

TECHNICAL COMMENT

PLANT ECOLOGY

Comment on “Unexpected reversal of C₃ versus C₄ grass response to elevated CO₂ during a 20-year field experiment”

Julie Wolf* and Lewis Ziska

Reich *et al.* (Reports, 20 April 2018, p. 317) assert that the responses of C₃ and C₄ grass biomass to elevated CO₂ “challenge the current C₃-C₄ [elevated CO₂] paradigm,” but these responses can be explained by the natural history of the experimental plants and soils without challenging this paradigm.

Rech *et al.* (1) explain that positive responses of plant biomass to elevated CO₂ have disappeared in C₃ grasses and appeared in C₄ grasses over the 20 years of the BioCON experiment. They assert, as do the authors of the associated Perspective (2), that these results challenge current expectations of C₃ and C₄ plant responses to elevated CO₂. Additional context should be made available to qualify this assertion. The pattern docu-

mented by Reich *et al.* can be explained by considering the natural history of the experimental plants and soils, without challenging general expectations of C₃ and C₄ grass responses to elevated CO₂ in the absence of other limitations.

The soil at the BioCON experimental field, which was not described in the paper or its supplement, was an excessively drained outwash sand, originally described as a Typic Udipsamment (3). When the experiments at the Cedar Creek Eco-

system Science Reserve (including BioCON) were initiated, topsoil was bulldozed away from the experimental field to remove existing savannah vegetation and seedbank. The field was then fumigated with methyl bromide (4). Remaining subsoil would have been composed of >90% sand, with little organic matter aside from coatings on sand mineral surfaces. Therefore, despite its 20-year duration, the BioCON experiment documents responses in a disturbed, developing soil. Although results from this experiment might be relevant to agricultural or urbanized soils (5), extrapolating to plant communities in mature, undisturbed soils worldwide is problematic (6, 7).

Several publications from BioCON have demonstrated the importance of plant species identity, species richness, and functional group diversity in moderating responses to CO₂ and N enrichment [e.g., (8–10)], yet Reich *et al.* have used results from monocultures and four-species assemblages of only C₃ or C₄ grasses to make a broad statement about the general responses of C₃ and C₄ grasses to elevated CO₂. Despite variation among species, the C₄ grasses as a group tend to have higher nitrogen use efficiencies than C₃ grasses, reflecting their relatively smaller investment of N in photosynthetic carboxylation enzymes (11). Given the individual characteristics of the eight experimental grass species (Table 1) (12) and the initial seeding rate of 12 g seed/m² for all

Adaptive Cropping Systems Laboratory, USDA Agricultural Research Center, Beltsville, MD 20705, USA.

*Corresponding author. Email: julie.wolf2@ars.usda.gov

Table 1. Traits of the grass species grown in the BioCON experiment (12).

Species	Common name	Active growth period	Life span	Growth form	Growth rate	Minimum root depth (inches)	Height at maturity (feet)	Low-growing grass?	Water usage	Drought tolerance	Fertility requirement
<i>C₄</i> species											
<i>Andropogon gerardii</i>	Big bluestem	Summer	Long	Bunch	Moderate	20	6	No	Low	High	Low
<i>Bouteloua gracilis</i>	Blue grama	Summer and fall	Moderate	Bunch	Rapid	16	1	No	Medium	High	Low
<i>Schizachyrium scoparium</i>	Little bluestem	Summer and fall	Long	Bunch	Moderate	14	3	No	Low	High	Low
<i>Sorghastrum nutans</i>	Indiangrass	Summer and fall	Long	Bunch	Moderate	24	6	No	Medium	Medium	Low
<i>C₃</i> species											
<i>Elymus (Agropyron) repens</i>	Quackgrass	Spring and summer	Moderate	Rhizomatous	Rapid	14	2.6	Yes	Medium	Low	Medium
<i>Bromus inermis</i>	Smooth brome	Spring, summer, and fall	Long	Rhizomatous	Moderate	12	2.5	Yes	Medium	Medium	High
<i>Koeleria cristata (macrocantha)</i>	Junegrass	Spring and fall	Short	Bunch	Rapid	20	1.5	No	High	High	Medium
<i>Poa pratensis</i>	Kentucky bluegrass	Spring, summer, and fall	Long	Rhizomatous	Moderate	10	1.5	Yes	High	Low	High

plots (8), the C₃ grasses would be expected to fill their plots faster than the C₄ grasses, which they did; the C₃ grasses grew greater overall biomass per plot than the C₄ grasses in the first few years (1). Short-lived positive responses of the C₃ plant biomass to elevated CO₂ might also be expected, because their higher overall leaf N contents allow for some dilution of N; increased aboveground biomass with diluted N under elevated CO₂ was indeed observed in early years (13).

