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Abstract—In mobile health (mHealth) and human activity
recognition (HAR), collecting labeled data often comes at a
significantly higher cost or level of user burden than collecting
unlabeled data. This motivates the idea of attempting to optimize
the collection of labeled data to minimize cost or burden. In this
paper, we develop active learning methods that are tailored to the
mHealth and HAR domains to address the problems of labeled
data scarcity and the cost of labeled data collection. Specifi-
cally, we leverage between-user similarity to propose a novel
hierarchical active learning framework that personalizes models
for each user while sharing the labeled data collection burden
across a group, thereby reducing the labeling effort required by
any individual user. We evaluate our framework on a publicly
available human activity recognition dataset. Our hierarchical
active learning framework on average achieves between a 20%
and 70% reduction in labeling effort when compared to standard
active learning methods.
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I. INTRODUCTION

Prior work in mobile health has demonstrated that person-
alized models trained using data from the individual they are
applied to often perform better than global, non-personalized
models [1], [2]. This performance gap results from the fact that
there can be substantial and systematic differences between
individuals in terms of how they perform actions like smoking
or eating or how their physiology reflects behavioral states
like stress. While off-the-shelf wearable technology can be
readily deployed leading to an abundance of unlabeled data,
developing personalized models require access to labeled
examples. The collection of labels typically results in higher
cost or higher burden on the user depending on how labeled
data are collected (e.g., in the lab setting via direct observation
versus provided by the user via self report).

In this paper, we investigate machine learning methods to
minimize the labeling effort required to learn personalized
models. Specifically, we develop an approach that combines
aspects of transfer learning, hierarchical clustering, and active
learning to personalize a base model to every individual in
a group while minimizing the labeling burden by selectively
sharing the labeling effort across similar users in the group. We
evaluate the proposed hierarchical active learning methods in
simulation using an existing human activity recognition (HAR)
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data set. We develop methods in the pool-based setting as a
proof of concept that hierarchical active learning methods can
lead to significant reductions in the volume of labeled data
needed to effectively personalize activity recognition models
relative to existing active learning methods. Indeed, our results
show between a 20% and 70% reduction in labeling effort
when compared to standard active learning methods.

II. BACKGROUND AND RELATED WORK

Our proposed hierarchical active learning framework lever-
ages several components including a base classifier, a transfer
learning approach, and a hierarchical clustering approach. We
briefly review these components below, along with baseline
active learning methods.

A. Base Classifier

We use a standard binary logistic regression classifier with
hand-engineered features in this work since it directly outputs
class probabilities, which are needed by the active learning
framework we propose. Given a feature vector X ∈ RD con-
sisting of D features, the binary logistic regression classifier
returns the probability of that feature vector belonging to the
positive class P (Y = y|X = x) = 1

1+exp(−y(b+WT x))
where,

W is a length D vector of feature weights, b is the bias term
and Y ∈ {−1,+1} represents the label for the instance X .

Given a dataset D = {(yn, xn)}n=1:N of N labeled exam-
ples, the regularized maximum likelihood objective function
used during learning is defined as:

N∑
n=1

log
(
1 + exp(−yn(b+WTxn))

)
+ λR(W ) (1)

The first term is the log likelihood of N data examples and
the second term is the regularizer with regularization hyper-
parameter λ. In standard logistic regression, it is typical to
regularize the weights W toward 0 using, for example, a two
norm squared regularizer R(W ) = λ‖W‖22.

B. Transfer Learning Approach

In this work, we adopt a basic parameter transfer approach
to model personalization [3]. We assume that a prior set of
logistic regression model parameters Wp have been estimated
from previously collected data in the same feature space.
Given a small data set from a new individual, we learn
parameters for the individual using the objective shown in the



previous section, but with a modified regularization function
R(W ) = λ‖W − Wp‖22 that penalizes deviations from the
previously estimated parameters. Given a new user with no
data, the solution to this problem is W = Wp. As more data
are collected for a new user, the estimated parameters can
diverge more extensively from the prior parameters with the
rate of personalization controlled by the λ hyper-parameter.

