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Abstract—Hybrid beamforming via large antenna arrays has

a great potential for increasing data rate in cellular networks by

delivering multiple data streams simultaneously. In this paper,

several beamforming design algorithms are proposed based on

long-term channel information in macro-cellular environments

where the base station is equipped with a massive phased array

under per-antenna power constraint. Using an adaptive scheme,

beamforming vectors are updated whenever the long-term chan-

nel information changes. First, the problem is studied when the

base station has a single RF chain (single-beam scenario). Semi-

definite relaxation (SDR) with randomization is used to solve

the problem. As a second approach, a low-complexity heuristic

beam composition algorithm is proposed which performs very

close to the upper-bound obtained by SDR. Next, the problem is

studied for a generic number of RF chains (multi-beam scenario)

where the Gradient Projection method is used to obtain local

solutions. Numerical results reveal that using massive antenna

arrays with optimized beamforming vectors can lead to five-fold

network throughput improvement over systems with conventional

antennas.

I. INTRODUCTION

In light of the rapid development of fifth generation cellular
networks (5G), multi-user Multiple-Input and Multiple-Output
(MIMO) systems with large number of antennas at the base
station (known as Massive MIMO systems) have proven to
improve the network performance significantly [1]. These
systems comprise of an array of many antenna elements. The
user data is precoded in the digital domain first and then, each
of the digital streams is converted to a Radio Frequency (RF)
signal through a circuit referred to as RF chain. Each signal
is then transmitted by the antenna element connected to that
RF chain. This process is best suited to a rich scattering prop-
agation environment that provides a large number of degrees
of freedom. In a macro-cellular environment, however, these
conditions often do not hold. A more cost and energy efficient
alternative is the use of hybrid Massive MIMO systems in such
scenarios [2].
In hybrid Massive MIMO systems, there are fewer RF

chains than antenna elements. This helps the overall system to
operate at a lower power level and be more cost effective, since
each RF chain consists of power hungry and expensive ele-
ments such as Analog to Digital Converter (ADC) and Digital
to Analog Converter (DAC) which do not follow Moore’s law.
However, these systems rely on accurate channel estimation
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and typically are applied to networks with Time Division
Duplex (TDD) operation to alleviate the channel estimation
overhead [2]. On the other hand, common deployment of LTE
in North America is Frequency Division Duplex (FDD) based.
In this paper, we focus on a class of hybrid Massive MIMO
systems where all antenna elements maintain RF coherency
[3]. This means that all antenna elements are closely spaced
and have matching phase and magnitude characteristics at the
operating frequency [4]. Using this technique, the antenna
system can be used as a phased array and macro-cellular
transmission is achieved through hybrid beamforming (BF)
[5]. This makes it appealing for FDD systems.
In hybrid BF, each RF chain carries a stream of data and

is connected to each antenna element through a separate pair
of variable gain amplifier and phase shifter. By setting the
values of the amplifier and phase shifts (equivalently designing
BF vectors), multiple beams are generated, each carrying one
data stream over the air. Generating beams using phased arrays
generally requires channel information of all users. By keeping
the beam pattern constant over an extended period of time,
small scale channel variations can be averaged out. Hence, the
BF direction corresponds to a dominant multipath component
[6] which mainly depends on the user location in macro-
cellular environment due to the primarily Line of Sight (LOS)
channels. Whenever user location information is updated, the
system can adaptively switch to a different beam pattern to
constantly provide enhanced service to the users. We refer to
this technique as long-term adaptive BF.
The radiated power from an antenna array is constrained and

power constraints are chosen to limit the non-linear effects of
the amplifiers [7]. Generally, two types of power constraints
are considered in research problems: i) sum power constraint
(SPC) in which an upper-bound is considered for the total
power consumption of the array, and ii) per-antenna power
constraint (PAPC) in which an upper-bound is considered
for the power consumption of each antenna in the array [8].
Although it is more convenient to consider SPC for research
problems [9], it is not applicable to practical implementations,
where each antenna element is equipped with a separate power
amplifier.
Generating adaptive beams that maximize the overall net-

work throughput plays a significant role in exploiting the
benefits of hybrid BF in a cellular system. Any method that is
proposed should have a manageable complexity and operate
within the power constraints of the array. The goal of this paper
is to propose methods for long-term adaptive BF under PAPC
to maximize the average network rate using hybrid phased
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Figure 1: Single cell scenario with L sections.

