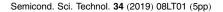

LETTER

$\mathrm{Ga_2O_3}$ metal-oxide-semiconductor field effect transistors on sapphire substrate by MOCVD

To cite this article: Ji-Hyeon Park et al 2019 Semicond. Sci. Technol. 34 08LT01


View the article online for updates and enhancements.

IOP ebooks™

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

Letters

Letter

Ga₂O₃ metal-oxide-semiconductor field effect transistors on sapphire substrate by **MOCVD**

Ji-Hyeon Park, Ryan McClintock and Manijeh Razeghi®

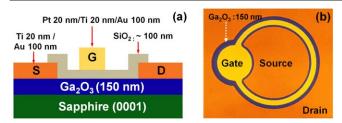
Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States of America

E-mail: razeghi@eecs.northwestern.edu

Received 22 April 2019, revised 5 June 2019 Accepted for publication 24 June 2019 Published 5 July 2019

Abstract

Si-doped gallium oxide (Ga₂O₃) thin films were grown on a c-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD) and fabricated into metal oxide semiconductor field effect transistors (MOSFETs). The Ga₂O₃ MOSFETs exhibited effective gate modulation of the drain current with a complete channel pinch-off for $V_G < -25 \text{ V}$, and the three-terminal off-state breakdown voltage was 390 V. The device shows a very low gate leakage current ($\sim 50 \text{ pA mm}^{-1}$), which led to a high on/off ratio of $\sim 10^8$. These transistor characteristics were stable from room temperature to 250 °C.


Keywords: gallium oxide, MOCVD, MOSFET

(Some figures may appear in colour only in the online journal)

1. Introduction

Gallium oxide (Ga₂O₃) materials are an excellent candidate to replace SiC or GaN materials for high power electronic applications due to their high breakdown field, which can be predicted from their wide bandgap [1]. Ga₂O₃ has several polymorphs such as α -, β -, γ -, δ -, ε - and κ - phase. Recent research trends have shown that α - and β -phase Ga_2O_3 have been the most studied for power electronic devices [2]. Particularly, since the β -phase has become easier to access due to the availability of native substrate, research on the fabrication of the power device using the β -Ga₂O₃ has been rapidly developed. So far, β -Ga₂O₃ has been reported for molecular beam epitaxy (MBE) grown metal semiconductor field effect transistors (MESFET) on β -Ga₂O₃ substrate, metal oxide semiconductor field effect transistors (MOSFET) in depletion mode and normally off MOSFET using Si ion implantation [1, 3, 4]. Native Ga₂O₃ substrates showed very good transistor characteristics and stable operation behavior at temperatures as high as 250 °C [5]. Furthermore, various structures of power application devices such as a vertical type MOSFET and fin-array field effect transistors (finFETs) have been continuously reported [6, 7]. Another approach is to report on the power electronic devices of α-Ga₂O₃ grown on a sapphire substrate by mist chemical vapor deposition (CVD) and halide vapor phase epitaxy (HVPE), which can provide a low cost and a large area [8, 9]. Heteroepitaxially grown α -Ga₂O₃ has been fabricated into a variety of power devices, from Schottky diodes to MESFETs, and some devices have reached mass production [10–12]. This heteroepitaxial growth makes it possible to use the amazing potential of Ga₂O₃ so rapidly. However, α -Ga₂O₃ has a phase transition issue at higher temperatures [13–15]. As far as we know, there are no cases of fabricating MOSFETs for practical applications using metalorganic chemical vapor deposition (MOCVD) to grow thermally stable κ -Ga₂O₃ thin film on sapphire substrate. In this study, we fabricated and evaluated ~ 150 nm thick *n*-type Ga₂O₃:Si thin film MOSFETs grown by MOCVD on c-plane sapphire substrate as an approach to solve these phase transition issues. The fabricated devices exhibited superior performance compared to other MOSFETs fabricated from Ga₂O₃ grown on sapphire substrate by MOCVD [16, 17]. It

Figure 1. Schematic illustration of the (a) cross section and (b) plan view of the circular Ga_2O_3 :Si MOSFET design.

was also stable from room temperature (RT) to 250 $^{\circ}$ C. This device demonstrates the possibilities of thermally stable, low cost and high scalable n-type Ga_2O_3 thin films MOSFET directly grown on a sapphire substrate by MOCVD for power electronics applications.

