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Abstract—We consider the problem of building descriptive 3D
maps from sparse and noisy range sensor data. We expand our
previously proposed method leveraging Bayesian kernel inference
for prediction of occupancy in locations not directly observed
by a range sensor. In this work, we show that our kernel
inference approach generalizes previous “counting sensor model”
approaches from discrete occupancy grids to continuous maps.
Our approach enables prediction about occupancy in regions
unobserved by the range sensor based on local measurements,
and smoothly transitions to a prior in regions lacking sufficient
data for reliable inference. Furthermore, we demonstrate quan-
titatively using simulated data that the mapping performance of
our method can be improved by considering rays as continuous
observations, rather than sampling discrete free-space point
observations along rays. Though the maps produced by our
method are in principle continuous, discretizing space affords
us several computational advantages, including the ability to
apply recursive Bayesian updates, that allow us to perform
inference very efficiently, even on large datasets. To demonstrate
this advantage, we present experimental results applying this
method to large-scale lidar data collected with a ground robot,
showing real-time performance. Other field robotics applications,
including underwater 3D mapping with sonar, are explored
qualitatively.

Index Terms—Mapping, Range Sensing, Learning and Adap-
tive Systems, Field Robots.

I. INTRODUCTION

TRADITIONAL approaches to occupancy grid mapping
[1], [2] discretize space into cells and estimate whether

each individual cell is occupied, independent of all others.
This poses a modeling challenge for sparse lidar measure-
ments collected by ground or aerial vehicles, or noisy sonar
measurements in the case of marine robots. In particular,
sparsity and noise in range sensor data can leave gaps and
inconsistencies in traditional occupancy grid maps, which can
be misleading in robot planning and exploration scenarios. If
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a sensor ray has not directly passed through a grid cell, the
occupancy state of that cell is assumed unknown. However,
this assumption neglects the possibility that there may be
ample local information to accurately infer the state of the cell
in question. Thus, in order to build denser occupancy maps,
we can make use of local context to predict occupancy in
unobserved areas, rather than estimating occupancy for every
location in space independently.

Our goal is to efficiently build dense, descriptive 3D occu-
pancy maps given sparse, noisy range sensor data by inferring
occupancy in unobserved regions of the map. Such maps will
aid planning and navigation for a range of robotic systems,
but in this work we focus on applications to ground vehicles
equipped with lidar sensors and underwater vehicles equipped
with sonar, in environments that are richly populated with
structures of interest. Methods that currently address this
goal are either inefficient computationally (as in the case of
Gaussian process regression, with a O(N3) time complexity
in the number of range measurements [3]), or they infer point
estimates of occupancy probabilities, as in the case of logistic
regression [4], without estimating higher-order moments of the
probability distribution over occupancy, which can be used to
guide robot planning and exploration over incomplete maps.

To build more descriptive 3D occupancy maps, we propose
a method leveraging Bayesian kernel inference. This concept
first appeared in our recent prior work [5], where we showed
that the proposed Bayesian kernel inference-based mapping
approach accurately predicts occupancy maps in substantially
less time than Gaussian process-based alternatives, while pro-
viding uncertainty estimates that can model situations without
enough observed data to make a reliable occupancy prediction.
Furthermore, it admits exact recursive updates to its predic-
tions given new data, and reverts to a prior, which we may
specify, whenever there is insufficient training data in the
local vicinity of a query point to infer occupancy reliably.
These properties make the proposed approach particularly
well-suited for computationally-constrained mobile robot plat-
forms, drones, and low-cost autonomous underwater vehicles,
especially when the former are combined with high data-
throughput sensors like lidars, and without network access
to more powerful computational resources, since our method
features a computational complexity that is logarithmic in the
size of the training data.

In this paper, we expand our prior work [5] in several ways.
First, we derive the Bayesian generalized kernel inference
based mapping method as a continuous-space generalization
of the classic “counting sensor model” [6]. This approach
provides new insight into our method as a “kernel-smoothed”
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sensor model, which we formalize in terms of a bound on
Kullback-Liebler divergence. We also demonstrate quantita-
tive advantages on simulated data by modeling sensor rays
as continuous free-space observations, rather than sampling
discrete free-space points along rays. To demonstrate the
computational benefits obtained by our method while retain-
ing accuracy, particularly when restricting the set of query
locations to a grid, we substantially expand our experimental
results from prior work, applying our method to real-time,
large-scale mapping with an outdoor mobile ground robot, and
to underwater mapping tasks performed by a sonar-equipped
remotely-operated vehicle (ROV). Finally, we expand previous
qualitative results in a long-term station-keeping example by
providing a theoretical comparison of the limiting behavior
of our approach in comparison to Gaussian process regression
coupled with a Bayesian committee machine. In particular, we
show formally that occupancy probabilities predicted by the
latter method “saturate”, i.e. tend toward 0 or 1 in the infinite
limit, despite repeatedly observing the same scene, while our
approach predicts a fixed, non-binary occupancy probability
with lower variance in the limit.

II. RELATED WORK

Historically, there have been many approaches seeking to
relax the assumption of grid cell independence in traditional
occupancy grid mapping. Thrun [7] proposed an expectation-
maximization method where the predicted occupancy state in
each cell is “flipped” until the map estimate most consistent
with the observations is achieved. While avoiding the indepen-
dence assumption, this method is intractable for large, finely-
discretized grids.

The normal distributions transform (NDT) [8], originally
proposed for scan-matching with range data, has been used
for similar 3D occupancy mapping applications to ours [9].
NDT partitions the workspace into a grid of cells where each
cell stores the parameters of a normal distribution representing
the likelihood of a range measurement. Occupancy mapping
with NDT makes use of recursive updates to the mean and
covariance of these distributions.

