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Abstract 
We propose a generalized market equilibrium model using assignment game criteria for evaluating 

transportation systems that consist of both operators’ and users’ decisions. The model finds stable 

pricing, in terms of generalized costs, and matches between user populations in a network to set 

of routes with line capacities. The proposed model gives a set of stable outcomes instead of single 

point pricing that allows operators to design ticket pricing, routes/schedules that impact 

access/egress, shared policies that impact wait/transfer costs, etc., based on a desired mechanism 

or policy. The set of stable outcomes is proven to be convex from which assignment-dependent 

unique user-optimal and operator-optimal outcomes can be obtained. Different user groups can 

benefit from using this model in a prescriptive manner or within a sequential design process. We 

look at several different examples to test our model: small examples of fixed transit routes and a 

case study using a small subset of taxi data in NYC. The case study illustrates how one can use the 

model to evaluate a policy that can require passengers to walk up to 1 block away to meet with a 

shared taxi without turning away passengers. 

 

Keywords: transportation network assignment, Mobility-as-a-Service, stable matching, service 

network design, assignment game 
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1. Introduction 
 

 Planning for mobility in a smart cities era requires an understanding beyond the route choices 

of travelers. With the increasing ubiquity of multiple forms of “Mobility as a Service” (MaaS) 

options to travelers (e.g. conventional fixed route transit, flexible transit, rideshare, carshare, 

microtransit, ridesourcing) provided by both public agencies and private operators known as 

“transportation network companies” (TNCs), travel forecast models need to focus on both the 

decisions of travelers and operators (Djavadian and Chow, 2017a). For example, a person’s 

decision to take one mobility service over another may depend on the travel performance of that 

service, but the performance in turn depends on the operator’s cost allocation decisions to best 

serve their users. Table 1 illustrates the broad range of cost allocation decisions exemplified by 

different types of mobility systems and how those decisions impacts costs for users and operators.  

 
Table 1. Illustration of cost allocations 

Cost allocation Cost transfer Example systems 

Fare User → Operator Public transit, taxi, on-demand ridesharing, vehicle sharing 

Wait time Operator → User Public transit, taxi, on-demand ridesharing 

Access time Operator → User Public transit, vehicle sharing 

Detour time User → User Public transit, on-demand ridesharing 

Reservation time Operator → User Vehicle sharing, on-demand ridesharing 

Capacity reliability Operator → User Public transit, vehicle sharing 

Credit/discount for switching 

pickup/drop-off location 
Operator → User Public transit, on-demand ridesharing, vehicle sharing 

Fare splitting User → User Public transit, on-demand ridesharing 

 

In this table, cost transfers refer to the direction of cost allocation: for example, a fare is a cost 

to a user that is transferred as a benefit to the operator. When planning for these systems, modelers 

need to forecast the outcomes of operators’ cost allocation policies to forecast the route flows. The 

success and failure of various systems (e.g. Kutsuplus in Helsinki (Kelly, 2016), Car2Go in San 

Diego (Krok, 2016)) depend on forecasting the ridership, which is linked to the cost allocation 

decisions of those systems and the structure of other mobility options in their respective regions.  

State-of-the-art techniques tend to keep these two decisions separate. For example, traffic or 

transit equilibrium models in general are designed without any operator response to obtain route 

flows that satisfy Wardrop user equilibrium principles. Using conventional transportation 

assignment methods, highly complex bilevel models with upper level Nash equilibrium are needed 

(e.g. Zhou et al., 2005). There are models to forecast certain equilibrium patterns like taxi-

passenger matching (Yang et al., 2010) and ride-sourcing supply-demand equilibrium (Zha et al., 

2016). The problem is that such methods do not allow city agencies to evaluate across multiple 

service types to compare alternatives and substitution effects between service designs. 

System optimization models like vehicle sharing (Chow and Sayarshad, 2014) or ridesharing 

optimization (Masoud and Jayakrishnan, 2017; Wang et al., 2017) assume inelastic user demand. 