2. Experimental procedure

2.1. Material growth

A commercial horizontal-flow MOCVD reactor (AIXTRON 200/4 RF) was used to grow n-type ~ 150 nm thick Ga_2O_3 :Si thin films on c-plane sapphire at a growth temperature of 670 °C under H_2 carrier gas using a conventional trimethylgallium (TMGa) bubbler and high purity deionized water as the gallium and oxygen precursors, respectively. Si H_4 gas was used as a dopant for n-type doping. The growth pressure was 50 mbar and the VI/III ratio was 324; the growth rate was 10 nm min^{-1} . The Ga_2O_3 :Si thin films were n-type with Hall measurement showing a carrier concentration of 2×10^{18} and a low mobility of around $1 \text{ cm}^2 \text{ V}^{-1} \cdot \text{s}^{-1}$. After growth, the surface morphology and crystalline structure of the Ga_2O_3 thin films was studied using scanning electron microscopy (SEM) and x-ray diffraction (XRD) systems, respectively.

2.2. Fabrication procedure of circular Ga₂O₃:Si MOSFET

To evaluate the MOSFET performance of the n-type Ga_2O_3 :Si, first we fabricated a simple circular type MOSFET. Figures 1(a) and (b) show a schematic illustration of the circular Ga_2O_3 :Si MOSFET design. Ti/Au (20/100 nm) was e-beam evaporated to form the metal contacts for the source and drain electrodes. The source and drain metal contacts show ohmic behavior without additional annealing. The 100 nm SiO_2 dielectric layer was formed by plasma-enhanced chemical vapor deposition (PECVD) at 350 °C. Finally, the Pt(20 nm)/Ti(20 nm)/Au(100 nm) gate electrode was e-beam evaporated on the SiO_2 layer. The gate length was 15 μ m, the spacing between the source/drain was 30 μ m, and the diameter of the inside source circular pad was 100 μ m.

2.3. Fabrication procedure of square type Ga₂O₃:Si MOSFET

In order to isolate the devices, the Ga_2O_3 :Si thin film was first patterned into 200 μ m wide stripes via conventional lithography and electron cyclotron resonance reactive ion etching (ECR-RIE) using CF₄. The subsequent fabrication steps were

the same as for the circular design, but used the layout shown in figure 2(a). Figure 2(b) shows a false-color optical microscope image of square type Ga_2O_3 :Si MOSFETs. The MOSFETs has a gate length of 10 μ m (L_G), a gate-source spacing of 10 μ m (L_{GS}) and a gate-drain spacing of 20 μ m (L_{GD}).

2.4. Device measurement

Then both fabricated circular and square type MOSFETs were tested using a semiconductor parameter analyzer and probe station. Additionally, the temperature dependent operating behavior of square type Ga₂O₃:Si MOSFET was evaluated using the probe station with a thermal stage.

3. Results and discussions

Figure 3(a) shows a tilted view SEM image of the n-type Ga₂O₃:Si thin films on c-plane sapphire substrate grown at 670 °C. As can be seen in figure 3(a), the *n*-type Ga₂O₃:Si thin film was uniformly grown on the sapphire substrate without any cracks. Inset shows a cross-sectional SEM image of \sim 150 nm thick *n*-type Ga₂O₃:Si thin film. The growth rate was 10 nm min⁻¹. Figure 3(b) shows an AFM image of the as-grown n-type Ga_2O_3 :Si thin film. The as-grown n-type Ga_2O_3 :Si thin film presents as an aggregate of 1 to 2 μ m grains, with a root-mean-squared (RMS) roughness of 3.0 nm. We have previously studied our films via transmission electron microscopy (TEM) and reported them to be κ -Ga₂O₃ after investigating the relationship between the film and c-plane sapphire substrates at the atomic level [18]. κ -Ga₂O₃, is an analog of orthorhombic κ -Al₂O₃ with the space group of Pna2₁. XRD omega/2theta scans of the n-type Ga₂O₃:Si thin film on c-plane sapphire are shown in figure 3(b). Three sharp peaks are located at $\sim 9.5^{\circ}$, $\sim 19.4^{\circ}$ and $\sim 29.9^{\circ}$, consistent with the (002), (004), and (006) peaks, respectively, of κ -Ga₂O₃. In addition, to investigate the thermal stability of the grown Ga₂O₃:Si, annealing was performed under and N₂ and water vapor atmosphere at 900 °C for 20 min. Figure 3(c) shows the omega XRD data before and after annealing. Despite the high annealing temperature, no phase transition to the generally known β -phase occurred. Only a slight increase in the XRD intensity was observed after annealing, with this increase being attributed to reduction of oxygen vacancies and improved local crystallinity after annealing in the N₂ and water vapor ambient. And the FWHM value increased from slightly 808 to 927 arcsec, but no change was observed in the surface of Ga₂O₃:Si thin films after annealing. This suggest the crystal structure of our *n*-type Ga₂O₃:Si thin film is stable even at a high temperature.

