Guided Bayesian Optimization to AutoTune
Memory-based Analytics

Mayuresh Kunjir
Duke University
Email: mayuresh@cs.duke.edu

Abstract—There is a lot of interest today in building au-
tonomous (or, self-driving) data processing systems. An emerging
school of thought is to leverage the “black box” algorithm of
Bayesian Optimization for problems of this flaver both due to
its wider applicability and theoretical guarantees on the quality
of results produced. The black-box approach, however, could be
time and labor-intensive; or otherwise get stuck in a local minima.
We study an important problem of auto-tuning the memory
allocation for applications running on modern distributed data
processing systems. A simple “white-box” model is developed
which can quickly separate good configurations from bad ones.
To combine the benefits of the two approaches to tuning, we
build a framework called Guided Bayesian Optimization (GBO)
that uses the white-box model as a guide during the Bayesian
Optimization exploration process. An evaluation carried out on
Apache Spark using industry-standard benchmark applications
shows that GBO consistently provides performance speedups
across the application workload with the magnitude of savings
being close to 2x.

Index Terms—data analytics; auto tuning

1. INTRODUCTION
A. AutoTuning Techniques

Data analytics systems, such as Spark, Flink, and Tez,
support a variety of computational patterns such as Map-
Reduce or Iterative Machine Learning. Each of these systems
provide multiple tunable configuration options to optimize
each use case. The problem of finding the best configuration
of such a tunable system can be specified by the following
maximization (or minimization) objective f:

x* = arg max f(x) (1
xcX
where X is the space of features/configuration options.

If the optimization function f is known apriori, e.g. a linear
combination of features, regression-based optimization can be
used to solve the problem. Such functions are referred to
as white-box optimization models. DB2 tuning advisor [1] is
a classical example of auto-tuners using white-box models.
Modern white-box auto-tuners use feedback-based techniques
to recalibrate and revalidate the model in order to support
dynamic system changes, e.g. Starfish [2] and Ernest [3].
However, building parametric objective functions is often non-
trivial in presence of complex interactions among configura-
tion options and performance metrics [4].

Black-box optimizers are employed when the objective
function is not known apriori. Black-box models learn the
objective function by sampling and observing points from

(3

Xy -
wl Resource
o) Manager
.g 3 Memory
€
S

N Left for OS

Fig. 1: Node memory managed by Resource Manager

OS overhead Application memory

Off-heap Heap (M)
VM sur | sur | E

Internal viv | viv d old
(CodeCache ©Ff @ or e
+PermGen) 1 2 ' n

Direct
byte
buffers

Shared native libs + Memory

mapped files + Thread Stacks
+ NIO Buffers

PN

Ressr Overhead

— T Task Concurrency = P
M; M, M, M;

Fig. 3: Heap managed by application framework

the configuration space. Bayesian optimization [5] is a pow-
erful black-box technique that is applied to varied designs
including Database systems [6], [7], Big data analytics [8],
[9], Storage systems [10], and Cloud infrastructures [11],
[12]. Bayesian Optimization (BO) first prescribes a prior
belief on the probability distribution of f (e.g. Gaussian). It
then sequentially updates its belief by learning the posterior
distribution from observing samples from configuration space
X. In each iteration, the optimizer suggests the next sample to
probe using an acquisition function which balances exploration
(i.e. acquiring new knowledge) and exploitation (i.e. using
existing knowledge in decision making). This way, BO pro-
vides a theoretically justified means of searching for optimal
configuration making it an attractive choice for auto-tuning.

B. Memory-based Analytics

Data analytics systems employ a resource manager, such as
Yarn, to allocate system resources in the form of containers to
requesting applications. A container is simply a slice of physi-

TABLE I: Parameters controlling memory pools across mul-
tiple levels: Container, Application Framework, and JVM
displayed in order from top to bottom.

Parameter Description Pool(s) controlled
. Heap size in Heap
Heap Size a container (Myp,)
. Cache storage as Cache Storage
Cache Capacity a fraction of Heap (M)
. Shuffle memory as Task Shuffle
Shuffle Capacity a fraction of Heap (Ms)
Number of tasks Task Unmanaged
Task Concurrency .
running concurrently (M)
. Ratio of Old capacity Old
NewRatio to Young capacity (M)
. . Ratio of Eden capacity Eden
SurvivorRatio to Survivor space (M)

cal resources carved out of a node allocated exclusively to the
application. Fig. 1 shows the cluster memory organization.