C. Hierarchical Clustering Approach

Hierarchical agglomerative clustering (HAC) is a type of
unsupervised clustering algorithm that recursively merges
clusters pairwise based on a linkage distance criterion [4]. In
this work, we perform clustering on users versus individual
data examples. The HAC algorithm begins by having access
to unlabeled data examples from M users, in each iteration
it merges a pair of users to form a cluster until all users
are merged into a single cluster. HAC utilizes a similarity or
distance metric to merge clusters, we provide more details
on the similarity metric used in this work in Section III-A.
The results of HAC are often organized and presented via a
dendrogram. In our case, the leaf nodes in the dendrogram
correspond to the original M users and the non-leaf nodes are
clusters of users that result from the recursive merges.

D. Active Learning

Most prior work in active learning for wearable sensing
concerns the human activity recognition task. Longstaff et
al., propose pool-based active and semi-supervised learning
techniques to collect labels [5]. Specifically, they used data
from a between-subjects model as a base classifier and chose
new examples to be added to the labeled set either using active
learning or semi-supervised learning. The conclusion was that
active learning performed better than other techniques only
when there existed a performance gap when starting with a
between-subjects model. Saeedi et al., perform collaborative
active learning with a panel of experts rather than a single
oracle [6]. Recent work also includes methods that combine
both transfer and active learning into a single framework of
active transfer learning [7]. Our approach merges ideas from
transfer active learning with ideas from hierarchical learning
to better share the labeling burden across a group of users
while simultaneously respecting between user differences.

III. HIERARCHICAL ACTIVE LEARNING

In this section, we describe our hierarchical active learning
(HAL) model. The most straightforward approach to collecting
labels for each user is to develop one active learning model
per user like shown in Figure 1a. In this approach, we can
potentially reduce the number of labels needed by warm
starting active learning using parameter transfer from a source
model (denoted by SRC in the Figure 1a). The drawback of
this approach is it does not leverage the similarities between
users, which means further reductions in labeling effort may
be possible depending on how similar the different users are.
The other extreme is to share all examples between all users,
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Fig. 1. Variants of active learning on a dataset with four users. (a) personalized
active learning (b) hierarchical active learning. Here SRC refers to the source
domain model.

but this approach is intrinsically limited as well unless the
users are all highly similar.

An alternate approach is to group similar users into clusters
and to share labels within cluster. The main questions are then
how to assess the similarity between users and how to select
an optimal number of clusters. Our proposed approach side-
steps the problem of selecting a single clustering by using a
hierarchical clustering and sharing information from labeled
data using a hierarchical application of parameter transfer.
Our objective is to apply active learning to improve the
overall performance for all users simultaneously using the
proposed hierarchical model structure to share information
across user. We describe our clustering approach and active
learning approach in detail in the next two sections.

A. Learning the hierarchical structure

Our approach to learn a hierarchical clustering over users is
based on HAC as described in Section II-C. For the similarity
function between users, we train an auxiliary classifier to
attempt to discriminate between unlabeled examples for a
given pair of users. We train such a model for each pair of
users and use the classification error scores that result as the
similarity scores. The intuition is that if a classifier can not
distinguish between unlabeled data cases from two users, then
the users are similar. This approach only requires unlabeled
data, is very robust, easy to compute, minimally sensitive to
outliers and no additional hyperparameters are introduced. The
results of HAC are presented in a dendrogram as illustrated
in Figure 1b. In this example, users 1 and 2 are most similar
and hence are merged first followed by users 3 and 4 and the
last merge happens at the root.

B. Transfer Active learning in the hierarchical structure

We leverage the dendrogram created in the previous step as
a data structure to perform hierarchical transfer active learning.
Specifically, we create one classifier for every node in the
dendrogram using its parent to provide the prior model (the
root node transfers from a prior source model). The leaf nodes
correspond to single users and a model is learned for each
leaf using data for that user only and its parent’s model as a
regularizer. The model at each internal node uses as training
examples the labeled examples of all of its descendants that



are leaf nodes and its parent’s model as a regularizer. There
are thus two forms of labeled data sharing in the model:
direct sharing within node and soft, indirect sharing via the
hierarchical regularizer.