Those are generally normative models meant to be decision support for the operators, not as policy 

analysis tools for public agencies. An overview of this gap in the literature is given by Djavadian 

and Chow (2017a, b), who also propose simulation-based methods to evaluate such systems. 

However, a major drawback is that sensitivity analyses cannot be conducted, and the fundamental 

structure of the interactions is not clearly understood. For instance, the stability of a certain cost 
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allocation strategy may be simulated, but the tool does not provide analytical thresholds to consider 

perturbations in a strategy or for transferability to other instances.  

 We propose a new transportation network assignment model framework based on stable 

matching for this purpose; it simultaneously considers user route behavior, service operator route 

selection decisions, and the resulting cost allocations and pricing mechanisms needed to reach a 

stable state. Having such a model allows operators to quantify the impacts of fleet operational 

algorithms in terms of user incentives, such as those requesting passengers to meet at pickup 

locations to reduce routing costs. Policymakers can also use such a model to analyze infrastructure 

policies that impact those operators, such as congestion pricing or allocated parking spaces for 

shared mobility services. Stable matching theory (Gale and Shapley, 1962) shows equilibrium 

between two disjoint sets (buyers and sellers). If transport services are the sellers and travelers are 

the buyers, finding their supply-demand equilibrium is a stable matching problem in a generalized 

sense. However, the theory does not currently extend to matches made by travelers to links of a 

route. This is needed to apply stable matching to route assignment models. 

We generalize a prescriptive many-to-one assignment game to consider routes with multiple 

segments with line capacities for offline operating design analysis. The model formulation and 

solution method are also proposed to address stable matching of travelers to links of operator routes 

to help design systems where decision-makers have full or partial control of the assignment and/or 

cost allocation decisions. Variants of the model are proposed. We then demonstrate the 

applicability of the model to evaluate a public policy: if we explicitly consider user and operator 

incentives, what does the stable state for a shared taxi policy (Hu, 2017) look like in New York 

City? Our model can provide new insights that prior studies (e.g. Santi et al., 2014; Ma et al., 2017; 

Alonso-Mora et al., 2017) missed.  

 

 

2. Review of assignment games 
 

The stable matching problem has a long literature. Gale and Shapley (1962) first studied the 

problem through two applications: the “marriage problem” for one-to-one matching, and the 

“college admissions problem” for many-to-one matching. Shapley and Shubik (1971) formulated 

a linear program (LP) called the “assignment game” for matching problems that have transferable 

utilities. The “game” aspect refers to a cooperative game in which the splitting of the payoffs 

among the participants are made to ensure that they have sufficient incentives not to deviate. They 

showed that the region derived from the dual variables corresponding to the LP of the assignment 

game is “Core”, where players do not have incentive to change their matched partner(s).  

Consider two disjoint sets denoted by 𝑃 for buyers and 𝑄 for sellers. A buyer 𝑖 ∈ 𝑃 that 

matches with a seller 𝑗 ∈ 𝑄 earns a utility of  𝑈𝑖𝑗. The item has a cost of production of 𝑐𝑗 for seller 

𝑗. A successful match means the seller transfers the utility to the buyer with a price 𝑝. The 

difference between utility and cost of production can be interpreted as payoff 𝑎𝑖𝑗 =

max(0, 𝑈𝑖𝑗 − 𝑐𝑗). Each buyer who satisfies her utility earns a profit from the difference between 

utility and the price of the item, 𝑢𝑖 = 𝑈𝑖𝑗 − 𝑝. Each seller profits from the price sold minus the 

cost of production, 𝑣𝑗 = 𝑝 − 𝑐𝑗. The assignment game is essentially a game of outcome splitting. 

