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Li-Sheng Wang, Sanjana Gopalakrishnan, and Vincent M. Rotello™

Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States

ABSTRACT: Surface properties are an essential feature in a wide range of func-
tional materials. In this article, we summarize strategies developed in our group that &
employ nanoparticles and proteins as nanobricks to create thin-film coatings on
surfaces. These coatings contain tailorable surface functionality based on the prop- L
erties of the predesigned nanobricks, parlaying both the chemical and structural
features of the precursor particles and proteins. This strategy is versatile, providing

the rapid generation of both uniform and patterned coatings that provide “plug-and-

play” customizable surfaces for materials and biomedical applications.

B INTRODUCTION

Engineering the interactions of surfaces with the surrounding
environment is crucial to the development of functional mate-
rials.'~* For example, controlling the interface between mate-
rials and biological entities enables the design of smart and
responsive biomaterials.""® Surface properties can either result
directly from the bulk material surface or can be tailored by
applyin% coatings that impart specific properties and function-
alities.”” These surface coatings provide a versatile platform for
modulating the interface between the bulk material and the
surrounding environment, consequently defining and enhancing
the utility of these materials.”"’

Small-molecule monolayers have been widely employed for
surface modification.'" Although molecular grafting on surfaces
is straightforward, this type of coating can face challenges with
coverage efficiency,'” stability'® and characterization (particu-
larly for more complex surfaces).'* Applying thin film coatings on
surfaces using polymers,">'® proteins,”'® and nanoparticles'**’
as building blocks provides an alternative strategy to tailoring the
functionality of surfaces.”' >’ In this feature article, we consider
these nanobricks to be pre-engineered or natural nanomaterials
that retain their structures and properties when used as coatings.
These building blocks (nanobricks) often possess unique
chemical and physical properties that can be translated into the
surface features required for specific applications.”*** By applying
these nanobricks to surfaces, a uniform and dense coating of the
desired surface functionality can be obtained due to the high
surface area of nanomaterials,”® with stability enhanced through
multivalent particle—surface interactions.”’ Additionally, the use
of nanoparticles for surface modification automatically provides
nanotextured surfaces,”® in contrast to more traditional topo-
logical control employing etching and deposition techniques
that increase the processing cost and time.””

In our research, we have used the ease of fabrication and
characterization of nanoparticles to generate complex surfaces
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featuring a high degree of control of both physical and surface
properties. More recently, we have added proteins (nature’s
nanoparticles) to our nanobrick tool kit, developing an approach
that allows individual proteins to retain their native surface
properties, e.g., charge and zwitterionic properties. In this
feature article, we summarize our use of nanoparticles and
proteins to provide new coating tools (Scheme 1) for a wide
range of applications, paving the way for new technologies.

B NANOPARTICLE-BASED COATINGS

Strategies to assemble NPs on surfaces can be broadly classified
into two categories: supramolecular interactions and covalent
bonding (Figure 1). Both approaches feature unique strengths.
Supramolecular strategies feature the simplicity and modularity
provided by self-assembly and can generate stable coatings
through multivalent particle—surface interactions.’® Covalent
surface modification provides even greater stability”' and can be
used for applications requiring harsh conditions such as solvent,
high ionic strength, or heat.** The chemical functionality of the
surfaces can be systematically modulated by pre-engineering the
capping ligands on these NPs for which characterization is easy and
well-established.® Furthermore, the curvature of nanoparticles
provides unique topographic properties to the surfaces, which we
have used to generate surfaces with decreased fouling behavior.”*
Immobilization of Nanoparticles on Surfaces Using
Dithiocarbamate (DTC) Chemistry. Thiophilic metal and
semiconductor NPs can be anchored onto thiol-terminated
surfaces via a simple metal—sulfur interaction.”> However, this
approach can generate surfaces that are sensitive to oxidation or to
place exchange by other thiols, especially in biological environ-
ments.”**” Molecules with the carbodithioate (—CS,) moiety of
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Scheme 1. Surface Coatings Fabricated by Nanoparticle- and Protein-Based Nanobricks
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Figure 1. (A) Schematic illustration of NP-based nanobrick coating strategies. (B) Examples of NP coatings using covalent or supramolecular

