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Abstract—Mobile cloud computing systems, or simply mobile
clouds, have attracted tremendous attention because they allow
mobile devices with limited computational resources to offload
complex computations. However, due to the channel uncertainty
and the complexity of a computation task, mobile computation
offloading may suffer from poor outage performance that the
offloaded task cannot be completed within the desired delay con-
straint. Thus, how to efficiently identify and overcome the outage
bottleneck, which could be used to optimize resource allocation
schemes and improve the system performance effectively, is an
open problem. In this paper, we shall develop a unified framework
that minimizes the overall outage probability in various mobile
computation offloading scenarios. More specifically, the outage
bottleneck is defined and identified by adopting asymptotic
analysis, without any need of the accurate outage probabilities
in both transmissions and computations. To overcome the outage
bottleneck, resource pairing, matching, and allocation policies are
investigated. Both theoretical analysis and numerical results show
that the outage bottleneck relies on not only the availability of
spectrum and computation resources but also the probability
distributions of computation complexities of the computation
tasks.

Index Terms—Mobile cloud computing, computation offload-
ing, outage bottleneck, power consumption.

I. INTRODUCTION

IN recent years, the demand for mobile devices to execute
heavy applications with required delay constraints has

exhibited consistent growth. However, mobile devices are
usually equipped with limited resources such as computation
capability [3] and battery power [4], due to the limited
form factor, e.g., physical size. The conflicting design con-
sideration between resource-hungry applications and resource-
constrained mobile devices hence poses a significant challenge
for the future mobile computing development. To overcome
this challenge, mobile computation offloading has emerged as
a potential technique, shifting complex computation tasks to
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more powerful computation facilities such as cloud servers
or mobile cloud computation systems, and thus has attracted
intensive from both academia and industries [5], [6] and [7].

Unfortunately, to offload a computation task, data may have
to be transmitted to the cloud, which may suffer from long
latency, and thus mobile clouds in proximity are preferred. On
one hand, if a mobile cloud is used, the computation resource
may not be enough to complete the computation task on time.
Furthermore, the power consumption on mobile devices is also
an important factor to consider. Therefore, the computation
management is necessary in mobile cloud computing. Then,
how to minimize the power consumption in a mobile device
while completing the required computation task on time is
highly challenging, but of paramount importance. This paper
is to tackle this problem.

As mentioned, offloading a task from a mobile device to the
computation resources in the cloud does reduce the workload
at the device, but will consume transmission power between
the device and cloud [4]. Due to the limited battery capacity of
mobile devices [8], energy efficiency becomes a critical issue
in wireless transmission [9], and computation offloading [10]
and [11]. Thus, the performance analysis of the end-to-end
computation management between the mobile device and the
computation resources is significantly important.

In this paper, we consider a mobile computation offloading
system composed of a mobile device connecting with multiple
computation resources, simply called mobile cloud, through
multiple wireless channels. During the computation offloading,
each input task in a mobile device, ready for uploading to the
mobile cloud, could be divided into multiple subtasks and then
be executed in parallel on different computation resources.
However, the dynamic environment can cause additional prob-
lems [12]. For example, the transmitted task may not reach
the computation resources, or the task executed on the server
cannot be completed when it has to be returned to the mobile
device. In addition, we assume that the input tasks are latency-
sensitive. Thus, not only the transmission of each input task
and its output results but also the computation of the task must
be completed within the required time latencies. Otherwise,
the timeout will be triggered, resulting in task resubmission,
which we simply state that the system is in outage state.
The aforementioned outage event is composed of transmission
outage and computation outage due to the uncertainty in
wireless channels, and the lack of computation resource in
the mobile cloud. The outage probability is considered as
the performance metric. Both transmission and computation
capabilities could be improved by increasing the power of
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the system in order to lower the outage probability. However,
the same level of improvement on outage performance may
require different levels of power consumption in transmission
and computation. The major factor that restricts the reduction
of outage probability of the system even with power increase
is considered as the outage bottleneck, which could be used to
optimize resource allocation schemes to improve the system
performance efficiently. Unfortunately, it is difficult to obtain
explicit expressions for the outage probabilities of transmission
and computation. Thus, how to identify and efficiently over-
come the outage bottleneck remains as an open problem. In our
previous work, we focus on this problem in a simple system
with one channel and one computation resource [1] and then
extend the bottleneck into a system with multiple channels and
computation resources [2]. However, a theoretical framework
for the bottleneck analysis which can be applied in more
different scenarios is still required.

The main contribution of this paper is to develop a unified
framework from an asymptotic analysis perspective to analyze
and minimize the overall outage probability, and identify
the outage bottleneck of the considered system. Our unified
framework jointly considers the task division and channel
allocation in the computation offloading, and can be applied
in different offloading scenarios, e.g., distributed or centralized
computation, and with or without the information of the avail-
able computation capabilities. In each considered offloading
scenario, the corresponding policy and algorithm are designed
to minimize the overall outage probability. Then, by analyzing
the features of complexities of input task and background
tasks, necessary and sufficient conditions to identify the outage
bottleneck of the system in each considered offloading scenario
can be obtained without knowing the accurate expressions of
the outage probabilities of transmission and computation phas-
es, which can be used to evaluate the outage performance and
design an efficient strategy to improve the outage performance
for existing and future mobile computation offloading systems.

Throughout this paper, o(x) denotes the higher order in-
finitesimal of x and max{a} denotes the maximal element in
the vector a. The symbol ∼ stands for equivalent infinites-
imal. The indicator function 1 (a) is equal to 1 if a ≥ 1;
otherwise, it is equal to 0. The rest of this paper is organized
as follows. The related work is summarized in Section II.
Section III presents the system model and the framework
for the outage performance analysis. The analysis of outage
performance and outage bottleneck are given in Section IV
and Section V. Numerical results are shown in Section VI to
verify the theoretical results. Finally, Section VII concludes the
paper. For better illustration, most of the proofs for revealing
our analytical results are put in the appendix and the most
important notations are listed in Table I.

II. RELATED WORK

There has been a lot of work on the energy efficiency of
the computation offloading in the literature. In [10], Lin et
al. proposed a framework for computation offloading based
on execution time and energy consumption, aiming to shorten
response time and reduce energy consumption. In [13], Jiang et

TABLE I
SUMMARY OF NOTATIONS

Symbol Definition
C The set of the computation resources
S The set of the wireless channels

Cava
The set of the computation resources received the
whole task after the upload phase

M , N The numbers of the computation resources and the
wireless channels

Ts, T1, T2
The lengths of the time slot, the upload phase, and
the download phase

lin, lout The data sizes of the input task and the output result
N0 The additive white Gaussian noise power
ξc The power consumption of computation
ξt The power consumption of transmission
w The computation requirement of the input task

qi
The computation requirement of the background task
in the computation resource ci

C(ξc)
The computation capability when the computation
power consumption is ξc

Hu
(
hi
u

) The channel gain matrix (vector for the computation
resource ci) in the upload phase

Hd

(
hi
d

) The channel gain matrix (vector for the computation
resource ci) in the download phase

A The channel allocation result in the download phase
x The subtask division result in the computation phase

Ri
u, Ri

c, Ri
d

The successful ratios of computation, upload, and
download phases in the computation resource ci

R
The successful offloading ratio, which is the
percentage of the task be offloaded successfully

pTypek(ξt, ξc)
The overall outage probability in the scenario of
Type k ∈ {1, 2, 3, 4}

pc,kout(M, ξc),
pt,kout(N, ξt)

The computation and transmission outage probability
partitions in the scenario of Type k ∈ {1, 2, 3, 4}

ϕ1, φ1,
ϕ2, φ2

Parameters used to identify the bottlenecks in the
four considered scenarios

al. designed a scheduling scheme for energy-efficient compu-
tation offloading for multi-core mobile devices and developed
an online algorithm based on Lyapunov optimization. In [14],
Zhang et al. proposed a theoretical framework for mobile cloud
computing under the stochastic wireless channel to determine
the optimal operational regions to save energy. A dynamic
computation offloading policy was developed by You et al.
in [15] and by Mao et al. in [11] to maximize the energy
saving by considering microwave energy transfer and energy
harvesting, respectively. In [14], Zhang et al. obtained closed-
form solutions to decide the optimal application-execution
condition under which either the mobile execution or the
cloud execution is more energy-efficient. In [16], Guo et al.
integrated dynamic offloading with resource scheduling firstly
to minimize the joint energy consumption and application
completion time under completion time deadline constraint
and task-precedence requirement. The task In this work,
we also focus on the energy efficiency of the computation
offloading through performance analysis in different scenarios.