It is a cooperative game (𝑃, 𝑄, 𝑎) wherein the players get payoffs by forming coalitions with each 

other. Each pair of 𝑖 and 𝑗 who make a coalition win a payoff with the value of 𝑎𝑖𝑗. The goal in the 

assignment game is to match sellers and buyers in a way that the generated payoff from their 
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coalitions is maximized. A review of the basic principles of the assignment game is provided in 

Roth and Sotomayor (1990). The assignment model formulation is shown here in Eq.(1)-(4).  

 

max∑∑𝑎𝑖𝑗𝑥𝑖𝑗
𝑗∈𝑄𝑖∈𝑃

  (1) 

s.t.   

∑𝑥𝑖𝑗
𝑖∈𝑃

≤ 𝑞𝑗 ∀𝑗 ∈ 𝑄 (2) 

∑𝑥𝑖𝑗 ≤ 𝑤𝑖

𝑗∈𝑄

 ∀𝑖 ∈ 𝑃 (3) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑗 ∈ 𝑄, ∀𝑖 ∈ 𝑃 (4) 

 

In the model, 𝑥𝑖𝑗 is a binary variable which shows whether buyer 𝑖 and seller 𝑗 are matched 

or not. The parameters 𝑞𝑗 and 𝑤𝑖 are the quotas of each side. If 𝑞𝑗 and 𝑤𝑖 are equal to one, the 

assignment game becomes a one-to-one or simple assignment game. For any integer values of 𝑞𝑗 

and 𝑤𝑖, the constraint set conforms to the Unimodularity Theorem, so the optimal solution of the 

LP relaxation is also integer.  

In the simple assignment game, an outcome ((𝑢, 𝑣); 𝑥) is feasible if 𝑢𝑖 and 𝑣𝑗  are non-negative 

and under a feasible assignment 𝑥 (i.e. 𝑥 satisfies Eq. (2) - (4)), ∑ 𝑢𝑖𝑖∈𝑃 + ∑ 𝑣𝑗𝑗∈𝑄 = ∑ 𝑎𝑖𝑗𝑥𝑖𝑗𝑖∈𝑃
𝑗∈𝑄

. 

A feasible payoff is stable if 𝑢𝑖 + 𝑣𝑗 = 𝑎𝑖𝑗 when 𝑥𝑖𝑗 = 1, and 𝑢𝑖 + 𝑣𝑗 ≥ 𝑎𝑖𝑗 when 𝑥𝑖𝑗 = 0. The 

core is the set of solutions of the dual corresponding to the assignment game. Note that this is not 

equivalent to Wardrop’s user equilibrium and system optimal concepts which refer to competition 

between users when payoffs depend on their collective choices. Here we are looking at cooperation 

between buyers and sellers such that the outcome is consistent with behavior. 

In the multiple partner assignment game (Sotomayor, 1992), the profit received by buyer 𝑖 
(seller 𝑗) from matching to seller 𝑗 (buyer 𝑖) is defined as 𝑢𝑖𝑗 (𝑣𝑖𝑗). The unmatched buyers and 

sellers are assumed to be matched to a dummy seller or buyer, respectively (𝑥𝑖𝑗0 and 𝑥𝑖0𝑗), with a 

payoff of zero. If  𝐶(𝑖, 𝑥) and 𝐶(𝑗, 𝑥) are defined as the set of matched players to 𝑖 and 𝑗, 
respectively, under optimal assignment of 𝑥, then 𝑢𝑖 is the minimum of 𝑢𝑖𝑗 for each 𝑗 ∈ 𝐶(𝑖, 𝑥) 

and 𝑣𝑗  is the minimum of 𝑣𝑖𝑗 for each 𝑖 ∈ 𝐶(𝑗, 𝑥). Stability of payoffs in the many-to-many 

assignment games implies that the feasible outcome ((𝑢, 𝑣); 𝑥) is stable if 𝑢𝑖𝑗 + 𝑣𝑖𝑗 = 𝑎𝑖𝑗 when 

𝑥𝑖𝑗 = 1 and 𝑢𝑖 + 𝑣𝑗 ≥ 𝑎𝑖𝑗 when 𝑥𝑖𝑗 = 0, where 𝑢𝑖 and 𝑣𝑗  are non-negative for all 𝑖 and 𝑗. 