arrays with arbitrary number of beams. First, we focus the
optimization on an individual cell where the interference from
other cells is treated as noise. We use well-known theoretical
and numerical techniques for finding the optimal beam pattern
as well as a theoretical upper bound for the solution. Then,
we propose a low complexity heuristic algorithm that performs
close to the obtained upper bound.
Notation: (.)T , (.)H , Tr{.}, and ||.||F are transpose, hermi-

tian, trace and Frobenius norm operations, respectively. [N ]
denotes the set of integers from 1 to N .

II. PROBLEM STATEMENT

We consider the downlink of a single-cell scenario consist-
ing of a base station (BS) with M antennas and L ⌧ M

radio frequency (RF) transceiver chains [2]. Since each RF
chain can carry a single data stream, the BS can serve L User
Equipments (UEs) simultaneously. As a result, the cell site is
partitioned into L sections (Fig. 1) and one UE per section
is activated at each time slot as will be explained later. We
assume that user equipments (UEs) are clustered in hotspots
within the cell. Let Hsi, (s, i) 2 [L] ⇥ [Ks] denote hotspot
i from section s which consists of a group of Nsi nearby
UEs. We let Ks be the number of hotspots in section s and
K =

P
s
Ks denotes the total number of hotspots in the cell.

The fraction of UEs located at Hsi among the UEs in section
s is defined by ↵si = Nsi/Ns, where Ns =

P
i
Nsi is the

total number of UEs in section s. Let Un

si
, n 2 [Nsi], denote

the n
th UE of hotspot Hsi.

We consider a macro-cellular environment in which the
channels are primarily LOS with the possibility of having
local scatterers around the UEs. We assume that only the long-
term channel state information of UEs is available at the BS
and can be used to perform long-term BF. Furthermore, we
assume that the long-term channel vectors between the BS
and the users belonging to a hotspot are the same due to their
proximity. Let gsi =

p
�sihsi, denote the long-term channel

vector between the BS and the UEs located at Hsi, where
�si 2 R+ and hsi 2 CM denote the pathloss and spatial
signature between BS and Hsi, respectively. We consider the
Vandermonde model where hsi = [ej✓si , ej2✓si , . . . , ejM✓si ]T .
A use case of this channel model is when the users are located
in the far-field of a uniform linear array with M antennas in a
primarily line-of-sight environment [9]. In such cases we have
✓si = 2⇡d sin( si)/�, where d denotes the spacing between
successive elements, � is the wavelength, and  si is direction
of Hsi relative to the BS. In order to model other types of
antenna arrays such as rectangular and circular arrays, hsi can
be changed accordingly. We note that this model relates the

long-term channel information to the location of the hotspots.
In [10], the validity of this model is demonstrated using a
variety of test-bed experiments.
Each RF chain is connected to each antenna element through

a separate pair of variable gain amplifier and phase shifter. We
model the corresponding gain and phase shift by a complex
coefficient. As a result, there are M complex coefficients
corresponding to each RF chain creating a BF vector. The
radiation pattern (or equivalently beam pattern) of the antenna
array corresponding to each RF chain can be modified by
controlling the corresponding BF vector [5]. We assume that
the BS uses BF vector ws 2 CM