More recently, various mobile computation offloading sys-
tems have been considered. It was shown that energy efficiency
could be improved by jointly optimizing the allocation of com-
putation and transmission resources [17]-[18]. In [17], Salmani
and Davidson jointly optimized the allocation of the compu-
tational and radio resources to reduce energy consumption by
exploiting the capabilities of the multiple access channel. In
[19], Guo et al. considered the impact of task dependencies
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on computation completion time and then provided an energy-
efficient dynamic offloading and resource scheduling policy
to reduce energy consumption. In [20], Ti and Le studied the
joint computation offloading and resource allocation problem
in the two-tier wireless heterogeneous network. In [21], Chen
et al. aimed to find the local optimum decision on offloading
and allocation of computation and communication resources to
minimize a weighted cost in a general mobile cloud computing
system and an algorithm is given to obtain a local optimum.
In [22], Wang et al. offered a joint energy minimization and
resource allocation solution that could improve the system
performance and save energy in a novel C-RAN architecture
with the mobile cloud co-located with the BBU in the cloud
pool. In [18], Mao et al. dynamically managed the radio and
computational resources to cope with the time-varying compu-
tation demands and wireless fading channels. In this paper, we
develop a unified framework to optimize the performance and
improve energy efficiency of various mobile cloud computing
systems from the perspective of outage probability.

Furthermore, by increasing the power consumption of both
transmission and computation, the Quality-of-Service (QoS)
of mobile users in mobile computation offloading systems
could be improved significantly [4][5]. However, the identical
increase in power consumption of transmission and compu-
tation might result in different improvement of the system
performance and QoS. Hence, the transmission-computation
power consumption tradeoff is much more important and
meaningful, which has the potential to offer the most effective
way to improve the system performance and has been studied
in [4] and our previous work [1] and [2]. Moreover, Ma et al.
presented a survey of energy-efficient computation offloading
technologies and summarized that there is a tradeoff in energy
consumption between transmission and local computation in
[23]. In this paper, to better utilize the resource in computation
offloading systems, we define the major limiting factor of the
system as outage bottleneck.

III. SYSTEM MODEL

Consider a mobile computation offloading system that con-
sists of one mobile device and M computation resources,
through which the mobile device can offload the input tasks
to the mobile cloud as shown in Fig. 1. The computation
resources, whose set is denoted by C = {c1, . . . , cM}, are
distributed across different locations. Assume that the mobile
device transmits with each computation resource through
N(N ≥ M) wireless channels, whose set is denoted by
S = {s1, . . . , sN}. Due to the lack of computation capability,
the input tasks of the mobile device need to be computed
through computation offloading with the aid of the mobile
cloud. In this way, a significantly improved computation expe-
rience can be achieved. Moreover, all control operations of the
computation offloading, i.e., transmissions and computations,
are managed by a controller [12] in the considered system,
which is in charge of processing the requests and provides
mobile devices with the corresponding cloud services, e.g.,
computation resources.

The procedure of the computation offloading can be divided
into three phases: upload, computation, and download. Specif-

Fig. 1. Illustration of mobile computation offloading system with one mobile
device connecting with multiple computation resources, where a controller is
responsible for all control plane decisions.

ically, each input task is set to be uploaded to the computation
resource and then be computed in the mobile cloud. After the
computation phase, the results of the task is transmitted back
to the mobile device.

Let Ris denote the successful offloading ratio of the compu-
tation resource ci, which is the percentage of one input task
that can be offloaded successfully in the computation resource
ci under the delay constraints. This successful offloading ratio
Ris is determined by Ric, Riu, and Rid, which are successful
ratios of computation, upload, and download phases in the
computation resource ci. In addition, if an input task cannot be
uploaded completely, i.e., Riu < 1, then it cannot be computed
in the computation resource ci, causing Ris = 0; otherwise
Ris = min{Rid, Ric}. Therefore, Ris is given by

Ris = min{1
(
Riu
)
, Rid, R

i
c}. (1)

We derive next explicit expressions of Ric, Riu, and Rid with
different task division and channel allocation methods as
follows.

A. Concurrent Computation and Transmissions in Time Do-
main

We consider a time-slotted system, in which the time is
divided into time slots with a fixed length Ts and is indexed
by an integer k. Assume that each input task of the mobile
device arrives at the beginning of the time slot, whose data
size (in bits) is a fixed value lin. Moreover, assume that the
data size of each task’s output result is also a fixed value lout.
As depicted in Fig. 2, each time slot can be divided into two
parts: the upload phase T1 and the download phase T2, where
Ts = T1 + T2.

Fig. 2. Time scheduling with concurrent computation and transmissions.

For the task arriving at the beginning of the k-th time slot,
it is indexed as k-th task and uploaded from the mobile device
to the mobile cloud in the upload phase of the k-th time slot,
and then its output result is downloaded from the mobile cloud
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in the download phase of the (k+ 1)-th time slot. In this way,
the wireless channels and computation resources can be well
utilized by concurrent computation and transmissions in time
domain, which has been used in our previous work [1] and
[2]. Therefore, the delay constraints for upload, download, and
computation phases are given by T1, T2, and Ts, respectively.

Since both the computation and transmission aspects play a
key role, we next introduce the computation and transmission
models, respectively. Without loss of generality, we focus on
the offloading procedure and outage probability analysis for
the task arriving in the k-th time slot because the outage events
of different tasks are independent and identically distributed.

B. Computation Model

The computation capability required by the task is measured
by the number of CPU cycles, denoted by w, which is
a random variable with given probability density function
fw(x). In addition, there are also background tasks requiring
computation capability in each computation resource. Let qi
denote the computation capability required by background
tasks in the computation resource ci during the computation
phase, which is also a random variable with given probability
density function fq(x). Assume that w and qi (1 ≤ i ≤ M )
are independent with each other.

The computation capability of each computation resource
is a finite value C, which is the total number of CPU cycles
supported by the computation resource during one computa-
tion phase, i.e., one time slot Ts. Let fc denote the clock
frequency of the CPU in each computation resource. Thus,
the computation capability of each computation resource is
given by

C = fcTs. (2)

According to [24] and [25], the power consumption of com-
putation can be expressed as

ξc = κfc
3, (3)

where κ is the effective switched capacitance depending on the
chip architecture of CPU. Then, the computation capability C
can be rewritten as

C(ξc) = kcξc
1
3 , (4)

where kc = Tsκ
− 1

3 . Consequently, the successful ratio of the
computation phase in the computation resource ci is given by

Ric(w, qi, ξc) =
C(ξc)− qi

w
. (5)

C. Transmission Model

The considered system is assumed to undergo
Rayleigh block-fading channel [26]. In each time-slot,
the data link between the mobile device and one computation
resource through each wireless channel has the independent
and identical distribution (i.i.d.) in fading condition, which
are assumed to be circularly symmetric Gaussian distribution
CN (0, 1) . The channel gain keeps fixed during one time-slot,
while the channel gains are i.i.d. in different time slots.