Many popular data analytics systems (e.g., Spark, Flink, and
Tez) use a JVM-based architecture for memory management.
For applications running on these systems, a JVM process is
executed inside each allocated container. As shown in Fig. 2,
the container memory is divided into two parts: (a) Memory
available to the JVM process, and (b) An overhead space used
by the operating system for process management. The JVM
further divides its allocation into a heap space and an off-heap
space. All objects, except native byte buffers, created by the
application code are allocated on Heap and are managed by
the JVM’s generational heap management.

Fig. 3 shows how Heap is organized into different pools
from the application’s perspective. Memory used by an appli-
cation can be broadly categorized into three pools:

1) Code Overhead: Memory required for application code
objects. Treated as a constant overhead.

2) Cache Storage: Memory used to store the data cached
by application. In particular, storing intermediate results
in memory is beneficial during iterative computations.

3) Task Memory: The rest of the memory is used by appli-
cation tasks. The number of tasks running concurrently
is set as a configuration parameter, Task Concurrency,
which determines the share of memory each task gets
to use. A task uses its allocation for two purposes: (a)
Memory for shuffle processing tasks such as sort and
aggregation (M), (b) Memory for input data objects
and serialization/deserialization buffers (M,).

Users of data analytics systems expect to achieve the best
possible latency (wall clock duration) for their applications.
For periodically running applications, the reliability of per-
formance is also an important factor. An application can be
tuned at multiple levels: (a) while allocating resources from
the resource managers; (b) while setting options provided by
the application framework relating to the internal memory
pools management; and (c) while configuring JVM parameters
related to garbage collection of heap. TABLE I provides a
summary of parameters controlling usage of memory pools
in—and effectively impacting the performance of—memory-

based analytics systems.

Depending on the computations involved or the type of data
processed, best settings at each level of memory management
can differ a great deal. In a recent work [13], we showed
how the robust default settings provided by systems [14], [15]
do not always work well. In the same work, we developed
an empirically-driven rule-based auto-tuner for memory pools,
called RelM. RelM uses a set of analytical models driven by
low-level statistics to recommend a configuration expected to
provide a near-optimal and reliable performance. The statistics
used by RelM correspond to memory requirements for various
internal pools within an application which makes it robust to
changes in computational patterns and input data design. It is
shown to produce high quality of results within a fraction of
time taken by state-of-the-art Bayesian Optimizers. However,
RelM, like the white-box models discussed earlier, is reliant
on the accuracy of the statistics collected and can produce
results far off from optimal in certain rare events.

C. Our Contributions

We have learned from our experiencing of building
RelM [13] that a simple white-box tuner can quickly produce
decent results. The black-box approach of Bayesian Opti-
mization (BO), however, offers other benefits including wider
applicability and theoretically-guaranteed convergence to the
optimal settings. Motivated by this, we develop a framework
called ‘Guided Bayesian Optimization’ (GBO) combining the
benefits of the two. GBO supplements a Bayesian Optimizer
(BO) with an approximate white-box model capable of sepa-
rating good configurations from bad ones in quick time. The
BO in GBO is modeled as a Gaussian Process (GP) [16].
The model is bootstrapped with a small number of pre-
executed samples taken from Latin Hypercube Sampling [17].
The same set of samples is used to bootstrap a white-box
model with required low-level statistics. During an iteration of
sequential tuning, GBO recommends a configuration to probe
next which both maximizes the acquisition function over the
current posterior of the GP and is expected to perform well
according to our white-box model as well. Section II details
the GBO framework. Following that, Section III discusses the
white-box model we have used in our system prototype.

D. Related Work

One approach towards auto-tuning has been to assume a
shape of optimization objective, e.g. linear or quadratic. Using
this approach, some researchers have used regression mod-
els [18], while others have used hill-climbing techniques [19].
Bayesian optimization works without a need of such as-
sumptions and is, therefore, more versatile. We use Gaussian
Process (GP) Regression [16] as our candidate BO. There are
alternative techniques in literature, such as ensemble random
forest [20], which have been used for systems employing
BO [12]. However, unlike GP, none of them provide an
estimate of the variance of its predictions.

