


TABLE I: Parameters controlling memory pools across mul-

tiple levels: Container, Application Framework, and JVM

displayed in order from top to bottom.

Parameter Description Pool(s) controlled

Heap Size
Heap size in
a container

Heap
(Mh)

Cache Capacity
Cache storage as

a fraction of Heap
Cache Storage

(Mc)

Shuffle Capacity
Shuffle memory as
a fraction of Heap

Task Shuffle
(Ms)

Task Concurrency
Number of tasks

running concurrently
Task Unmanaged

(Mu)

NewRatio
Ratio of Old capacity

to Young capacity
Old

(Mo)

SurvivorRatio
Ratio of Eden capacity

to Survivor space
Eden
(Me)

cal resources carved out of a node allocated exclusively to the

application. Fig. 1 shows the cluster memory organization.

Many popular data analytics systems (e.g., Spark, Flink, and

Tez) use a JVM-based architecture for memory management.

For applications running on these systems, a JVM process is

executed inside each allocated container. As shown in Fig. 2,

the container memory is divided into two parts: (a) Memory

available to the JVM process, and (b) An overhead space used

by the operating system for process management. The JVM

further divides its allocation into a heap space and an off-heap

space. All objects, except native byte buffers, created by the

application code are allocated on Heap and are managed by

the JVM’s generational heap management.

Fig. 3 shows how Heap is organized into different pools

from the application’s perspective. Memory used by an appli-

cation can be broadly categorized into three pools:

1) Code Overhead: Memory required for application code

objects. Treated as a constant overhead.

2) Cache Storage: Memory used to store the data cached

by application. In particular, storing intermediate results

in memory is beneficial during iterative computations.

3) Task Memory: The rest of the memory is used by appli-

cation tasks. The number of tasks running concurrently

is set as a configuration parameter, Task Concurrency,

which determines the share of memory each task gets

to use. A task uses its allocation for two purposes: (a)

Memory for shuffle processing tasks such as sort and

aggregation (Ms), (b) Memory for input data objects

and serialization/deserialization buffers (Mu).

Users of data analytics systems expect to achieve the best

possible latency (wall clock duration) for their applications.

For periodically running applications, the reliability of per-

formance is also an important factor. An application can be

tuned at multiple levels: (a) while allocating resources from

the resource managers; (b) while setting options provided by

the application framework relating to the internal memory

pools management; and (c) while configuring JVM parameters

related to garbage collection of heap. TABLE I provides a

summary of parameters controlling usage of memory pools

in—and effectively impacting the performance of—memory-

based analytics systems.

Depending on the computations involved or the type of data

processed, best settings at each level of memory management

can differ a great deal. In a recent work [13], we showed

how the robust default settings provided by systems [14], [15]

do not always work well. In the same work, we developed

an empirically-driven rule-based auto-tuner for memory pools,

called RelM. RelM uses a set of analytical models driven by

low-level statistics to recommend a configuration expected to

provide a near-optimal and reliable performance. The statistics

used by RelM correspond to memory requirements for various

internal pools within an application which makes it robust to

changes in computational patterns and input data design. It is

shown to produce high quality of results within a fraction of

time taken by state-of-the-art Bayesian Optimizers. However,

RelM, like the white-box models discussed earlier, is reliant

on the accuracy of the statistics collected and can produce

results far off from optimal in certain rare events.

C. Our Contributions

We have learned from our experiencing of building

RelM [13] that a simple white-box tuner can quickly produce

decent results. The black-box approach of Bayesian Opti-

mization (BO), however, offers other benefits including wider

applicability and theoretically-guaranteed convergence to the

optimal settings. Motivated by this, we develop a framework

called ‘Guided Bayesian Optimization’ (GBO) combining the

benefits of the two. GBO supplements a Bayesian Optimizer

(BO) with an approximate white-box model capable of sepa-

rating good configurations from bad ones in quick time. The

BO in GBO is modeled as a Gaussian Process (GP) [16].

The model is bootstrapped with a small number of pre-

executed samples taken from Latin Hypercube Sampling [17].