More recently, learning-based methods making use of Gaus-
sian process regression have been demonstrated in 2D [3] and
scaled to 3D ([10], [11], [12]) by leveraging approximation
techniques such as partitioning data across multiple, small-
scale regressions, and fusing their products using the Bayesian
committee machine [13]. These methods have shown great
success in predicting occupancy within sparsely covered re-
gions of a map, but in general they suffer from a time complex-
ity that is O(N3) in the number of range measurements, which
may be prohibitive for real-time mapping and navigation tasks.

Several methods have been proposed that seek to achieve the
map prediction accuracy of Gaussian processes with reduced
computational complexity. To this end, Hilbert maps have been
proposed [4]. Hilbert maps make use of a logistic regression
classifier trained via stochastic gradient descent to enable
faster training and inference. By making use of kernel feature
approximations, Hilbert maps can perform inference in time
that is linear in the number of measurements, multiplied by

a constant coefficient that trades off the quality of the kernel
approximation with the computational efficiency. Furthermore,
through approximate Bayesian updates, real-time viable incre-
mental 3D Hilbert mapping has been demonstrated [14].

Building on the Hilbert maps formulation, several methods
have been proposed that seek to improve the underlying
feature representation that is used in the logistic regression
model. The use of automatic relevance determination to shape
the kernel according to the local directions of maximum
variance in range measurements has shown promising results
for mapping tasks in 2D and 3D [15]. Recently these methods
have been augmented through the use of features derived from
the latent representation learned by a variational autoencoder
trained offline on structured range data [16]. While these
methods improved the computational efficiency of the Hilbert
map method, the logistic regression classifier used by all of
the Hilbert mapping approaches does not provide associated
uncertainties in occupancy probability estimates, which can be
used to guide robot planning and exploration [17].

Finally, “confidence-rich” grid maps [18] extend traditional
occupancy grid mapping to consider dependencies between
observations within the measurement cone. The technique
also augments standard occupancy grid maps with confidence
values, similar to our proposed work and to Gaussian process
occupancy mapping, and its utility in support of planning has
been demonstrated in 2D mapping scenarios [19]. While this
method models correlations between observations within the
measurement cone of a sensor, we focus on dependencies that
exist between observations which may not be in the same
measurement cone, and may have been measured at different
points in time.

Of these methods, only Gaussian process regression and
Bayesian generalized kernel inference (the proposed frame-
work) have been shown to be capable of estimating a full
posterior distribution over occupancy probability at all points
in 3D space. Consequently, these methods will form our basis
for comparison and evaluation in the work that follows.

III. BACKGROUND - THE COUNTING SENSOR MODEL

Related to our approach is the counting sensor model for
occupancy grid mapping, proposed in [6]. Assuming map cells
are indexed by j ∈ Z+, the counting sensor model for the
j-th map cell with occupancy probability θj has the Bernoulli
likelihood:

p(yi | θj) = θyij (1− θj)1−yi , (1)

where we define the measurements Y = {y1, . . . , yN | yi ∈
{0, 1}} indicating whether a beam was reflected by or passed
through the map cell containing the corresponding position
in X = {x1, . . . , xN | xi ∈ R3}, so that the i-th range
measurement gives the pair (xi, yi). A single beam from a
range sensor may contain many measurement pairs, where 3D
positions xi corresponding to free space (with yi = 0) are
sampled along the beam and those corresponding to occupied
space (i.e. those with yi = 1) are located at the end-points.
Here we take i as the index of each of these measurements,
and there are N such measurements acquired by the vehicle.
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Algorithm 1 Counting Sensor Model

Input: Training data: X ,Y; Query cell: j
Initialize: αj ← α0, βj ← β0
for each (xi, yi) ∈ (X ,Y) do

if xi in cell j then
αj ← αj + yi
βj ← βj + (1− yi)

end if
end for
return αj , βj

In mapping, we are concerned with the posterior over possible
θj ; p(θj | X ,Y). Adopting a conjugate model, we have the
prior over θj given by Beta(α0, β0), where α0, β0 ∈ R>0

are prior hyperparameters, usually set as α0 = β0 ≈ 0 to
place a small, uninformative prior on occupancy probability.
Applying Bayes’ rule, we find that the posterior is given by
Beta(αj , βj), where αj and βj are defined as follows:

αj := α0 +
∑

i, xi in cell j

yi (2)

βj := β0 +
∑

i, xi in cell j

(1− yi). (3)

That is, αj maintains a count of instances where a beam is
reflected in the j-th grid cell, while βj is a count of instances
where a beam passed through the cell, giving the model its
name. The maximum a posteriori (MAP) estimate of θj then
has the closed-form solution

θ̂j =
αj − 1

αj + βj − 2
, αj , βj > 1, (4)

and we can also compute the expected value and variance of
θj as follows:

E[θj ] =
αj

αj + βj
(5)

V[θj ] =
αjβj

(αj + βj)2(αj + βj + 1)
, (6)

both of which will be useful during the mapping process.
The inference process using the counting sensor model is
summarized in Algorithm 1. As above, we assume grid cells
are indexed by positive, nonzero integers j. Given observations
X , Y , the goal is to compute the parameters of the posterior
Beta distribution for a query cell j, namely αj and βj . Given
the inferred values of these parameters, any of the desired
properties of the distribution over occupancy in the cell j can
be computed, such as the mode (4), mean (5), or variance (6).

The counting sensor model has been used primarily in the
context of discrete grid maps. In the following section, we
will show that our method generalizes the counting model to
continuous maps, and does so by considering the influence of
local observations in a way that mitigates the issues otherwise
encountered as a consequence of the independence assumption
in a traditional realization of occupancy grid mapping.