strategies. (C) Schematic illustration of NP-based coating applications.
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Figure 2. Nanoparticle-based surface modification technique utilizing DTC chemistry. (A) DTC-mediated attachment of NPs to amine-terminated
surfaces. (B) Change in thickness as a function of time, as observed through ellipsometry, due to the binding of AuNPs. (C) AFM height and phase

images of a surface after incubation times of (a, b) 1/2 h, (¢, d) 1 h, and (e, f) 8 h in a solution of 50 mM CS, and 100 nM Au-NPs. Scale bars are
250 nm. The Z scale is 10 nm. Adapted with permission from ref 39. Copyright 2008, Wiley-VCH Verlag GmbH & Co. KGaA.

dithiocarbamates provide robust linkages to thiophilic surfaces due
to their divalent nature and, in the case of gold, the interatomic S—S
distance that is ideal for epitaxial adsorption onto Au surfaces.”®
To ensure the robustness of NP immobilization, we developed a
dithiocarbamate (DTC)-based approach for the stabilization of
thiophilic NPs on amine-terminated surfaces. In this process, a
reversible adduct is formed through the reaction of primary or
secondary amines on the surface with CS,. This active group is
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stabilized when it bonds to the metal/semiconductor NPs, resulting
in robust and stable NP-modified surfaces. We demonstrated the
utility of the DTC strategy by reacting gold nanoparticles (AuNPs)
with an amine-terminated silicon wafer in the presence of CS,
(Figure 2A).* The immobilization of nanobricks on surfaces was
monitored by measuring the change in thickness (ellipsometry)
and surface topography (atomic force microscopy, AFM).
Ellipsometry and AFM measurements showed that a uniform
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AuNP monolayer was formed after 1 day of incubation
(Figure 2B,C). A salient feature of this method is that it can be
applied to NPs with a variety of surface functionalities, which we
demonstrated by generating neutral, negatively charged, and
positively charged surfaces using hydroxyl-, carboxylate-, and
trimethylammonium-functionalized AuNPs, respectively. In addi-
tion, the versatility of this approach was demonstrated using other
thiophilic nanoparticles, including FePt NPs and quantum dots
(QDs).* This DTC chemistry was also used in the reverse fashion
to immobilize amine-terminated NPs onto thiophilic surfaces.
We attached amine-functionalized silica NPs onto gold substrates,
creating a scaffold with dense amine functionality and high surface
area that was used for a variety of postfunctionalization technolo-
gies.*” Taken together, these results demonstrate the utility of
DTC chemistry for “painting” surfaces with nanoparticles.

Supramolecular Immobilization of NPs. Supramolecular
chemistry provides a dynamic and reversible strategy for gen-
erating customizable NP coatings.”’ This functionalization strategy
takes advantage of the wide range of available noncovalent inter-
actions, including hydrogen bonding,** hydrophobic interaction,**
and electrostatics.”* In one approach, we used “lock and key”
hydrogen bonding to coat surfaces with nanoparticles. Thymine-
functionalized QDs (Thy-QD) were immobilized onto diamino-
triazine-functionalized polystyrene (PS-Triaz) surfaces via three-
point hydrogen-bonding interactions (Figure 3)." The three-point
interaction provides specificity to this immobilization process,
which is beneficial to the fabrication of multifunctional or
patterned surfaces. (See the next section.) The specificity of this
method was demonstrated by using N-methyl thymine-
functionalized QDs (MeThy-QD) as a negative control, where
no binding to the PS-Triaz surface was observed (Figure 3C,E).