The same set of samples is used to bootstrap a white-box

model with required low-level statistics. During an iteration of

sequential tuning, GBO recommends a configuration to probe

next which both maximizes the acquisition function over the

current posterior of the GP and is expected to perform well

according to our white-box model as well. Section II details

the GBO framework. Following that, Section III discusses the

white-box model we have used in our system prototype.

D. Related Work

One approach towards auto-tuning has been to assume a

shape of optimization objective, e.g. linear or quadratic. Using

this approach, some researchers have used regression mod-

els [18], while others have used hill-climbing techniques [19].

Bayesian optimization works without a need of such as-

sumptions and is, therefore, more versatile. We use Gaussian

Process (GP) Regression [16] as our candidate BO. There are

alternative techniques in literature, such as ensemble random

forest [20], which have been used for systems employing

BO [12]. However, unlike GP, none of them provide an

estimate of the variance of its predictions.

The problem of speeding up a black-box bayesian optimizer

with white-box models is fairly recent. Dalibard et. al. [21]





Algorithm 1 Configuration Pruner

Input: White box function Q
Input: Configurations to be explored X

Input: Query configuration x

Output: {0, 1}

1: Set low = minx′∈XQ(x′)
2: Set high = maxx′∈XQ(x′)
3: if Q(x) ≥ U([low, high]) then

4: Return 1

5: else

6: Return 0

7: end if

details how white box function Q is used in decision making.

Q is evaluated on each of the configurations chosen for

exploration by the optimizer. The configurations with high Q
values are made more likely to be considered by putting a

high probability mass on them. The idea behind probabilisti-

cally picking (or pruning) a configuration is to have a lesser

dependence on accuracy of white-box model. The other option,

of picking configurations with Q scores above certain value

(say 70 percentile), makes the model completely reliant on

white-box model. GBO makes a conscious choice of primarily

depending on black-box acquisition function because it makes

a more informed decision as it explores more samples; whereas

the predictions of white-box function may remain inaccurate.

III. WHITE-BOX MODEL FOR MEMORY POOLS

We build a closed-form prototype utility model by under-

standing memory pool management in data analytics systems.

The understanding is based on a systematic empirical study

carried out in project RelM [13]. The utility model relies on

the statistics generated from profiles of applications sampled

apriori as part of GBO bootstrapping. Although, the statistics

could be updated as more samples are observed, we do not

consider this approach here. Section IV talks of merits/de-

merits of this choice through evaluation. The utility model we

build have two characteristics:

(a) It assigns a high utility to the memory pool allocations

meeting application requirements, and

(b) It penalizes the memory allocations that are either expected

to result in out-of-memory errors or lead to high garbage

collection costs.

A. Statistics Generation

We use Thoth [25] framework to obtain a profile of the

application which includes JVM logs, application event logs,

and resource monitors. TABLE II lists the statistics derived

from an application profile. The first two entries correspond

to the configuration of Container used to run the profiled

application. The requirement for Code Overhead pool (Mi) is

obtained by looking up heap usage value at the instance of the

first task submission to the container. This value corresponds

to the memory required for application code objects and is

expected to be occupied through the lifetime of the container.

TABLE II: Statistics derived from an application profile

Notation Description Example

N Containers per Node 1

Mh Heap size 4404MB

Mi Code Overhead 90%ile value 130MB

Mc Cache Storage 90%ile value 2300MB

Ms Task Shuffle 90%ile value 0MB

Mu Task Unmanaged 90%ile value 70MB

P Task Concurrency 2

H
Cache Hit Ratio (the fraction of cached
data partitions actually read from cache)

0.7

S
Data Spillage Fraction (the fraction of
shuffle data spilled to disk)

0

The values obtained from multiple containers in an application

profile could have some variance, so we use a 90th percentile

value as a stability against outliers. The memory used by

Cache Storage (Mc) is computed by looking up the maximum

cache usage value from the profile. This cache usage value

may not necessarily correspond to the actual requirement

because the application could possibly be configured with

an under-sized cache. We record Cache Hit Ratio (H) from

application logs in order to evaluate the actual requirement.