IV. OCCUPANCY MAPPING WITH BAYESIAN
GENERALIZED KERNEL INFERENCE

To introduce correlation spatially between occupancy pre-
dictions at nearby points in the environment, we consider
adapting the counting sensor model to continuous space. Such
continuous occupancy maps have become desirable recently
for their ability to reduce memory requirements while allowing
queries at arbitrary resolution [3], [4]. Absent a grid, we
lose many of the practical benefits of the counting model for
mapping, as it is highly unlikely that any particular location in
a continuous three-dimensional space will be observed more
than once. To adapt this method to the continuous domain,
we need to establish some neighborhood of a query point for
which sensor observations will be considered relevant.

We first formulate this problem as one of inferring a
smooth distribution over occupancy. The model considers all
points that have been obtained, and in order to reason only
about points in the local neighborhood of a query point, and
therefore avoid the computational burden associated with the
consideration of every point, we use a sparse kernel [20].
Finally, we consider a free space representation where sensor
rays are treated as continuous observations as an alternative
to our previous approach, which samples free space points
along sensor rays. In our derivation, we will assume the map
is static. We use test-data octrees [12] as our primary spatial
representation, allowing us to merge neighboring cells with
the same state, the results of which can be visualized most
easily in Figure 9.

A. Bayesian Generalized Kernel Inference

We may extend the discrete counting sensor model to
the case of continuous occupancy maps by constraining the
inference problem to distributions over occupancy that are
smooth. Here we define a smooth distribution as having
bounded Kullback-Leibler divergence between the “extended
likelihood” p(yi|θ∗, xi, x∗) and the likelihood p(yi|θi). Here
θ∗ is the value of the latent variable, namely the occupancy
probability, at the location of the query point x∗. In [21], it
is shown that the maximum entropy distribution g, which, for
some distribution f satisfies DKL(g‖f) ≤ ρ(x∗, x) is of the
form g(y) ∝ f(y)k(x∗,x) where, DKL(·‖·) is the Kullback-
Leibler divergence, ρ : R3×R3 → R+ bounds the information
divergence from g to f , and k : R3 × R3 → [0, 1] is a kernel
function operating on our three-dimensional spatial inputs. The
kernel k and smoothness bound ρ can be uniquely determined
from one another, and a kernel function is easier to specify
than a bound on information divergence. If g is taken to be the
extended likelihood, and f is the likelihood, then the posterior
distribution of a model with input-output pairs D = {(xi, yi)}
is given by

p(θ | x,D) ∝

[
N∏
i=1

p(yi | θ)k(x,xi)

]
p(θ | x). (7)

Supposing we adopt the same Bernoulli observation model
described in Equation (1), then we can again place a prior
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distribution Beta(α0, β0) over θ and obtain the posterior

p(θ | x,D) ∝

θα0−1(1− θ)β0−1
N∏
i=1

θk(x,xi)yi(1− θ)k(x,xi)(1−yi), (8)

which is proportional to Beta(α, β) with α and β defined as

α := α0 +
N∑
i=1

k(x, xi)yi (9)

β := β0 +
N∑
i=1

k(x, xi)(1− yi). (10)

The similarities between this pair of equations and Equations
(2) and (3) for the grid-based counting model are apparent:
both models consider the sum of observations of each type.
Distinctly, now observations are weighed by their distance
to x, the point we are considering, according to the kernel
function. Furthermore, here we are considering all of the
observations, not just those in a particular cell. Using these
definitions of α and β, we can compute the mode, mean,
and variance for the continuous model exactly as given in
Equations (4)-(6). In areas with little or no training data,
this method will transition to the prior given by α0 and β0.
The kernel in this inference model need not be positive-
definite, nor symmetric. Consequently, we observe that this
method generalizes the counting sensor model. By choosing
a kernel such that if the query point x is in cell j, then
∀i, xiin cell j k(x, xi) = 1 and ∀i, xi¬in cell j k(x, xi) = 0, we
then recover the original counting sensor model.

One advantage to this approach comes when we choose to
restrict our choice of query points during mapping to a grid.
If we query the same locations in space repeatedly, we can
integrate new data recursively by adding the kernel-weighted
contribution of the novel observations to the parameters α and
β as follows:

αt := αt−1 +

Nt∑
i=1

k(x, xi)yi (11)

βt := βt−1 +

Nt∑
i=1

k(x, xi)(1− yi), (12)

for a set of Nt observations. The ability to perform recursive
updates in this fashion also serves to decrease memory usage,
as we can maintain a grid or octree, rather than storing large
point clouds containing an entire history of observations.

B. Sparse Kernel

One issue with the updates as they were presented in
Equations (9) and (10) is that they require the consideration
of every observation we have made to perform inference at
any given location. We would like to enforce some notion
of locality on the inference model to satisfy the intuition that
points which are far away in space are unlikely to be related at
all. To do so, we choose a kernel function giving a value of 0
for points whose distance is greater than some fixed threshold

Fig. 1: An illustrative comparison of free-space representations. From
top to bottom, we show the training data (left) and BGK inference
result (right) due to: (1) coarse linear interpolation of free space, (2)
finer linear interpolation of free space, and (3) point-to-line distance
kernel evaluation.

l > 0. The kernel presented in [20] satisfies this property, and
is defined as follows:

k(x, x′) ={
σ0
[ 2+cos(2π d

l )

3 (1− d
l ) + 1

2π sin(2π dl )
]

if d < l

0 if d ≥ l
(13)

where d = ‖x − x′‖ and σ0 is a constant hyperparameter.
Choosing this sparse kernel allows us to exactly recover the
occupancy probability at a given location by retrieving only the
observations within a distance of l from the query point. We
can efficiently and exactly evaluate the kernel over the relevant
observations in O(logN) time using a k-d tree. Simply by
querying a k-d tree containing the training points for a scan
with radius l about each query point x, we obtain all training
points with nonzero contribution to the kernel computation in
Equation (13). The overall computational complexity of the
inference method is O(M logN), where M is the number of
test points and N is the number of training points.