We perform active learning over all users (i.e. leaf nodes)
in a round robin fashion from left-to-right. We use each
user’s current model in turn to compute the entropy over that
user’s unlabeled pool of examples. We select the example with
maximum entropy and add it to that user’s labeled data set.
We then re-train all of the models in the hierarchy to take the
new labeled example into account. This is a modification of
the classical uncertainty sampling approach to active learning.

IV. EMPIRICAL PROTOCOLS

In this section, we discuss the empirical protocols and exper-
imental details used to generate results in the next section.

A. Dataset

We use a publicly available human activity recognition
dataset with 60 users, 300K minutes of data and about 116
reported activity types [8]. The study users wore a smartwatch
and carried a smartphone. We use a version of the dataset
with features computed over one minute windows of sensor
data. In total, 175 features are available and organized into
five groups including smartphone accelerometer and gyroscope
(52), smartwatch accelerometer and gyroscope (46), micro-
phone (26), location information (17) and features pertaining
to phone status (34). Users provided activity labels via an app
running on the smartphone.

In our experiments, we focus on three activities with positive
labels from a wide set of users: “Sleep”, “Drive,” and “Surf
Internet.” In Table I, we provide the number of users, number
of positive and negative examples, and the best reported
performance in a binary classification setting for each activity.

B. Baseline Methods

We compare the performance of active learning approaches to
two baseline methods. For both baselines, we use regularized
logistic regression as the base model and perform hyperparam-
eter selection using nested stratified 5-fold cross validation.

Within-User: This follows a straight within-user evaluation
protocol. We train a prediction model on k − 1 folds and
evaluate on the held out kth fold for each user.

Between-User: This follows the leave-one-user-out evalua-
tion protocol. We train a prediction model on data from M−1
users and test on the held out M th user. We use ten labeled
examples (five positive and five negative) uniformly sampled
at random from the M − 1 users to simulate label scarcity
in the between user model, which we then use as the source
model for transfer learning.

C. Active Learning Methods

We use penalized logistic regression with transfer as the
prediction model for all active learning methods. We contrast
two different active learning strategies described in detail
below: Personalized Active Learning (PAL) and Hierarchical
Active Learning (HAL).

Personalized Active Learning (PAL): This is the standard
version of active learning where we develop one active learn-
ing model per user. For each user, we randomly partition the
data samples into k stratified folds (k = 5). For each user we
use the data from k−1 folds as the sample pool and test on the
held out kth fold. We use the between-user model parameters
as prior model parameters (Wp) that we transfer from. We
train this prior model using a proxy dataset which consists
of five positive and five negative examples sampled uniformly
at random from the M users. Importantly, we remove these
ten labeled examples from the respective sample pools so that
they are not reused during active learning. We use uncertainty
sampling with entropy utility as the active learning query
selection approach. The prediction model is retrained after
each query using only the actively learned examples.

PAL models start with a regularization parameters trans-
ferred from the prior model that is re-tuned after every 20
iterations during active learning. During retuning, we perform
5-fold cross validation on actively labeled examples to pick
the best penalty from a range of 1e−4 to 1e+4. This retuning
is triggered only when there are at least five positive and five
negative actively learned examples. We perform PAL for each
target activity for a total fixed budget of 100 labeled examples
per user. This process is completely independent across all
users with no sharing of information except for the common
source model used for transfer learning.

Hierarchical Active Learning (HAL): We perform HAL
over all users in a round robin fashion. The prior model is
constructed as for the PAL approach. All models are initialized
to the prior model. On each active learning round, we use
the current model for the current user to select an unlabeled
instance to query from that user’s unlabeled pool. As with
PAL, we use entropy-based uncertainty sampling as the active
learning query selection method. Once a label is obtained,
we re-train all models in the hierarchy. When re-training
prediction prediction models at each node in the dendrogram,
we use the model from the immediate parent node as a prior
model (Wp) (the root node uses the source domain model
(SRC) as its prior model).