While both Mi and Mc are considered long term mem-

ory requirements of a container, the memory used for task

execution (Ms + Mu), corresponds to short-term memory

requirements. We assume that each task running concurrently

equally contributes to the total task memory. This assumption

helps us derive the value of Ms. Like in the case of Mc, the

shuffle memory usage value does not necessarily correspond

to the actual requirement of the application since the shuffle

data could possibly have been spilled because of capacity

constraints. Data spillage fraction (S) allows us to estimate

the actual memory requirement. The Mu value is the hardest

to obtain among the statistics presented in Table II since the

application does not track this memory pool. We use JVM

instrumentation to get a good estimate as explained next.

As described in Section I, JVM uses two garbage collection

processes, namely, young GC and full GC, to collect any

unreferenced objects from Heap. The full GC event cleans up

garbage both from young generation and old generation pools.

Monitoring heap usage right after a full GC, therefore, gives

us a more accurate picture of task memory requirements. With

this idea, we monitor every full GC event during the runtime

of the application to obtain an estimate of Mu. More details on

this and other statistics generation methodology are available

in our technical report [13].

Example. Statistics for K-means benchmark application

executed on a Spark cluster are listed in the third column

of TABLE II. It can be noticed that the application has a

high Cache Storage requirement compared to Task Memory

requirements.

B. Utility Evaluation

Given a test configuration x and the statistics derived by

bootstrapping process, we evaluate the utility of x using an

analytical model given next. We use upperscript x to denote
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Fig. 5: Accuracy of White-box model estimates for K-means.

Configurations explored by gridding the configuration space

and running them exhaustively (see TABLE V) are presented

on X-axis.
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Fig. 6: Accuracy of White-box model estimates for Sort.

Configurations explored by gridding the configuration space

and running them exhaustively (see TABLE V) are presented

on X-axis.

either the parameter values or the functions evaluated for

configuration x.

Mcr = Mc/H

Msr = Ms/(1− S/P )

Rx =
Mi + Px ∗Mu +min(Mx

c
,Mcr) +min(Mx

s
,Msr)

Mx

h

P1x = c1 ∗min(0, Rx − 1)

P2x = c2 ∗min

(

0,
Mi +min(Mx

c
,Mcr)−Mx

o

Mx

h

)

P3x = c3 ∗min

(

0,
Px ∗Mu +min(Mx

s
,Msr)−Mx

e

Mx

h

)

Qx = Rx − P1x − P2x − P3x

We first evaluate the requirements for Cache Storage (Mcr)

and Task Shuffle (Msr) memory pools using the statistics

obtained. Here, each concurrently running task is assumed to

contribute equally to data spillage. Next, we compute the total

utilization of the application level memory pools as a fraction

of heap size (Rx). This value could exceed 1 if the memory is

over-allocated. We penalize such configurations using function

P1. Two more penalty functions, viz. P2 and P3 are used to

penalize the long term memory usage exceeding JVM’s Old

generation pool capacity and the short term memory usage

exceeding JVM’s Eden pool capacity. Both the functions cor-

respond to the garbage collection overheads. Finally, function

Qx outputs the utility of the configuration x.

Penalty factors c1, c2, and c3 correspond to the actual

magnitude of the penalty. Inferring these factors accurately

is an equally hard problem to the auto-tuning problem at

hand. However, since the white box model is only used as a

heuristic in GBO, it is sufficient to set penalty factors that

could only distinguish good configurations from bad ones

without accurately modeling the performance. We set each of

the factors to 2 in our evaluation. Fig. 5 and Fig. 6 present the

utilities estimated by the white box model compared with the

actual performance on exhaustively searched configurations on

two applications: K-means and Sort. Visual inspection shows

that the model is capable of distinguishing the best performing

and the worst performing configurations apart. Furthermore,

the graphs show that the shape of the objective function can

be widely varied across applications substantiating the main

motivation behind our work.

IV. EVALUATION

A. Setup

We carry our evaluation on a Spark cluster configured as

listed in TABLE III. We use five benchmark applications for

evaluation which represent Map and Reduce computations,

machine learning, distributed graph processing, and SQL pro-

cessing use cases. The test suite including input data sources

is provided in TABLE IV.

