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ABSTRACT 
Vector-matrix multiplication (VMM) is a core operation in many 
signal and data processing algorithms. Previous work showed that 
analog multipliers based on nonvolatile memories have superior 
energy efficiency as compared to digital counterparts at low-to-
medium computing precision. In this paper, we propose extremely 
energy efficient analog mode VMM circuit with digital 
input/output interface and configurable precision. Similar to some 
previous work, the computation is performed by gate-coupled 
circuit utilizing embedded floating gate (FG) memories. The main 
novelty of our approach is an ultra-low power sensing circuitry, 
which is designed based on translinear Gilbert cell in topological 
combination with a floating resistor and a low-gain amplifier. 
Additionally, the digital-to-analog input conversion is merged 
with VMM, while current-mode algorithmic analog-to-digital 
circuit is employed at the circuit backend. Such implementations 
of conversion and sensing allow for circuit operation entirely in a 
current domain, resulting in high performance and energy 
efficiency. For example, post-layout simulation results for 
400×400 5-bit VMM circuit designed in 55 nm process with 
embedded NOR flash memory, show up to 400 MHz operation, 
1.68 POps/J energy efficiency, and 39.45 TOps/mm2 computing 
throughput. Moreover, the circuit is robust against process-
voltage-temperature variations, in part due to inclusion of 
additional FG cells that are utilized for offset compensation.1 
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Analog computing circuits, in particular those implementing 
low-to-medium precision VMM [1,2], the most common operation 
in signal and data processing algorithms [3], have been shown to 
be extremely energy efficient [4-5]. An internally analog, 
externally digital VMM circuit offers the best of both worlds: The 
density and energy efficiency of an analog domain, and the noise-
robustness and versatility of a digital communication [6]. 
Accordingly, mixed-signal VMMs have been realized in variety of 
applications including neural networks [7,8], support vector 
machines [9], and IoT systems [10]. Some of the most prospective 
proposals are based on emerging nonvolatile memory (NVMs) 
[11,12].  

Time-based VMMs [13] and switch-capacitor multipliers [1,14] 
use charge to encode data. The former approach, designed to 
operate in very low voltages, is based on charge integration from 
digitally programmable current sources. One of the challenges is 
process-voltage-temperature (PVT) variations that may limit the 
smallest integration delay and hence the circuit performance. For 
the latter case, metal fringing capacitors have been exploited to 
build VMM circuits with moderate computing precision. These 
topologies have been explored for implementing (> 4 bit) 
multipliers using bulky and power hungry active amplifiers. In the 
passive version of such circuits, amplifier is eliminated [1], which 
can lead to potentially more power efficient and faster design. The 
main challenges, however, are leakage, capacitive coupling and 
charge injection issues, which confine passive switch-capacitor 
approaches to 2-3 bit resolutions. 

In another approach, current/voltage is employed as a state 
variable. For example, VMM circuit with digitally controllable 
single MOS-based current sources, in which width of the 
transistors were scaled according to the predetermined weights, 
has demonstrated very high energy efficiency [15]. The main 
caveat of such design is an area (and hence energy) overhead for 
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weight implementation, which exponentially increases with 
weight precision.  

A more promising solution is to implement matrix weights 
with NVMs, such as programmable conductance cross-point 
devices and FG memories. The most prospective VMM circuits are 
perhaps based on metal-oxide memristors [11,12] due to the 
excellent scalability, analog properties, and non-volatility of such 
devices. Yet, memristor fabrication technology is not mature 
enough for very large scale integration and hence some of the 
research is now focused on more mature but less dense NVMs, 
such as FG memory [4,7,9,16]. For example, a number of VMM 
circuits were recently experimentally demonstrated using 
commercially available NOR flash memory [8, 17, 18], whose 
matrix structure was modified to allow for individual tuning of FG 
cells’ conductances [18]. Though the modification tripled the cell 
area, the memory density was still more than an order of 
magnitude better as compared to previous FG memories utilized 
in analog circuits [4].   

The general architecture of a digital-input digital-output 
(DIDO) VMM circuit is shown in Fig. 1. The circuit computes in 
parallel M Po-bit dot-products between N-element Pin-bit input 
vector and corresponding N-element vector of Pw-bit weights. 
Note that, in general, the precision of dot-product computation 
might be higher compared to that of analog-to-digital (ADC) 
converter.  

The efficiency of similar, previously proposed VMM circuits 
was greatly limited by the overhead of sensing circuitry and data 
converters. For example, the power per channel (VMM output) 
reported in Ref. [12] was nearly 100 μW and peripherals consumed 
> 90% of power and occupy > 95% of chip area. 