The problem of speeding up a black-box bayesian optimizer
with white-box models is fairly recent. Dalibard et. al. [21]

Recommended

Configuration \

White-box
Model Q

Performance
Statistics Vg

Execution

Optimizer «— o
ngine

|

Acquisition
Function ET

Configuration
Space X

Gaussian
Process GP

Fig. 4: Workflow of Guided Bayesian Optimization (GBO)

propose Structured Bayesian Optimization (SBO) which lets
system developers add structure to the optimizer by means
of bespoke probabilistic models including simple parametric
models inferred from low-level performance metrics observed
during a tuning run. The combination of non-parametric
bayesian optimizer and evolving parametric models help with
a faster system convergence. SBO needs considerable system
expertise to design a combination model for auto-tuning. Our
focus, instead, is restricting exploration of bayesian optimizer
to a smaller space of configurations identified by simple white-
box models.

Another recent work specifically targeted at finding best
VM configurations, Arrow [12], augments a bayesian opti-
mizer with not only VM characteristics but also low-level
performance metrics. Providing additional features to BO,
however, increases the dimensionality of the problem. In
smaller dimensional configuration spaces such as ours, the
benefits of adding structure by means of low level information
are far outweighed by the extra exploration necessitated by
the higher dimensionality. Our approach, on the other hand,
can help exploit system knowledge without extra exploration
overheads.

The idea of combining the black-box acquisition function
with a white-box model is similar to an approach of managing
a portfolio of acquisition functions for BO [22]. While the
motivation behind the portfolio management is to find a sched-
ule of acquisition functions that maximizes rewards during
a tuning run, our motivation is to incorporate knowledge of
system behavior through white-box models.

II. GUIDED BAYESIAN OPTIMIZATION

We have described the Guided Bayesian Optimization
(GBO) framework in brief in Section I. Fig. 4 outlines the
workflow of tuning process. The configuration space used dur-
ing optimization comes from the parameters listed in TABLE L.
We first describe the BO model used in our framework before
outlining the process of selecting next configuration to probe.

BO model requires two building blocks: (a) Bayesian prior
prescribes a prior belief over the possible objective functions,
and (b) Bayesian posterior provides a mechanism to sequen-
tially update the belief by learning from new observations.
Since the objective function is unknown, we need to use a
non-parametric model. Gaussian Process [16] is a popular
choice because of its salient features such as support for
noisy observations and ability to use gradient-based meth-
ods [23]. Using Gaussian Process, the prior belief is modeled

as f(x) ~ GP(uo, k), where g : X — R denotes the prior
mean function and k£ : X x X — R denotes the covariance
function. Given n sampled points x;.,, and noisy observations
Y1.n (02 denoting a constant observation noise), the unknown
function values f := f;., are assumed to be jointly Gaussian,
ie. flx ~ N(m,K), and the observations y := g, are
normally distributed given f, i.e. y|f,0% ~ N(f,o%I). The
posterior mean and variance are then given by the following:

n (%) = po(x) + k(x) " (K + 1) 7! (y — m)
o2 (x) = k(x,x) — k(x)" (K + ¢2I) 1k(x)

n

@

where k(x) is a vector of covariance between x and xy.,.

An acquisition function provided by BO suggests the next
sample to probe based on the posterior distribution. We
use one of the most popular acquisition functions, Expected
Improvement (EI), given below:

EI(X X100, Y1:n) = (T — (X)) @(2) + on(x)8(Z) (3)

Here, 7 denotes the current best observation, Z = (7 —
Hn(X))/0n(x), and @ and ¢ are standard normal cumulative
distribution and density functions respectively. The next sam-
ple will be either picked from a region where uncertainty is
high, captured by o,,(x), or from a region close to the current
best, captured by (7 — p,(x)), thus balancing the exploration
and the exploitation. The GP suggests next sample where the
expected improvement is the highest.

GBO uses a white-box model Q : X — R which is
driven by low-level performance statistics and outputs a utility
score that helps rank the configurations in terms of expected
performance. () does not necessarily model the exact system
behavior because of the inaccuracy in statistics as well as a
possible mismatch between the assumed function and the true
interactions. As part of its initialization, GBO observes a small
number of samples taken using Latin Hypercube Sampling
(LHS) [17] over the domain space of configuration options.
LHS is an efficient technique to generate near-random samples
from a multidimensional space providing a good coverage.
These samples are used to bootstrap both the Gaussian process
and the white-box model used as a guide. Both models can
improve themselves as more samples are observed during a
tuning run.

GBO modifies exploration for the next best point: Using
@, it prunes out the configurations expected to produce poor
performance. The change is given by the equation below.