Let hiu = [hi1u . . . , h
iN
u ]T and hid = [hi1d . . . , h

iN
d ]T denote

the channel gain vectors for the computation resource ci in
upload and download phases, where hiju and hijd are channel
gains of upload and download links between the mobile device
and computation resource ci over channel sj , respectively.
Since computation resources are in different locations, it is
reasonable to assume that the channels between the mobile
device and different computation resources undergo indepen-
dent fading. Therefore, both hiju and hijd , ∀1 ≤ i ≤ M ,
are assumed to follow independent and identical distribution
CN (0, 1). Furthermore, the channel gain matrices in upload
and download phases are denoted by Hu = [h1

u, . . . ,h
M
u ] and

Hd = [h1
d, . . . ,h

M
d ].

In the upload phase, to take full advantage of independent
fading and maximize the diversity gain of transmission [27],
the task is set to be transmitted to each computation resource
through the channel with maximal transmission capability,
which is the point-to-multipoint communication. The broad-
casting approach is not considered in the upload phase to avoid
broadcast storm when there are multiple mobile devices in
realistic scenarios. In this way, the mobile device can trans-
mit the task to multiple computation resources through one
wireless channel simultaneously and the transmission power
consumption might be reduced compared to the broadcasting
approach. Thus, the successful ratio of the upload phase in the
computation resource ci is given by

Riu(hiu, ξt) =
T1 log(1 + |max{hiu}|2

ξt
N0

)

lin
, (6)

where ξt is the power consumption of transmission and N0 is
the power of the background noise.

In the download phase, there might have multiple compu-
tation resources requiring channels to transmit results back to
the mobile device simultaneously. The channels occupied by
the computation resource ci in the download phase are denoted
by ai = [ai1, . . . , aiN ]T , where aij = 1 if the channel sj is
allocated to the computation resource ci; otherwise aij = 0.
The channel allocation result can be represented by the matrix
A = [a1, . . . , aM ]. We notice that one channel cannot be
allocated to multiple computation resources in order to avoid
interference. Thus, we have the constraint of channel allocation
method, which is given by

M∑
i=1

aij ≤ 1, ∀j = 1, . . . , N. (7)

Then the successful ratio of the download phase in the
computation resource ci is given by

Rid(hid,ai, ξt) =

T2 log(1 + |max
sj∈S
{aijhijd }|2

ξt
N0

)

lout
. (8)

D. Theoretical Framework for Outage Analysis

Assume that each input task can be divided into multiple
subtasks and then be computed in parallel on multiple com-
putation resources. For the sake of simplicity, the separated
results of all subtasks can be combined into a whole result
in the mobile device with negligible computation capability
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consumption [14] and [28], i.e., time delay can be ignored.
The fractions of the original task in different computation
resources are denoted by vector x = [x1, . . . , xM ], where xi
is the fraction of the input task allocated to the computation
resource ci. The subtask division method x can be designed
by the controller, where the normalization condition holds and
thus the sum of subtasks must cover the whole input task, i.e.,

M∑
i=1

xi = 1, (9)

where 0 ≤ xi ≤ 1. Similar to the task model in [14] and
[28], we assume the input task is uniformly splittable, i.e., a
fraction of xi of the original task has xilin input data bits,
xilout output data bits, and requires xiw CPU cycles for
processing. For some typical offloading applications, such as
image/video/voice recognition and file scanning, can satisfy
this assumption [29] and then can be applied in the following
framework.

Based on the above analysis, the successful offloading ratio
R, which is the percentage of one input task that can be
offloaded successfully, is given by

R(w,q,Hu,Hd,x,A, ξc, ξt) =
M∑
i=1

Ris =

M∑
i=1

min{1
(
Riu(hiu, ξt)

)
, Rid(hid,ai, ξt), R

i
c(w, qi, ξc), xi}.

(10)
Thus, the system is in outage state if

R(w,q,Hu,Hd,x,A, ξc, ξt) < 1, (11)

which represents that the offloading of the input task cannot
be completed fully under the required delay constraints. From
Eqs. (9)-(11), the system is in outage state if

1
(
Riu(hiu, ξt)

)
< xi (12)

or
Rid(hid,ai, ξt) < xi (13)

or
Ric(w, qi, ξc)} < xi (14)

holds for any computation resource ci ∈ C. Then, a unified
framework for outage performance analysis, where efficiency
and fairness are both taken into consideration, has already been
presented. In this framework, x is a design parameter, which
can be designed by the controller based on q and Hu after
the upload phase. Next, A is also a design parameter, which
can be determined based on x and Hd after the computation
phase. The feedback of the above information will also cause
the signaling overhead.

IV. OUTAGE PROBABILITY ANALYSIS

In this section, we focus on outage probability analysis in
different offloading scenarios based on the unified framework
in Eq. (10).

In the upload phase of each considered offloading scenario,
the input task is set to be transmitted to all computation

resources over all available channels. If the input task cannot
be received by any one of the computation resources success-
fully, the upload phase in this computation resource fails with
probability given by

poutbr (ξt) = Pr
{
Riu(hiu, ξt) < 1

}
. (15)

Since the channel gains between the mobile device and
different computation resources over different channels are
independent with each other, the probability that the input
task received by m (0 ≤ m ≤ M) computation resources
successfully is given by

pupbr (m, ξt) =

(
M
m

){
1− poutbr (ξt)

}m {
poutbr (ξt)

}(M−m)
.

(16)
If no computation resource can receive the task successfully,
i.e., m = 0, the computation offloading is considered to be a
failure, i.e., in outage state, with probability given by

pupbr (0, ξt) =
{
poutbr (ξt)

}M
. (17)

For each offloading scenario, the operation in the upload
phase is identical, while it might be different in computation
and download phases, which are introduced next.

A. Classification of Computation Offloading Scenarios

Consider the condition that the whole task has been received
by m (1 ≤ m ≤ M) computation resources after the upload
phase, whose set is denoted by Cava, where Cava ⊆ C and
|Cava| = m. Thus, the task can be computed on at most m
computation resources in parallel. Then, there are multiple
offloading scenarios should be considered, which are different
in the computation and download phases. Intuitively, the
offloading scenarios can be classified into two major categories
according to either centralized or distributed computation,
which are summarized in Table II.

TABLE II
TWO COMPUTATION OFFLOADING CATEGORIES

Upload Computation Download
Point-to-multipoint Centralized Point-to-point

Point-to-multipoint Distributed Multiple access

Furthermore, the available computation capability of the
computation resource ci for computation offloading is given
by C(ξt)− qi, which can be used by the controller to design
the subtask division method x. Hence, we define the value
C(ξt) − qi for Ci ∈ Cava as the computation capability
information in the computation offloading. It should be noticed
that the value of C(ξc) and ξc are given, while qi is a random
variable, which can be obtained through the feedback from
the computation resource ci to the controller. It might not
be guaranteed in practical systems due to the constraint on
signaling overhead. Thus, another factor that should be con-
sidered is whether the controller has computation capability
information for all ci ∈ Cava. We consider two aforementioned
factors jointly and then four feasible scenarios are summarized
in Table III and clarified as follows:
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TABLE III
CLASSIFICATION OF FOUR TYPICAL SCENARIOS IN COMPUTATION

OFFLOADING

Computation Without computation
capability information

With computation
capability information

Centralized Type 1 Type 2
Distributed Type 4 Type 3

1) Type 1: One computation resource ci∗ is selected from
Cava randomly to compute the whole task. In this sce-
nario, we have xi = 1 if i = i∗; otherwise xi = 0.