C. Free Space Representation

For a range sensor, observations representing the “occupied”
class are easily obtained, as they are the endpoints of a sensor
ray. On the other hand, there have been several free-space
representations used in this context: the nearest point on each
ray to a query point [3], linearly or randomly interpolated
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Algorithm 2 Bayesian Generalized Kernel (BGK) Inference

Input: Training data: X ,Y; Query point: x∗
Initialize: α∗, β∗ ← 0
for each (xi, yi) ∈ (X ,Y) do

if use_line then
Compute d from Eq. (14), (15)

else
d← ‖xi − x∗‖

end if
ki ← k(xi, x∗) Sparse kernel, Eq. (13)
α∗ ← α∗ + kiyi
β∗ ← β∗ + ki(1− yi)

end for
return α∗, β∗

points on each ray [4], [12], [14], and free space points
weighed by the length of a range beam [22].

In our previous work [5], the algorithm we termed BGKOc-
toMap made use of free space points linearly interpolated
along each range beam. This free space representation is
potentially problematic for use with the Bayesian generalized
kernel inference model. In the choice of sampling resolution,
we face two potential issues: if the sampling resolution is too
low (i.e. we take relatively few samples), our coverage of free
space will be poor, and there may even be points which lie
along the range beam that are not classified as free according to
the model; if the sampling resolution is too high, we may bias
the model toward predicting free space, since we are artificially
increasing the amount of free space observations, and at its
core, our method is counting observations.

Here we propose instead to consider each range beam
as a single observation of free space, and use the point-
to-line distance when evaluating the kernel. The differences
resulting from this assumption, compared with using linearly
interpolated free space points, are illustrated in Figure 1. The
quality of the sample-based free-space representation is greatly
impacted by the choice of sampling resolution. This approach
is equivalent to using only the point on each range beam
closest to the query point, as proposed in [3]:

xfree =


P, if d < 0

P + d PQ
|PQ| , if 0 ≤ d ≤ 1

Q, if d > 1

(14)

d =
PQ · Px∗
|PQ|

, (15)

in which PQ is the ray between the sensor origin and the
terminal hit point of the range beam and Px∗ is the ray
between the sensor origin and the query point x∗.

In practice, evaluating this expression for every range beam
during every query is undesirable, particularly since the result-
ing kernel computation for many of these points will be zero.
Instead, we take free-space samples along the range beams
as previously, but at query time, we retrieve these samples
and map them back to the set of unique range beams that
produced them. With this method, as long as our sampling

Parameter Description Value
l Kernel Length 0.2 m
σ0 Kernel Scale 0.1

α0, β0 Beta Prior Parameters 0.001

TABLE I: Kernel parameters and Beta prior parameters used for
experimental evaluation.

resolution and radius for obtaining relevant observations (for
example, in a query to a k-d tree) are sufficiently large relative
to the kernel length scale, we can recover all of the lines
with nonzero contribution from the kernel. The predictions are
invariant to free space sampling resolution above the minimum
necessary resolution to recover all of the range beams within
a distance l of a query point. In addition, this line-based
approach, which we term BGKOctoMap-L, retains the same
O(M logN) time complexity as our previous approach, with
some additional memory expenditures to map all free-space
points to their respective lines. In practice, we have found that
BGKOctoMap-L allows us to sample rays at a lower resolution
than when free-space samples are used directly for inference.

D. Algorithm Summary

Pseudocode for the Bayesian generalized kernel (BGK)
inference procedure is provided in Algorithm 2. As in the
inference procedure for the counting sensor model (Algorithm
1), the ultimate objective is to compute the values of the Beta
posterior parameters given observations X , Y . However, in
the BGK inference procedure, these parameters correspond to
a particular location in 3D space, x∗, rather than a map cell,
and thus they are denoted α∗ and β∗. We note the similarities
between our method and the classic counting sensor model,
and in particular we observe that for a query point x∗, we
compute the parameters using kernel-weighted values yi.

V. EXPERIMENTAL RESULTS

We compared our proposed method (BGKOctoMap-L) to
(1) our previous approach using free-space samples (BGKOc-
toMap) [5], (2) Gaussian process OctoMaps (GPOctoMap)
[12], and (3) the standard OctoMap [23]. The comparison was
performed over two simulated datasets with known ground
truth, made in Gazebo [24]; a “structured” environment with
mostly rectangular features and an “unstructured” environment
with primarily rounded obstacles reminiscent of a forest, and
real data both from the University of Freiburg [25], and
collected with our own ground robot on the Stevens campus.
The methods presented, with the exception of OctoMap, all
use our own C++ implementation1, which makes use of the
Robot Operating System (ROS) [26] and the Point Cloud
Library (PCL) [27]. For BGKOctoMap-L, we use the kernel
parameters l = 0.2, σ0 = 0.1, and sample free space linearly
along rays at 1 meter resolution. We use the hyperparameters
α0 = β0 = 0.001 to provide an uninformative prior. All
methods predict at a maximum resolution of 10 cm. For
all other methods requiring free-space points, linearly-spaced

1The code for this paper is implemented in Learning-aided
3D Mapping Library, available at https://github.com/
RobustFieldAutonomyLab/la3dm.
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(a) Environment Model (b) Raw Data (c) OctoMap

(d) GPOctoMap (e) BGKOctoMap (f) BGKOctoMap-L

Fig. 2: Mapping results on a simulated structured-environment dataset.

(a) Environment Model (b) Raw Data (c) OctoMap

(d) GPOctoMap (e) BGKOctoMap (f) BGKOctoMap-L

Fig. 3: Mapping results on a simulated unstructured-environment dataset.

samples were taken along sensor rays at a resolution of 0.5
m. Parameter values are summarized for reference in Table I.
All experiments were performed on a laptop with an 8-core
2.60 GHz Intel i7 CPU running Ubuntu Linux.