 
Figure 1: A general idea of M×N DIDO VMM circuit. In FG 
memory implementation, the weights are encoded by the 

cell’s subthreshold currents.  

2 VMM CIRCUIT 

2.1 Top-Level Architecture 
In our design, the aforementioned issues in mixed-signal VMM 

circuits are resolved by utilizing several features, including very 
efficient peripheral circuitry, merged digital-to-analog (DAC) 
implementation, algorithmic ADC converter, and additional 
columns of FG cells in the array to cope with process variations. 
The combination of these techniques allows implementing all 

operations in VMM completely in current domain, which greatly 
increase computational bandwidth and energy efficiency.  

Specifically, the top level architecture of the proposed VMM 
circuit is shown in Fig. 2. In this architecture, data are buffered 
into a shift register to hold it during the processing, which is 
triggered by φ1 control signal. Upon completion of the data 
transfer, digital voltages are applied to the array to generate 
currents in each channel proportional to the dot-product of input 
and weight vectors. To reduce conversion overhead, a merged 
DAC (MDAC) architecture is employed at the input interface. In 
this case, each matrix weight Wji in the original scheme (Fig. 1) is 
implemented with a set of Pin FG devices, i.e.  

𝑊𝑗𝑖
𝑘 = 2𝑘(2𝑃in − 1)⁄ 𝑊𝑗𝑖,    Pin ≥ k ≥ 1 , 

where k is input bit significance. Assuming that i-th input is 
binary vector {𝑏𝑃in , … , 𝑏1}, a current injected by the memory cells 
implementing weight Wji  to the j-th output is given by: 

𝐼𝑗𝑖
. = ∑ 𝑏𝑘 2𝑘 (2𝑃in − 1)⁄ 𝑊𝑗𝑖

.
𝑃in

𝑘=1
  

Negative weights with FG memory devices are implemented using 
differential pair of weights 𝑊𝑗𝑖 = 𝑊𝑗𝑖

+ −𝑊𝑗𝑖
− , so that for two 

quadrant VMM implementation, the total current in the j-th 
differential output is given by 

𝐼𝑗 = ∑ (𝐼𝑗𝑖
+ − 𝐼𝑗𝑖

−) 𝑁
𝑖=1 . 

Naturally, the proposed MDAC implementation is based on 
VMM circuit and specific tuning of the weights. Therefore, 
MDAC’s area and energy are simply contributed by the additional 
2×M×(Pin-1) array of FG cells.  

In the following sections, we discuss in detail VMM 
components, i.e. FG memory array, sensing circuit, and ADC.   

2.2 Floating-Gate Memory Array 
FG memory array was implemented using split-gate ESF3 

SuperFlash®, which is commercialized embedded NOR flash 
technology developed by SST [19]. (Details on this technology and 
various device characteristics are reported in Refs.  [17,19]). The 
ESF3 flash memory is very desirable for realization of couple-gate 
arrays [16,17]. For example, due to its split-gate structure, FG 
memory cells offer very high output impedance, of the order of 
100 GΩ in subthreshold regime. The robust subthreshold 
operation in ESF3 devices are typically in 100 pA - 300 nA range. 
(In our design, the weights’ least significant bit always 
corresponds to 500 pA.)  

Maximum achievable Pw depends on state drift, tuning 
accuracy and virtual bias variations. In order to have 5-bit 
effective precision, the signal-to-noise and distortion ratio of the 
device should be > 40.9 dB, which roughly corresponds to 0.9% 
weight error, i.e. the normalized difference between the desired 
and actual subthreshold currents of the cell. It is reasonable to 
assume that the tuning accuracy (which could be improved with 
increasing write time) and drift can be bounded within 0.4% [17] 
and hence the error due to maximum sustainable bias variation 
distortion should be < 0.5%. The virtual bias variations impact the 
absolute value of the weight via channel length modulation and 
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drain induced barrier lowering. For the utilized range, 0.5% 
crudely translates into ∆Vb = 10 mV. 

 

Figure 2: One channel of the proposed two-quadrant VMM circuit with digital inputs and outputs. Here we assume that 
inputs and outputs are non-negative, while weights can be negative or positive.    

2.3 Sensing Circuit 
As discussed in previous section, sensing circuit must provide 

precise virtual voltage Vb on shared bit (i.e. horizontal on Fig. 2) 
lines. In previous works, this condition was enforced by using 
transimpedance amplifiers (TIA) and integrators [12,17]. TIAs, 
however, typically consume large area and are optimized to work 
at a certain operating point rather than dealing with a large 
amplitude signals. The very limited settling time of TIAs also 
mandates large biasing currents. Here we proposed a circuit 
design in which Vb variations are bounded with minimum 
overhead. Our design is also very efficient for controlling PVT 
variations. 