Electrostatic interactions provide another noncovalent tool
for surface modification,* allowing the use of readily available
charged substrates and generating surfaces with direct utility for
biomaterial applications. In contrast to small-molecule systems,
multivalent NP/surface interactions can provide stable coatings.
We developed a versatile technique that uses positively charged
polyvinyl N-methylpyridine (PVMP) to direct the site-selective
deposition of negatively charged citrate-protected AuNDPs, pro-
ducing conductive surfaces (Figure 4A,B)."” Furthermore, post-
functionalization using different thiols enables the fine tuning of
surface properties (Figure 4C). Coupling of this simple deposition
strategy with the wide range of polymer patterning techniques
should allow easy access to a variety of materials, with applications
ranging from nanoelectronics to medical devices (Figure 4D—G).

Electrostatic immobilization strategies can also be applied to
coating commercially available negatively charged PS surfaces
used for cell culture applications. For these uses, we developed a
facile strategy for modifying readily available polystyrene cell
culture plates with cationic nanoparticles. Angle-resolved XPS
showed that a monolayer of AuNPs was formed after incubating
the plasma-treated PS plates (Figure SA,B). We then tested the
stability of these AuNP coatings in a cell culture environment.
The stability of these monolayers was tested in PBS, cell culture
media, and protease. The results indicated that AuNP
monolayers on PS remain stable under biological conditions
but only when the PS plate was pretreated with plasma either by
the manufacturer or in-house (Figure 5C). "

Micro- and Nanopatterning of NP-Coated Surfaces.
Surface patterning can be readily adapted to NP coating
strategies.”” The key is to create patterned areas that can either
facilitate or block reactions and interactions with NP bricks. For
example, octadecanethiol (ODT) can be used as a mask to block

(A)
x=15y=15
e-beam
H
PS-Triaz Ne N

- Gold
l Develop

«
2
- o
-X n
A ®»
w
@®
3
=
<

Thy-QD MeThy-QD

(D) . (E)

5um 5um

Figure 3. (A) Fabrication of nanopatterned PS-Triaz templates using EBL
and postfunctionalization with the complementary Thy-QDs. (B) Structure
of Thy-QDs. (C) Schematic representation of the lack of binding between
control MeThy-QDs and PS-Triaz templates due to the disruption of
hydrogen bonding. (D) Bright-field image of PS-Triaz patterns prior to QD
assembly; the inset shows the fluorescent image. (E) Fluorescent image
after the assembly of Thy-QDs; the inset shows the patterned surface
fluorescent image after incubation in MeThy-QDs. Adapted with
permission from ref 45. Copyright 2011, American Chemical Society.

the interaction of Au surfaces by occupying the available
bonding areas. We used microcontact printing to generate pat-
terned ODT areas on Au surfaces. After adding amine-
functionalized SiO, NP and CS, to ODT-patterned Au surfaces,
NP attachment occurred only on the bare areas.”” Another
strategy for blocking reactions is to physically prevent the
coating solution from contacting the surfaces by using nano-
molding in capillaries (NAMIC).”* NAMIC uses a stamp with
hard and well-defined features on flat poly(dimethylsiloxane)
(PDMS) as the nanomold. The capillaries allowed the reactants
(AuNPs and CS,) to fill in and react at locations that allow
large-area patterning of AuNP arrays in a one-step, low-cost
process (Figure 6A). The versatility of this patterning method
was demonstrated by using both QD (Figure 6B) and FePt NP
nanobricks (Figure 6C).
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Figure 4. (A) Fabrication of patterned NP surfaces via site-selective adsorption of NPs on photopatterned PVMP films to produce conductive Au films.
(B) I-V curves of the PVMP film before (purple) and after (black) the deposition of NPs. (C) Changes in the water contact angle due to
postfunctionalization with different thiols. The insets are representative micrographs of a hydrophilic (top) and hydrophobic surface (bottom).
(D) AFM images of patterned NPs films, with close-up images of (E) deposited AuNP and (F) bare silicon areas. (G) Conductive Au film fabricated

onalcm X1 cm glass slide. Adapted with permission from ref 47. Copyright 2007, Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure S. (A) Schematic representation of a strategy to generate
positively charged AuNP monolayers on plasma-treated polystyrene
cell-culture plates. (B) Angle-resolved XPS analysis of the AuNP layer
on the polystyrene surface. Relative atomic concentrations of C, N, O,
and Au are listed in the table. (C) AuNPs attached to plasma-treated
(black) and untreated (red) plates under various cell-culture
conditions. Each bar represents the amount of Au remaining in a well
of a 96-well plate. Reproduced with permission from ref 48. Copyright
2014 Wiley-VCH Verlag GmbH & Co. KGaA.