, s 2 [L] to generate a beam
pattern (or a beam in short) for serving UEs located in section
s. To reduce the complexity, these BF vectors are designed
based on the long-term channel information and are adaptively
modified when the long-term channel information changes,
i.e., when there is substantial change in the geographical
distribution of the hotspots. Moreover, we assume that the
UEs are scheduled within each section based on a round
robin scheduler. The same approach is valid when random
scheduling is utilized within each section. Let q

n

si
2 C

denote the signal to be sent to U
n

si
, where E(sn

si
) = 0

and E(|qn
si
|2) = 1. Also, let U

n
⇤

si⇤ be the scheduled UE in
section s at a generic time slot. Hence, the BS transmit vector
is x =

p
P
P

s2[L] q
n
⇤

si⇤ws, where P denotes the average
transmit power of the BS. Subsequently, Un

⇤

si⇤ receives signal

y
n
⇤

si⇤ =
p
P�si⇤q

n
⇤

si⇤h
H

si⇤ws +
X

s0 6=s

p
P�s0i⇤q

n
⇤

s0i⇤h
H

si⇤ws0 + v,

where v ⇠ CN (0,�2) is the noise. The first term corresponds
to the desired signal received from beam s and the second term
is the interference received from other L�1 beams. Therefore,
whenever Un

si
is scheduled, the corresponding SINR is

SINRsi(W) =
wH

s
Qsiws

1 +
P

s0 6=s
wH

s0Qsiws0
, (1)

whereQsi = �sihsihH

si
with �si = P�si/�

2. The BF matrix is
defined as W , [w1,w2, . . . ,wL] 2 CM⇥L and has columns
corresponding to BF vectors of different sections. We note
that PAPC corresponds to

P
s2[L]|Wms|2 1/M, 8m. Hence

we define the feasible set as A = {W 2 CM⇥L| 8m :P
s2[L]|Wms|2 1/M}. The goal is to find BF matrix

W which maximizes a network utility function, denoted by
R(W) over the feasible set A. In this paper, we consider
average network rate as the network utility, i.e.,

R(W) =
X

s2[L]

X

i2[Ks]

↵si log(1 + SINRsi). (2)

Hence, the problem can be formulated as follows

⇧L : Wopt = argmax
W2A

R(W).

We note that the sub-index L in ⇧L corresponds to the number
of the beams (equivalently number of RF chains). Although
there is no minimum utility constraint defined for individual
UEs in problem ⇧L, sum-log maximization induces a type of
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proportional fairness. It can be shown that problem ⇧L is not
in a convex form [11, chapters 3, 4]. Therefore, finding the
globally optimal solution of this problem is difficult. In section
III, we study the single-beam (L = 1) problem ⇧1 to find local
solutions and an upper-bound to evaluate the performance. In
section IV, we provide an iterative algorithm to find a sub-
optimal solution of problem ⇧L for arbitrary L.
In Sections III and IV, we will need to find the projection

of a general beamforming matrix W 2 CM⇥L on set A which
is defined as

PA(W) = argmin
X2A

||X�W||2F. (3)

We note that A is a closed convex set which leads to a unique
PA(W) for every W 2 CM⇥L, introduced by Lemma 1. The
proof is provided in [12, Appendix A].

Lemma 1. We have Ŵ = PA(W) if and only if for every
m 2 {1, 2, . . . ,M}
(
Ŵms = Wms if

P
s
|Wms|2 1/M,

Ŵms = Wms/(
p
M

P
s
|Wms|2) if

P
s
|Wms|2> 1/M.

III. SINGLE-BEAM SCENARIO

In this section, we study problem ⇧1 where every UE is
served by a single-beam generated by BF vector w, i.e., there
is only one section in the cell (s = 1) and PAPC corresponds
to |wm|2 1/M, 8m. In this scenario, there is no interference
since one UE is scheduled per time slot. Hence we have
R(w) =

P
i2[K] ↵i log(1 + wHQiw). Please note that we

drop index s in the single-beam scenario because s = 1. Next,
we derive an upper-bound for the optimal value of ⇧1 and
provide two different methods to obtain local solutions of this
problem. We will use the upper-bound as a benchmark in the
simulations to evaluate the effectiveness of the local solutions.

A. Semi-definite relaxation with randomization
Since wHQiw is a complex scalar, we have wHQiw =

(wHQiw)T = �ihH

i
Xhi, where X = wwH 2 CM⇥M is a

rank-one positive semi-definite matrix. Using this transforma-
tion, semi-definite relaxation of problem ⇧1 is as follows.