2) Type 2: One computation resource ci∗ with the maximal
available computation capability, i.e., correspondingly
the minimal background task qi∗ , is selected from Cava
to compute the whole task according to the given com-
putation capability information. In this scenario, we have
xi = 1 if i = i∗; otherwise xi = 0.

3) Type 3: The whole task is divided into m subtasks to
each available computation resources in Cava. Intuitively,
the computation resource with high available computa-
tion capability should be allocated to a relatively high
portion of the whole task. Then the subtasks can be
computed in parallel on multiple computation resources.
The task division method x can be obtained according
to Algorithm 1 to minimize the outage probability of the
offloading.

4) Type 4: The whole task is divided into m subtasks with
identical size to each available computation resource in
Cava. In this scenario, we have xi = 1

m if ci ∈ Cava;
otherwise xi = 0.

Next, we conduct the outage probability analysis with respect
to the aforementioned scenarios.

B. Type 1: Centralized Computation without Computation
Capability Information

In this scenario, the controller selects one computation
resource ci∗ from available computation resource set Cava
randomly. Hence the failure probability of computing is given
by

pcomp
Type1(m, ξc) = Pr {w + qi > C(ξc)} , (18)

where qi∗ is replaced with qi since qi (1 ≤ i ≤ M) are i.i.d.
random variables.

In the download phase, the result of the task is transmitted
from ci∗ back to the mobile device, which is the point-to-
point transmissions over N channels, i.e., ai∗ = [1, . . . , 1].
Since xi∗ = 1, the failure probability of downloading is given
by

pdown
Type1(ξt) = Pr

{
Ri

∗

d (hi
∗

d ,ai∗ , ξt) < 1
}
. (19)

The outage events in the computation and download phases
are independent of each other since they depend on parameters
and random variables of computations and transmissions sep-

arately. Hence the outage probability during the computation
and download phases can be approximated by

pType1(m, ξt, ξc)

= pcomp
Type1(m, ξc) + pdown

Type1(ξt)− pcomp
Type1(m, ξc)p

down
Type1(ξt)

≈ pcomp
Type1(m, ξc) + pdown

Type1(ξt),
(20)

when pcomp
Type1(m, ξc) and pdown

Type1(ξt) are sufficiently small,
i.e., ξc and ξt are sufficiently large. In practical systems, the
approximation error in Eq. (20) is limited. This is simply
due to the fact that the outage probability in any practical
systems must be small enough, or otherwise the QoS cannot be
guaranteed, resulting in this scenario is unpractical. Therefore,
the neglected part in approximation pcomp

Type1(m, ξc)p
down
Type1(ξt)

is much less than the overall outage probability of the systems,
which can be neglected since the accuracy will not be reduced
too much.

Then, From Eqs. (16), (17), and (20), the overall outage
probability in the scenario of Type 1 can be approximated by

pType1(ξt, ξc) ≈ pupbr (0, ξt)+
M∑
m=1

{
pupbr (m, ξt)

(
pcomp
Type1(m, ξc) + pdown

Type1(ξt)
)}

.
(21)

Thus, we obtain the following result.

Theorem 1. When ξc and ξt are sufficiently large, we have

pType1(ξt, ξc) ∼ k1ξ−Nt + pcomp
Type1(M, ξc), (22)

where k1 ∈
[
N0

N2NR2 , N0
N
(
2NR1M + 2NR2

)]
with R1 =

lin
T1

and R2 = lout
T2

.

Proof. See Appendix A.

C. Type 2: Centralized Computation with Computation Capa-
bility Information

Given the computation capability information of all avail-
able computation resources in Cava, the controller can select
the computation resource ci∗ with minimal background tasks
from Cava. Hence the failure probability of computing is given
by

pcomp
Type2(m, ξc) = Pr

{
max
ci∈Cava

Ric(w, qi, ξc) < xi

}
= Pr

{
w + min

i=1,...,m
qi > C(ξc)

}
,

(23)

which is different from that in the scenario of Type 2 given
in Eq. (18). During the offloading, the operation in the
computation phase in the scenarios of Type 1 and Type 2
are different, while that in the upload and download phases
are identical. Thus, similar to the proof of Theorem 1, we can
obtain the following result for the overall outage probability
pType2(ξt, ξc) in this scenario.

Theorem 2. When ξc and ξt are sufficiently large, we have

pType2(ξt, ξc) ∼ k2ξ−Nt + pcomp
Type2(M, ξc), (24)

where N0
N2NR2 ≤ k2 ≤ N0

N
(
2NR1M + 2NR2

)
with R1 =

lin
T1

and R2 = lout
T2

.
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D. Type 3: Distributed Computation with Computation Capa-
bility Information

Given the computation capability information of all com-
putation resources in Cava, the computation capability can
be fully exploited by finding the optimal subtask division
method x∗ at the controller. In the ideal case, the task
cannot be completed only if the sum of available computation
capabilities of all computation resources in Cava cannot satisfy
the computation requirement of the task. From Eqs. (5) and
(14), the probability of the task cannot be completed during
the computation phase in above ideal case is given by

pcomp
Type3(m, ξc) = Pr

{
w >

m∑
i=1

max{C(ξc)− qi, 0}

}
, (25)

where max{C(ξc) − qi, 0} represents the available computa-
tion capability in computation resource ci ∈ Cava. Since the
computation resource will be fully loaded when C(ξc) ≤ qi,
the available computation capability of each computation
resource cannot be negative. To obtain the optimal subtask
division method x∗ minimizing the overall outage probability
of offloading, an algorithm with low computation complexity
is proposed in Algorithm 1. Based on this, we have the
following theorem.

Algorithm 1 Subtask Division Algorithm
1: initialize the sets Cava and x = 0.
2: repeat
3: m = |Cava|.
4: qimax = max

ci∈Cava
{qi} and imax = arg max

ci∈Cava
{qi}.

5: if C(ξc)− qimax >
w
m , then ximax = 1

m .
6: else ximax = C(ξc)−qimax

w , w = (1− ximax)w and
delete cimax from Cava.

7: until Cava = ∅.
8: output x∗ = x, then stop.

Theorem 3. By implementing the subtask division method x∗

obtained from Algorithm 1, the overall outage probability of
computation offloading can be minimized if

∑
ci∈Cava

xi = 1.

Otherwise if
∑

ci∈Cava
xi < 1, the offloading will be in outage in

the computation phase for any subtask division methods.

Proof. See Appendix B.

Then, in the download phase, the result of each subtask is
transmitted from the corresponding computation resource in
Cava back to the mobile device. From Eqs. (9) and (14), the
failure probability of downloading subtask from ci through
channel sj is given by

pdown,i
Type3 (xi, ξt) = Pr

{
T2 log(1 + |hijd |2

ξt
N0

)

lout
< xi

}
= Pr

{
Rid(hid, [1, 0, . . . , 0], ξt) < xi

}
,

(26)

because the channel gains hi1d and hijd , j = 2, . . . , N , are i.i.d.
random variables.

