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Elevated CO, (eCO,) experiments provide critical informa-
tion to quantify the effects of rising CO, on vegetation™®.
Many eCO, experiments suggest that nutrient limitations
modulate the local magnitude of the eCO, effect on plant
biomass'*°, but the global extent of these limitations has
not been empirically quantified, complicating projections of
the capacity of plants to take up CO,’¢. Here, we present a
data-driven global quantification of the eCO, effect on bio-
mass based on 138 eCO, experiments. The strength of CO,
fertilization is primarily driven by nitrogen (N) in ~65% of
global vegetation and by phosphorus (P) in ~25% of global
vegetation, with N- or P-limitation modulated by mycorrhizal
association. Our approach suggests that CO, levels expected
by 2100 can potentially enhance plant biomass by 12 + 3%

above current values, equivalent to 59 + 13 PgC. The global-
scale response to eCO, we derive from experiments is similar
to past changes in greenness® and biomass™ with rising CO,,
suggesting that CO, will continue to stimulate plant biomass
in the future despite the constraining effect of soil nutrients.
Our research reconciles conflicting evidence on CO, fertil-
ization across scales and provides an empirical estimate of
the biomass sensitivity to eCO, that may help to constrain
climate projections.

Levels of eCO, affect the functioning and structure of terrestrial
ecosystems and create a negative feedback that reduces the rate of
global warming®*''-*. However, this feedback remains poorly quan-
tified, introducing substantial uncertainty in climate change projec-
tions”*. Experiments with eCO, simulate the response of plants to
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eCO, and thereby provide important empirical and mechanistic
constraints for climate projections. Numerous eCO, experiments
have been conducted over the last three decades and they collec-
tively provide strong evidence for a fertilizing effect of eCO, on leaf-
level photosynthesis®. At the ecosystem level, however, individual
CO, experiments show contrasting results for the magnitude of the
growth and biomass response to eCO,, ranging from strongly posi-
tive in some studies’ to little or no response with N', P* or water’
limitations in other studies. Despite this conflicting evidence at the
ecosystem scale, a global-scale carbon (C) sink in terrestrial ecosys-
tems is robustly inferred'”.

Here, we synthesize 1,432 observations from 138 eCO, studies in
grassland, shrubland, cropland and forest systems (Supplementary
Figs. 1 and 2 and Supplementary Table 1), encompassing free-air
CO, enrichment (FACE) and chamber experiments. We train a
random-forest meta-analysis model with this dataset and identify
the underlying factors that explain variability within it. We use
these relationships to estimate the global-scale change in biomass
in response to an increase in atmospheric CO, from 375ppm to
625 ppm, which is the increase in CO, expected by 2100 in an inter-
mediate emission scenario.

We included 56 potential predictors of the CO, effect
(Supplementary Table 2) belonging to four main categories:
nutrients (N, P, mycorrhizal association; see ref. *), climate (for
example, precipitation and temperature), vegetation (age and
type) and experimental methodology (for example, the increase
in CO, concentration (ACO,) and the type of CO, fumigation
technology). More details on the model selection are available in
the Supplementary Discussion.

The random-forest meta-analysis indicated that the most impor-
tant predictors of the CO, fertilization effect on biomass in our
dataset were experiment type (FACE or chambers), soil C:N ratio
(an indicator of N availability), soil P availability and mycorrhizal
type, with different relationships for C:N and P between mycor-
rhizal types (y= Mycorrhizal_type X N+ Mycorrhizal type X
P +Fumigation_type, pseudo-R?=0.94). A sensitivity test using
a larger dataset of 205 studies confirmed the robustness of the
relationships described by the statistical model (Supplementary
Discussion). Among 56 potential predictors, mycorrhizal type was
the primary modulator of above-ground biomass responses to eCO,
(P<0.001) (Supplementary Fig. 3).

The eCO, effect in arbuscular mycorrhizal (AM) plants was best
predicted by soil C:N (Fig. 1a, P<0.001), but not significantly by P
(Supplementary Fig. 4a, P=0.2830). The C:N ratio of soil organic
matter is a proxy for plant N availability because it is associated
with stoichiometric limitations of microbial processes in the soil"”.
Although the constraining role of N on CO, fertilization has been
reported in many eCO, studies"**, here we find that soil C:N is a
powerful indicator to quantify the N-limitation on CO, fertilization
across experiments.

In contrast, the eCO, effect in ectomycorrhizal (ECM) plants
was best predicted by soil P (Fig. 1b, P<0.001), but not sig-
nificantly by soil C:N (Supplementary Fig. 4b, P=0.1141). The
critical role of P on CO, fertilization across a large number of
studies was unexpected, but consistent with an increasing body
of research™'°.