A. Simulated Data

Our structured and unstructured simulated datasets have
dimensions 10.0 × 7.0 × 2.0 meters. In Figure 2, we show
the results of the four mapping algorithms we consider in
the structured environment. In these figures, as well as in
subsequent visualizations, only the cells determined to be
occupied are shown. We find that with the exception of

OctoMap, all of the methods are able to fill in gaps in the
walls where sensor coverage is poor. While BGKOctoMap is
able to complete the walls in many cases, there are also many
artifacts on the walls due to the bias toward predicting free
space caused by oversampling free space points along rays.
This is amended in the result from BGKOctoMap-L. Visually,
we find that GPOctoMap and BGKOctoMap-L offer the most
intuitively satisfying results, given what we know about the
environment. In Figure 3, we find that GPOctoMap provides
the best results. This may be due to the fact that there are many
occluded regions of the unstructured map, and GPOctoMap is
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Fig. 4: Receiver operating characteristic of the four competing
methods evaluated on the structured map dataset.

Fig. 5: Precision-recall curve for the four competing methods evalu-
ated on the structured map dataset.

better-suited to the task of extrapolating larger-scale trends in
spatial structure.

In Figures 4 and 6 we provide the receiver operating
characteristic (ROC) curves for each method applied to the
structured and unstructured simulation datasets, respectively.
The ROC curve is produced by varying the threshold on
occupancy probability at which we deem a location occupied.
For the purposes of our evaluation, we consider the positive
class to be occupied and the negative class to be free space.
A range of these values is evaluated, and the true positive rate
and false positive rate are computed. In general, as we lower
the threshold on occupancy probability, we will increase the
true positive rate as well as the false positive rate. The ROC
curve shows how these rates vary with one another as the
occupancy probability threshold is changed, and it is desirable
for a method to achieve a high true positive rate when there is
a very low false positive rate (i.e. a curve tending toward the
upper-left of the plot is best). We also provide the area under
the curve (AUC), which reflects the mapping performance of

Fig. 6: Receiver operating characteristic of the four competing
methods evaluated on the unstructured map dataset.

Fig. 7: Precision-recall curve for the four competing methods evalu-
ated on the unstructured map dataset.

each method. We find that the BGKOctoMap-L method, with
its continuous free-space representation, slightly outperforms
BGKOctoMap and GPOctoMap on the structured environ-
ment. In contrast, the harder unstructured environment is most
accurately mapped by GPOctoMap, though BGKOctoMap-L
slightly outperforms standard BGKOctoMap.

In addition the ROC curves, we provide precision-recall
curves for the structured and unstructured maps respectively
in Figures 5 and 7. Precision is defined as the ratio of true
positives to actual positives (that is, the total number of true
positives plus false positives), and recall is defined as the ratio
of true positives to the total number of predicted positives (i.e.
true positives plus false negatives). Along the curve we vary
the threshold on occupancy probability determining whether
we predict the positive class (occupied) or the negative class
(free) and plot the corresponding values of precision and recall.
In general, better performance is indicated by higher recall
and higher precision, a curve tending toward the upper-right
of the plot. Here we observe that all of the methods perform
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(a) OctoMap (b) GPOctoMap (c) BGKOctoMap (d) BGKOctoMap-L

Fig. 8: Maps built using the Freiburg corridor dataset. All methods produce qualitatively similar maps in the case of relatively dense data.

similarly on the structured dataset, while BGKOctoMap-L
and GPOctoMap slightly outperform other methods on the
unstructured dataset. Most notably, we find that here is an
area where the line-based free-space representation presents
quantitative advantages. Examining the ROC and precision-
recall curves for the unstructured map (Figures 6,7) we find
that augmenting the BGKOctoMap method with the line-
based representation offers performance much more compa-
rable to GPOctoMap. Qualitatively, we observe in Figure 3
some artifacts in the map produced by BGKOctoMap due
to the effects of free-space sampling (in particular curved
features on the flat surfaces where sensor measurements were
made). These effects are substantially reduced by considering
the sensor ray as a continuous free-space measurement with
BGKOctoMap-L.

In terms of computation time, shown in Table II, we find
that at the scale of the simulated data, there is little difference
between the competing approaches. Most notably, OctoMap
has the slowest run time by a small margin. This is due to the
fact that the three other methods benefit from parallelization,
while OctoMap does not. The remaining methods, however,
make use of parallelization for the same set of operations, so
comparison between these methods is more appropriate.

B. Lidar Mapping Experiments
We qualitatively evaluated each method on the Freiburg

corridor dataset [25], as well as a large dataset we collected at
the Stevens campus using a Clearpath Jackal unmanned ground
vehicle (UGV) equipped with a Velodyne VLP-16 lidar. To
support online planning and decision-making by UGVs over
the maps constructed, in any desired location, an embeddable,
real-time viable mapping capability is essential.

The Freiburg corridor dataset is substantially larger than the
simulated datasets, both physically, spanning 43.8×18.2×3.3
meters, and in the amount of data collected by the range sensor.
Consequently, it also provides a more realistic scenario for
comparison of these methods on real range data. In Figure 8,
we show the maps produced using the corridor dataset. On
real data of this scale, we observe that all of the methods
outperform OctoMap on the task of producing a dense map
from range data, though all of the alternatives we tested give
qualitatively similar results. The processing time required for
each method is presented in Table II; here, we find that time
performance of GPOctoMap begins to diverge.