In addition to masking, we can use an additive approach that
employs reactive areas on the surface to guide NPs to form
patterned coatings. This reactive strategy was demonstrated by
fabricating poly(ethylenimine) (PEI)-patterned surfaces using
nanoimprint lithography (NIL).”" The amine groups present
on the patterned PEI layer were used for multiple strategies of
NP immobilization, including amide coupling, DTC, and
electrostatic interactions. Moreover, by introducing orthogonal
patterns with different interactions, multiple functionalities on
the same surface could be generated using a one-step, self-
sorting process. For example, negatively charged QDs can be
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Figure 6. (A) Fabrication of 1D NP arrays using NAMIC coupled with
DTC chemistry. (B) Fluorescent image of patterned QD-TOH NPs.
(C) AFM topography image of patterned FePt-TOH NPs. Adapted with
permission from ref 50. Copyright 2010, American Chemical Society.

deposited on polyvinyl N-methylpyridine (PVMP)-treated areas,
and the diaminopyridine-functionalized polystyrene (DAP-PS)
can be deposited on thymine-terminated areas (Figure 7).>”
Controlling Biomaterial Interfaces Using NP Coatings.
The creation of functional biocompatible materials for delivery
and sensing applications has been a long-term focus of our
research program.” Nanobrick-based surface modification
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Figure 7. (A) Fabrication of a patterned PVMP/Thy-PS surface and its optical micrograph. (B) One-step sequential orthogonal functionalization
process using DAP-PS and COO-NP and the chemical structures of the materials. (C) Fluorescence emission spectra of DAP-PS and COO-NP.
Fluorescence microscopy of surfaces modified using (D) DAP-PS, (E) COO-NP, and (F) both components in a one-step process. Adapted with

permission from ref 52. Copyright 2006, American Chemical Society.

strategies allow us to parlay the behavior of these engineered nano-
particles into surface properties. As a starting point, the undesired
accumulation of proteins on surfaces and devices (i.e., biofouling)
has been a challenge when designing biomaterials. In our previous
studies, AuNPs were generated with engineered surface ligands
that stabilize adsorbed proteins, preventing denaturation.>* This
ability to bind without denaturation was used to generate surfaces
using AuNDPs that are highly resistant to protein fouling. Surfaces
featuring positive, neutral, and negative AuNPs were immobilized
onto PEI films via DTC chemistry (Figure 8A). The AuNP-coated
surfaces, regardless of the terminal functionalities, significantly
reduced the protein fouling as compared to that of bare PEI
surfaces (Figure 8B),” reducing the propensity of these systems to
encounter inflammation and immunogenic responses in patients
from protein fouling.*®

The utility of the AuNP-coated surfaces for cell—surface
interfacing was demonstrated by cell adhesion and proliferation
studies. All of the surfaces, regardless of the charge, supported
cell growth and adhesion, showing excellent biocompatibility
(Figure 8C). These surfaces provided templates for cell
patterning and alignment, as demonstrated using patterned
anionic AuNPs coatings. The resistance of AuNP patterns to
protein adsorption provides a high degree of cellular alignment,
demonstrating effective communication between the antifouling
surface and the cells (Figure 8D—F).”” Taken together, the use
of AuNP nanobricks provides a promising solution for preparing
antifouling coatings for biomedical applications.