Furthermore, for the many-to-one game the stable matching outcomes correspond to the core of 

the assignment game such that there exists “buyer optimal” and a “seller optimal” outcomes.  

 The main challenge in a transportation network context is defining a many-to-one model 

structure where sellers are defined as routes with line capacities and multiple travelers are matched 

to segments of each route. We use the term “line” in reference to service lines (see Schöbel, 2012; 

Schiewe et al., 2019) on a route. For example, a route may serve 100 passengers in total but have 

a line capacity of 10 so that the number never exceeds that amount at any segment and direction, 

and three lines with the same line capacity may share an infrastructure link such that it cannot 
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exceed 30 passengers on that link. This is the case with MaaS systems. Two different users can 

match to a route using two different node pairs but share the same line level “quotas” or capacities, 

all while maintaining a unique stable outcome space. These points are illustrated in more detail in 

Section 3. 

 While there are transportation applications using stable matching, cost allocation mechanisms, 

or cooperative game theory as shown in Table 2, none have considered both of the following: (1) 

assignment of travelers onto an operator route that can be composed of a sequence of nodes with 

line capacities, and (2) route-level cost allocation decisions of operators. 

 
Table 2. Sample literature on transportation applications of stable matching, cost allocation mechanisms, and 

cooperative games. 
Reference Type of network Allocation decision Mechanism 

Bird (1976) 
Minimum spanning 

tree 

Core of Minimum spanning tree 

game 

Set of stable allocations 

in core 

Megiddo (1978) Steiner tree Demand nodes in Euclidian space Core of Steiner tree 

Kalai and Zemel (1982) Maximum flow Each player owns a single link 
Core of maximum flow 

game 

Derks and Tijs (1985) 
Multicommodity 

flow 

Each player owns a single link, 

different commodity 

Core of multicommodity 

flow game 

Curiel et al. (1989) Maximum flow 
Committee owns links and decide 

together 

Core of maximum flow 

in centralized case 

Granot and Granot 

(1992) 
Maximum flow N.A N.A. 

Matsubayashi et al. 

(2005) 
Node pair 

two types of cost, constant + 
coalition 

Set of stable cost 

allocation in core 

Potters et al. (2006) Minimum cost flow Players own link Nucleolus of flow game 

Agarwal and Ergun 

(2008) 
Network 

Players own capacities on links 

and also demands then cooperate 

There is no cost 

allocation 

Anshelevich et al. (2013) Bipartite 
Utility as a random value, cost of 

stability 
N.A. 

Dai and Chen (2015) Nodes 
Finding profit allocation inside 

core, efficiency measure 

Profit allocation is done 

by egalitarian view 

Stiglic et al. (2015) Route 
Finding meeting point with 

minimizing cost 

Matching demand to 

routes through matching 

problem 

Hezarkhani et al. (2016) Route Cooperative truck load delivery 
Gain sharing is done in a 

procedure to be fare 

Nourinejad and Roorda 

(2016) 
Network  

Decentralized and centralized 

models for dynamic ridesharing  

Single-shot first-price 

Vickrey auction price 

Aghajani and Kalantar 

(2017) 
N.A. Maximizing parking owner profit Seller side optimal 

Alonso-Mora et al. 