Figure 4(a) shows the DC output I-V (I_D - V_{DS}) characteristics of the circular Ga_2O_3 :Si MOSFET at gate voltages (V_G) from 10 to -40 V in steps of -5 V while the V_{DS} was swept from 0 to 100 V. The I_D is effectively modulated by the V_G with good saturation and sharp pinch-off characteristics. A maximum I_D of 26.7 mA mm $^{-1}$ is obtained for $V_G = 10$ V and the three-terminal breakdown voltage (V_{br}) at the off state

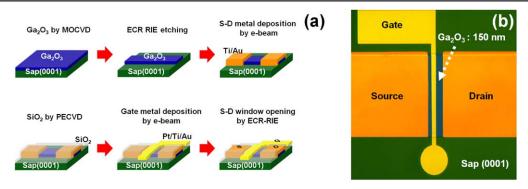
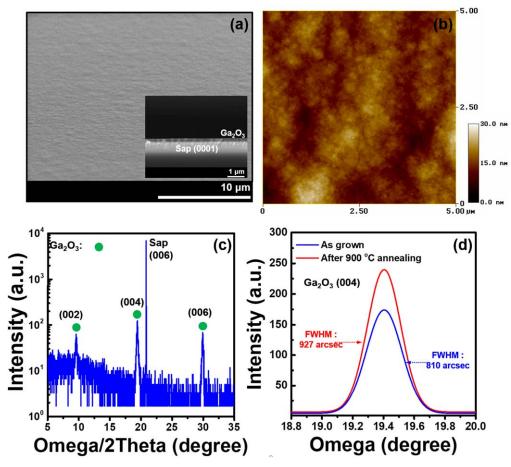
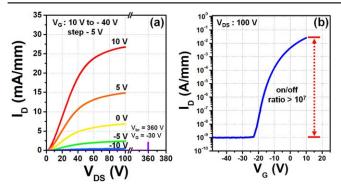
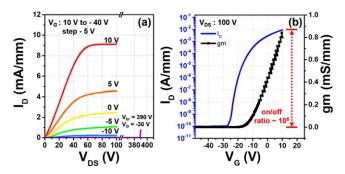



Figure 2. (a) Fabrication process for square type Ga₂O₃:Si MOSFETs and (b) optical microscope image of square type Ga₂O₃:Si MOSFETs.


Figure 3. (a) Tilted view SEM image (Inset shows a cross-sectional SEM image), (b) AFM image and (c) XRD pattern of Ga₂O₃:Si thin films grown on c-plane sapphire substrate; (d) omega XRD of as-grown and after annealing Ga₂O₃:Si thin films.

is as high as 360 V at $V_G = -30$ V. Figure 4(b) shows the transfer characteristics at a V_{DS} of 100 V. The device exhibits depletion mode operation, and the I_D on/off ratio is over 10^7 . The characteristics of this Ga_2O_3 :Si MOSFET fabricated on c-plane sapphire substrate are comparable to previously reported β - Ga_2O_3 transistors using β - Ga_2O_3 homo-substrate [1, 4, 5, 19, 20].


We also investigated the characteristics of the square type Ga_2O_3 :Si MOSFETs. Figure 5(a) shows the DC output I-V (I_D - V_{DS}) characteristics of the square type Ga_2O_3 :Si MOSFET at gate voltages (V_G) from 10 to -40 V in steps of -5 V while the V_{DS} was swept from 0 to 100 V at RT. The I_D is

effectively modulated by the V_G with good saturation and sharp pinch-off characteristics. A maximum I_D of $9.12\,\text{mA}\,\text{mm}^{-1}$ is obtained for $V_G=10\,\text{V}$ and the three-terminal breakdown voltage (V_{br}) at the off state is as high as 390 V at $V_G=-30\,\text{V}$. Figure 5(b) shows the transfer characteristics at a V_{DS} of 100 V. The device exhibits depletion mode operation and the device shows a very low gate leakage current of 50 pA mm $^{-1}$, which leads to a high on/off ratio of $\sim 10^8$. The maximum transconductance was $0.8\,\text{mS}\,\text{mm}^{-1}$. A field-effect mobility of $2.43\,\text{cm}^2\,\text{V}^{-1}\cdot\text{s}^{-1}$ was extracted from the transfer characteristics of the square type Ga_2O_3 :Si MOSFET and a sub-threshold slope (SS) of