Surface properties such as morphology, chemistry, and hydro-
phobicity have strong effects on regulating cellular behavior.>®
Using these antifouling AuNP nanobricks, we developed a
powerful platform for studying the role of surface chemical
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functionality on cell—surface interaction without the complica-
tions induced by denatured proteins on surfaces. We used a
variety of functional groups to decorate the surfaces by electro-
statically depositing cationic AuNP monolayers onto polystyr-
ene substrates. The chemical functionality was controlled by
changing the R group on the ligand, as shown in Figure 9A.
These AuNPs were immobilized on plasma-treated PS cell
culture plates through electrostatic interactions (Figure S).
We used this commercially available and high-throughput
platform to study the effect of chemical functionality on cell
viability, adhesion, and proliferation (Figure 9B).* The cell
lines interacted differently with surfaces featuring different
functionalities, creating a useful database for the systematic
study of the structure—activity relationship of surface function-
ality and biological responses. Taken together, AuNP nanobrick
coatings provide a powerful tool for studying cell—surface
interactions and can be used to modulate cellular behaviors.

B PROTEIN NANOBRICKS

The nanobrick method of generating coatings allows us to
translate the surface properties of each nanobrick into the func-
tionality of the bulk surface.’’ Proteins are nature’s nanobricks,
providing incredible functional and structural diversity.”” More-
over, proteins are biocompatible and sustainable precursors for
generating functional coatings.61 A vast majority of applications
of protein films require stability in aqueous environments.®>>
However, current methods for stabilizing protein films either (a)
employ denaturing conditions that relinquish the surface prop-
erties of the protein;®* (b) use naturally self-assembling proteins
that dramatically reduce the variety of proteins that can be
used;”* or (c) employ toxic cross-linkers that adversely affect the
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Wiley-VCH Verlag GmbH & Co. KGaA.

behavior of protein nanobricks by significantly altering their
biocompatibility and/or surface functionality.*®

Recently, we developed a scalable technology to fabricate
protein films that relies on the thermal treatment of proteins in a
fluorous environment in order to generate aqueous stable
coatings that retain the surface functionality of native proteins,
including hydrophilicity, biodegradability, surface charges, and
zwitterionic properties. This method can be used with any type
of protein (or at least all we have tried) to generate a variety of
different surfaces with properties derived from the molecular
functionality of the proteins. We employed two strategies to
provide this fluorous environment, including heat curing in a
fluorous media for 3D substrates®” and nanoimprint lithography
(NIL) for nanopatterned 2D surfaces’® (Figure 10).

The first key step in this research was establishing the
retention of protein structure after heat curing in fluorous media
(Figure 11). Heat curing of bovine serum albumin (BSA) films
in air results in almost complete denaturation, as determined by
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circular dichroism.®® In contrast, heating these films in fluorous
media results in only modest changes in protein secondary struc-
ture (Figure 11B). The next question is whether the retention of
protein structure provided films where the surface properties
mirrored those of the native protein, particularly in terms of
hydrophilicity and charge. Heating protein films in air creates
high water contact angles (Figure 11C) due to the denaturation
of the protein and the presentation of hydrophobic residues at
the surface to minimize air—film surface ene:rgy.é9 In contrast,
fluorous-cured films had significantly lower contact angles
indicative of a more hydrophilic surface.

One of the key advantages of using proteins as building block is
that they come with a wide range of surfaces charges, from cationic
to anionic. We explored the translation of surface charge into mate-
rial surface properties by generating fluorous- and air-cured films
from two proteins: anionic BSA (pI 4.8) and cationic lysozyme
(Lyso, pI 11). We next performed Kelvin probe force micro-
scopy (KPFM) on the films (Figure 11D).”" The air-cured films
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Figure 9. Heat map showing the cell viability of 4 different cell lines on
26 different AuNP coatings. (A) Structures of the ligands on the AuNP
nanobricks. (B) Heat map of cell viability influenced by different AuNP
coatings. Reproduced with permission from ref 48. Copyright 2014,
Wiley-VCH Verlag GmbH & Co. KGaA.
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and their current applications.

had similar potentials, consistent with burying the protein surface
charges in the film. In contrast, the fluorous-cured films featured
dramatically different surface charges, with the cationic Lyso
film substantially more positive than that derived from the anionic
BSA.