The Stevens campus dataset was collected over about 40
minutes, with a total distance traveled of 2.9 km. Lidar data

was collected while teleoperating the Jackal UGV. Incoming
point clouds were registered using lidar odometry and mapping
(LOAM) [28]. Scans are registered with LOAM at a rate of 1
Hz, then the registered scans are integrated into the occupancy
map using an effective maximum range of 50 m. Though
methods like those in [29] exist, which allow consideration
of pose uncertainty during mapping, we found that LOAM
provided accurate pose estimates with very low drift and gave
high-quality scan registrations that were useful for mapping
even under the assumption of perfect knowledge of pose.

As with the other datasets, Table II shows the average time
per scan and the total time spent processing point clouds for
each method. The reported time per scan includes the entire
processing time for a given lidar scan. This includes storing
hit points and free-space sample points or lines (the “training
data”), building a k-d tree from the data, and querying the
tree to update each grid-cell in the neighborhood of the
training data. Since some point clouds fall outside the effective
maximum range, timing results are provided for scans which
are within sensor range (since data falling outside this range
is not processed). GPOctoMap and OctoMap were not able to
process every scan in real-time without dropping messages.
For these methods, average times were computed on the
scans which were processed, and total times are extrapolated
estimates based on these expected processing times. Both of
the methods using Bayesian generalized kernel inference, on
the other hand, processed all scans falling within sensor range
in real-time. A qualitative comparison of each method from a
ground-level view is provided in Figure 9, and from an aerial
view in Figure 10. This dataset is also visualized in full in this
paper’s video attachment, for both a 50m and 8m maximum
sensing range2. We note that while the primary computational
experiments were performed on laptop with a 2.6 GHz i7 CPU,
the visualization for the video was produced using a desktop
computer equipped with a substantially more powerful 10-core
3.0 GHz i7. Empirical time differences between the methods
persisted even with this change in computation capabilities.

From Figure 9, we observe that BGKOctoMap and
BGKOctoMap-L are able to successfully fill in gaps in lidar
data in the floor, trees, and buildings in the distance. Since we
make the static map assumption, we also obtain ghost artifacts
of the operator walking along with the robot. On this data,
GPOctoMap performs fairly poorly, relative to the alternatives.
This is counterintuitive, but likely owes to a few factors: it

2https://youtu.be/SRXLMALpU20
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(a) OctoMap (b) GPOctoMap (c) BGKOctoMap (d) BGKOctoMap-L

Fig. 9: Map comparison on data from the Stevens Institute of Technology campus, collected with a VLP-16 lidar-equipped Jackal UGV.
Sparsity in the map built using GPOctoMap results from the constraint that the method runs in real-time and drops scans that are unable to
be processed quickly enough. All maps have the same minimum cell size, and differences in cell sizes in the visualization are due to the
cell merging procedure from our use of “test-data octrees” [12]. Maps are colored according to elevation.

(a) Satellite Image (b) OctoMap (c) GPOctoMap (d) BGKOctoMap (e) BGKOctoMap-L

Fig. 10: Aerial view of the Stevens campus maps, showing satellite imagery of the Stevens campus from Google Earth compared to the 3D
maps produced by each method. Due to real-time constraints, the dropped scans of OctoMap and GPOctoMap result in much sparser maps
than those produced by the proposed methods. Maps are colored according to elevation.

Dataset Dimensions (m) Scans Pts./Scan Sampled Pts./Scan Method Avg. Time/Scan (s) Time (s)

Structured Simulation 10.0× 7.0× 2.0 12 3500 1506

BGKOctoMap-L 0.013 0.15
BGKOctoMap 0.013 0.16
GPOctoMap 0.018 0.21

OctoMap 0.021 0.25

Unstructured Simulation 10.0× 7.0× 2.0 12 3500 1506

BGKOctoMap-L 0.013 0.15
BGKOctoMap 0.013 0.15

GPOctoMap 0.013 0.16
OctoMap 0.014 0.17

Freiburg Corridor FR-079 43.8× 18.2× 3.3 66 89445 7601

BGKOctoMap-L 0.32 3.8
BGKOctoMap 0.38 4.6
GPOctoMap 0.46 5.6

OctoMap 0.73 8.8

Stevens Campus 622.4× 344.8× 43.4 2968 26237 12237

BGKOctoMap-L 0.53 1587.9
BGKOctoMap 0.67 1988.6
GPOctoMap 3.3 9794.4

OctoMap 14.6 43332.8

TABLE II: Computation times for the four environments used in mapping experiments with real and simulated lidar data.

must drop a large number of scans during processing, and in
the absence of sufficient “hit” points, GPOctoMap may more
readily infer free space.

C. Underwater Sonar Mapping Experiments

We also evaluated the proposed methods on two underwater
sonar datasets collected by a VideoRay ROV using a Tritech
Micron single-beam scanning sonar. The sonar data was fil-
tered to extract the point along each beam with the maximum
intensity, representing the range to the nearest obstacle. The
range data was clustered to produce landmark observations,
and the landmark locations and robot poses were estimated
jointly using the simultaneous localization and mapping ap-
proach of Wang et al. [30]. Given the estimated poses and

range information, we applied each of the occupancy map-
ping methods under consideration to compare performance on
sparse and noisy range data.

The first dataset, which features a series of submerged
cylindrical pier pilings, was collected at Hudson River Park,
Pier 84, in Manhattan, New York, USA. The second dataset,
which features three angled sections of a corrugated seawall,
was collected at the United States Merchant Marine Academy
in Kings Point, New York, USA. Results from all four mapping
approaches tested are shown in Figures 11 and 12 respectively.
It is evident that both GPOctoMap and BGKOctoMap-L, in
addition to providing descriptive 3D maps, aid in denoising
the sonar data as well. Because low-cost underwater robots are
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(a) Satellite Image
(b) OctoMap (c) GPOctoMap (d) BGKOctoMap (e) BGKOctoMap-L

Fig. 11: Results of the four competing mapping methods applied to the Hudson River Park, Pier 84 dataset.