(2017) Network  

Algorithm for dynamic 

ridesharing matching and 

relocation of idle cars 

No cost allocation 

Hara and Hato (2017) 
Node Auction for car/bike sharing 

Giving incentives to 

avoid imbalance problem 

Masoud et al. (2017) 

Node and routes 

(matching p2p 

ridesharing system) 

Rider is charged for costs 

Two types of cost: fixed 

cost (deviation from 

main route), variable 

cost (distance based) 

Qian et al. (2017) 
Network of NYC 

and taxi data 

Incentives to taxi riders to share 

their cab 

Best incentive that 

maximize efficiency of 

GRG 
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Rosenthal (2017) Network 
Cooperative game to cost 

allocating in rapid transit 
Equally sharing 

Wang et al. (2017) Route 
Dynamic ridesharing, matching 

individual cars to each other 

Cost is divided equally 

between two matched 

pair 

Lu and Quadrifoglio 

(2019) 
Bipartite 

Finding fair cost allocation for 

ridesharing services 

They designed an 

algorithm to find 

Nucleolus 

Papakonstantinou et al. 

(2019) 
Network 

Cooperative game between 

counties to mitigate sea level rise 

risk 

Generated cost is divided 

fairly using Shapley 

Value 

Peng et al. (2018) Bipartite 
Matching passengers and drivers 

with constraints 

The pricing considering 

equity and incentive, is 

designed to ensure 

stability 

 

One area of the literature needs further elaboration. Coalition formation in networks is called 

a “network flow game”. These studies deal with how multiple operators that own links in a network 

can form coalitions with each other to allow flows to occur. Examples include Bird’s (1976) study 

for minimum spanning trees, Megiddo (1978) for Steiner trees, Kalai and Zemel (1982) for 

maximum flow problems, and Derks and Tijs (1985) for multicommodity flows. Modifications to 

the control scheme also exist. Curiel et al. (1989) allowed a group of operators to own a link with 

“committee control”. Agarwal and Ergun (2008) allowed operators to own capacity on links 

instead of the whole links themselves. While network flow games also deal with cooperative games 

and coalition formation, the models are designed to analyze only interactions between different 

operators with each other. Primary applications include airline and freight industries.  

On the contrary, the coalition formation in the proposed model is between travelers and the 

operators because the model is primarily designed to quantitatively analyze cost allocation policies 

between them, such as fare prices, reservation times, detours, and meeting points. This is 

fundamentally a different model framework than earlier “network flow games”, even if both 

involve assignment games. In the case where travelers choose multiple operators to form a trip, a 

combination of both network flow game between multiple operators and user-to-operator stable 

matching may be required. This “many-to-many” extension will be studied in the future. 

 

3. Proposed model 
 

3.1. Definitions and model formulation 

Unlike conventional transportation assignment models, the proposed model outputs not only 

traveler route flows and link performances, but also the set of stable cost allocations at the operator 

route level (fare prices, other generalized traveler cost transfers like additional walking or waiting 

time, etc.). It explicitly considers the incentive behavior of both travelers and operators. The model 

is used to evaluate service operating policies illustrated in Table 1 by determining stability of a 

policy and its cost allocation bounds for given demand patterns. 

 The most basic formulation setting is a static many-to-one (one operator route may match with 

multiple travelers, and one traveler is assigned to one route) assignment game. Consider a graph 

𝐺(𝑁, 𝐴) in which there is a set 𝑅 of mobility operators’ routes, where each route 𝑟 ∈ 𝑅 is assumed 

to represent a separate “seller” and a set 𝑆 of user OD pairs looking for service. Each OD pair 𝑠 

may include more than one traveler and be matched to multiple routes although each traveler 
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individually can only be assigned to one route (integer solutions). A dummy user 𝑘 is created to 

match with routes that are not matched with any user. A route 𝑟 ∈ 𝑅 is assumed to have only one 

sequence of links 𝑎 ∈ 𝐴𝑟 between any pair of nodes served, where 𝐴𝑟 ⊆ 𝐴 are disjoint sets. For 

example, for a 4-node network, one route may be 1-2-3-4, and another may be 3-2-1-4. A user that 

travels from node 1 to node 4 would have to visit 2, 3, and 4 if matched with the first route, and 

only node 4 if matched with the latter.  