The download phase in this scenario is to conduct multiple
access transmissions of m computation resources over N
channels (m ≤ M ≤ N), and optimal channel allocation can
be formulated as a matching problem in the random bipartite
graph (RBG) [30] and then be solved by the bipartite graph
matching. The RBG model can be constructed in the following
steps.

First, all the vertices in one partition class are used to rep-
resent the available computation resources ci ∈ Cava, and the
vertices in another partition class are used to represent all the
channels sn ∈ S . Only if the result of the subtask in ci ∈ Cava
can be downloaded through channel sn ∈ S successfully can
we add an edge between the corresponding vertices in the
RBG sample. A sample of this RBG model with m = 4 and
N = 6 is shown in Fig. 3. By applying the RBG model,
the optimal channel allocation can be obtained according to
R2HK Algorithm with the complexity of O(N2.5) [30].

Fig. 3. A sample of RBG model with 4 available computation resources and
6 wireless channels.

Let pdown
type3(m, ξt) denote the failure probability of down-

loading in the scenario of Type 3, which is the probability
that not all results can be downloaded successfully with the
subtask division method x∗ according to Algorithm 1. The
following theorem can be obtained.

Theorem 4. For sufficiently large ξt, the failure probability of
downloading pdown

type3(m, ξt) under channel allocation scheme
based on R2HK algorithm is given by

pdown
type3(m, ξt) =

∑
ci∈Cava

{
pdown,1
Type3 (xi, ξt)

}N
+ a0(m)·

N
∏

ci∈Cava

pdown,1
Type3 (xi, ξt) + o

( ∑
ci∈Cava

{
pdown,1
Type3 (xi, ξt)

}N)
,

(27)
where

a0(m) =

{
0, m < N

1, m = N.
(28)

Proof. See Appendix C.

From this Theorem, we can easily obtain the following
result.

Corollary 1. For sufficiently large xt, pdown
type3(m, ξt) can be

approximated by

pdown
type3(m, ξt) ≈ kdξt−N , (29)
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where kd ∈
[
m2xminR2N , (m+N)2xmaxR2N

]
· N0

Nξ−Nt ,
xmax = max

ci∈Cava
xi, and xmin = min

ci∈Cava
xi.

Proof. See Appendix D.

When ξc and ξt are sufficiently large, the overall outage
probability in this scenario can be approximated by

pType3(ξt, ξc) ≈ pupbr (0, ξt)

+
M∑
m=1

{
pupbr (m, ξt)

(
pcomp
Type3(m, ξc) + pdown

Type3(m, ξt)
)}

,

(30)
and we can obtain the following theorem.

Theorem 5. When ξc and ξt are sufficiently large, we have

pType3(ξt, ξc) ∼ k3ξ−Nt + pcomp
Type3(M, ξc), (31)

where k3 ∈
[
kd, N0

N2NR1M + kd
]

with R1 = lin
T1

and R2 =
lout
T2

.

E. Type 4: Distributed Computation without Computation
Capability Information

Without known computation capability information of com-
putation resources ci ∈ Cava in the controller, a simple but
reasonable method for the controller is to divide the whole
task into subtasks with identical size and then the subtasks
are computed in each computation resource in the available
computation resource set, i.e., xi = 1

m for ci ∈ Cava. From
Eqs. (5) and (14), the failure probability of computing is given
by

pcomp
Type4(m, ξc) = Pr

{
min
ci∈Cava

Rc
i (w, qi, ξc) < xi

}
= Pr

{
w

m
+ max
i=1,...,m

qi > C(ξc)

}
.

(32)

In contrast to this scenario, the scenario of Type 3 without the
constraint of equal task division is more general. Thus, the
task division method in the scenario of Type 4 can be viewed
as one case of that in the scenario of Type 3. By substituting
xi = 1

m for ci ∈ Cava in Eq. (26), the failure probability of
downloading subtask from ci through channel sj is given by

pdown
Type4(ξt) = pdown,i

Type3 (
1

m
, ξt)

= Pr

{
Rd
i (hd

i , [1, 0, . . . , 0], ξt) <
1

m

}
.

(33)

Then, from Eq. (27) in Theorem 4, the failure probability of
downloading is given by

pdown
type4(m, ξt) = b(m)

{
pdown
Type4(ξt)

}N
+ o

(
pdown
Type4(ξt)

N
)
,

(34)
where b(m) = a(m) + 1. When ξc and ξt are sufficiently
large, the overall outage probability in this scenario can be
approximated by

pType4(ξt, ξc) ≈ pupbr (0, ξt)

+
M∑
m=1

{
pupbr (m, ξt)

(
pcomp
Type4(m, ξc) + pdown

Type4(m, ξt)
)}

,

(35)

and the following theorem can be obtained.

Theorem 6. When ξc and ξt are sufficiently large, we have

pType4(ξt, ξc) ∼ k4ξ−Nt + pcomp
Type4(M, ξc), (36)

where k4 ∈
[
b(M)MN0

Nλ2, b(M)MN0
N (λ1 + λ2)

]
with

λ1 = 2
Nlin
T1 and λ2 = 2

Nlin
T2 .

V. OUTAGE BOTTLENECK ANALYSIS

According to Theorems 1, 2, 5, and 6, the outage prob-
abilities with high power consumption of computation and
transmission in all considered scenarios can be divided into
two parts, which only depend on transmission parameters N
and ξt, and computation parameters M and ξc, respectively.
Thus, we define these two partitions as the computation and
transmission outage probability partitions. For the sake of
simplicity, we set the constant coefficients in transmission
outage probability in Theorems 1, 2, 5 and 6, i.e., k1, k2, k3
and k4, to 1. Therefore, we have the following definition.

Definition 1. The computation and transmission outage prob-
ability partitions of four considered scenarios are defined by{

pc,kout(M, ξc) = pcomp
Typek(M, ξc),

pt,kout(N, ξt) = ξ−Nt ,
(37)

where k ∈ {1, 2, 3, 4} that correspond to Type 1, 2, 3, and 4
scenarios.

Then, for given M and N , the power consumptions with
pc,kout(M, ξc) = pt,kout(N, ξt) = ε can be rewritten as ξc(ε) = pc,kout

−1
(ε) = fk(ε),

ξt(ε) = pt,kout
−1

(ε) = gk(ε),
(38)

where p−1(x) is the inverse function of p(x). The major part of
total power consumption as ε→ 0 is considered as the outage
bottleneck of the mobile computation offloading system, which
is the major limiting factor to the decrease of outage probabili-
ty of the system by increasing total power consumption. Then,
according to Eq. (38), the outage bottleneck of the computation
offloading can be found by comparing power consumption
ratio

hk(ε) =
ξc(ε)

ξt(ε)
=
fk(ε)

gk(ε)
(39)

with ε → 0 and k ∈ {1, 2, 3, 4}, which is summarized in the
following definitions.

Definition 2. Define1

Ξk = lim
ε→0

hk(ε) = lim
ε→0

fk(ε)

gk(ε)
= lim
ξc→∞

ξc

gk(fk
−1(ξc))

, (40)

where k ∈ {1, 2, 3, 4}. If Ξk = 0 or ∞, the outage bot-
tleneck of corresponding offloading scenario is either trans-
mission or computation capability, respectively. Otherwise, if
Ξk ∈ (0,∞), the outage bottleneck is both transmission and
computation capability.

1In this paper, we do not consider the scenario that the limitation lim
ε→0

hk(ε)

does no exist.
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The rest of this paper focuses on the analysis of the features
and acquisition method of Ξk to obtain outage bottleneck,
which are summarized in the following theorems.