(a) Satellite Image
(b) OctoMap (c) GPOctoMap (d) BGKOctoMap (e) BGKOctoMap-L

Fig. 12: Results of the four competing mapping methods applied to the US Merchant Marine Academy dataset.

often equipped with severely limited embedded computing re-
sources, and online mapping is essential for obstacle avoidance
if such a robot is operating autonomously, BGKOctoMap-L
presents relevant advantages in its scalability.

D. Station-Keeping Experiment

Here we demonstrate the stable performance of the proposed
mapping algorithm, one of its most desirable and useful
features. We provide a station-keeping scenario in which a
simulated robot repeatedly scans a single location. Using the
structured environment simulation, we repeatedly input the
same point cloud to both BGKOctoMap and GPOctoMap.
The effects of this demonstration are provided in Figure 13,
where we show the output of each method after 1, 15, 30, and
60 scans. We observe that while our method does experience
some slight change due to the contribution from the new data
(particularly in areas where α0+β0 ≈

∑N
i=1 k(x, xi) after one

scan), the change is mild in comparison to that of GPOctoMap.
Repeated application of the BCM update approximations cause
GPOctoMap to gradually predict that the walls and floor of
the map are thicker, even though we update it repeatedly with
the same point cloud in each iteration.

In the case demonstrated in Figure 13, we can analytically
determine the probabilities predicted by a Gaussian process
regression model updated using the BCM in the limit as the
number of scans, K, goes to infinity:

lim
K→∞

p(y∗ = 1 | D1:K) =


1, if µ(1)

∗ > 0

0.5, if µ(1)
∗ = 0

0, if µ(1)
∗ < 0,

(16)

where µ(1)
∗ is the mean value predicted by Gaussian process

regression given the data from the first scan, Di, and training
data is specified with y = 1 for “occupied” observations
and y = −1 for “free” observations. That is, the predictions
made by the Gaussian process in this formulation saturate,
drifting toward 1 or 0 as more repeated observations are made.
In contrast, taking the limit of the expected value of θ as

the number of scans grow in the Bayesian kernel inference
framework, we obtain that the predicted mean converges to
a value that is approximately identical to the value predicted
after the first scan, while the variance decreases. A detailed
derivation of these results is provided in Appendix A.

We observe that by estimating the expected value of the
parameter θ, we explicitly enable confident predictions that
are neither 0 nor 1. If a substantial amount of conflicting data
is collected, all in roughly the same proximity to a query point
x∗, our estimate will be 0.5 with very low variance. That is, we
know with relative certainty that the state of x∗ is unknown.

VI. DISCUSSION

There are a number of areas where our method could be
improved. Our principal assumption in our use of this method
is that the likelihood of a given sensor observation satisfies a
smoothness constraint in space. By choosing a kernel with a
fixed length scale, we are applying the same smoothness con-
straint everywhere. Real environments, however, have structure
in which the likelihood of a sensor observation need not
vary smoothly in every direction, everywhere in the map.
For example, we would expect the likelihood to be roughly
constant for measurements along the tangent of a planar wall,
but to change sharply along the normal to the wall. In [31], a
mapping approach is proposed which varies the length scale of
the kernel in each direction at different locations in space using
the covariance of local observations, determined by clustering
the data as a preprocessing step. Using local information not
only to infer about occupancy, but to shape the kernel may
improve these results further.

In addition, while it is computationally beneficial to rely
only on local information, it is sometimes the case that
structure in data exists at a larger scale than may effectively be
captured by local kernel inference. Since we make use of only
nearby training data at query time, the method is less adept
at extrapolating large-scale trends in data. Nonetheless, we
have observed that it is very capable of filling in many of the
gaps encountered in lidar data. The only methods we found
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(a) BGKOctoMap

(b) GPOctoMap

Fig. 13: In this simulated station-keeping demonstration, we show the results of updating both BGKOctoMap (Top) and GPOctoMap (Bottom)
after the introduction of 1, 15, 30, and 60 scans containing the same data (Left to Right).

to operate in real-time in our campus mapping experiment
were those that made use of Bayesian generalized kernel
inference. For these reasons, we advocate for the Bayesian
generalized kernel inference approach in scenarios where a
vehicle may collect a large amount of sensor data which needs
to be processed in real-time. In the small data regime, the
O(N3) complexity of Gaussian process-based methods may
still allow real-time performance, and in these cases it is the
preferred method to extrapolate larger-scale spatial trends. The
latter case is demonstrated, for example, in the unstructured
simulation experiments, where the limited amount of sensor
data made extrapolation necessary to build an accurate map.
On the other hand, the Bayesian generalized kernel inference
method more conservatively reverts to an uncertain prior at
distances far from the observed data.

VII. CONCLUSION AND FUTURE WORK

In this work, we have shown that the Bayesian generalized
kernel inference-based approach to mapping generalizes the
counting model in [6] to continuous spaces. We have extended
our mapping framework to use continuous range beams for
free space representation, rather than samples along the beams,
and show that this adaptation may improve mapping perfor-
mance and computation time. Furthermore, we validated the
method in a large-scale mapping experiment using a lidar-
equipped Clearpath Jackal UGV, in which we demonstrated
real-time performance, even for very large point clouds.

Several interesting avenues for future work in this area
remain open. In particular, we do not address in this work the
issue of dynamic maps. Relaxing the static map assumption to
adapt these inference-aided mapping techniques to dynamic
environments is critical for reliable performance in many
practical scenarios. Additionally, this approach to mapping
could be very useful for exploration of unknown environments.
One key component of our method that can aid in both of
these tasks is the ability to represent uncertainty in occupancy
probability. This framework could flexibly accommodate tem-

poral uncertainty in the case of a dynamic environment. In
the context of exploration, the variance or entropy of the Beta
posterior at different locations can guide a robot toward more
uncertain regions of the map.