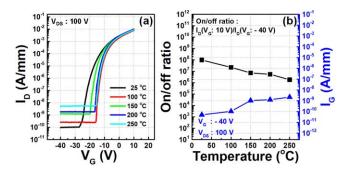


Figure 4. (a) DC I–V characteristics and (b) transfer characteristics of circular Ga₂O₃:Si MOSFET measured at RT.

Figure 5. (a) DC I–V characteristics and (b) transfer characteristics of square type Ga₂O₃:Si MOSFET measured at RT.

Figure 6. (a) Transfer characteristics of square type Ga_2O_3 :Si MOSFET with V_{DS} 100 V and (b) on/off ratios and I_G as a function of operating temperature.

1.12 V/dec was calculated. These circular and square MOSFETs results suggest that not only have practical Ga_2O_3 MOSFETs have been fabricated, but also that Ga_2O_3 :Si thin films grown on c-plane sapphire substrate by MOCVD have great potential for future power devices.

We investigated the performance of the square Ga_2O_3 :Si MOSFETs at various operating temperatures ranging from RT to 250 °C in air condition using semiconductor parameter analyzer with a thermal stage. No significant degradation of the device surface was apparent after operating at the elevated temperatures figure 6(a) shows the temperature dependent transfer characteristics at V_{DS} of 100 V. The maximum I_D improved with increasing operating temperature and no significant change in the V_G required for pinch-off was observed. The on/off ratio in figure 6(b), defined as the I_D at $V_G = 10$ V divided by the I_D at $V_G = -40$ V. The I_D on/off

ratios slightly decreased by increasing the I_G according to the operating temperature; however, the devices maintained the high on/off ratio even at 250 °C. The maximum I_D was maintained even after thermal cycling the device 10 times from 250 °C to RT, and it was observed that the on/off ratio of $\sim \! 10^8$ at RT was recovered. Temperature dependent operating performance of the circular device also showed similar behavior. All results indicate that MOSFETs fabricated from Ga_2O_3 :Si grown by MOCVD on c-plane sapphire are airstable even after the repeated high temperature measurements; this is the outstanding performance MOCVD grown Ga_2O_3 MOSFET on sapphire [16, 17].

4. Conclusion

We have demonstrated high-performance circular and square MOSFETs from Ga_2O_3 :Si grown on c-place sapphire by MOCVD. The circular and square MOSFET devices showed maximum I_D of $26.7 \, \text{mA mm}^{-1}$ and $9.12 \, \text{mA mm}^{-1}$ with excellent breakdown voltages of $360 \, \text{V}$ and $390 \, \text{V}$, respectively. And both devices exhibited high on/off ratios of over 10^7 to 10^8 . Moreover, the device operated well up to at $250 \, ^{\circ}\text{C}$ with no significant degradation. In conclusion, MOSFETs fabricated from Ga_2O_3 :Si grown by MOCVD on c-plane sapphire demonstrate the remarkable potential for Ga_2O_3 to be applied for next generation for power electronics applications.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. ECCS-1748339.

ORCID iDs

Manijeh Razeghi https://orcid.org/0000-0002-7762-6904

References

- [1] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Gallium oxide (Ga₂O₃) metalsemiconductor field-effect transistors on single-crystal β-Ga₂O₃ (010) substrates Appl. Phys. Lett. 100 013504
- [2] Pearton S J, Ren F, Tadjer M and Kim J 2018 Perspective: Ga₂O₃ for ultra-high power rectifiers and MOSFETS J. Appl. Phys. 124 220901
- [3] Wong M H, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2016 Electron channel mobility in silicondoped Ga₂O₃ MOSFETs with a resistive buffer layer *Jpn. J. Appl. Phys.* 55 1202b9
- [4] Wong M H, Nakata Y, Kuramata A, Yamakoshi S and Higashiwaki M 2017 Enhancement-mode Ga₂O₃ MOSFETs with Si-ion-implanted source and drain *Appl. Phys. Express* 10 041101
- [5] Higashiwaki M, Sasaki K, Kamimura T, Hoi Wong M, Krishnamurthy D, Kuramata A, Masui T and Yamakoshi S