Once the effects of mycorrhizal type, C:N, P and fumigation
type were accounted for, other predictors such as climate, biome
type (for example, temperate tree versus grass) or the age of the
vegetation did not explain an important fraction of the variability
in the effect (Supplementary Fig. 5). Previous studies have vari-
ously attributed differences in the magnitude of the CO, effect to
either average temperature (MAT) or precipitation (MAP), or
to both” (see Supplementary Discussion). Using the model
y~MAT + MAP + Fumigation_type instead of our final model
reduced explained variability (R?) from 0.94 to 0.05. These results
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Fig. 1| Soil C:N and soil P are key plant resources driving the CO,
fertilization effect on above-ground biomass. Model selection identified
the most important drivers of the effect in the dataset of CO, experiments
(n=138), indicating responses to CO, were modulated by mycorrhizal
type. a,b, Meta-analytic scatterplots showing the relationship between
the CO, effect and soil C:N (an indicator of nitrogen availability) in AM
studies (n=86) at 0-10 cm (a), and soil available phosphorus in ECM
studies (n=52) measured by the Bray method at 0-10 cm (b). The type
of fumigation technology used (FACE, growth chamber and open top
chamber) significantly influenced (P < 0.001) the magnitude of the CO,
effect. Regression lines represent the response found in FACE studies,
based on a mixed-effects meta-regression model (pseudo-R?=0.94) and
their 95% confidence intervals. Dot sizes are drawn proportional to the
weights in the model and represent, on average, an increase in atmospheric
CO, of 250 ppm. G, growth chamber; OTC, open top chamber.

suggest that the CO, fertilization can only be reliably predicted
when nutrient availability is considered.

We used the quantitative relationships derived from the meta-
analysis to predict the global distribution of the eCO, effect based on
maps for soil C:N, P and mycorrhizal type. Plant responses to eCO,
were significantly higher in open top chamber and growth chamber
experiments than in FACE (Supplementary Fig. 5, P<0.001) (see
Supplementary Discussion), so we included Fumigation_type as a
predictor in the scaling model to produce projections that are con-
sistent with the response found in FACE experiments, as they allow
CO, to be fumigated with as little disturbance as possible.

Our global projections from FACE experiments show a relative
increase in biomass of 12+ 3% (Fig. 2a and Table 1) for the average
250ppm ACO, across experiments. The magnitude of the global
effect is less than the overall effect of ~20% found previously in
meta-analyses™® and the ~30% effect found in several FACE experi-
ments*'. This reduction arises in part because many CO, experi-
ments were conducted in relatively fertile soils or under nutrient
fertilization regimes. Thus, extrapolating nutrient relationships
to areas with naturally poor soils results in a lower global effect.
In absolute terms, we estimated a global increase in total biomass
of 59+13PgC for a 250ppm ACO, (Fig. 2b and Table 1), scaled
from satellite observations of current above-ground biomass'® and
region-specific total to above-ground biomass ratios from the lit-
erature (Supplementary Table 4). Global anthropogenic emis-
sions are currently around 10 PgC annually'?, hence the additional
C-sequestration in biomass is equivalent to 5-6 years of intermedi-
ate CO, emissions.

Forests show the largest relative increases in biomass (Table 1 and
Fig. 2a). Tropical forests are characterized by low P (Supplementary
Fig. 6). However, their association with AM fungi, together with rel-
atively high N (Supplementary Fig. 6), support a widespread, though
moderate, biomass enhancement. Our approach does not explicitly

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange


http://www.nature.com/natureclimatechange

NATURE CLIMATE CHANGE LETTERS

Fig. 2 | Potential above-ground biomass enhancement in terrestrial ecosystems under elevated CO,. These global estimates were upscaled using the
empirical relationships from the key drivers of the effect across experiments synthesized through meta-analysis. a-d, The effects (a,b) and uncertainties
in the estimations (¢,d) shown in this figure represent an increase in atmospheric CO, of 250 ppm in relative (a,c) and absolute (b,d) terms. Uncertainties
are based on the standard error of the effect adjusted for climate and nutrient sampling coverage, that is, increasing in areas with values of nutrient
availability, temperature and precipitation poorly represented by CO, experiments.