Configuration Space: The configuration options we tune

correspond to the parameters controlling memory pools listed

in TABLE I. The maximum heap available for allocation per

node is 4404MB. We allow it to be distributed equally among

1, 2, 3, or 4 Containers. We limit the number of concurrently

running tasks on a node to the number of physical CPU cores

(=8). Therefore, the Task Concurrency can range from 1 to

the ratio of the number of physical CPU cores to the number

of containers on the node. For example, if 2 containers are

launched on a node, Task Concurrency on each container

ranges from 1 to 4. Cache Capacity and Shuffle Capacity

values are set as a fraction (ranging from 0 to 1) of Heap

size. As Spark provides a unified memory pool [26] combining

both Cache Storage and Task Shuffle, we set the capacity of

the unified pool to the sum of Cache Capacity and Shuffle

Capacity. The lowest possible value for NewRatio is 1. The

maximum, while unbounded in theory, is limited to 9 (i.e. at



TABLE III: Test cluster setup

Number of worker nodes 8
Memory per worker 6GB
CPU cores per worker 8
Compute Framework Spark-2.0.1
Resource Manager Yarn-2.7.2
JVM Framework OpenJDK-1.8.0

TABLE IV: Test suite used in evaluation

Application Category Dataset

K-means Machine Learning
HiBench [28] Huge

(100M samples, 20 dimensions, 5 clusters)

Sort Map and Reduce Hadoop RandomTextWriter (30GB)

WordCount Map and Reduce
Hadoop RandomTextWriter

(50GB)

SVM Machine Learning
HiBench huge

(100M examples, 10 features)

PageRank Graph
LiveJournal dataset [29]

(69M edges, 5M vertices)

TABLE V: Sample space used in Exhaustive Search.

Containers per Node [1, 2, 3, 4]

Concurrent tasks per node1 [2, 4, 6, 8]

Cache Capacity/ Shuffle Capacity [.2, .4, .6, .8]
NewRatio [1, 3, 5, 7]

least 10% of the heap is available to the young generation) in

our setup. We keep the SurvivorRatio to its default value.

Exhaustive Search: In order to find an optimal configuration,

we carry out an exhaustive search by gridding the configura-

tion space. The domain of each parameter is discretized into 4

values as listed in Table V. We use only one of Cache Capacity

and Shuffle Capacity depending on the dominant requirement

of the application under test in order to speed up the process.

The minor memory pool capacity is kept constant at 10% of

the heap.

Bayesian Optimization (BO): As detailed in Section II, we

use Gaussian Process (GP) Regression as our candidate for

black-box tuning. The GP is implemented using scikit-learn

library in Python [27]. Like in the case of Exhaustive Search,

we use only the dominant memory pool between Cache

Storage and Task Shuffle during optimization. The objective

function is set to minimize latency, or alternately, maximize

the inverse of the runtime. If a run is aborted due to errors,

we set the objective value for the sample to twice the worst

runtime obtained on the samples explored so far.

White-box Optimization (WO): The white-box model we

have detailed in Section III is used for exploration in this

policy. During each iteration, a small random subset of

configurations (about 10%) is evaluated using the white-box

model Q. Configuration with the best score is chosen for

exploration. We do not use inference from previously executed

configurations to improve the model.

Guided Bayesian Optimization (GBO): The GBO policy

detailed in Section II is used with the white-box model Q set

as a guide for exploration.

1Task Concurrency will be determined by dividing this value by the number
of Containers per Node.

B. Convergence

We evaluate how various tuning policies fare in terms

of the speed of convergence to the optimal configuration.

Exhaustive Search takes one to two orders of magnitude longer

to converge compared to the other three policies. We do

not include its results in the graphs in order to focus on

our models. The rest of the policies adaptively sample up

to 50 configurations in a run; 5 such runs are carried out

for each application. We analyze how much of a training

overhead would a policy require if it were to carry on

until we find a configuration providing a performance within

top 5 percentile of the exhaustively searched configurations.

Although this stopping criteria is not practical because the

optimal performance is not known apriori, we use it in order

to compare how long do different policies take to converge to

a good configuration.