The low fertility and water-holding capacity of the experimental soils, however, would favor the experimental C₄ grass species over time, because their fertility requirements—and, in some cases, their water requirements—are lower than in the C₃ species grown (Table 1). This advantage would not be obvious in the earlier years of the experiment, because of the slower growth rates and longer lifespans of the C₄ species relative to the C₃ plants grown (Table 1), but C₄ biomass would be expected to increase relative to C₃ plants over time in these conditions, with associated increases in organic matter additions to the soil from roots and litter. Eventually, the C₄ plots would accumulate more organic matter, providing carbon substrate for N-mineralizing microbes, as well as increased soil nutrient and water-holding capacity. These changes would alleviate N and H₂O limitations in the C₄ plots relative to the C₃ plots, leading to further enhancements in annual biomass accumulation and nitrogen mineralization rates. Therefore, the observed shifts in relative response to elevated CO₂ over time relate to the differential nutritional requirements also inherent in C₃ and C₄ photosynthetic metabolism, as well as to ex-

perimental conditions. Consequently, the observations do not disagree with general expectations of C₃-C₄ dynamics under elevated CO₂ when no other limitations are present.

In addition to methods used to prepare the site before treatment application, the statistical design of the free-air CO₂ enrichment (FACE) arrangement is also important. The authors state that the 88 one- and four-species, C₃-only and C₄-only plots analyzed constitute a fully factorial experiment. In fact, these plots are a subset of a broader experiment where three ambient and three elevated FACE rings provide blocked CO₂ treatments, and N, functional group, and species richness treatments are applied as fully factorial split-plot treatments within the blocks (10). The monoculture and four-species plots analyzed in this paper are unevenly distributed among three ambient and three elevated FACE rings. This unbalanced design usually means that the model sum of squares for overall treatment effects is not equal to the sum of individual treatment sums of squares, which precludes straightforward repeated-measures analysis (14). The authors do not describe how their statistical analysis addresses these limitations, nor do they mention any multiple-test correction to the *P* values obtained in this and earlier reports of nonindependent response variables over the years of the experiment.

We recognize that long-term (20-year) experiments such as BioCON are invaluable and provide unique information; however, before extrapolating to a broader, ubiquitous inference, attention should be given to both the statistical details and the broader context of the environmental limita-

tions associated with the location. In low-*n* FACE experiments, as described here, underlying variability in soils, particularly nutrient availability, could have an outsized impact on result interpretation [e.g., (15)].

The general theory of C₃-C₄ dynamics under elevated CO₂, and its use in the Earth System Models that encode it, is a fundamental aspect of plant biological responses to rising carbon dioxide. Questioning this aspect should be encouraged. However, we would caution that additional research is necessary before the C₃-C₄ dynamic in response to CO₂ is invalidated.

REFERENCES

1. P. B. Reich, S. E. Hobbie, T. D. Lee, M. A. Pastore, *Science* **360**, 317–320 (2018).
2. M. Hovenden, P. Newton, *Science* **360**, 263–264 (2018).
3. D. Grigal, L. Chamberlain, H. Finney, D. Wroblewski, E. Gross, “Soils of the Cedar Creek Natural History Area” (Miscellaneous Report 123, University of Minnesota Agricultural Experiment Station, 1974).
4. J. Wolf, N. C. Johnson, D. L. Rowland, P. B. Reich, *New Phytol.* **157**, 579–588 (2003).
5. T. O. West, W. M. Post, *Soil Sci. Soc. Am. J.* **66**, 1930–1946 (2002).
6. P. Smith, *Global Change Biol.* **10**, 1878–1883 (2004).
7. J. Six, K. Paustian, *Soil Biol. Biochem.* **68**, A4–A9 (2014).
8. J. M. Craine, P. B. Reich, *New Phytol.* **150**, 397–403 (2001).
9. P. B. Reich *et al.*, *Nature* **410**, 809–812 (2001).
10. P. B. Reich *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* **101**, 10101–10106 (2004).
11. R. H. Brown, *Crop Sci.* **18**, 93–98 (1978).
12. Natural Resources Conservation Service, PLANTS Database (U.S. Department of Agriculture, 2018); <http://plants.usda.gov>.
13. P. B. Reich *et al.*, *New Phytol.* **150**, 435–448 (2001).
14. J. Gurevitch, S. T. Chester Jr., *Ecology* **67**, 251–255 (1986).
15. N. H. Oh, M. Hofmocel, M. L. Lavine, D. D. Richter, *Global Change Biol.* **13**, 2626–2641 (2007).

7 May 2018; accepted 11 July 2018
10.1126/science.aau1073

Comment on "Unexpected reversal of C₃ versus C₄ grass response to elevated CO₂ during a 20-year field experiment"

Julie Wolf and Lewis Ziska

Science 361 (6402), eaau1073.
DOI: 10.1126/science.aau1073

ARTICLE TOOLS

<http://science.scienmag.org/content/361/6402/eaau1073>

REFERENCES

This article cites 13 articles, 3 of which you can access for free
<http://science.scienmag.org/content/361/6402/eaau1073#BIBL>

PERMISSIONS

<http://www.scienmag.org/help/reprints-and-permissions>

Use of this article is subject to the [Terms of Service](#)

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title *Science* is a registered trademark of AAAS.