Theorem 7. Ξk defined in Eq. (40) can be rewritten as

Ξk = W lim
x→∞

lk(x), (41)

where k ∈ {1, 2, 4}, W is a constant satisfying W =
1

kc3{3N}
1
N
∈ [0,∞] , and lk(x) is given by

lk(x) =

{
fuk(x)

x−(3N+1)

} 1
N

(42)

with fuk(t) being the probability density function of uk, which
is given by

uk =


w + qi, k = 1;

w + min
i=1,...,M

qi, k = 2;

w

M
+ max
i=1,...,M

qi, k = 4.

(43)

Proof. See Appendix E.

According to Theorem 7, the outage bottleneck in the
scenarios of Type 1, 2, and 4 can be obtained by analyzing
lim
x→∞

lk(x). However, it is sometimes difficult to obtain explicit
expression of lk(x). To solve this problem and obtain the out-
age bottleneck more efficiently, we first analyze distributions
of w, qi and uk.

Definition 3. Defineϕ1 = lim
x→∞

x3N+1fw(x);

φ1 = lim
x→∞

x3N+1fq(x),
(44)

where fw(x) and fq(x) are the probability density functions
of w and qi, respectively.

Theorem 8. In the scenarios of Type 1 and Type 4, if
max{ϕ1, φ1} = 0 or ∞, the outage bottleneck of this system
is either transmission or computation capability, respectively.
Otherwise, if max{ϕ1, φ1} ∈ (0,∞), the outage bottleneck is
both transmission and computation capability.

Proof. See Appendix F.

Similar to Definition 3 and Theorem 8 for the scenarios of
Type 1 and Type 4, we have the following definitions for the
scenarios of Type 2 and Type 3.

Definition 4. Defineϕ2 = lim
x→∞

x3N+1fw(x);

φ2 = lim
x→∞

x
3N
M +1fq(x),

(45)

where fw(x) and fq(x) are the probability density functions
of w and qi, respectively.

Theorem 9. In the scenarios of Type 2 and 3, if
max{ϕ2, φ2} = 0 or ∞, the outage bottleneck of this system
is either transmission or computation capability, respectively.
Otherwise, if max{ϕ2, φ2} ∈ (0,∞), the outage bottleneck is
both transmission and computation capability.

Proof. For the scenario of Type 2, the proof is similar to that
for the scenario of Type 1 in Appendix F. In addition, for the
scenario of Type 3, the proof is given in Appendix G.

Remark 1. According to [31], the number of required CPU
cycles w depends on the input data size lin. For a given input
data size lin, the number of required CPU cycles can be derived
as

w = Llin, (46)

where L indicates the number of CPU cycles per bit, which
can be modeled by a Gamma distribution with shape parameter
α and scale parameter β in [31]. In this case, we have

fw(x) =
1

βΓ(α)lin
(
x

βlin
)α−1e

− x
βlin , x > 0, (47)

Then, ϕ1 and ϕ2 can be calculated as

ϕ1 = ϕ2 = lim
t→∞

x(3N+1)fw(x) = 0, ∀N ≥ 1. (48)

According to Theorem 8 and Theorem 9, the outage bottleneck
of four considered offloading scenarios only depends on φ1
or φ2. If qi also follows a Gamma distribution, i.e., φ1 =
φ2 = 0, the outage bottlenecks of four offloading scenarios
are transmission capability.
Remark 2. If w and qi are light-tailed distributions as defined
in [32], we have ϕ1 = φ1 = 0 and ϕ2 = φ2 = 0, and the
outage bottlenecks of four considered offloading scenarios are
transmission capability. However, if w and qi are heavy-tailed
distribution as defined in [32], the outage bottlenecks can also
be obtained according to Theorem 8 and Theorem 9.

VI. NUMERICAL RESULTS

In this section, we validate the theoretical analysis via
Monte-Carlo simulation results. Throughout this section, we
set kc = 1, the additive white Gaussian noise N0 = 1, data
size of the input task lin = 5, and data size of the output
result lout = 0.5. The lengths of the time slot, the upload
phase, and the download phase are assumed to be normalized,
i.e., T1 = 1, T2 = 1, and Ts = 2. In addition, the channel
gains hiju and hijd are assumed to follow independent and
identical distribution CN (0, 1). Moreover, the distributions of
computation requirements w and qi are given by

1) Case 1: w and qi follow the identical independent Gam-
ma distribution with α = β = 1, i.e., the exponential
distribution with parameter λ = 1.

2) Case 2: w and qi follow the independent power-law
distribution, whose probability density functions are
fw(x) = 10

x11 and fq(x) = 5
x6 for x ≥ 1, respectively.

The controller collects the above information and schedules
the offloading based on the proposed approach. Then, not
only the overall outage probability of offloading, but also
the computation and transmission outage probability partitions
defined in Eq. (37) can be obtained.

For two cases, the ϕ1, φ1, ϕ2, and φ2 defined in Definitions
3 and 4 are summarized in Table IV. According to Theorem
8 and Theorem 9, we can further obtain the outage bottleneck
in four considered scenarios with case 1 and case 2, which is
summarized in Table V.
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TABLE IV
ϕ1/2 AND φ1/2 IN TWO CASES

fw , fq
Case 1:

exponential
Case 2:

power-law
ϕ1 0 0 (N ≤ 3) and ∞ (N ≥ 4)
ϕ2 0 0 (N ≤ 3) and ∞ (N ≥ 4)
φ1 0 0 (N ≤ 1) and ∞ (N ≥ 2)
φ2 0 0 (3N < 5M ) and ∞ (3N > 5M )

TABLE V
OUTAGE BOTTLENECKS IN TWO CASES

Scenario Case 1:
exponential

Case 2:
power-law

Type 1 Transmission Transmission (N ≤ 1)
and computation (N ≥ 2)

Type 2 Transmission Transmission (N ≤ 3 and 3N < 5M )
and computation (in others)

Type 3 Transmission Transmission (N ≤ 3 and 3N < 5M )
and computation (in others)

Type 4 Transmission Transmission (N ≤ 1)
and computation (N ≥ 2)

A. Overall outage probabilities in different scenarios

The overall outage probabilities in four considered sce-
narios are given in Figs. 4 and 5, versus different power
consumptions of computation and transmission, respectively.
With the increase of the power consumptions of computation
and transmission, the overall outage probabilities decrease
in all considered scenarios. In addition, for the scenarios of
centralized computation, the scenario of Type 2 always has
a better outage performance than the scenario of Type 1.
Similarly, for the scenarios of distributed computation, the
overall outage probability in the scenario of Type 3 always
below that in the scenario of Type 4. Hence it shows that the
considered system can achieve a better outage performance
with the help of the computation information.

4 8 12
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Fig. 4. Overall outage probabilities with ξt = 15.

B. One simple system with M = 1

We consider a simple scenario that M = 1 firstly. Since
there is only one computation resource in the system, all
scenarios will degrade into the scenario of Type 1.

Fig. 6 indicates the power consumption ratio ξc
ξt

defined
in Eq. (39) with the assurance that ptk(ξt) = pck(ξc), k ∈
{1, 2, 3, 4}, with the increase of ξc. By increasing the number
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Fig. 5. Overall outage probabilities with ξc = 12.

of channels N from 1 to 4, the power consumption ratio of
case 1 always tends to 0, while that of case 2 tends to∞ when
N ≥ 2. It shows that the outage bottleneck for case 1 when
1 ≤ N ≤ 4 and for case 2 when N = 1 is transmission
capability, while for case 2 with N ≥ 2 is computation
capability, where theoretical results and the simulation results
match perfectly well.
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Fig. 6. The power consumption ratio with M = 1, i.e., Type 1’s scenario.