Proteins possess unique properties derived from their struc-
tural and surface properties.”’ After successfully preserving
protein surface charge through fluorous curing, we next wanted
to know if this method can be employed to translate protein
structure into material surface properties. BSA has been fre-
quently used as a blocker to prevent nonspecific binding in
delivery and sensing applications due to its zwitterionic structure
and overall negatively charged functionality.”””* Therefore, we
decided to determine if this property can be translated into
resistance to bacterial fouling on BSA-coated substrates, particu-
larly for biomedical applications. Combined with dip-coating
deposition, we were able to generate smooth and seamless
coatings on complex 3D substrates, i.e., dental implant screws.
Complete coverage of protein coating on the screws was
observed by using brilliant blue staining and scanning electron
microscopy. In addition, the remarkable robustness of BSA
coatings was demonstrated by application to a bone-mimicking
polyurethane block (Figure 12A,B). We next tested the
antifouling property of these BSA coatings by immersing the
screws in bacterial solution for 24 h. No adhesion was observed

on the BSA-coated screw, while the control surface showed
severe bacterial contamination (Figure 12C).

NIL-Based Treatment of Nanopatterned Protein Coat-
ings. In addition to surface charge and hydrophobicity, the
morphology and topology of surface coatings are important
factors in controlling cell—surface interactions.”* In particular,
nanotopology is a key determinant of cell proliferation and
spreading and therefore forms an integral aspect of tissue
engineering.”” NIL has been used for creating nanopatterned
surfaces and is suitable for roll-to-roll production.”® Taking
advantage of the fluoruos environment generated by the fluori-
nated molds commonly used in the NIL process,”” we empolyed
NIL for the fabrication of flat and nanopatterned protein
coatings (Figure 13A).”% In this study, we generated negative,
neutral, and positively charged surfaces using BSA (pI 4.8),
hemoglobin (Hemo, pI 6.8), and Lyso (pI 11). (Figure 13B).
A functional demonstration of the differences in surface prop-
erties was obtained through cell adhesion studies. Cationic
Lyso coatings provide excellent cytophilicity, while anionic BSA
coatings and charge-neutral Hemo coatings are cytophobic and
therefore prevent biofouling (Figure 13C). Using a nanopatterned
mold, we fabricated Lyso films with a 300 nm grooved pattern to
dictate cellular alignment, with strong orientation effects observed
(Figure 13D). Together these results demonstrate the simplicity of
protein nanobrick-based coatings for generating multifunctional
surfaces and adaptability to large-scale production.

Inkjet-Printed Micropatterning of Protein Nanobricks.
A major advantage of our fluorous-based strategy is the ability to
generate surfaces with different surface properties solely by the
choice of protein nanobricks, as demonstrated using cell
adhesion studies. This ability to tailor surface cytophilicity is
promising for directing cell adhesion to generate patterned cell
culture,”” which is appealing for various biological applications
includin§ tissue engineering, sensing, and developing coculture
systems.” Inkjet printing provides a reproducible method for
controlling the Precise mixing and deposition of nanomaterials
on the surface.””*> We fabricated micropatterned BSA and Lyso
films with this technique. The parametric control offered by the
inkjet printer allows us to modulate the coating properties
through combinatorial protein film fabrication (Figure 14A).
Results from KPFM studies revealed that, as expected, the
surface potential of these mixed protein films increases through
increasing the Lyso component (Figure 14B). The use of mixed
protein nanobricks to construct coatings with tunable func-
tionalities was further tested by cell adhesion studies. The results
obtained using combinatorial and gradient films both demon-
strated that the cell—surface interaction on these micropatterned
patches was highly dependent on the protein nanobrick
components, in which the Lyso nanobrick was responsible for
the affinity to the fibroblast cells (Figure 14C,D).*