 The following input parameters are needed. A match between an operator route 𝑟 and a user 

or set of homogenous users 𝑠 ∈ 𝑆 imposes a generalized travel cost to the user(s), 𝑡𝑠𝑟, that depends 

on the origin-destination (OD) of user 𝑠. Such a cost, for example, may be a function of multiple 

travel costs that include fares, wait time, access time, in-vehicle time, etc. This cost may be 

different for one user than another matched to the same route. For example, a user traveling from 

node 1 to node 4 on route 1-2-3-4 has a travel cost of visiting 2, 3, and then 4, whereas a traveler 

from node 2 to 3 on the same route would only incur a travel cost of visiting 3. The cost is fixed 

(there is no crowding effect on the line, just a hard capacity). Each user gains a utility 𝑈𝑠𝑟 when 

matched to a route 𝑟 such that the net payoff is 𝑎𝑠𝑟 = max⁡{0, 𝑈𝑠𝑟 − 𝑡𝑠𝑟}. When we set the utility 

for the next best travel option outside of the available options among 𝑅 to be zero, the 𝑈𝑠𝑟 is 

defined so the payoff 𝑎𝑠𝑟 represents the savings from that outside option. For a traveler with no 

other travel options (or if 𝑅 comprehensively includes all possible travel options), the next best 

travel option is simply to not make a trip in this system. Note that if user 𝑠 and route 𝑟 are not 

compatible pairs, we can model this with a very large travel cost (𝑡𝑠𝑟) so that it makes their payoff 

value (𝑎𝑠𝑟) equal to zero. 

If we define 𝑏𝑠𝑟 to be the minimum benefit acceptable for operator 𝑟 to match with user 𝑠, 

and 𝑔𝑠𝑟 as the minimum acceptable benefit for user 𝑠 to match with route 𝑟, then the payoff value 

is 𝑎𝑠𝑟 = max⁡{0, 𝑈𝑠𝑟 − 𝑡𝑠𝑟 − 𝑔𝑠𝑟 − 𝑏𝑠𝑟}. These minimum acceptable values just make the payoff 

values smaller and all the rest of characteristics of the proposed model remain same. Without a 

loss of generality, for the rest of this paper we assume the minimum acceptable profit for both 

users and operators is equal to zero. 

Each route has an operating cost 𝐶𝑟 which requires the operator payoff allocation to exceed. 

For private operators, the fare payment portion of the allocation needs to exceed 𝐶𝑟 as some of the 

other user payoffs like travel time savings may not be transferable to offset operating cost. The 

cost of a route is divided between the users of that route (𝑐𝑠𝑟). Routes have line capacities defined 

as 𝑤𝑟. An indicator 𝛿𝑎𝑠𝑟 is set to 1 if a match between user 𝑠 and route 𝑟 requires using link 𝑎, and 

0 otherwise.  

The output of the model is a set of matches 𝑥𝑠𝑟 and the region of user profits 𝑢𝑠 and operator 

profits 𝑣𝑟 that are stable. For a given set of user and operator profits, there is a fare 𝑝𝑠 charged to 

the user by the matching route. The proposed model’s formulation for single traveler OD pairs is 

shown in Eq. (5) - (9).  

 

max∑∑𝑎𝑠𝑟𝑥𝑠𝑟
𝑟∈𝑅𝑠∈𝑆

  (5) 

s.t.   