Next we consider a system with multiple wireless channels
and computation resources.

C. Centralized Computation with and without Computation
Information
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Fig. 7. The power consumption ratio in Type 1’s scenario.

Consider the scenarios of centralized computation and the
number of channels N is 3, where the scenario of Type 1 has
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Fig. 8. The power consumption ratio in Type 2’s scenario.

been presented in the previous [2] and that of Type 2 has been
presented in Fig. 7. It shows that the power consumption ratio
ξc
ξt

defined in Eq. (40) with the increase of ξc in the scenarios
of Type 1 and Type 2. As shown in Fig. 7, by increasing the
number of computation resources M from 1 to 3, the power
consumption ratios in the scenario of Type 1 always tends to 0
for case 1, and ∞ for case 2. Moreover, Fig. 8 shows that, in
the scenario of Type 2, the power consumption ratio ξc

ξt
always

tends to 0 for case 1, while that of case 2 tends to 0 when
M ≥ 2 and to ∞ when M = 1 with the increase of ξc. Thus,
with the known of computation capability information, the
outage bottleneck in the scenario of Type 2 can be transformed
from computation to transmission by increasing the number of
computation resources. The numerical results in Figs. 7 and
8 match well with the theoretical results in Theorem 8 and
Theorem 9.

D. Distributed Computation with and without Computation
Information
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Fig. 9. The power consumption ratio in Type 3’s scenario.

Consider the two scenarios of distributed computation and
the number of channels N is 3. Figs. 9 and 10 show the power
consumption ratio ξc

ξt
defined in Eq. (40) with the increase of

ξc in the scenarios of Type 3 and Type 4. As shown in Fig. 9,
by increasing the number of computation resources M from 1
to 3, the power consumption ratio of case 1 always tends to 0,
while that of case 2 with M ≤ 1 tends to∞ with the increase
of ξc in the scenario of Type 3. In addition, Fig. 10 shows
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Fig. 10. The power consumption ratio in Type 4’s scenario.

that the power consumption ratios of case 1 and case 2 in
the scenario of Type 4 always tend to 0 and ∞, respectively.
With the known of computation capability information, the
outage bottleneck in the scenario of Type 3 can be transformed
from computation to transmission by increasing the number of
computation resources. The numerical results in Figs. 9 and
10 also match with the theoretical results in Theorem 8 and
Theorem 9.

VII. CONCLUSIONS

In this paper, we have developed a unified framework
to analyze the outage probability and outage bottleneck for
mobile computation offloading systems. Offloading scenarios
with different task division and channel allocation methods are
considered. In each considered scenario, the overall outage
probability can be divided into two parts corresponding to
transmission and computation. The outage bottleneck com-
pletely determined by the power consumption ratio with high
power consumption. By analyzing the computation complex-
ities of tasks and bounding the outage probability, we have
discovered the conditions for outage bottleneck. The theoreti-
cal results can be used to evaluate the outage performance and
bottleneck for existing and future mobile computation offload-
ing systems and improve outage performance in an efficient
way. Important future topics include the extension to other
system models, e.g., with local computing, the implementation
of the distributed control, scheduling that takes into account
the order of tasks and more influencing factors, as well as,
practical bottleneck evaluation based on real data.

APPENDIX A
PROOF OF THEOREM 1

Proof. According to Eqs. (15) and (19), we have
poutbr (ξt) =

(
1− e−2

R1 N0
ξt

)N
;

pdown
Type1(ξt) =

(
1− e−2

R2 N0
ξt

)N
,

(49)

When ξc and ξt are sufficiently large, Eq. (49) can be rewritten
as

poutbr (ξt) ≈
(

2R1N0

ξt

)N
and pdown

Type1(ξt) ≈
(

2R2N0

ξt

)N
.

(50)



0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2019.2920348, IEEE
Transactions on Communications

12

Moreover, we have

pcomp
Type1(m, ξc) ∈ [0, 1], ∀m = 1, . . . ,M. (51)

Thus substituting Eqs. (50) and (51) into Eq. (21), we prove
the theorem in Eq. (52) as follows:

APPENDIX B
PROOF OF THEOREM 3

Proof. According to Eqs. (8) and (26), when ξt is sufficiently
large, we have

pdown,i
Type3 (xi, ξt) ≈ 2xiR2N0ξt

−1. (53)

Then, by taking Eq. (53) into Eq. (27), we have

pdown
type3(m, ξt)

≈
(
N0

ξt

)N ∑
ci∈Cava

2NxiR2 +

(
N0

ξt

)m
a0(m)N

∏
ci∈Cava

2xiR2

=

(
N0

ξt

)N ∑
ci∈Cava

(
2NR2

)xi
+

(
N0

ξt

)m
a0(m)N2R2 ,

(54)

where
m∑
i=1

xi = 1. Therefore, minimizing pdown
type3(m, ξt) is

equivalent to minimizing∑
ci∈Cava

(
2NR2

)xi
=

∑
ci∈Cava

αxi , (55)

where α = 2NR2 > 1. Then, by considering a case that x1 =
β1 and x2 = β2 with β1 < β2, we have

(αβ1 + αβ2)− 2α
β1+β2

2 > 0, (56)

according to Basic Inequality that a + b > 2
√
ab with

a, b > 0. For the purpose of minimizing the value in Eq. (55),
(x1, x2) = (β1+β2

2 , β1+β2

2 ) is better than (β1, β2) when m =
2. According to the above proof by contradiction, the optimal
x minimizing Eq. (55) is xi = 1

m for ci ∈ Cava; otherwise
xi = 0. However, according to Eq. (14), to avoid outage in
the computation phase, the condition xi ≤ max{C(ξc)−qi,0}

w is
required for all ci ∈ Cava, which might not always hold.

Furthermore, we should allocate the subtask to the compu-
tation resource with qimax = max

ci∈Cava
qi firstly. The fraction

of task ximax in cimax is the lower bound among that of
all resources in Cava. From Eqs. (5) and (14), we have the
upper bound of ximax is C(ξc)−qimax

w , which is the fraction
that cimax can support while guaranteeing no outage during the
computation phase. Similar to the contradiction in Eq. (56),
we could prove that (x1, x2) = (β − ε, ε) is better than
(β, 0), where ε is a small constant. Thus, we set ximax =

min{ 1
m ,

C(ξc)−qimax

w } to minimize pdown
type3(m, ξt) while avoid

outage in the computation phase if at all possible. After this
operation, the unallocated fraction of the whole task is updated
to 1− ximax and the set of computation resources waiting to
allocate the subtasks is Cava\cimax. Then we repeat the above
operation until all resources have already be assigned to their
subtasks, i.e., Cava = ∅. The above operations are summarized
in Algorithm 1.

APPENDIX C
PROOF OF THEOREM 4

Proof. If m < N , according to Lemma 6 in [30], there is one
subtask that cannot be downloaded successfully only when the
subtask cannot be downloaded through any channel in S . That
is, this subtask is an isolated vertex in the RBG sample.

This event can occur in the subtask in any computation
resources Cava. If m = N , according to Lemma 6 in [30], there
is one subtask that cannot be downloaded successfully only
when the subtask cannot be downloaded through any channel
in S or all subtasks cannot be downloaded through one channel
in S . That is, this subtask or one channel is an isolated vertex
in the RBG sample. This event can occur in the subtask in
any computation resources Cava and any channel in S . Thus,
similar to the proof of Theorem 1 in [30], we obtain the proof
of the theorem.