 
Figure 3: The sensing circuit.  

The sensing circuit is shown in Fig. 3. The circuit could be 
viewed as a floating resistor (M1-3) followed by a low-gain 
amplifier M4-7. M1, M2 and M4-pairs are designed in weak 
inversion and M3-pair is velocity saturated. Rest of the devices are 
in saturation regime. The translinear loop, constructed by M1,4-
pairs have excellent wideband current following behavior. The 
current drawn from node “Q” is supplied by M3a. The larger such 

current, the smaller is I2a. The resulting differential voltage 
generated at XY node is then converted to an output current Iout 
by the low gain amplifier. 

The transfer characteristics of the circuit is given by 

                                 𝐼out = (
𝐼F

𝐼b
)𝐼in, 

while virtual bias swing without the local feedback, formed by 

M11 and M10, is n 𝑉Tln (1 −
(𝐼in)max

𝐼b
) . The negative feedback 

compensates the drop by pulling VG,M2a down and pinning VS,M2a. 
The proper sizing of M11 and adjustment of bias current 𝐼b allows 
reducing ∆Vb to 3 mV (Fig. 4a), which ensures 5-bit weight 
precision.  

Both deterministic and random non-idealities result in offset 
and distortion. The offset, originated from mismatch in M1,3,4-
pairs, is compensated by adding two additional columns of FG cell 
(Fig. 2) and tuning their conductances according to the total input-
referred offset of the corresponding channel. Such approach 
relaxes other design specifications without a considerable 
power/area overhead. The mismatch between drain current of 
M3a, M3b and threshold voltage of M1-4-pairs impacts the linearity 
of sensing circuit. As shown in Fig. 4a, both mean and standard 
deviation (SD) of relative nonlinearity error are reduced 
dramatically by slightly increasing the bias current. (Nonlinearity 
error could be further reduced, by a factor of ~4, when 
implementing advanced layout techniques.) 

To keep ∆Vb below a desired value at all temperatures, 𝐼b is 
designed using a proportional to absolute temperature current 
source. Additionally, to keep the slope of transfer function 
invariant to temperature variations, 𝐼F  is also supplied by the 
same source, allowing to limit slope variations to < 0.2% (Fig. 4b). 

The relatively large, ±4% fluctuations in supply voltage result 
in only < 0.5% variation of the slope (Fig. 4c). This is because slope 
only depends on bias currents, and as long as critical transistors 
remain in their targeted operating region, degradation in linearity 
is negligible. In general, a desired weight and computing precision 
determines the minimum transistor scaling, and, in particular, the 
smallest Ib, and capacitances Cx, and Cy. With these values fixed, 
the settling time, and, as result, energy consumption, can be 
further optimized by finding optimal output pole location. The 
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output pole can be relocated by adjusting output current, e.g. by 
changing IF. For a certain translinear loop size, initially, increasing 
IF improves the settling time (Fig. 4d). However, at some point, the 
overshoot in time response becomes excessive and deteriorate 
phase and settling time. Increasing output current is not helpful 
anymore since the dominant pole is no longer attributed to the 
output pole.  

Finally, let us note that the dominant noise power is due to 
random telegraph noise (RTN) of FG cells, while the peripheral 
noise is of much less importance.  

 
Figure 4: Sensing circuit simulation results for (Iin)max = 1 
μA. (a) Worst-case nonlinearity error, which accounts for 
process variations, as a function of Ib. The impact of (b) 

temperature and (c) supply voltage on ∆Vb, slope of 
transfer function, and total worst-case nonlinearity error. 

(d) Settling time as a function of loop size and Ib. 

2.3 ADC Design 
Algorithmic ADCs feature high resolution, throughput, and 

small area. Among such architectures, conventional current-mode 
ADCs typically offer the best speed-area performance [21]. In our 
work, we use current-mode cyclic ADC to minimize the 
conversion cost and, more importantly, to leverage tunability of 
FG cells for precise current generation. Specifically, a 1-bit per 
stage cyclic current-mode ADC was implemented. Note that we 
have not used the common 1.5-bit per stage design since it has a 
significant power overhead.  Instead, comparator’s dynamic offset 
was compensated by adjusting input bias currents 𝐼BA  for each 
channel using FG cells. The bias currents, although contribute to 
power consumption, are critical to support a bipolar output and 
keep the mirror devices turned always on, which facilitates faster 
conversion. The constant current sources are generated by an 
auxiliary MDAC arrays of FG devices, which share bit lines with 
the main array (Fig. 5). 