∑𝑥𝑠𝑟
𝑟∈𝑅

≤ 1 ∀𝑠 ∈ 𝑆\{𝑘} (6) 
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∑ 𝛿𝑎𝑠𝑟𝑥𝑠𝑟
𝑠∈𝑆\{𝑘}

≤ 𝑤𝑟 ∀𝑎 ∈ 𝐴𝑟 , 𝑟 ∈ R (7) 

∑ 𝑥𝑠𝑟 ≤ 𝑀(1 − 𝑥𝑘𝑟)

𝑠∈𝑆\{𝑘}

 ∀𝑟 ∈ 𝑅 (8) 

𝑥𝑠𝑟 ∈ {0,1} ∀𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅 (9) 

 

Eq. (5) is the standard assignment game objective to maximize payoffs. Eq. (6) and (7) correspond 

to the matching quotas for a many-to-one assignment game. The line capacity for the route 

operators is met on their lines. Eq. (8) is a new constraint that ensures the routes are only matched 

if the sum of all the matched payoff allocations exceeds the operating cost. Eq. (9) are the integral 

constraints. By setting 𝑎𝑘𝑟 = 𝐶𝑟 , ∀𝑟 ∈ 𝑅, a route would only be matched if the total payoff (in 

generalized user utility converted to operating dollars) exceeds the operating cost because of Eq. 

(8). 

For the cases that have a set 𝐻 of user (OD) demand greater than one, we can easily set the 

right side of Eq. (6) equal to 𝑞𝑠 as the demand value and consider 𝑥𝑠𝑟 as an integer (𝑥𝑠𝑟 ∈ ℤ+). 
While this may seem like a many-to-many system since one OD pair may be matched to multiple 

routes, behaviorally it is still a many-to-one system because the matching condition is for each 

traveler to be matched to one route. For the stability of such cases we can simply separate the user 

bundle 𝑠 to |𝐻| single user (OD) and treat each of them as a single independent agent (integer 

solution).  

Figure 1 illustrates the model setting; based only on travel costs (as typically done in traffic 

assignment models) “Feasible Output 2” seems to be the preferred choice, but based on the choices 

of other passengers, the operating cost 𝐶𝑟, and the savings from other travel options, “Feasible 

Output 1” might be the chosen one. 
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Figure 1. Illustration of explaining different assignment configurations using the proposed model. 

 

The payoff value used in the objective function in Eq. (5) is defined as 𝑎𝑠𝑟 = max⁡{0, 𝑈𝑠𝑟 −
𝑡𝑠𝑟}, where 𝑈𝑠𝑟 is the utility attained by the user for matching with a route, converted to units of 

dollars, and 𝑡𝑠𝑟 is a generalized travel disutility to the user that can include monetary values of 

wait time, access time, or any other costs not transferred to the operator.  The travel disutility may 

take any functional form as best fit to the data. The classic payoff value defined in Shapley and 

Shubick (1971) is 𝑎𝑠𝑟 = max⁡{0, 𝑈𝑠𝑟 − 𝑡𝑠𝑟 − 𝑐𝑠𝑟}, where 𝑐𝑠𝑟 is the cost of operating the route 

attributed to the user. The issue is that 𝑐𝑠𝑟 is an endogenous variable that is a function of 𝑥𝑠𝑟 and 

a cost sharing mechanism; for example, two users sharing a ride can divide the cost of providing 

that trip as opposed to one user paying for the total cost alone. We claim that our model is 

equivalent to the case in Shapley and Shubik (1971) under Assumption 1, which only requires that 

the cost sharing mechanism be equal to any sum between users. We show this in Proposition 1. 

 

Assumption 1. Operating cost 𝐶𝑟 can be divided among different 𝑐𝑠𝑟 for each user 𝑠 that is 

matched to 𝑟, i.e. there exists a set of 𝑐𝑠𝑟 such that 𝐶𝑟 = ∑ 𝑐𝑠𝑟𝑥𝑠𝑟𝑠∈𝑆\{𝑘} .  

 

Proposition 1. The objective function of model (5) – (9), (𝑎𝑠𝑟 = max⁡{0, 𝑈𝑠𝑟 − 𝑡𝑠𝑟}), is equivalent 

to the objective function of the classic assignment model that defined in Shapley and Shubik (1971) 

with explicitly known production costs (𝑎𝑠𝑟 = max⁡{0, 𝑈𝑠𝑟 − 𝑡𝑠𝑟 − 𝑐𝑠𝑟}).. 
 