APPENDIX D
PROOF OF COROLLARY 1

Proof. According to Eq. (53), for given ξt, we can find that
pdown,1
Type3 (xi, ξt) is monotonously increasing in the fraction of

the whole task xi. Therefore, pdown,1
Type3 (xi, ξt) can be bounded

by

pdown,i
Type3 (xmin, ξt) ≤ pdown,i

Type3 (xi, ξt) ≤ pdown,i
Type3 (xmax, ξt).

(57)
Then, by taking Eq. (53) in Eq. (27), we have

pdown
Type3(m, ξt)

≈
m∑
i=1

(
2xiR2

N0

ξt

)N
+ a0(m)N

m∏
i=1

(
2xiR2

N0

ξt

)
.

(58)

Hence, by taking Eq. (58) into Eq. (57), we have

pdown
Type3(m, ξt) ≥ m2xminR2NN0

Nξ−Nt , (59)

and

pdown
Type3(m, ξt) ≤ (m+N)2xmaxR2NN0

Nξ−Nt . (60)

APPENDIX E
PROOF OF THEOREM 7

Proof. According to Eqs. (18), (23) and (32), we have

gk(fk
−1(ξc)) =

1

Pr{uk > kcx
1
3 }

1
N

. (61)

For any k ∈ {1, 2, 4}, by taking Eq. (61) into Eq. (40) and
using L’Hôpital’s rule, we have

Ξk = lim
x→0

hk(x) = lim
x→∞

x

gk(fk
−1(x))

= lim
x→∞

{
Pr{uk > kcx

1
3 }

x−N

} 1
N

= lim
x→∞

1

kc
3

{
Pr{uk > x}

x−3N

} 1
N

= lim
x→∞

1

kc
3

{
fuk(x)

3Nx−(3N+1)

} 1
N

= W lim
x→∞

lk(x).

(62)
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pType1(ξt, ξc)

∼
(

2R1N0

ξt

)NL
+

M∑
m=1

{(
M
m

){
1−

(
2R1N0

ξt

)N}m(
2R1N0

ξt

)N(M−m)
{
pcomp
Type1(m, ξt) +

(
2R2N0

ξt

)N}}

∼
M∑
m=1

{(
M
m

)(
2R1N0

ξt

)N(M−m)
{
pcomp
Type1(m, ξt) +

(
2R2N0

ξt

)N}}

∼ pcomp
Type1(M, ξt) +

(
2R2N0

ξt

)N
+M

(
2R1N0

ξt

)N
pcomp
Type1(M − 1, ξt)

∈
[
pcomp
Type1(M, ξt) +

(
N0

N2NR2
)
ξ−Nt , pcomp

Type1(M, ξt) +N0
N
(
2NR1M + 2NR2

)
ξ−Nt

]
.

(52)

APPENDIX F
PROOF OF THEOREM 8

Proof. Since both w and qi are non-negative random variables
and independent of each other, we have u1 = w+ qi is larger
than w and qi, and Pr {u1 > x} ≥ Pr {w > x} ;

Pr {u1 > x} ≥ Pr {qi > x} ;
Pr {u1 > x} ≤ Pr

{
w > x

2

}
+ Pr

{
qi >

x
2

}
.

(63)

By substituting Eq. (63) into Ξ1 in Eq. (41), we have

Ξ1 ≥ lim
x→∞

{
Pr

{
w≥kcx

1
3

}
x−N

} 1
N

;

Ξ1 ≥ lim
x→∞

{
Pr

{
qi≥kcx

1
3

}
x−N

} 1
N

;

Ξ1 ≤ lim
x→∞


Pr

{
w≥ kcx

1
3

2
1
3

}
+Pr

{
q≥ kcx

1
3

2
1
3

}
x−N


1
N

.

(64)

Thus, by using L’Hôpital’s rule, the inequalities in Eq. (64)
can be rewritten as

Ξ1 ≥ lim
x→∞

1
kc3

{
fw(x)

3Nx−(3N+1)

} 1
N

= k−3c (3N)−
1
N ϕ1

1
N ;

Ξ1 ≥ lim
x→∞

1
kc3

{
fq(x)

3Nx−(3N+1)

}M
N

= k−3c (3N)−
1
N φ1

1
N ;

Ξ1 ≤ 8k−3c

(
(3N)−1ϕ1 + (3N)−1φ1

) 1
N .

(65)
Therefore, Ξ1 can be bounded as follows

k−3c θ
1
N ≤ Ξ1 ≤ 8k−3c (2θ)

1
N , (66)

where θ = 1
3N max{ϕ1, φ1}, which shows that the upper

and lower bounds of Ξ1 can be determined by ϕ1 and φ1.
Moreover, Ξ4 can be bounded by similar method.

APPENDIX G
PROOF OF THEOREM 11

Proof. It is easy to find that

max {C(ξc)− q, 0} ≤
∑

ci∈Cava

max{C(ξc)− qi, 0}

≤ mmax {C(ξc)− q, 0}
(67)

where |Cava| = m and q = min
ci∈Cava

qi. Then, by taking Eq. (67)

into Eq. (25), we have

pcomp
Type3(m, ξc) = Pr

{
w >

∑
ci∈Cava

max(C(ξc)− qi, 0)

}
∈
[
Pr
{w
m

+ q > C(ξc)
}
,Pr {w + q > C(ξc)}

]
.

(68)
Since w and qi are non-negative random variables and

independent of each other, we have
pcomp
Type3(M, ξc) ≥ Pr

{
w
M > C(ξc)

}
;

pcomp
Type3(M, ξc) ≥ Pr {q > C(ξc)} ;

pcomp
Type3(M, ξc) ≤ Pr

{
w > C(ξc)

2

}
+ Pr

{
q > C(ξc)

2

}
.

(69)
By substituting Eq. (69) into Ξ3 in Eq. (40), we have

Ξ3 ≥ lim
x→∞

{
Pr

{
w
M≥kcx

1
3

}
x−N

} 1
N

;

Ξ3 ≥ lim
x→∞

{
Pr

{
q≥kcx

1
3

}
x−N

} 1
N

= lim
x→∞

{
Pr

{
qi≥kcx

1
3

}
x− N

M

}M
N

;

Ξ3 ≤ lim
x→∞


Pr

{
w≥ kcx

1
3

2

}
+Pr

{
q≥ kcx

1
3

2

}
x−N


1
N

.

(70)
Thus, by using L’Hôpital’s rule, the inequalities in Eq. (70)

can be rewritten as

Ξ3 ≥ lim
x→∞

1
kc3M3

{
fw(x)

3Nx−(3N+1)

} 1
N

= k−3c M−3k5ϕ2
1
N ;

Ξ3 ≥ lim
x→∞

1
kc3

{
fq(x)

3N
M x−( 3N

M
+1)

}M
N

= k−3c k6φ2
M
N ;

Ξ3 ≤ 8k−3c

(
k5
Nϕ2 + k6

Nφ2
M
) 1
N

,

(71)
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where k5 = (3N)−
1
N and k6 =

(
3N
M

)−MN . Hence, Ξ3 can be
bounded as follows

k−3c θ
1
N ≤ Ξ3 ≤ 8k−3c (2θ)

1
N , (72)

where θ = max{k1Nϕ1, k2
Nφ1}, which shows that the upper

and lower bounds of Ξ3 can be determined by ϕ1 and φ1.
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