Xp41 = arg max EI(X,Dn)-I(X) (4)
xcX

where D,, is a database of n samples including the config-
urations and the corresponding observations. The optimizer
uses a small number of uniform random samples and a few
invocations of quasi-Newton hill climbers (e.g. L-BFGS [24])
to explore the space of unseen configurations (X).

I(x) ~ {0,1} is a boolean function telling whether the
configuration is worthy of exploration or not. Algorithm 1

Algorithm 1 Configuration Pruner
Input: White box function)
Input: Configurations to be explored X
Input: Query configuration x
Output: {0,1}

1: Set low = ming exQ(x’)

2: Set high = maxy exQ(x')

3: if Q(x) > U([low, high]) then
4 Return 1

5: else

6: Return 0

7: end if

details how white box function @ is used in decision making.
@ is evaluated on each of the configurations chosen for
exploration by the optimizer. The configurations with high
values are made more likely to be considered by putting a
high probability mass on them. The idea behind probabilisti-
cally picking (or pruning) a configuration is to have a lesser
dependence on accuracy of white-box model. The other option,
of picking configurations with) scores above certain value
(say 70 percentile), makes the model completely reliant on
white-box model. GBO makes a conscious choice of primarily
depending on black-box acquisition function because it makes
a more informed decision as it explores more samples; whereas
the predictions of white-box function may remain inaccurate.

III. WHITE-BOX MODEL FOR MEMORY POOLS

We build a closed-form prototype utility model by under-
standing memory pool management in data analytics systems.
The understanding is based on a systematic empirical study
carried out in project RelM [13]. The utility model relies on
the statistics generated from profiles of applications sampled
apriori as part of GBO bootstrapping. Although, the statistics
could be updated as more samples are observed, we do not
consider this approach here. Section IV talks of merits/de-
merits of this choice through evaluation. The utility model we
build have two characteristics:

(a) It assigns a high utility to the memory pool allocations
meeting application requirements, and

(b) It penalizes the memory allocations that are either expected
to result in out-of-memory errors or lead to high garbage
collection costs.

A. Statistics Generation

We use Thoth [25] framework to obtain a profile of the
application which includes JVM logs, application event logs,
and resource monitors. TABLE II lists the statistics derived
from an application profile. The first two entries correspond
to the configuration of Container used to run the profiled
application. The requirement for Code Overhead pool (;) is
obtained by looking up heap usage value at the instance of the
first task submission to the container. This value corresponds
to the memory required for application code objects and is
expected to be occupied through the lifetime of the container.

TABLE II: Statistics derived from an application profile

Notation Description Example
N Containers per Node 1
My, Heap size 4404MB
M; Code Overhead 90%ile value 130MB
M. Cache Storage 90%ile value 2300MB
M Task Shuffle 90%ile value OMB
M, Task Unmanaged 90%ile value 70MB
P Task Concurrency 2
H Cache Hit Ratio (the fraction of cached 07
data partitions actually read from cache) ’
g Data Spillage Fraction (the fraction of 0
shuffle data spilled to disk)

The values obtained from multiple containers in an application
profile could have some variance, so we use a 90th percentile
value as a stability against outliers. The memory used by
Cache Storage (M,) is computed by looking up the maximum
cache usage value from the profile. This cache usage value
may not necessarily correspond to the actual requirement
because the application could possibly be configured with
an under-sized cache. We record Cache Hit Ratio (H) from
application logs in order to evaluate the actual requirement.

While both M; and M. are considered long term mem-
ory requirements of a container, the memory used for task
execution (M + M,), corresponds to short-term memory
requirements. We assume that each task running concurrently
equally contributes to the total task memory. This assumption
helps us derive the value of M. Like in the case of M., the
shuffle memory usage value does not necessarily correspond
to the actual requirement of the application since the shuffle
data could possibly have been spilled because of capacity
constraints. Data spillage fraction (S) allows us to estimate
the actual memory requirement. The M, value is the hardest
to obtain among the statistics presented in Table II since the
application does not track this memory pool. We use JVM
instrumentation to get a good estimate as explained next.

As described in Section I, JVM uses two garbage collection
processes, namely, young GC and full GC, to collect any
unreferenced objects from Heap. The full GC event cleans up
garbage both from young generation and old generation pools.
Monitoring heap usage right after a full GC, therefore, gives
us a more accurate picture of task memory requirements. With
this idea, we monitor every full GC event during the runtime
of the application to obtain an estimate of M,,. More details on
this and other statistics generation methodology are available
in our technical report [13].