⇧1r : Xopt

r
= argmax

X2CM⇥M

KX

i=1

↵i log(1 + �ih
H

i
Xhi)

subject to: X � 0, 8m : Xmm  1/M.

We remark that ⇧1 is equivalent to ⇧1r plus a non-convex
constraint Rank(X) = 1. Removing the rank-one constraint
enlarges the feasible set and makes it possible to find solutions
with higher objective value. Hence, the optimal objective value
of ⇧1r is an upper-bound for the optimal objective value
of ⇧1. This is a well-known technique called ‘Semi-definite
Relaxation (SDR)’ [13]. Note that ⇧1r can be solved using
convex programming techniques [11]. After solving the convex
problem ⇧1r there are two possibilities:
1) Rank(Xopt

r ) = 1: in this case the upper-bound is tight
and we have Xopt

r
= woptwoptH , where wopt is the

solution of ⇧1.

2) Rank(Xopt
r ) > 1: in this case, the upper-bound is not

tight and finding the global solution of ⇧1 is difficult.
However, there are a number of methods developed to
generate a reasonable BF vector w for problem ⇧1 by pro-
cessing Xopt

r
[13]. For example, using eigenvalue decom-

position, we have Xopt

r
= V⇤VH . Let v1,v2, . . . ,vM

be the eigenvectors in descending order of eigenvalues.
One simple approach is to use the eigenvector correspond-
ing to the maximum eigenvalue and form BF vector as
wmev = v1p

M ||v1||2
. It should be noted that normalization

is necessary for feasibility. Although this simple method is
optimal when Rank(Xopt

r
) = 1, it is not the best strategy

when Rank(Xopt

r
) > 1. Using different ‘randomization’

techniques can lead to better solutions [13]. Let us define
wsdr = bp

M ||b||2
, where b = V⇤1/2e with random

vector e 2 CM . The elements of e are i.i.d. random
variables uniformly distributed on the unit circle in the
complex plane. Alternative distributions such as Gaussian
distribution can also be adopted for e. The randomization
method is to generate a number of BF vectors {wsdr} and
pick the one resulting in the highest objective value of
⇧1. Note that using e = [1, 0, 0, . . . , 0]T would lead to
wsdr = wmev . The number of random instances denoted
by Ntrial depends on the number of the hotspots, which is
discussed more in the numerical examples.

B. Single-beam sub-beam composition
In this section, we introduce a heuristic algorithm to find

a BF vector w for ⇧1 with a relatively good performance
compared to the upper-bound obtained by SDR. Suppose there
is only one hotspot in the network, say Hi. Using Cauchy-
Schwarz inequality, we can show that the solution of ⇧1 is
w , hi/

p
M . In this technique, which is referred to as

conjugate beamforming, the BS creates a narrow beam towards
the location of Hi [5, chapter 19]. We can generalize this
method to generate a beam pattern serving all the hotspots,
by summing up the individually optimal BF vectors, and
normalizing the result to satisfy PAPC. Hence, the resulting
BF vector is wsbc , PA(

P
K

i=1 wi), where PA(.) is given
by Lemma 1. We call this method single-beam sub-beam
composition (SB-SBC) due to the fact that we form a beam
pattern by adding up multiple sub-beams.
Adding up individually optimal BF vectors and project-

ing the result on the feasible set A will perturb each of
them. Therefore, wsbc would not exactly point towards all
the hotspots. To compensate for this disturbance, we use
another approach called single-beam phase optimized sub-
beam composition (SB-POSBC). In SB-POSBC, we add a
separate phase shift for each BF vector wi in the summation,
i.e., we define wposbc , PA(

P
K

i=1 e
j�iwi). By choosing a

set of appropriate phase shifts, wposbc leads to a beam pattern
which points to all the hotspots, hence, it leads to a better
network utility. Since it is not easy to find optimal phase
shifts analytically, one approach is to try a number of randomly
chosen sets of phase shifts and pick the one which leads to the
highest objective value in ⇧1. One can think of this random
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Figure 2: Comparison between the beam patterns (in dB)
generated by SB-SBC and SB-POSBC for a uniform linear
antenna array with eight antennas (8-ULA) and four hotspots.