Fig. 7 plots the training time and the number of itera-

tions required for each tuning approach. Training times are

normalized to the time taken by BO policy on the same

application. It can be noticed that the WO policy shows a

wide variation in performance: While it provides quick tuning

for some applications, e.g. K-means; it leads to huge perfor-

mance degradations on some others, e.g. SVM. On the other

hand, GBO policy consistently lowers training time across

applications compared to BO. On average, GBO reduces the

number of iterations to close to half the iterations needed by

the black-box policy.

To dive deep into how the policies function, we provide

convergence plots for three applications, viz. K-means, SVM,

and PageRank, in Fig. 8. The plot on K-means shows that

the BO policy takes 8 iterations on average to find a config-

uration that runs within 11 minutes (top 5 percentile barrier).

The exploration until then often results in configurations with

expensive runtimes reflected by its high training time. The WO

and GBO policies avoid such configurations and, therefore,

can find a top configurations with low overheads. The white-

box function Q closely mimics the performance on K-means,

as seen in Fig. 5 earlier, which helps both the policies.

The SVM application throws a curious result where WO

takes more than twice the time required for BO. This is a case

of white-box model Q bootstrapped with incorrect statistics.

We expand on this issue in the next subsection. The important

thing to note here is that, despite the substandard white-box

model, GBO policy provides a performance similar to the

black-box tuning policy. This is a direct consequence of our

design decision to rely on acquisition function used in BO for

ranking the configurations under exploration.

The PageRank application presents a case wherein WO

takes longer to converge despite the white-box model using

correct statistics. In this case, many configurations fail with

out-of-memory errors due to very high task memory require-

ments of the application. Although, the white-box model Q
penalizes such configurations, it cannot correctly attribute

the magnitude of this penalty. Due to this inaccuracy, the

WO tuner is able to find a configuration within top 10
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Fig. 8: Convergence of tuning policies for K-means, SVM, and PageRank from left to right. Each tuner is run 5 times; the

mean, min, and max values for the lowest runtime on the samples observed so far are plotted on Y-axis.

percentile within 2-3 iterations, but struggles to find a better

configuration post that. On the positive side, it avoids exploring

very expensive configurations reflected by its lower training

time compared to BO. The GBO policy, like in the case of

SVM, brings the best of both worlds to produce a desired

configuration within 4 iterations on average.

C. Quality of White-box Model

We showed the quality of our white-box model by com-

paring the estimated utilities to the actual performance ob-

served on the exhaustively searched configurations on two

applications: K-means (Fig. 5) and Sort (Fig. 6). Q is

able to distinguish good configurations from bad ones in

both cases correctly. In case of SVM, however, the white-

box model Q makes wrong predictions. This happens due

to inaccurate estimation of task memory requirements during

bootstrapping. Recalling the statistics generation methodology

from Section III, the ‘Task Unmanaged’ memory pool re-

quirement is estimated by monitoring JVM’s full GC events.

The configurations considered during bootstrapping happen to

contain very few such events which leads to an over-estimation

of the task memory requirement.

We plot the utility estimated with incorrect statistics along

with the actual performance for comparison in Fig. 9. It can be

seen that, due to over-estimation of task memory requirements,

the model incorrectly suggests a performance degradation with
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Fig. 9: Graph showing that the white-box function Q modeled

with accurate statistics mimics the true performance better.

Configuration option ‘Cache Capacity’ alone is varied on X-

axis keeping other configuration options constant.

increasing Cache Capacity. When we gather better statistics af-

ter observing more configurations, the model correctly predicts

the actual performance pattern. This evaluation showcases a

need to update the white-box model using feedback. We plan

to work on a systematic feedback mechanism to improve

tuning at runtime in future.



V. DISCUSSION AND FUTURE WORK

We showed how black-box auto-tuner can be sped up by

using simple white-box models built using low-level perfor-

mance metrics to guide the exploration. We identified an

important problem of auto-tuning memory pool configurations

in data analytics systems to demonstrate our work. The GBO

framework we developed is flexible enough to incorporate

white-box models of varying degree of accuracy anytime

during the tuning process. As part of the future work, we

would like to work on improving the black-box optimization

by means of hyperparameter tuning of the Gaussian Process

model we have used in GBO. In addition, we would like to

explore other system tuning applications suitable for GBO

framework.
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