Example. Statistics for K-means benchmark application
executed on a Spark cluster are listed in the third column
of TABLE II. It can be noticed that the application has a
high Cache Storage requirement compared to Task Memory
requirements.

B. Utility Evaluation

Given a test configuration x and the statistics derived by
bootstrapping process, we evaluate the utility of x using an
analytical model given next. We use upperscript x to denote

Performance
(1/Runtime)

HNUW

Configurations explored by Exhaustive Search
T T T T

J

Fig. 5: Accuracy of White-box model estimates for K-means.
Configurations explored by gridding the configuration space
and running them exhaustively (see TABLE V) are presented
on X-axis.

Estimated
Utility (Q)
I

102

Performance
(1/Runtime)

Configurations explored by Exhaustive Search
T T T T

Estimated
Utility (Q)
I
|

Fig. 6: Accuracy of White-box model estimates for Sort.
Configurations explored by gridding the configuration space
and running them exhaustively (see TABLE V) are presented
on X-axis.

either the parameter values or the functions evaluated for
configuration x.

Mo = MC/H
M. = Ms/(1—S/P)
M; + P* x M,, + min(MZX, M.,.) + min(MX, M)

R* =
M

P1* =¢; *min(0, R* — 1)
M; + min(MX, M., — MX*
)
P* % M, + min(MX, M) — M*
i)

P2* = ¢co x min (O,

P3* = c3 *min (0,

Q* = R* — P1* — P2* — P3*

We first evaluate the requirements for Cache Storage (M,,)
and Task Shuffle (M,) memory pools using the statistics
obtained. Here, each concurrently running task is assumed to
contribute equally to data spillage. Next, we compute the total
utilization of the application level memory pools as a fraction
of heap size (R*). This value could exceed 1 if the memory is
over-allocated. We penalize such configurations using function
P1. Two more penalty functions, viz. P2 and P3 are used to
penalize the long term memory usage exceeding JVM’s Old
generation pool capacity and the short term memory usage
exceeding JVM’s Eden pool capacity. Both the functions cor-
respond to the garbage collection overheads. Finally, function
@* outputs the utility of the configuration x.

Penalty factors ci,ce, and c3 correspond to the actual
magnitude of the penalty. Inferring these factors accurately
is an equally hard problem to the auto-tuning problem at
hand. However, since the white box model is only used as a
heuristic in GBO, it is sufficient to set penalty factors that
could only distinguish good configurations from bad ones
without accurately modeling the performance. We set each of
the factors to 2 in our evaluation. Fig. 5 and Fig. 6 present the
utilities estimated by the white box model compared with the
actual performance on exhaustively searched configurations on
two applications: K-means and Sort. Visual inspection shows
that the model is capable of distinguishing the best performing
and the worst performing configurations apart. Furthermore,
the graphs show that the shape of the objective function can
be widely varied across applications substantiating the main
motivation behind our work.

IV. EVALUATION

A. Setup

We carry our evaluation on a Spark cluster configured as
listed in TABLE III. We use five benchmark applications for
evaluation which represent Map and Reduce computations,
machine learning, distributed graph processing, and SQL pro-
cessing use cases. The test suite including input data sources
is provided in TABLE IV.

Configuration Space: The configuration options we tune
correspond to the parameters controlling memory pools listed
in TABLE I. The maximum heap available for allocation per
node is 4404MB. We allow it to be distributed equally among
1, 2, 3, or 4 Containers. We limit the number of concurrently
running tasks on a node to the number of physical CPU cores
(=8). Therefore, the Task Concurrency can range from 1 to
the ratio of the number of physical CPU cores to the number
of containers on the node. For example, if 2 containers are
launched on a node, Task Concurrency on each container
ranges from 1 to 4. Cache Capacity and Shuffle Capacity
values are set as a fraction (ranging from O to 1) of Heap
size. As Spark provides a unified memory pool [26] combining
both Cache Storage and Task Shuffle, we set the capacity of
the unified pool to the sum of Cache Capacity and Shuffle
Capacity. The lowest possible value for NewRatio is 1. The
maximum, while unbounded in theory, is limited to 9 (i.e. at

TABLE III: Test cluster setup

Number of worker nodes | 8

Memory per worker 6GB

CPU cores per worker 8

Compute Framework Spark-2.0.1
Resource Manager Yarn-2.7.2
JVM Framework OpenJDK-1.8.0

TABLE 1IV: Test suite used in evaluation

Application Category Dataset
. . HiBench [28] Huge
K-means Machine Learning (100M samples, 20 dimensions, 5 clusters)
Sort Map and Reduce Hadoop RandomTextWriter (30GB)
WordCount ~ Map and Reduce Hadoop R(asn(;igrél;f extWriter
. . HiBench huge
SVM Machine Learning (100M examples, 10 features)
LiveJournal dataset [29]
PageRank Graph (69M edges, SM vertices)

TABLE V: Sample space used in Exhaustive Search.

