ≤ 3 / 2 . Usi n g t h e “ G a ussi a n m a xi mi z es
e ntr o p y ” pr o p ert y, w e o bt ai n H (E i ) ≤ 1 / 2 l o g ( π e 3) .

Fr o m a hi g h-l e v el p ers p e cti v e, ( 1 5) s h o ws t h at t h e c a p a cit y
of t h e c h a n n el i n ( 1)-( 2) is cl os e t o t h e c a p a cit y of t h e c h a n n el
wit h n o a d diti v e n ois e b ut i n w hi c h t h e i n p ut is m a p p e d
t o N

m
. N e xt, w e s h o w t h at r estri cti n g t h e i n p ut t o a p e a k

p o w er c o nstr ai nt, i nst e a d of a n a v er a g e p o w er c o nstr ai nt, h as
a b o u n d e d eff e ct o n t h e c a p a cit y.

L et us r e pr es e nt X i i n h y p er- g e o m etri c c o or di n at es as X i =
φ i |X i |2 f or φ i ∈ S N t ( 0, 1) a n d |φ i |2 = 1 a n d d e fi n e X N as

X i = φ i |X i |2 m o d
√

P , 1 ≤ i ≤ N ( 1 6)
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w h er e m o d ( x ) i n di c at es t h e m o d ul us o p er ati o n; i n ot h er
w or ds, X i h as t h e s a m e dir e cti o n as X i b ut its m o d ul us is
f ol d e d o v er

√
P . A c c or di n gl y, d e fi n e

W N = H Q
N

N
t

(X N ), Y N = si g n ∗ V W N + t ,

a n d us e t h es e d e fi niti o ns t o f urt h er b o u n d t h e t er m
I (Y

N
; X N ) i n ( 1 5 b) as

I (Y
N

; X N ) ≤ I (Y N , Y
N

; X N , X N ) ( 1 7)

= I (Y N ; X N ) + I (Y N ; X N |X N ) ( 1 8)

+ I (Y
N

; X N , X N |Y N ).

N ot e t h at I (Y N ; X N |X N ) = 0 b e c a us e of t h e M ar k o v c h ai n

Y N − X N − X N . F or t h e t er m I (Y
N

; X N , X N |Y N ) w e writ e

I (Y
N

; X N , X N |Y N ) ≤ H (Y
N

− Y N ) ( 1 9 a)

≤ H (H (X
N

− X N )) ( 1 9 b)

≤ H (X
N

− X N ), ( 1 9 c)

w h er e ( 1 9 a) f oll o ws fr o m t h e f a ct t h at Y
N

is a dis cr et e r a n d o m
v ari a bl e, ( 1 9 b) fr o m t h e f a ct t h at X a n d X ar e als o dis cr et e
r a n d o m v ari a bl es, a n d ( 1 9 c) fr o m t h e f a ct t h at H is f ull r a n k
b y ass u m pti o n.

N e xt, t o b o u n d t h e t er m H (X
N

− X N ), w e c a n writ e

X i − X i = φ i |X i |2 /
√

P , ( 2 0)

w h er e / i n di c at es t h e q u oti e nt of t h e m o d ul us o p er ati o n. T h e
e ntr o p y of t his r a n d o m v ari a bl e c a n t h e n b e r e writt e n as

H (X
N

− X N ) ≤ H (φ N ) + H (|X
N

|2 /
√

P )

≤ N (N r − 1) + N m a x
i

H (|X i |2 /
√

P ).

It c a n b e s h o w n t h at H (|X i |2 /
√

P ) ≤ 3 b p c u : t h e pr o of
f oll o ws fr o m t h e f a ct t h at t h e p o w er c o nstr ai nt c a n b e vi ol at e d
o nl y a fi nit e n u m b er of ti m es, w hi c h l e a ds t o t h e f a ct t h at
|X i |2 /

√
P is c o n c e ntr at e d ar o u n d s m all i nt e g er v al u es.

B y c o m bi ni n g t h e b o u n ds i n ( 1 5) a n d ( 1 7) w e o bt ai n

N (R − N ) ≤ I (Y N ; X N ) +
3

2
N K + 3 N

≤ N m a x
P X

I (Y ; X ) +
3

2
N K + 3 N. ( 2 1)

L et us n o w e v al u at e t h e m ut u al i nf or m ati o n t er m
I (Y N ; X N ), Y N is a d et er mi nisti c f u n cti o n of X N a n d c a n
b e i nt er pr et e d as t h e m e m b ers hi p f u n cti o n i n di c ati n g t o w hi c h
p artiti o n of t h e h y p er pl a n e arr a n g e m e nt t h e i n p ut b el o n gs t o.
F or t his r e as o n, I (Y N ; X N ) is m a xi mi z e d b y c h o osi n g a n
i n p ut s u p p ort as t h e s u bs et of N