The operation is performed in a sequence of Po steps. In the 
first step, current comparator determines whether the input 
current (Iin), fed by sensing circuitry, is positive or not, and 
generates a sign bit. In the next cycle, based on the sign bit, Imax/2 
is either subtracted from or added to input current, where Imax is 

the maximum possible amplitude of ADC input current. At the 
end of k-th step, residual current is given by: 

           Ires = 𝐼in + ∑ (−1)𝐷𝑃o−𝑙+1(𝐼max/2𝑙)k−1
𝑙=1 , k>1 

where Dl represents l–th output bit. The process is repeated until 
LSB (D1) is generated. Then, D<Po:1> is buffered to a parallel 
register. The operation needs minimum control and is shared 
between all channels, and hence can have very compact 
implementation. The controller is essentially a simple logic and a 
shift register, which is cleared at the end of each conversion and 
shifts logic “1” at each conversion step. 

The comparator design is shown in Fig. 6. The circuit utilizes 
a cascode current mirror as a preamplifier and a latch stage similar 
to that of StrongARM. At the beginning of each step, when φ2 or 
φ3 is high, nodes X, Y, P and Q are precharged to ground, which is 
typically referred as shielding mode. The purpose of shielding is 
to reset the state of the comparator and avoid storing excess 
charge on node X right after conversion, which may happen due 
to peripheral circuit delay. Shielding continues until I6b restores to 
Ib+. In the following, both φ2  and φ3 go down, while the current I6b 

+ Icom, where Icom = (IM4a + IM4b) /2, charges node X. The circuit 
operation is similar for VY, with Ib- + Icom charging node Y. (Here, 
Icom is used to inject a dynamic common-mode current and 
quickly turn 𝑀1a,b  on.)  When VX reaches the threshold of 
transistor M1a, φ3 goes high and regeneration begins. 

 
Figure 5: Block diagram of the algorithmic ADC. 

Finally, cross-coupled transistors turn on and the differential 
current, amplified by the positive feedback loop, brings one of the 
outputs to VDD. In Fig. 7, the input current is 700 nA and (Iin)max = 
1 µA. Since input current is positive at first, Q becomes “1” after 
comparison is finalized and 500 nA is subtracted in the following 
step. The process continues until LSB is generated. The proposed 
circuit, though leverages currents for signal representation, is not 
impacted by the device matching and charge injection issues. This 
is due to unique features of FG cells which are exploited in 
performing multiplication, offset compensation, and generation of 
constant scaled current sources. The high performance, achieved 
in proposed ADC, stems from three factors: Low-overhead offset 
compensation, which relaxes the trade-off between speed and 
resolution, embedded design of current references with zero 
power overhead, and low-power design of dynamic current 
comparator.  For example, the comparator settles at 0.65 ns for 30 
nA differential input current, while dissipating only 2.07 µW 
dynamic power on average. It should be noted that at high 
precisions, clocking scheme of cyclic ADC was redesigned to 
maintain its energy efficiency [23]. Similarly to sensing circuit, 
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the input referred current noise of the comparator is much smaller 
than the RTN noise associated with FG cells, and can be neglected. 

 
Figure 6:  Dynamic current comparator circuit. 

 
Figure 7: Timing diagram of the ADC (shown for 4 cycles): 
(a) transient voltage of nodes X, Y, P, and Q, (b) transient 

residual currents and drain currents of M6c,6b, (c) clocking 
scheme, and (d) corresponding digital outputs. 

3 RESULTS AND DISCUSSION 
The proposed DIDO VMM circuit was implemented in Global 

Foundry’s 55-nm LPe 2P8M process technology. The design was 
optimized with respect to energy efficiency. The dynamic power 
(in comparator and array), and the static power (in peripheral 
circuitry and array) were both included in power consumption 
estimates. The same precision for inputs and weights, which is 
limited to ~ 5-bit as discussed above, were always assumed. From 
the experimental results [8,17,18], the compute (output) precision 
is typically limited by RTN in FG cells and hence increases with 
N. For 55 nm technology, 8-bit output precision is achievable for 
N > 25.  

Simulation results show that the circuit area grows rapidly as 
a function of input/weight/output precision (Fig. 8a) because of 
the merged-DAC overhead. The same trends are observed in the 
settling time and energy due to the cyclic structure of the ADC. 
To preserve tolerance to process variations, the sensing circuit 
cannot be scaled down efficiently at very low input currents (e.g. 
at < 3 bit precision), which explains the trend for delay and energy 
consumption. Throughput (TH) decreases as expected because the 
same number of operations are performed slower. For the same 
reasons, energy efficiency (EE) and area efficiency (AE) gradually 
decrease as precision increases. On the other hand, with 
input/weight precision fixed at 5-bits, the total active area does 

not change much with output precision since ADC has negligible 
area overhead (Fig. 8b). 