Table 1| Summary of upscaled changes in plant above ground and total biomass to elevated CO, across biomes

Biome AM/ECM C:N P AGB relative effect (%) AGB absolute effect (PgC) TB absolute effect (PgC)
Boreal forest 20/80 16.5 9 13.5+4 81+22 10+29

Cropland 90/10 1.5 14.5 10+1 25+04 31+05

Grassland 80/20 13 14.5 8+1 1.2+0.2 37+0.8

Mixed 65/35 14 9.5 10.5+2 22+05 23+06

Shrubland 80/20 13 1n.5 M5+2 1.7+0.3 6.8+13

Temperate forest 40/60 13 n 14+3 42+11 48+14

Tropical forest 80/20 12 7.5 125+3 22.7+6.5 31.4+89

Global 65/25 13 1 12+3 411+£95 58.7+13.4

Rate 17.3+£4.0 24.8+5.7

AM/ECM is the dominance of AM or ECM plants per biome type. C:N and P are the average soil C:N and available phosphorus (ppm) by the Bray method at 0-10 cm. AGB, plant above ground; TB, total
biomass. Absolute changes are given for an increase in atmospheric CO, of 250 ppm. The final row shows the absolute rate of increase in PgC for a standardized increase in CO, of 100 ppm. Uncertainties

represent the standard error of the effect.

include symbiotic acquisition of atmospheric N (N,-fixation), which
is relatively common in tropical forests'. Indeed, tropical N,-fixing
species can show larger CO, effects than non N,-fixing species®, and
thus the response in tropical forests in our model may be underes-
timated. Nevertheless, our dataset contains tropical N,-fixing spe-
cies?, indirectly including this effect. Temperate grasslands, which
are also dominated by AM plants, show the lowest relative biomass
increment as a result of N-limitations. In temperate forests, some of
the largest relative increases (~30%) occur in ECM-forests when P
is high, but AM-forests show low relative biomass increases due to
moderately high C:N (Supplementary Fig. 6).

The absolute eCO, effect is dominated by tropical forests
(Table 1 and Fig. 2b), consistent with ground-based measurements
showing increases in above-ground biomass in recent decades in
intact tropical forests?, with CO, identified as the main driver*>*.
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To account for uncertainties, and to highlight the environmental
conditions not well represented in eCO, experiments, we computed
the standard error of the projections (Methods). Wet-tropical and
boreal ecosystems show the largest uncertainties in absolute and
relative terms, respectively (Fig. 2¢,d), reflecting the limited num-
ber of studies in ecosystems with extreme values of climate and
nutrient availability.

To assess the magnitude of the global eCO, effect we derive
from FACE, we compared it with the increase in biomass attrib-
uted to rising CO, concentration (f) from 1980 to 2010 by
the TRENDY ensemble of dynamic global vegetation mod-
els (DGVMs), standardized to 100ppm ACO,. Our estimated
rate of increase in total biomass is 25+4PgC 100ppm™, a
value within the range of DGVMs and slightly larger than the
multimodel ensemble mean g (Fig. 3a). This similarity is
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Fig. 3 | Comparison of the global effect of elevated CO, with existing independent approaches. a, Comparison of the magnitude of the effect of elevated
CO, on total biomass and the sensitivity of total biomass to the historical increase in atmospheric CO, (f) in the period 1980-2010 as estimated by nine
vegetation models. Results were standardized to 100 ppm ACO,. C, carbon-only models; CN, carbon models with coupled nitrogen cycle; CNP, carbon,
nitrogen and phosphorus limitations. b,c, Comparison of the latitudinal distribution of the relative (b) and absolute (¢) effect of elevated CO, on above-
ground biomass (this study) and past changes in leaf area index (LAI) attributed to the increase in atmospheric CO, in the period 1982-2009 (LAl data
from ref. °). Relative latitudinal changes were computed as the average relative effect of all pixels contained within 1° latitude. Absolute latitudinal changes
were computed as the sum of the absolute effect in all pixels contained within 1° latitude.

remarkable given the independency of both approaches and
reported large inconsistencies in DGVMs in partitioning total to
above-ground biomass*'.

For comparing the geographical distribution of our global eCO,
effect, we used satellite-based observations of changes in leaf area
(greening)’ attributed to CO, rising in the period 1982-2009.
Although changes in greenness and above-ground biomass are not
necessarily correlated, we found an intriguingly strong correlation
between the contemporary CO,-driven increase in greenness and
our independently estimated biomass projections (Fig. 3b,c).