APPENDIX
ANALYSIS OF STATION-KEEPING SCENARIO

Gaussian process regression [32] is characterized by a
predicted mean function and a predicted covariance function
as follows:

f̄∗ = κT∗ (κ+ σ2
nI)−1y (17)

cov(f∗) = κ∗∗ − κT∗ (κ+ σ2
nI)−1κ∗. (18)

Here κ denotes the N × N matrix containing the results of
the kernel function k(·) being evaluated for all pairs of input
training data points X , κ∗ is the N ×M matrix formed by
the kernel function outputs between each test data point in X∗
and each training data point, and κ∗∗ is the M ×M matrix
of kernel function outputs evaluated between all pairs of test
data points. The vector y contains the labels yi ∈ {−1, 1} for
the training data3, and I is the N × N identity matrix. For
this analysis we focus on a single scalar-valued output µ and
its variance σ2.

Since our goal is to predict occupancy probabilities, and the
output of the Gaussian process regression is not constrained to
the interval [0,1], the regression outputs are “squashed” using
a logistic model

p(y∗ = 1|X,y) =
1

1 + exp(−γω∗)
, (19)

where ωi = σ2
minµi/σ

2
i is the weighted mean, σ2

min is the
minimum variance, and γ is a positive constant parameter.

The Bayesian committee machine method for combining
predictions of multiple Gaussian process regression models

3This is a convenient abuse of notation, but the training target values yi ∈
{−1, 1} for the Gaussian process regression model should not be confused
with the target values in the Bayesian kernel inference model yi ∈ {0, 1}).
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partitions data into K subsets and performs the following
updates to the mean and inverse variance for the case of one-
dimensional target variables:

µ∗ = σ2
∗

K∑
i=1

σ
−2,(i)
∗ µ

(i)
∗ (20)

σ−2∗ = −(K − 1)σ−2f +
K∑
i=1

σ
−2,(i)
∗ , (21)

where the superscript (i) denotes that the value was computed
using the output of the Gaussian process model trained on
dataset Di, and where σ2

f is a hyperparameter.
In this test scenario, the BCM performs poorly because

datasets are assumed conditionally independent given the
previously predicted target values, which causes the prediction
variance to decrease, and then the result is “squashed” using
the logistic function in Equation (19), causing the probabilities
to saturate toward 0 or 1 with more data.

To see how this happens in practice, we can evaluate the
BCM update to the mean in (20) and variance in (21) in this
scenario. Formally, letting D = {D1,D2, . . . ,DK | ∀i>1Di =
D1}, we can obtain the following expression for the inverse
covariance:

σ−2∗ = −(K − 1)σ−2f +

K∑
i=1

σ
−2,(i)
∗

= −(K − 1)σ−2f +
K∑
i=1

σ
−2,(1)
∗

= −(K − 1)σ−2f +Kσ
−2,(1)
∗ (22)

Here we observe that the inverse variance of K estimators
trained on the same data is K times the inverse variance of one
of the estimators. That is, each time we repeat this estimation
procedure, the predicted variance decreases. We can observe a
similar result for the Bayesian nonparametric kernel inference
method we have presented. When we examine the predicted
mean, we obtain the following:

µ∗ = σ2
∗

K∑
i=1

σ
−2,(i)
∗ µ

(i)
∗

= Kσ2
∗σ
−2,(1)
∗ µ

(1)
∗ (23)

Finally, we examine the result of “squashing” in (19) by
dividing the expression for the mean in (23) by the variance
term σ2

∗:

µ∗
σ2
∗

=
Kσ2
∗σ
−2,(1)
∗ µ

(1)
∗

σ2
∗

(24)

= Kσ2
∗σ
−2,(1)
∗ µ

(1)
∗ . (25)

The output of the squashing logistic function then becomes:

p(y∗ = 1 | D1:K) =
1

1 + exp(−γω∗)
, γ > 0

=
1

1 + exp(−γ σ
2
minµ∗
σ2
∗

)

=
1

1 + exp(−Kγσ2
minσ

−2,(1)µ
(1)
∗ )

.

In the limit of an infinite number of scans, this becomes:

lim
K→∞

p(y∗ = 1 | D1:K) =


1, if µ(1)

∗ > 0

0.5, if µ(1)
∗ = 0

0, if µ(1)
∗ < 0,

(26)

so we observe that the predicted probability will be driven
toward 1 or 0 if the predicted mean is nonzero, else it will
remain at 0.5. It is this process that causes the artifacts
observed in Figure 13. The nonparametric Bayesian inference
method differs in that our estimation operates directly on
probabilities. By performing this update to the variance in
Equation (6), we can easily find that the variance decreases
with each identical set of data. However, the equivalent update
to the mean (5) for K datasets with our proposed formulation
is as follows:

E[θ] =
α

α+ β

=
α0 +

∑K
j=1

∑N
i=1 k(xi, x∗)yi

α0 + β0 +
∑K
j=1

∑N
i=1 k(xi, x∗)

=
α0 +K

∑N
i=1 k(xi, x∗)yi

α0 + β0 +K
∑N
i=1 k(xi, x∗)

,

which, when there is sufficient training data, can be approxi-
mated by the Nadaraya-Watson estimator [33], [34], denoting
the estimate of the mean after K updates as m̂∗ and after one
scan as m̂(1)

∗ , as:

m̂∗ =
K
∑N
i=1 k(xi, x∗)yi

K
∑N
i=1 k(xi, x∗)

=

∑N
i=1 k(xi, x∗)yi∑N
i=1 k(xi, x∗)

= m̂
(1)
∗

and so the estimate of the mean remains unchanged when-
ever this approximation holds, while, we note, the predicted
variance will decrease due to the additional observed data.
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