m
i n w hi c h a si n gl e p oi nt is

c o nt ai n e d i n e a c h p artiti o n i n d u c e d b y { V H x = t } a n d l etti n g
t h e i n p ut distri b uti o n b e u nif or ml y distri b ut e d o v er t his s et. As
a fi n al st e p of t h e pr o of, w e n ot e t h at t h e u p p er b o u n d i n ( 2 1)
c a n b e mi ni mi z e d o v er t h e c h oi c e of t h e s et N

m
i n ( 1 4). I n

ot h er w or ds, b y v ar yi n g t h e c h oi c e of n n i n ( 1 4), t h e p oi nts
i n N

m
ar e m o v e d o utsi d e t h e c orr es p o n di n g p artiti o n, t h us

ti g ht e ni n g t h e b o u n d i n ( 2 1). A c c or di n gl y, u nl ess a p artiti o n
c o nt ai ns a u nit b all c e nt er e d ar o u n d a v al u e n ∈ R N r , a v al u e
n n c a n b e c h os e n s o t h at N

m
d o es n ot c o nt ai n a v al u e i n s u c h

p artiti o n. It t h e n f oll o ws t h at I (Y N ; X N ) ≤ l o g rs s p s (A ,
√

P )
w hi c h is t h e d esir e d r es ult.

R e m a r k V. 1. T h. 1 e xt e n ds t h e r es ults i n S e c. I V- A as it h ol ds
f or a n y s et of p ossi bl e r e c ei v er c o n fi g ur ati o ns F i n ( 3). T h e
r es ults i n S e c. I V- A o nl y h ol d w h e n F h as a s p e ci fi c f or m
as i n ( 7) or ( 9). O n t h e ot h er h a n d, T h. 1 d o es n ot pr o vi d e
a cl os e d-f or m c h ar a ct eri z ati o n of c a p a cit y as it i n v ol v es t h e
s ol uti o n of a p a c ki n g pr o bl e m. I n p arti c ul ar, l etti n g F i n ( 1 3)
h a v e t h e f or m of ( 7) or ( 9) d o es n ot i m m e di at el y r e c o v er
t h e c a p a cit y c h ar a ct eri z ati o n i n S e c. I V- A as T h. 1 f oll o ws
a diff er e nt a p pr o a c h t h a n [ 1] t o b o u n d c a p a cit y.

R e m a r k V. 2. W h e n c o nsi d eri n g t h e m o d el wit h a n y H a n d V ,
t h e r es ult i n T h. 1 g e n er ali z es as f oll o ws. T h e c h a n n el m o d el
i n ( 2) is r e d u c e d t o m o d el w h er e V a n d H ar e s u c h t h at
di a g { H H T } = di a g { V V T } = 1 1 × N r b y l etti n g t h e a d diti v e
n ois e Z n h a v e a g e n er al c o v ari a n c e m atri x. F or a c h a n n el
m o d el u n d er t his n or m ali z ati o n, c o nsi d er t h e a d diti v e n ois e
aft er c o m bi ni n g, Z n = V Z n : t h e v ari a n c e of t h e it h e ntr y of
Z n , Z i, n , d et er mi n es t h e u n c ert ai nt y i n t h e o ut p ut of t h e it h

q u a nti z er, Y i, n . A c c or di n gl y, t h e c a p a cit y is a p pr o xi m ati v el y
e q u al t o t h e n u m b er of s e p ar a bl e p oi nts w hi c h c a n b e fitt e d
i n t h e s p h er e of r a di us

√
P s u c h t h at e a c h p oi nt is at dist a n c e

at l e ast (V ar[ Z i, n ])
1 / 2 fr o m t h e it h h y p er pl a n e. T h e c o m pl et e

d eri v ati o n c a n b e f o u n d i n [ 4].

VI. C O N C L U S I O N

I n t his p a p er, t h e c a p a cit y of a MI M O c h a n n el wit h o ut p ut
q u a nti z ati o n c o nstr ai nts f or r e c ei v ers e q ui p p e d wit h a n al o g
c o m bi n ers a n d o n e- bit t hr es h ol d q u a nti z ers is i n v esti g at e d.
T h e c o n n e cti o n b et w e e n t h e c a p a cit y of t h e s yst e m a n d a
c o nstr ai n e d s p h er e p a c ki n g pr o bl e m is s h o w e d b y ar g ui n g
t h at t h e t hr es h ol d q u a nti z ers c a n b e i nt er pr et e d as h y p er pl a n es
p artiti o ni n g t h e tr a ns mit si g n al s p a c e. T his c o n n e cti o n r e v e als,
f or e x a m pl e, t h at t h e i n fi nit e S N R c a p a cit y of a c h a n n el wit h
li n e ar c o m bi n er is att ai n e d b y a r e c ei v er c o n fi g ur ati o n w hi c h
p artiti o ns t h e tr a ns mit si g n al s p a c e i n t h e l ar g est n u m b er of
r e gi o ns.
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