In summary, our results suggest that plant biomass responses to
eCO, are driven primarily by interactions with N and P modulated
by mycorrhizal status. N constrains the strength of CO, fertilization
in most AM plants (Fig. 1a), which currently store ~65% of ter-
restrial vegetation C*, probably because the ability of AM fungi to
supply plants with N is relatively small*>?’. In contrast, we observed
that P availability alters the biomass response to eCO, in ECM
plants, which store ~25% of terrestrial vegetation C*. The sensitiv-
ity of ECM plants to P availability may be driven by the positive
effect of eCO, on N uptake in ECM plants®, which, together with
widespread N deposition, might reinforce the limiting role of P* in
the ecosystem.

Although our analysis uses the most comprehensive dataset of
eCO, observations currently available, it has several limitations.
First, our data-driven approach, unlike DGVMs, is not intended

to capture the complex interactions that drive long-term changes
in the C cycle, such as warming, disturbance, changes in water
availability or N deposition. Instead, it is aimed at the empiri-
cal quantification of net CO, effects, providing constraints on
the attribution of modelled biomass responses to CO, and a bet-
ter mechanistic understanding of the underlying drivers of the
effect. Second, tropical and boreal ecosystems are under-repre-
sented in global eCO, experiments (Supplementary Fig. 1). We
have accounted for this uncertainty in our estimates, which we
also use to highlight the specific regions where eCO, experiments
are urgently needed. Furthermore, it is critical that comprehen-
sive soil data in eCO, experiments are reported, ideally in more
long-term studies.

We observed a strong similarity between the global-level
responses to eCO, found in FACE and past changes in biomass
and greening attributed to CO,. The implications of this finding
are threefold. First, this convergence supports our projections,
indicating that empirical relationships with soil nutrients can be
powerful for explaining large-scale patterns of eCO, responses,
despite ecosystem-level uncertainties. Second, the effect attributed
to rising CO, in past decades by DGVMs is similar in magnitude
to our predicted effect of increasing CO, expected in the future
(Fig. 3a), suggesting that the past CO, fertilization effect may con-
tinue at a similar magnitude for some time, despite nutrient limi-
tations. Third, all else being equal, the same ecosystems that are

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange


http://www.nature.com/natureclimatechange

NATURE CLIMATE CHANGE

LETTERS

currently responsible for most of the greening’ and C uptake'"'* are
likely to remain important for future increases in biomass under
eCO, (see Fig. 3b,c).

A key strength of our upscaling approach is that it synthesizes
observational evidence at local scales and captures a global view of
the eCO, effect on plant biomass and its drivers. DGVMs differ at
the process level (including the current effects of CO, on biomass,
see Fig. 3a), and consequently vary when projecting the future. Our
data-based approach, along with new data from ongoing experi-
ments, can be updated continuously and used to calibrate DGVMs,
providing an empirical constraint for model simulations of the bio-
mass sensitivity to CO,.

This research accounts for the extent of nutrient limitations on
the eCO, fertilization effect and shows that, despite local limitations,
a global and positive effect, consistent with independent evidence
of past CO, fertilization, can be inferred. This result challenges the
strong and pervasive limitations on the projected eCO, fertilization
suggested by some nutrient-enabled models®. For example, in the
TRENDY ensemble of models in Fig. 3a, only OCN and CLM4CN
take N limitations into account, and none of them to our knowl-
edge include P limitations. While model simulations of the CO,
effect on biomass by OCN closely match our data-driven results,
CLM4CN underestimates the CO, fertilization effect by half and
thus overestimates nutrient limitations. This may be related to the
limited capacity of plant N uptake to mediate an excessively open
N cycle in CLM4CN™.

Our results highlight the key role of terrestrial ecosystems, in
particular forests, in mitigating the increase in atmospheric CO,
resulting from anthropogenic emissions. Thus, if deforestation
and land use changes continue decreasing the extent of forests, or
if warming and other global changes diminish or reverse the land
carbon sink, we will lose an important contribution towards limit-
ing global warming.

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, statements of code and data availability and
associated accession codes are available at https://doi.org/10.1038/
$41558-019-0545-2.
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Methods

Overview. The goal of this paper is to scale the effects of eCO, on biomass

globally. This scaling requires a quantification of ‘current’ plant biomass and its
distribution worldwide together with a model based on the environmental drivers
(predictors) that statistically best explain the observations derived from eCO,
studies. We collected data on above-ground biomass (Supplementary Figs. 1 and 2
and Supplementary Table 1) because (1) above-ground biomass is the metric most
commonly reported in eCO, studies and (2) satellites can only detect above-ground
biomass; thus, upscaling the effects of eCO, on above-ground biomass avoids some
of the uncertainties related to modelled products of plant productivity or total
(above-ground and below-ground) biomass.