Containers per Node [1, 2, 3, 4]
Concurrent tasks per node' 2, 4, 6, 8]
Cache Capacity/ Shuffle Capacity | [.2, .4, .6, .8]
NewRatio 1, 3,5, 7]

least 10% of the heap is available to the young generation) in
our setup. We keep the SurvivorRatio to its default value.

Exhaustive Search: In order to find an optimal configuration,
we carry out an exhaustive search by gridding the configura-
tion space. The domain of each parameter is discretized into 4
values as listed in Table V. We use only one of Cache Capacity
and Shuffle Capacity depending on the dominant requirement
of the application under test in order to speed up the process.
The minor memory pool capacity is kept constant at 10% of
the heap.

Bayesian Optimization (BO): As detailed in Section II, we
use Gaussian Process (GP) Regression as our candidate for
black-box tuning. The GP is implemented using scikit-learn
library in Python [27]. Like in the case of Exhaustive Search,
we use only the dominant memory pool between Cache
Storage and Task Shuffle during optimization. The objective
function is set to minimize latency, or alternately, maximize
the inverse of the runtime. If a run is aborted due to errors,
we set the objective value for the sample to twice the worst
runtime obtained on the samples explored so far.

White-box Optimization (WO): The white-box model we
have detailed in Section III is used for exploration in this
policy. During each iteration, a small random subset of
configurations (about 10%) is evaluated using the white-box
model (. Configuration with the best score is chosen for
exploration. We do not use inference from previously executed
configurations to improve the model.

Guided Bayesian Optimization (GBO): The GBO policy
detailed in Section II is used with the white-box model @) set
as a guide for exploration.

I'Task Concurrency will be determined by dividing this value by the number
of Containers per Node.

B. Convergence

We evaluate how various tuning policies fare in terms
of the speed of convergence to the optimal configuration.
Exhaustive Search takes one to two orders of magnitude longer
to converge compared to the other three policies. We do
not include its results in the graphs in order to focus on
our models. The rest of the policies adaptively sample up
to 50 configurations in a run; 5 such runs are carried out
for each application. We analyze how much of a training
overhead would a policy require if it were to carry on
until we find a configuration providing a performance within
top 5 percentile of the exhaustively searched configurations.
Although this stopping criteria is not practical because the
optimal performance is not known apriori, we use it in order
to compare how long do different policies take to converge to
a good configuration.

Fig. 7 plots the training time and the number of itera-
tions required for each tuning approach. Training times are
normalized to the time taken by BO policy on the same
application. It can be noticed that the WO policy shows a
wide variation in performance: While it provides quick tuning
for some applications, e.g. K-means; it leads to huge perfor-
mance degradations on some others, e.g. SVM. On the other
hand, GBO policy consistently lowers training time across
applications compared to BO. On average, GBO reduces the
number of iterations to close to half the iterations needed by
the black-box policy.

To dive deep into how the policies function, we provide
convergence plots for three applications, viz. K-means, SVM,
and PageRank, in Fig. 8. The plot on K-means shows that
the BO policy takes 8 iterations on average to find a config-
uration that runs within 11 minutes (top 5 percentile barrier).
The exploration until then often results in configurations with
expensive runtimes reflected by its high training time. The WO
and GBO policies avoid such configurations and, therefore,
can find a top configurations with low overheads. The white-
box function) closely mimics the performance on K-means,
as seen in Fig. 5 earlier, which helps both the policies.

The SVM application throws a curious result where WO
takes more than twice the time required for BO. This is a case
of white-box model @ bootstrapped with incorrect statistics.
We expand on this issue in the next subsection. The important
thing to note here is that, despite the substandard white-box
model, GBO policy provides a performance similar to the
black-box tuning policy. This is a direct consequence of our
design decision to rely on acquisition function used in BO for
ranking the configurations under exploration.