trials as the counterpart of randomization technique described
in section III-A. Note that if 8i : �i = 0 then wposbc = wsbc,
hence, if the case of zero phase shifts is included in the set
of random phase shifts, we can ensure that SB-POSBC will
perform at least as good as SB-SBC. One important parameter
in SB-POSBC is the number of random trials of phase shift
sets denoted by Ntrial which will be studied in section V-A.
Figure 2 depicts a network with four hotspots. This figure

also depicts the beam patterns corresponding to BF vectors
wsbc, wposbc, and wsdr with Ntrial = 1000. We can observe
how phase shifts in SB-POSBC compensate for the pertur-
bation caused by SB-SBC. Furthermore, we can also see that
SB-POSBC creates a similar beam to SDR with randomization
while its complexity is much lower.

IV. MULTI-BEAM SCENARIO

In this section, we study problem ⇧L for generic L. First
we present a heuristic similar to SB-SBC and SB-POSBC,
described in Section III-B, and then we introduce an iterative
algorithm to find a local solution of problem ⇧L.

A. Multi-beam sub-beam composition
Similar to what is described in Section III-B, one can obtain

L BF vectors each of which generates a beam to cover a
section. To this end, we can consider each section and its
associated hotspots and use SB-SBC (or SB-POSBC) to find
a BF vector for that section. Furthermore, we assume that the
power is equally divided among the BF vectors. Hence, after
applying SB-SBC (or SB-POSBC) to find a BF vector for
each section separately, we divide all the vectors by 1/

p
L.

We call this method MB-SBC (or MB-POSBC). We note that
this method does not consider inter-beam interference, because
each BF vector is obtained independently from the others.

B. Gradient projection
Numerical optimization methods can be used to find a

local solution of ⇧L for arbitrary L. These methods are more
valuable when it is difficult to find a closed-form solution,
such as non-convex non-linear optimization. Although there
is no guarantee that these methods find the global optimum,
they converge to a local optimum of if some conditions hold;
we refer the reader to [14] for details. To find a local solution
for problem ⇧L, we use an iterative numerical method called
‘Gradient Projection (GP)’. Although there are different types

of GP, we use one that includes two steps at each iteration: i)
taking a step in the gradient direction of the objective function
with a step-size satisfying a condition called Armijo Rule
(AR), and ii) projecting the new point on the feasible set.
Let W[k] be the BF matrix at iteration k. We define

W[k+1] = PA(W
[k] + r

[k]G[k]), (4)

where G[k] = [g[k]
1 ,g[k]

2 , . . . ,g[k]
L
] with g[k]

s , rwsR(W[k]),
r
[k]

> 0. r[k] denotes the step-size at iteration k and PA(W)
is the projection of BF matrix W on the feasible set A which
is given by Lemma 1. We observe that the projection rule is
relatively simple and does not impose high implementation
complexity to the problem.
The step-size calculation rule directly affects the conver-

gence of GP. Applying AR to problem ⇧L, we have r
[k] =

r̃�
l
[k]

where r̃ > 0 is a fixed scalar and l
[k] is the smallest

non-negative integer satisfying R(W[k+1]) � R(W[k]) �
�Re [Tr{(W[k+1] � W[k])HG[k]}] and W[k+1] is given
by (4). In order to find r

[k] at iteration k, we start from
l
[k] = 0 and increase l

[k] one unit at a time until the above
condition is satisfied. 0 < � < 1 and 0 < � < 1 are AR
parameters. In practice, � is usually chosen close to zero, e.g.,
� 2 [10�5

, 10�1]. Also, � is usually chosen between 0.1 and
0.5 [14].

Lemma 2. Let {W[k]} be a sequence of BF matrices gener-
ated by gradient projection in (4) with step-size r

[k] chosen
by the Armijo rule, described above. Then, every limit point
of {W[k]} is stationary.