The number of operations grows quadratically as a function of 
VMM size, and so does the total active area (Fig. 8c). As mentioned 
before, at very low currents (smaller size VMMs), sensing circuit 
is slower. Because of that, TH is increasing roughly quadratically 
with VMM size. Though the total energy consumption is 
increasing with VMM size, the EE is also increasing because of TH 
and is saturating at ~1.8 POps/J for N > 500.  

Fig. 9a shows energy breakdown for several VMM circuit 
implementations.  Peripheral circuitry and ADCs are typically the 
major source of energy consumption. ADC’s power consumption 
is ~6 µW per channel and almost the same for all designs. The 
first, relatively small VMM circuit is designed at 4-bit, and hence 
the array and sensing power are less than power consumed in 
comparator. For larger precision and large size VMM circuits, i.e. 
the second and third considered cases, respectively, the 
contribution of sensing circuitry becomes more prominent.  

The area breakdown is provided in Fig. 9b. Note that 10% is 
added to each block to account for routing among the blocks. FG 
array dominates the area for large VMM circuits. For smaller ones, 
the contribution of programing/erasing circuitry is almost equal 
to that of array size. However, based on our previous experience 
[8], the overhead would be insignificant when it is shared between 
multiple blocks (and hence was not neglected in Fig. 8.) Finally, 
chip prototype of a 4-bit 64×64 DIDO VMM circuit, fabricated in 
GF’s 55 nm process, is provided in Fig. 9c.  

The performance metrics of our design compares very 
favorably with the best reported results. For example, Ref. [12] 
reports the ReRAM-based dot-product engine with 30 TOps/J 
maximum energy efficiency for 128×128 crossbar circuit.  Switch-
capacitor VMM circuits, proposed in [1] and [14], are the state-of-
the-art low precision multipliers based on conventional 
technology. The former reference reports a serial 6b/3b/6b 40 nm 
VMM circuit, which achieves 7.72 TOps/J in 0.012 mm2, while the 
latter uses the same approach on 8b/14b/8b 16-parallel channels 
at 28 nm and reaches 9.61 TOps/J in ~0.011 mm2. For comparison, 
the proposed approach achieves 1.68 POps/J for 400×400 VMM 
circuit when computation, I/O, and weights are all at 5-bit 
precision. This number is ~ 100× better than that of state-of-the-
art switch-capacitor ASIC designs. 

In principle, for both switch-capacitor designs, weights can be 
programmed quickly, making it suitable for larger range of 
applications, as compared with the proposed design. However, 
this advantage often comes with the cost of bandwidth limitations 
in large scale systems. For example, in Ref. [22], FG memory based 
circuits were fabricated in 130 nm to realize a deep neural network 
featuring 7.2 bit weight precision. Though the system is fully 
analog, it only achieved ~1 TOps/J, while occupying 0.36 mm2.  

4 CONCLUSIONS 
Earlier work has shown that mixed-signal VMM circuits based 

on nonvolatile memories could greatly surpass their digital 
counterparts in energy and area efficiency. The maximum 
achievable performance in previously reported mixed-signal 
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implementations has been limited by the peripheral circuits, 
including those used for conversion between analog and digital 
domains. In this paper, we propose novel design of mixed-signal 
VMM circuit with all its parts implemented in current domain. 
The very high energy and area efficiency of the proposed design 
stems from three factors. First, it is due to very compact, 
optimized, reliable, and low-power ESF3 technology. Second, we 
propose efficient sensing circuitry and compensation of process 
variations by fine tuning FG memory, which relax design 
requirements for high bandwidth current processing. Finally, it is 
due to the considered algorithmic ADC design in which FG 
memory is used to generate very precise current sources. Our 
simulation results show that 400×400 5-bit VMM implemented in 
a 55 nm CMOS technology with embedded NOR flash memory 
achieves record-breaking 1.68 POps/J energy efficiency and 39.45 
TOps/mm2 computing throughput. 
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Figure 8: Various performance metrics of DIDO VMM circuit as a function of (a) precision assuming Pi=Pw=Po and M=N=100, 
(b) output precision Po, assuming Pi=Pw=5 and M=N=100, and (c) VMM dimensions, assuming Pi=Pw=Po=5.  

 
 Figure 9: (a) Energy and (b) area breakdown of 4 different VMM implementations. (c) Chip prototype of a 64×64 DIDO.
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