The PageRank application presents a case wherein WO
takes longer to converge despite the white-box model using
correct statistics. In this case, many configurations fail with
out-of-memory errors due to very high task memory require-
ments of the application. Although, the white-box model @
penalizes such configurations, it cannot correctly attribute
the magnitude of this penalty. Due to this inaccuracy, the
WO tuner is able to find a configuration within top 10

0o BO
Ha wo
AeGBO

| lI Il / B

K- means Sort WordCount SVM PageRank

Normalized time

20 [

10 |

Iterations

77 8
7 g
A B

!

I [I
K-means Sort WordCount SVM PageRank

Fig. 7: Analyzing training overheads for various tuners when the tuning is set to stop as soon as a configuration is found
having performance within top 5 percentile of the configurations explored by Exhaustive Search. The first plot shows training
time normalized to time taken by BO. The second plot shows the number of iterations required.

=
—
o

20 —e— BO ||

oo

—
Ut

Time (min)
Time (min)

=2}

—
o

Samples

100
= 80
E
H
40
0 10 20 30
Samples Samples

Fig. 8: Convergence of tuning policies for K-means, SVM, and PageRank from left to right. Each tuner is run 5 times; the
mean, min, and max values for the lowest runtime on the samples observed so far are plotted on Y-axis.

percentile within 2-3 iterations, but struggles to find a better
configuration post that. On the positive side, it avoids exploring
very expensive configurations reflected by its lower training
time compared to BO. The GBO policy, like in the case of
SVM, brings the best of both worlds to produce a desired
configuration within 4 iterations on average.

C. Quality of White-box Model

We showed the quality of our white-box model by com-
paring the estimated utilities to the actual performance ob-
served on the exhaustively searched configurations on two
applications: K-means (Fig. 5) and Sort (Fig. 6). Q is
able to distinguish good configurations from bad ones in
both cases correctly. In case of SVM, however, the white-
box model makes wrong predictions. This happens due
to inaccurate estimation of task memory requirements during
bootstrapping. Recalling the statistics generation methodology
from Section III, the ‘Task Unmanaged’ memory pool re-
quirement is estimated by monitoring JVM’s full GC events.
The configurations considered during bootstrapping happen to
contain very few such events which leads to an over-estimation
of the task memory requirement.

We plot the utility estimated with incorrect statistics along
with the actual performance for comparison in Fig. 9. It can be
seen that, due to over-estimation of task memory requirements,
the model incorrectly suggests a performance degradation with

-0.16
22 051 i
x| = JCREN 5
2 3 < &
0 0.1
| | | |
0.2 0.4 0.6 0.8

Cache Capacity

—— () with inaccurate statistics
(Q with accurate statistics

—e— Actual performance

Fig. 9: Graph showing that the white-box function) modeled
with accurate statistics mimics the true performance better.
Configuration option ‘Cache Capacity’ alone is varied on X-
axis keeping other configuration options constant.

increasing Cache Capacity. When we gather better statistics af-
ter observing more configurations, the model correctly predicts
the actual performance pattern. This evaluation showcases a
need to update the white-box model using feedback. We plan
to work on a systematic feedback mechanism to improve
tuning at runtime in future.

V. DISCUSSION AND FUTURE WORK

We showed how black-box auto-tuner can be sped up by
using simple white-box models built using low-level perfor-
mance metrics to guide the exploration. We identified an
important problem of auto-tuning memory pool configurations
in data analytics systems to demonstrate our work. The GBO
framework we developed is flexible enough to incorporate
white-box models of varying degree of accuracy anytime
during the tuning process. As part of the future work, we
would like to work on improving the black-box optimization
by means of hyperparameter tuning of the Gaussian Process
model we have used in GBO. In addition, we would like to
explore other system tuning applications suitable for GBO
framework.

ACKNOWLEDGMENTS

The author would like to thank Dr. Shivnath Babu for his
useful feedback on system design.

REFERENCES

[11 E. Kwan, S. Lightstone, K. B. Schiefer, A. J. Storm, and L. Wu, “Au-
tomatic database configuration for db2 universal database: Compressing
years of performance expertise into seconds of execution,” in BTW, 2003.

[2] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A self-tuning system for big data analytics,” in In
CIDR, pp. 261-272, 2011.

[3] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:
Efficient performance prediction for large-scale advanced analytics,” in
13th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 16), (Santa Clara, CA), pp. 363-378, USENIX Association,
2016.