From an initial pool of 56 potential predictors, we selected the most important
predictors based on variable importance metrics from random-forest meta-
analysis. We built a mixed-effects meta-regression model with the most important
predictors of the effect, and applied this model with global maps to scale the effects
of eCO, on above-ground biomass.

Finally, our results were evaluated in terms of distribution and magnitude.

For the distribution of the effect, we compared the latitudinal distribution of our
estimates with the latitudinal effects of CO, on changes in greenness (LAI) in the
past three decades’. For the magnitude of the effect, we compared our sensitivity of
biomass changes to eCO, with the sensitivity of biomass changes to the historical
increase in atmospheric CO, (f) derived from the TRENDY ensemble of global
vegetation models'’.

Data collection. We collected 1,432 above-ground biomass observations from
205 studies that met our criteria (below), of which 138 had data for all predictors
considered and were therefore included in our analysis. Repeated measurements
over time within the same plots (that is, annual or seasonal measurements)

were considered non-independent, and were thus aggregated so that only one
synthetic measurement per study was included in the meta-analysis. Different
species or treatments within the same site were considered independent, but we
included ‘site’ as a random effect in the mixed-effects meta-analysis to account
for this potential source of non-independency (see Meta-analysis). We consulted
the list of CO, experiments from INTERFACE (https://www.bio.purdue.edu/
INTERFACE/experiments.php), the Global List of FACE Experiments from the
Oak Ridge National Laboratory (http://facedata.ornl.gov/global_face.html), the
ClimMani database on manipulation experiments (www.climmani.org) and the
databases described by Dieleman et al.”’, Baig et al.”* and Terrer et al.»*>**. We used
Google Scholar to locate the most recent publications for each of the previously
listed databases.

We included as many observations as possible for our analysis. Criteria for
exclusion from the main analysis were: (1) soil C:N and N content data for the
specific soils in which the plants were grown were not reported—for example,
studies that included a N fertilization treatment were only included when C:N was
measured in situ, and not in unfertilized plots; (2) species did not form associations
with either AM or ECM—only species in two studies were non-mycorrhizal,
insufficient to identify the drivers of the eCO, response in this group; and (3) the
duration of the experiment was less than 2 months.

We considered the inclusion of factorial CO, X warming or CO, X irrigation
studies when specific soil data for those additional treatments were measured
and reported. These treatments were treated as independent and were included
in the dataset using the specific MAT and MAP for the warming and irrigation
treatments, respectively. Approximately a quarter of the studies were irrigated,
with irrigation more common in cropland studies. In those cases, and if the total
amount of water used in irrigation was not indicated, we assigned the historical
maximum value of MAP extracted from the coordinates of the site in the period
1900-2017 from ref. *. Although in some studies we found soil data for several
soil depth profiles, soil data were most commonly reported for a depth of 0-10 cm.
We thus collected soil data at 0-10 cm, and scaled CO, effects using global gridded
datasets for this depth increment.

Data for MAP, MAT, soil C:N, soil N content, pH, available P and vegetative
and experimental predictors were reported in the literature. Data for the rest of the
predictors were not commonly reported, so we extracted these data from global
gridded datasets (Supplementary Table 2).

We used the check-lists in refs. **, with additional classifications derived
from the literature, to classify plant species as ECM, AM or non-mycorrhizal.
Species that form associations with both ECM and AM fungi (for example,
Populus spp.) were classified as ECM because these species can potentially
benefit from increased N availability due to the presence of ECM fungi*”, as
hypothesized. Overall, CO, responses from species associated with AM and ECM
were similar to strictly ECM species, and their exclusion did not alter the results
of the meta-analysis, as found previously*.

Where possible, data were collected at the species level, and different species
from the same site were considered independent when grown in monoculture
with sufficient replication (that is, multiple plots of the same species and multiple
individuals of the same species in the same plot).

Using these criteria, we found a total of 205 studies with data on above-ground
biomass, with 138 of them including data for all the predictors considered, and
thus included in the main analysis. Additionally, we ran a sensitivity test including
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data from our full dataset of 205 studies, estimating missing soil N and P data
from proxies, in the following order of preference: (1) from studies that, due to
proximity, used similar soils; (2) from gridded datasets (Supplementary Table 2)

in the case of non-fertilized soils; and (3) using the mean values in the dataset for
fertilized and non-fertilized studies within ecosystem types. For example, if a study
comprised of temperate trees in a fertilized soil did not report soil data, and the
characteristics of these soils could not be estimated from similar known soils, we
assigned missing data as the average values in the dataset for temperate trees in
fertilized soils.