We refer the reader to [14, chapter 2] for the proof. To
implement GP, we need an initial point W[1] and a ter-
mination condition. We use MB-SBC described in Section
IV-A to generate an initial point for the numerical exam-
ples. For the termination condition, we define the error as
err

[k+1] , ||W[k+1]�W[k]||F and we stop after iteration k if
err

[k+1]  ✏, where ✏ is a predefined error threshold. Although
the numerical examples will show that GP converges fast
with AR, we specify a threshold for the number of iterations
denoted by Niter to avoid slow convergence.
Fig. 3 illustrates a network with two beams where sections

1 and 2 are the left and right half planes, respectively, and each
beam serves 2 hotspots. Fig. 3a shows the beams generated
by double-beam SBC described in Section IV-A. We observe
that the BS suffers from inter-beam interference in this case.
GP takes the solution of double-beam SBC as initial point and
iteratively updates the BF coefficients of each beam (Fig. 3b),
which greatly reduces the inter-beam interference.

V. NUMERICAL RESULTS AND IMPLEMENTATION

In this section, we provide extensive simulation and imple-
mentation results to evaluate and compare the performance of
the proposed methods. We simulate the downlink of a three
dimensional network with a BS consisting of a 4⇥12 uniform
rectangular array serving a 120� sector of a cell. Table I lists
the network parameters. Hotspots are distributed uniformly at
random in a ring around the BS with inner and outer radii of
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Figure 3: Beam patterns generated by double-beam SBC and
gradient projection in a sample network with 2 beams, four
hotspots, and a uniform linear array with eight antennas.

300 m and 577 m, respectively. We use CVX package [15]
to solve the convex problem ⇧1r. We also use ✏ = 10�4 and
Niter = 104 for GP.

Table I: Simulation parameters

Parameter Value

Scenario single-beam, double-beam
Cell radius 577 m
Bandwidth 20 MHz
Noise spectral density �174 dBm/Hz
BS transmit power (P ) 20 dBm
Number of hotspots (K) 4, 8, 16
Pathloss in dB (��1) 128.1 + 37.6 log10(d in km)

A. Effect of number of trials on the performance

In this section, we consider the single-beam scenario de-
scribed in Section III. We focus on SDR with randomization
(SDR-R) and SB-POSBC described in Sections III-A and
III-B, respectively. In both of these algorithms there are Ntrial

random trials. To evaluate the performance of these algorithms,
we consider 100 random network realizations. We run both
algorithms with Ntrial = 100, 101, 102, 103, 104 and find the
BF vectors wsdr and wposbc and the corresponding network
utilities in bps/Hz. We also obtain the Upper-Bound (UB) by
solving the relaxed problem ⇧1r. Table II lists the average
performance of these algorithms given two values for number
of hotspots, K. We observe that the larger Ntrial becomes,
the closer the performance gets to the UB, which in turn
slows down the pace of improvement. For larger K, however,
the performance keeps increasing with the number of trials,
which suggests that the number of trials should be proportional
to the number of hotspots. While both algorithms provide
performance close to the UB with large enough Ntrial, SDR-R
outperforms SB-POSBC in some cases. This improved perfor-
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mance comes at the cost of higher computational complexity.

Table II: Average network utility in (bps/Hz)