[4] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback, “Self-tuning
database technology and information services: From wishful thinking to
viable engineering,” in Proceedings of the 28th International Conference
on Very Large Data Bases, VLDB ’02, pp. 20-31, VLDB Endowment,
2002.

[51 J. Mockus, Bayesian approach to global optimization: theory and
applications. Mathematics and its applications (Kluwer Academic
Publishers).: Soviet series, Kluwer Academic, 1989.

[6] S. Duan, V. Thummala, and S. Babu, “Tuning database configuration
parameters with ituned,” PVLDB, vol. 2, no. 1, pp. 1246-1257, 2009.

[7] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic database
management system tuning through large-scale machine learning,” in
Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19,
2017, pp. 1009-1024, 2017.

[8] P. Jamshidi and G. Casale, “An uncertainty-aware approach to
optimal configuration of stream processing systems,” CoRR,
vol. abs/1606.06543, 2016.

[9] L. Bao, X. Liu, and W. Chen, “Learning-based automatic parameter
tuning for big data analytics frameworks,” CoRR, vol. abs/1808.06008,
2018.

[10] Z. Cao, V. Tarasov, S. Tiwari, and E. Zadok, “Towards better under-
standing of black-box auto-tuning: A comparative analysis for storage
systems,” in Proceedings of the 2018 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC 18, (Berkeley, CA, USA),
pp. 893-907, USENIX Association, 2018.

[11] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud configura-
tions for big data analytics,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), (Boston, MA), pp. 469—
482, USENIX Association, 2017.

[12] C. Hsu, V. Nair, V. W. Freeh, and T. Menzies, “Arrow: Low-level
augmented bayesian optimization for finding the best cloud VM,” in
38th IEEE International Conference on Distributed Computing Systems,
ICDCS 2018, Vienna, Austria, July 2-6, 2018, pp. 660-670, IEEE
Computer Society, 2018.

[13] “RelM Report. https://users.cs.duke.edu/~mayuresh/relm-report.pdf.”
[14] “Spark configuration. https://bit.ly/2rXR4NK.”

[15] “Amazon EMR Documentation. https://amzn.to/2zrpNtt.”

[16] C.E. Rasmussen, “Gaussian processes for machine learning,” MIT Press,
2006.

[17] C. Ireland, “Fundamental concepts in the design of experiments,”
Technometrics, vol. 7, no. 4, pp. 652-653, 1965.

[18] D. N. Tran, P. C. Huynh, Y. C. Tay, and A. K. H. Tung, “A new
approach to dynamic self-tuning of database buffers,” Trans. Storage,
vol. 4, pp. 3:1-3:25, May 2008.

[19] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang, “A smart hill-
climbing algorithm for application server configuration,” in Proceedings
of the 13th International Conference on World Wide Web, WWW 04,
(New York, NY, USA), pp. 287-296, ACM, 2004.

[20] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5-32, Oct.
2001.

[21] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “BOAT: Building auto-
tuners with structured bayesian optimization,” in Proceedings of the 26th
International Conference on World Wide Web, WWW ’17, (Republic and
Canton of Geneva, Switzerland), pp. 479-488, International World Wide
Web Conferences Steering Committee, 2017.

[22] M. Hoffman, E. Brochu, and N. de Freitas, “Portfolio allocation for
bayesian optimization,” in Proceedings of the Twenty-Seventh Con-
ference on Uncertainty in Artificial Intelligence, UAI'11, (Arlington,
Virginia, United States), pp. 327-336, AUAI Press, 2011.

[23] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, pp. 148-175, 2016.

[24] R. H. Byrd, P. Lu, and J. Nocedal, “A limited-memory algorithm for
bound constrained optimization,” SIAM Journal on Scientific Computing,
1994.

[25] M. Kunjir and S. Babu, “Thoth in action: Memory management in
modern data analytics,” Proc. VLDB Endow., vol. 10, pp. 1917-1920,
Aug. 2017.

[26] “Deep dive:
2C2x1YH.”

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

[28] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench
benchmark suite: Characterization of the mapreduce-based data analy-
sis,” in 2010 IEEE 26th International Conference on Data Engineering
Workshops (ICDEW 2010), pp. 41-51, March 2010.

[29] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection.” http://snap.stanford.edu/data, June 2014.

Apache spark memory management https://bit.ly/