An overview of the experiments included in the main analysis is in
Supplementary Table 1, data included in the meta-analysis in Supplementary Fig.
2 and location of the studies in Supplementary Fig. 1. An overview of the studies
excluded from the main analysis is given in Supplementary Table 3, and included
in a sensitivity test.

Model selection and relative importance. We used random-forest model selection
in the context of meta-analysis to identify the most important predictors of the
CO, effect in the dataset. This method has the advantage over maximum likelihood
model-selection approaches that can handle many potential predictors and their
interactions, and considers nonlinear relationships.

Some of the 56 potential predictors included in the analysis were extracted
from global datasets using the coordinates of the experiments (Supplementary
Table 2), and thus included missing values. Because random-forest and meta-
analysis require complete data, and no methods for multiple imputation are
currently available, we applied single imputation using the missForest” algorithm.
Like any random forests-based technique, the main advantage of this method is
that it does not make any distributional assumptions, which means it easily handles
(multivariate) non-normal data and complex interactions and nonlinear relations
amongst the data.

Some of the potential predictors provided redundant and potentially correlated
information (that is, multiple methods to measure soil P and multiple climate
predictors) (see Supplementary Table 2). We used principal component analysis
(PCA) for dimensional reduction, extracting components from map-based,
potentially redundant predictors.

We included all field-based predictors, together with PCA map-based
predictors, in a bootstrapped random-forest meta-analysis recursive preselection
with the metaforest™ R package. We trained a random-forest meta-analysis
with preselected predictors and calculated variable importance with
metaforest™ (Supplementary Fig. 3). Based on partial dependence plots
(Supplementary Fig. 5), we used reciprocal transformations for nonlinear
predictors showing ceiling/floor effects. We included the ten most important
predictors in a mixed-effects meta-regression model with the metafor® R
package, including reciprocal transformations for nonlinear predictors and
potential interactions. Finally, we pruned the model once, keeping only
significant predictors.

As a sensitivity test, we ran an alternative model-selection procedure using
maximum likelihood estimation. For this purpose, we used the rma.mv() function
from the metafor R package® and the glmulti() function from the glmulti R
package™ to automate fitting of all possible models containing the seven most
important predictors and their interactions. Model selection was based on Akaike
Information Criterion corrected for small samples as criterion, using a genetic
algorithm for faster fitting of all potential models. The relative importance value
for a particular predictor was equal to the sum of the Akaike weights (probability
that a model is the most plausible model) for the models in which the predictor
appears. A cut-off of 0.8 was set to differentiate between important and redundant
predictors, so that predictors with relative importance near or less than 0.8 are
considered unimportant.

Meta-analysis. We used the response ratio (mean response in elevated-to-ambient
CO, plots) to measure effect sizes*’. We calculated the natural logarithm of the
response ratio (logR) and its variance for each experimental unit to obtain a single
response metric in a weighted, mixed-effects model using the rma.mv function in
the R package ‘metafor’”’. We included ‘site’ as a random effect (because several
sites contributed more than one effect size and assuming different species or
treatments within one site are not fully independent), and weighting effect size
measurements from individual studies by the inverse of the variance*. Some 5%
of studies did not report standard deviations, which were thus imputed using
Rubin and Schenker’s* resampling approach from studies with similar means and
performed using the R package metagear*.

Measurements across different time-points (that is, over several years or
harvests) were considered non-independent, and we computed a combined effect
across multiple outcomes (for example, time-points) so that only one effect size
was analysed per study. The combined variance that accounts for the correlation
among the different time-point measurements was calculated following the
method described in Borenstein et al.**, using a conservative approach by assuming
non-independency of multiple outcomes (r=1) and performed using the MAd
package in R*.

We considered nonlinear mixed-effects meta-regression models, which were
fitted using reciprocal transformations (1/variable).
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Quantification of uncertainties. Extrapolating the empirical relationships that drive
biomass responses to eCO, (for example, y~ C:N) in the dataset to the globe has an
error associated with the mixed-effects meta-regressions. For the case of soil C:N,
for example, this error is large for high C:N values, as the representativeness of soils
with high C:N values in the dataset is lower, increasing uncertainty in the regression.
For the projections of the eCO, effect, we limited the maps of C:N and P to be
constrained by the minimum and maximum values in the dataset of eCO, studies,
thus assuming saturating responses to avoid extremely high or low (negative) effects
that are not representative of the observed effects. For the projection of uncertainties
in Fig. 2, however, we aimed at representing not only the uncertainty associated with
the representativeness of the most important predictors (C:N and P), but also the
uncertainty associated with the lower sampling effort in areas with extreme climate
(for example, very dry and warm—deserts—or cold and dry—boreal—or wet and
warm—tropical). We therefore ran an alternative model that included temperature
and precipitation in addition to C:N and P. We extrapolated the standard error of
this alternative model using unconstrained maps of temperature, precipitation,