- 2013 Depletion-mode Ga_2O_3 metal-oxide-semiconductor field-effect transistors on β - Ga_2O_3 (010) substrates and temperature dependence of their device characteristics *Appl. Phys. Lett.* **103** 123511
- [6] Krishnamoorthy S, Xia Z, Bajaj S, Brenner M and Rajan S 2017 Delta-doped β-gallium oxide field-effect transistor Appl. Phys. Express 10 051102
- [7] Chabak K D et al 2016 Enhancement-mode Ga₂O₃ wrap-gate fin field-effect transistors on native (100) β-Ga₂O₃ substrate with high breakdown voltage Appl. Phys. Lett. 109 213501
- [8] Nishinaka H, Tahara D, Morimoto S and Yoshimoto M 2017 Epitaxial growth of α-Ga₂O₃ thin films on a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe₂O₃ buffer layers *Mater. Lett.* 205 28–31
- [9] Yao Y, Okur S, Lyle L A M, Tompa G S, Salagaj T, Sbrockey N, Davis R F and Porter L M 2018 Growth and characterization of α -, β -, and ϵ -phases of Ga₂O₃ using MOCVD and HVPE techniques *Mater. Res. Lett.* **6** 268–75
- [10] Masaya O, Rie T, Hitoshi K, Tomochika T, Takahiro S and Toshimi H 2016 Schottky barrier diodes of corundumstructured gallium oxide showing on-resistance of 0.1 mΩ · cm² grown by MIST EPITAXY® Appl. Phys. Express 9 021101
- [11] Kaneko K, Fujita S and Hitora T 2018 A power device material of corundum-structured α-Ga₂O₃ fabricated by MIST EPITAXY[®] technique *Jpn. J. Appl. Phys.* 57 02CB18
- [12] Dang G T, Kawaharamura T, Furuta M and Allen M W 2015 Mist-CVD grown Sn-doped α-Ga₂O₃ MESFETs *IEEE Trans. Electron Devices* 62 3640–4

- [13] Shinohara D and Fujita S 2008 Heteroepitaxy of corundumstructured α-Ga₂O₃ thin films on α-Al₂O₃ substrates by ultrasonic mist chemical vapor deposition *Jpn. J. Appl. Phys.* 47 7311–3
- [14] Kaneko K, Suzuki K, Ito Y and Fujita S 2016 Growth characteristics of corundum-structured α-(Al_xGa_{1-x})₂O₃/Ga₂O₃ heterostructures on sapphire substrates J. Cryst. Growth 436 150-4
- [15] Son H and Jeon D-W 2019 Optimization of the growth temperature of α-Ga₂O₃ epilayers grown by halide vapor phase epitaxy J. Alloys Compd. 773 631–5
- [16] Shen Y S, Wang W K and Horng R H 2017 Characterizations of metal-oxide-semiconductor field-effect transistors of ZnGaO grown on sapphire substrate *IEEE J. Electron Devices Soc.* 5 112–6
- [17] Tadjer M J et al 2016 Structural, optical, and electrical characterization of monoclinic β-Ga₂O₃ grown by MOVPE on sapphire substrates J. Electron. Mater. 45 2031–7
- [18] Xu Y, Park J, Yao Z, Wolverton C, Razeghi M, Wu J and Dravid V P 2019 Strain-induced metastable phase stabilization in Ga₂O₃ thin films ACS Appl. Mater. Interfaces 11 5536–43
- [19] Zhou H, Si M, Alghamdi S, Qiu G, Yang L and Ye P D 2017 High-performance depletion/enhancement- mode β -Ga₂O₃ on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA mm⁻¹ *IEEE Electron Device Lett.* 38 103–6
- [20] Bae J, Kim H W, Kang I H, Yang G and Kim J 2018 High breakdown voltage quasi-two-dimensional β-Ga₂O₃ fieldeffect transistors with a boron nitride field plate Appl. Phys. Lett. 112 122102