K Method Ntrial

10
0

10
1

10
2

10
3

10
4

SB�POSBC 5.039 5.505 5.602 5.627 5.637
4 SDR�R 5.252 5.584 5.609 5.611 5.611

UB 5.783 5.783 5.783 5.783 5.783

SB�POSBC 3.617 4.220 4.403 4.498 4.556
16 SDR�R 4.123 4.521 4.572 4.585 4.587

UB 4.715 4.715 4.715 4.715 4.715

B. Computational complexity and performance
In this part, we compare the performance and numerical

complexity of different algorithms devised for the single-beam
scenario (L = 1). Table III lists the average throughput (in
bps/Hz) and average time spent on a typical desktop computer
(3.1 GHz Core i5 CPU, 16 GB RAM) to find the BF vector
using GP, SB-POSBC, and SDR-R algorithms. The reported
values are average values over 100 random network realiza-
tions. It is assumed that Ntrial = 103 for SDR-R and SB-
POSBC. While GP and SB-POSBC have sub-second runtime,
SDR-R has a much higher complexity. This is because a
complex convex optimization problem has to be solved in
the first step of SDR-R, whereas GP and SB-POSBC only
require simple mathematical operations. We also observe that
the performance of these algorithms are very close. Overall, we
can conclude that GP and SB-POSBC are superior to SDR-
R since they achieve similar performance with much lower
computational complexity. The results also reveal that network
utility decreases for each of the algorithms when the number
of hotspots increases. This is the cost of having a single beam
pattern. In fact, given a fixed antenna array aperture, it is more
difficult to provide good BF gain for larger number of hotspots
with a single beam.

Table III: Average run time (in seconds) and utility in (bps/Hz)

K Method Run Time Network Utility

GP 0.024 5.541
4 SB�POSBC 0.081 5.627

SDR�R 9.268 5.611

GP 0.040 4.958
16 SB�POSBC 0.293 4.498

SDR�R 21.026 4.585

225



(a) Network with passive anten-
nas. Average throughput is 53.0
Mbps/km2.

(b) Network with optimized sin-
gle beam phased arrays. Average
throughput is 89.8 Mbps/km2.

(c) Network with optimized dou-
ble beam phased arrays. Average
throughput is 237.0 Mbps/km2.

Figure 5: Sample cellular network located in Danville, VA optimized using BeamPlannerTM software.

C. Performance evaluation

In this section, we consider single-beam (L = 1) and
double-beam (L = 2) scenarios. In order to compare the per-
formance of the algorithms described in Sections III and IV,
we consider 4000 random network realizations and calculate
the network utility corresponding to each algorithm for each
realization. For the single-beam scenario, the upper-bound of
the network utility is obtained for each realization by solving
problem ⇧1r. It is assumed that Ntrial = 103 for SDR-
R and SB-POSBC. Fig. 4 illustrates the empirical CDF of
network utility corresponding to each algorithm for K = 8
hotspots. We observe that SDR-R outperforms SB-POSBC
and GP in the single-beam scenario. Moreover, SB-POSBC
performs very close to SDR-R. Having two beams will double
the number of transmissions compared to the single-beam
scenario which can potentially lead to significant network util-
ity improvement if the interference due to multi-user activity
(i.e. inter-beam interference) is managed appropriately. Since
double-beam GP considers interference, it leads to almost 2⇥
improvement in network utility compared to the single-beam
algorithms. On the other hand, the performance of double-
beam SBC is remarkably inferior to double-beam GP, due to
lack of interference management.

D. Implementation

Based on the multi-cell generalization of the proposed
algorithms, a commercial software has been developed by
Blue Danube Systems called BeamPlannerTM. The software is
designed to optimize beam patterns in macro-cellular networks
to enable effective antenna deployment. Fig. 5 illustrates
the map of a sample cellular network in Danville, VA in
three different deployment scenarios. Fig. 5a represents the
case where all cells are equipped with conventional passive
antennas, whereas the other two figures showcase the deploy-
ment of BeamCraftTM 500, an active antenna array designed
and manufactured by Blue Danube Systems. The white dots
show the distribution of demand inside the network and the
illuminated patterns illustrate the SINR at each point. Fig. 5b
shows the single-beam scenario where the beams are optimized
using the GP algorithm. Fig. 5c illustrates the same result for

the double-beam scenario. It can be seen that double-beam
active antenna arrays with optimal beam patterns can offer
close to 5⇥ throughput improvement over current systems with
conventional antennas.

VI. CONCLUSION

We have studied a hybrid BF problem in a single macro-
cell scenario where the BS is equipped with a massive phased
array. We have proposed several algorithms with different
complexities to design BF vectors when long-term channel
information is available. Extensive simulation and implemen-
tation results have revealed the effectiveness of the proposed
algorithms in macro-cellular networks.
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