C:N and P to account for the higher level of uncertainty in areas with climate and
soil values that are not well represented by eCO, experiments. Thus, uncertainties

in our projections represent the unconstrained standard error of the mixed-effects
meta-regression, with larger values under soil and climate conditions that are not
adequately studied due to low sample size.

Global estimates of N and P availability. N can be limiting for plants (1) if
there is little total N content or (2) because N is bound in organic matter with a
high C:N ratio. In the latter case, soil microbes that degrade the organic matter
become N-limited, resulting in low amounts of free N available for plant uptake.
Therefore, soil N content and C:N ratio were included as potential predictors

of the CO, effect. Other potential predictors, such as nitrate and ammonium
contents and N mineralization, were not generally available and were therefore
not included in the analysis.

Because soil C:N ratio was an important predictor of the CO,-driven increase
in biomass in our dataset (Fig. la and Supplementary Fig. 3), we used a global
dataset of soil C:N ratio from ISRIC-WISE on a 30 X 30 arcsec grid*’ to upscale this
effect. The range of C:N values covered by eCO, experiments is representative of
the range of C:N values represented in the C:N map*’.

Arid regions typically have very low soil C:N ratios as a result of a small organic
C pool and also low N content***’. Therefore, soil C:N is not a good indicator of
N availability in arid soils, and the model would overestimate the CO, effect in
these areas because it would assume relatively high N availability. To avoid the
overestimation of the CO, effect in arid areas with low C:N, yet low N availability,
we followed the approach of Wang et al.”, who found a threshold of 0.32 in aridity
index (ratio of precipitation to mean temperature) below which plant N uptake is
limited by water availability, and characterized by low soil C:N despite extremely
low soil N availability. We converted areas with aridity index <0.32 to null values
in the map of soil C:N, thereby treating these areas as missing data for analyses
including soil C:N. We used the aridity data from the CGIAR-CSI Global-Aridity
Database™. In our dataset of CO, experiments, the Nevada Desert FACE fell
within this category, with low soil C:N, but low total N*?, and no CO, effect on
biomass™, supporting this assumption. Running the model strictly in areas with
aridity index >0.32 resulted in 0.4 PgC less than by running the model globally.
This small difference was the result of the extremely low above-ground biomass in
arid regions (Supplementary Fig. 7), rendering small absolute increases in biomass
when incorporated in the analysis. Nevertheless, these areas were not included in
the final analysis because it is not likely they could increase their biomass under
elevated CO, due to extremely low N availability. In areas outside this maximum
aridity threshold limiting nitrogen uptake, we studied the impact of climatic and
water availability predictors in explaining the magnitude of the CO, effect.

The amount of P in the soil estimated by the Bray method was one of the
important predictors of the biomass responses to eCO,. We constrained the map
of P amount by the minimum and maximum values of P in the dataset of eCO,
studies, 2-64 ppm, assuming these values are representative of the conditions
at <2 and >64 ppm.

Climate data. For the model selection analysis (Fig. 2) we used MAT and MAP
data for the individual studies reported in the papers. As an alternative climatic
predictors to MAT and MAP to account for the effect of temperature and water
availability, we tested additional predictors not commonly reported in the papers,
calculated using temperatures and precipitation values from CRU or extracted
from other gridded datasets (Supplementary Table 2).

Current above-ground biomass. As global estimates of current above-ground
biomass carbon we used passive microwave-based global above-ground biomass
carbon from Liu et al.'® (v.1.0) at 0.25° resolution and available online for the
period 1993-2012 (http://www.wenfo.org/wald/global-biomass/).

Land cover types. Calculations of changes in biomass in response to CO, across
biomes were performed through zonal statistics with the land cover maps from
ESA (http://maps.elie.ucl.ac.be/CCI/viewer/download.php) at 300 m resolution
(Table 1) and MODIS IGBP (http://glcf.umd.edu/data/lc/) at 5 resolution
(Supplementary Table 4). Both maps were aggregated by dominant classes.
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The indication of climatic region (that is, temperate, boreal, tropical) within forest
land cover types was based on the classification by Pan et al.™.