We next generated micropatterned coatings to direct cell
attachment on the printed Lyso patches while avoiding the BSA
area (Figure 14E). This self-sorted cellular patterning technique
is promising for the development of cell arrays as well as
coculture platforms.** More specifically, side-by-side coculture
facilitated research on the cell—cell interaction at the interface,*
such as phagocytosis-based therapeutics.”® We demonstrated
the potential of a micropatterned protein film for inflammatory
studies by coculturing macrophage (RAW264.7) and human
embryonic kidney cells (HEK293) side-by-side. Our study
revealed that HEK293 attached only to an assigned Lyso patch
while RAW264.7 was capable of growing on both BSA and Lyso
areas. Using a two-step seeding method, a cell pattern composite
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of multiple cell types was generated (Figure 14F).*” This side-
by-side coculture system has the potential to overcome the
limitations of the traditional mixing method, thus providing a
better platform for studying intercellular interactions.
Antimicrobial Surfaces Prepared by Protein-Based
Coatings. Developing an effective antimicrobial strategy has
been one of our main focuses in terms of translational research.
Infections caused by the bacterial contamination of medical
devices are a serious healthcare concern.*® Designing a biocom-
patible coating that possesses antimicrobial activity is, therefore,
especially important for medical applications.”” Several strate-
gies have been proposed for either preventing bacterial adhesion

or imparting biocidal capability. For example, zwitterionic
polymers and poly(ethylene glycol) generate useful platforms
for preventing bacterial adhesion.”’ N-Halamine polyurethane
films generated by the halogenation of methacrylamide-grafted
polymeric films provided antimicrobial dental unit waterline
tubing with biocidal activity.”' However, the biocidal efficacy
can be compromised by the accumulation of dead bacterial
cells on coatings that cannot prevent biofouling.”> Combining
nonfouling and biocidal properties therefore yields effective anti
coatings.%’94

Taking advantage of the inherent chemical diversity of the
protein surface, we performed postfunctionalization to impart
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biocidal activity to protein coatings. BSA nanobricks possess
cytophobicity and repel bacterial adhesion (Figure 12), thus
being ideal candidates for developing antimicrobial coatings.
We imparted biocidal activity to BSA coatings by using a
commercially available sanitizer, sodium dichloroisocyanurate,
to chlorinate protein nanobricks (Figure 15A). These BSA
coatings retained their antifouling properties while gaining
microbiocidal activity through the slow release of chlorine
(Figure 15B). The halogenation reaction took place on cysteine
sulfurs on BSA coatings, as verified by the X-ray photoelectron
spectra of the chlorinated coatings.”” After chlorination, chlorine
was slowly released from BSA coatings and inhibited bacterial
growth, displaying biocidal activity for a wide range of bacterial
species (Figure 15C,D).”

B SUMMARY AND OUTLOOK

Nanobrick-based coating strategies provide a key tool for
material science and translational research. In our studies, we
have developed immobilization strategies that are versatile and
straightforward, generating stable, uniform, and multifunctional
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Figure 15. (A) Processing strategy to generate chlorinated protein films.
(B) Fluorescent microscopy images and quantitative analysis of bacterial
adhesion on Si wafers, BSA, and the CI-BSA surface after incubation with
red fluorescent protein expressing E. coli for 24 h. (C) Chlorine content in
water after incubating with the CI-BSA film. (D) Bacterial growth in
solution after 24 h of incubation with silica, BSA, and CI-BSA surfaces for
pathogenic strains of Gram-positive (CD-1006 and CD-2) and Gram-
negative (MRSA) bacteria. Scale bars are 100 um. Adapted with
permission from ref 96. Copyright 2016, American Chemical Society.

coatings with easily tailorable material surface properties.
By utilizing these properties, we have developed new coating
systems using nanoparticle and/or protein nanobricks that can
easily be adapted to several patterning techniques, modulate
cellular behavior, and prevent protein/bacterial fouling. Beyond
these applications, proteins are emerging as intrinsically
sustainable and ecofriendly nanobricks with the capability of
modulating material properties based on their structural and
chemical diversity. Our nanobrick-based coating strategies open a
new avenue for interfacial science, providing a versatile platform
for exploring surface properties derived from innumerable choices
of nanobricks. While there are several nanobrick precursors still
left to be explored, the strategies enlisted are apt to be translated
into customizable coatings for applications ranging from
nanoelectronics to medical devices, thereby providing new tools
for the manufacture and application of functional materials.
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