HAL models start with a regularization parameter trans-
ferred from the SRC model and are re-tuned after every M th

iteration during active learning. M is the number of users in
the data set. We perform HAL for each target activity using a
total budget of M × BT labeled examples where, BT is the
budget for target activity T listed as “# labels/user” in Table I.
The total number of models to be updated after each query is
M +M − 1. For each user, we evaluate the prediction model
from that user’s leaf node on that user’s respective test set. All
other details are similar to PAL.

D. Hierarchical agglomerative clustering

We perform HAC using a precomputed between-user simi-
larity matrix. For each pair of users we compute the similarity
score as the balanced accuracy of a model that attempts
to discriminate between unlabeled data from each pair of
users. We perform a stratified 5-fold cross validation to learn



TABLE I
DATASET STATISTICS FOR THREE ACTIVITIES ALONG WITH BASELINE, PAL AND HAL PERFORMANCE.

Activity # Users # Positive # Negative Between PAL PAL # HAL HAL # Within Best Prev.
User Perf. labels/user Perf. labels/user User Reported

Sleep 38 42955 134045 0.77±0.01 0.88±0.01 100 0.87±0.01 20 0.91±0.01 0.89
Drive 24 5034 171966 0.74±0.01 0.82±0.02 100 0.82±0.02 60 0.87±0.01 0.87

Surf Internet 28 11641 165359 0.50±0.01 0.61±0.03 100 0.59±0.03 40 0.75±0.02 0.63

the required discriminative models and compute the mean
balanced accuracy.

E. Evaluation Metrics and Reporting Results

Due the sample imbalances, we report balanced accuracy
(BA) as in [8] as 1

2 (TPR+ TNR) where, TPR and TNR
are true positive rate and true negative rates respectively. This
metric ranges between 0 to 1 with greater balanced accuracy
score indicating better predictive performance. We repeat each
data analysis five times with different random seeds to average
over the effects of different train/test partitions and resulting
querying sequences. We compute the balanced accuracy per
user as a mean over five repetitions and five folds. In the
results section, we only report the mean balanced accuracy
over users along with standard error of the mean over users.

V. RESULTS AND DISCUSSION

We report the average balanced accuracy across users along
with the standard error of the mean for the selected activities in
Table I. We view the within and between-user protocols as two
extremes of access of labeled examples and personalization. At
one end, the within-user protocol has access to large quantities
of labeled examples (∼ 80%) from each user to personalize the
model before making predictions. This represents a best case
scenario in terms of personalization, but would require a high
cost in terms of user burden. At the other end is the between-
user protocol which has no access to labeled examples for
personalization. There exists a performance gap of between
5% to 15% between the two baseline models over all activities
that we aim to bridge via active learning methods.1

For both PAL and HAL, we first note that both approaches
consistently out-perform the use of random queries instead
of uncertainty sampling. We thus focus on contrasting these
approaches against each other. As we can see the performance
gap between between HAL and PAL is within one standard
error, but HAL can achieve this result using a much lower
number of queries per user. On the “Sleep” task, HAL matches
PAL using only 20 queries per user versus PAL’s 100. Simi-
larly on the “Drive” and “Surf Internet” tasks, HAL uses 60
and 40 queries per user to match PAL’s performance with 100
queries per user. These are substantial reductions in the volume
of labeled data needed to approach the performance of the
best-case within-subject models.

1There also exists some differences between the within-user performance
and the best reported within-user performance from [8]. This can be attributed
to differences in user inclusion criterion that we enforced in our experiments.

Further, we observed that while HAL starts at a lower
performance than PAL on average, it quickly surpasses it as the
number of queries increases. The cross-over for sleep activity
happens with as few as 50 labeled examples, which translates
to each user labeling about a minute and half of their sensor
data in the HAL setting due to the sharing of labels within
the hierarchy. We observe similar trends for other activities as
well, but the cross over happens at higher numbers of total
queries. This indicates that HAL has the ability to produce
better models than PAL in the early stages of active learning
as well.

To conclude, we have demonstrated that our proposed HAL
framework can achieve comparable performance to PAL while
requiring many fewer labels. Future work for this approach
includes moving it from the off-line pool-based setting, to
the more realistic real-time streaming setting where it can be
deployed in a live user study, as well as relaxing standard
assumptions like the assumption that the user always responds
to issued queries.
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