Changes in LAI In order to evaluate the geographical patterns of our predictions,
we compared the latitudinal distribution of the effects of elevated CO, on above-
ground biomass with changes in LAI attributed to CO, in the period 1982-2009
(ref. °). We used LAI data from three different satellite records and averaged them,
as described in ref. °. The attribution of the relative and absolute effects of CO, on
LAI was estimated through vegetation models, as described in Zhu et al.”.

For the calculation of the effects of elevated CO, on biomass, regions where
water availability limits N uptake (aridity index < 0.32) were excluded from the
analysis (see Global estimates of N and P availability). Thereby, for the comparison
of biomass and LAI changes, these arid regions were excluded from both maps.

Global vegetation models. In order to evaluate the magnitude of the sensitivity
of plant biomass to eCO, derived from our analysis, we analysed biomass /3 for the
historical increase in atmospheric CO, derived from the DGVMs considered in
the TRENDY intercomparison project (http://dgvm.ceh.ac.uk/node/9). We used
TRENDY-v1, which includes nine DGVMs with common input forcing data,
varying CO, only from 1980 to 2010 (S1) and calculated biomass 3 as the change
in biomass relative to the change in atmospheric CO,. For more details on the
TRENDY model simulations see Sitch et al."’.

Calculation of total biomass carbon. The TRENDY models considered here
output total biomass (above ground 4+ below ground), whereas our results refer to
above-ground biomass only. In order to compare the magnitude of the eCO, effect
derived from models and our approach, we have estimated the potential effect of
eCO, on total biomass using region-specific ratios of total biomass and above-
ground biomass reported in the literature (Supplementary Table 4).

Reporting Summary. Further information on the research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The biomass data from CO, experiments summarized in Supplementary Fig. 2
supporting the findings of this study are available in published papers, and soil

and climate data required to upscale CO, effects are available in published datasets
(Supplementary Table 2). Raw data can be obtained from the corresponding author
on reasonable request.

Code availability
The R code used in the analysis presented in this paper is available online and can
be accessed at https://github.com/cesarterrer/CO2_Upscaling.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Synthesis study based on a meta-analysis of data from CO2 experiments. We identify the best descriptors ("moderators") of the CO2
effect on biomass in the dataset based on random-forest meta-analysis. We design a nonlinear mixed-effects meta-regression with
selected moderators, including "site" as a random factor, and use this statistical model to project the CO2 fertilization effect on
biomass globally.
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Research sample Published data from CO2 experiments, excluding pot studies and plants grown in soils of unknown properties.

Sampling strategy We compiled data from as many studies as possible, as long as they met the criteria specified in methods. We prioritized studies
using natural soils.

Data collection We used previously compiled datasets, such as those by INTERFACE (https://www.bio.purdue.edu/INTERFACE/experiments.php), the
Global List of FACE Experiments from the Oak Ridge National Laboratory (http://facedata.ornl.gov/global_face.html), the ClimMani
database on manipulation experiments (www.climmani.org), and the databases described by Dieleman et al. (2012), Baig et al.
(2015), and Terrer et al. (2016, 2017, 2018). We used Google Scholar to locate the most recent publications for each of the
previously listed experiments, as well as soil data for as many experiments as possible. If no soil data were found, the experiment was
excluded from the main analysis, but included in a sensitivity analysis with inferred data from proxies.

Timing and spatial scale  The most recent data were sampled in the field in 2015 and published in 2018; we thus collected data until the date of submission.
Experiments were not excluded based on date of publication, as long as they met the criteria specified in methods and data about
soil properties were reported.

Data exclusions We included as many observations as possible for our analysis. Criteria for exclusion from the main analysis were: i) Soil C:N and N
content data for the specific soils in which the plants were grown were not reported. For example, studies that included a N
fertilization treatment were only included when C:N was measured in situ, and not in unfertilized plots. ii) species did not form
associations with either AM or ECM. Only species in two studies were non-mycorrhizal, insufficient to identify the drivers of the eCO2
response in this group; and iii) the duration of the experiment was less than 2 months.

Reproducibility Our analyses were based on published data (included in Supplementary Fig. 2) and public satellite products and global datasets
(Supplementary Table 2), and the results can be reproduced using the R code in https://github.com/cesarterrer/CO2_Upscaling

Randomization Grouping was based on a machine-learning model selection approach

Blinding Our study is based on existing data, therefore blinding is not relevant.

Did the study involve field work? [ ] Yes X No

Reporting for specific materials, systems and methods

Materials & experimental systems Methods
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