Proof.  

Objective function of model (5) - (9) can be written as Eq.(10). 

 

Model inputs Feasible Output 1 

 
1 

  
2 

  
1 

  
2 

1 

2 3 

4 5 

6 7 

  
i 

j 
 
i 

Origin of user i 

Destination of user i 

Legend 

Node j on a route 

  
2 

5 

6 7 

  
1 

  
1 

1 

2 3 

  
2 

Each output… 

Flow? (𝑥𝑠𝑟)  

Price? (𝑝𝑠𝑟) 

User performance? (𝑢𝑠𝑟) 

Operator performance? (𝑣𝑟𝑠) 

 

  
2 

  
2 

2 3 

  
1 

  
1 

6 7 

Feasible Output 2 
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max∑∑𝑎𝑠𝑟𝑥𝑠𝑟
𝑟∈𝑅𝑠∈𝑆

= max( ∑ ∑(𝑈𝑠𝑟 − 𝑡𝑠𝑟)𝑥𝑠𝑟
𝑟∈𝑅𝑠∈𝑆\{𝑘}

+∑𝐶𝑟𝑥𝑘𝑟
𝑟∈𝑅

)  (10) 

 

The right hand side of Eq. (10) consists of two parts. The second part is the total route cost 

of unused routes. Let’s define 𝑅̅ ⊂ 𝑅 as the set of used routes. Then the second part of Eq. (10) 

can be written as Eq. (11). 

 

∑𝐶𝑟𝑥𝑘𝑟
𝑟∈𝑅

=∑𝐶𝑟
𝑟∈𝑅

−∑𝐶𝑟
𝑟∈𝑅̅

  (11) 

 

Now the objective function of the main model (Eq. (5)) can be rewritten again as Eq. (12). 

 

max∑∑𝑎𝑠𝑟𝑥𝑠𝑟
𝑟∈𝑅𝑠∈𝑆

= max( ∑ ∑(𝑈𝑠𝑟 − 𝑡𝑠𝑟)𝑥𝑠𝑟
𝑟∈𝑅𝑠∈𝑆\{𝑘}

+∑𝐶𝑟
𝑟∈𝑅

−∑𝐶𝑟
𝑟∈𝑅̅

) 

 (12) 

 

The term ∑ 𝐶𝑟𝑟∈𝑅  is constant and can be eliminated from objective function (12). Based on 

what is defined, ∑ 𝐶𝑟𝑟∈𝑅̅  can be written as ∑ ∑ 𝑐𝑠𝑟𝑥𝑠𝑟𝑠∈𝑆\{𝑘}𝑟∈𝑅 . Eq. (12) becomes Eq.(13). 

 

max( ∑ ∑(𝑈𝑠𝑟 − 𝑡𝑠𝑟)𝑥𝑠𝑟
𝑟∈𝑅𝑠∈𝑆\{𝑘}

−⁡∑ ∑ 𝑐𝑠𝑟𝑥𝑠𝑟
𝑠∈𝑆\{𝑘}𝑟∈𝑅

)

= max( ∑ ∑(𝑈𝑠𝑟 − 𝑡𝑠𝑟 − 𝑐𝑠𝑟)𝑥𝑠𝑟
𝑟∈𝑅𝑠∈𝑆\{𝑘}

) 

 (13) 

 

This net payoff is equivalent to Shapley and Shubik (1971).∎    

 

 The utility parameter 𝑈𝑠𝑟 needs to be accurately calibrated in advance. For user groups with 

𝑞𝑠 > 1, this parameter should be representative of a population. The value depends on the presence 

of other transport options outside of the set of 𝑅 being considered, and on the types of trip purposes 

at the destination. For example, the utility of a non-compulsory trip may be compared primarily to 

not making a trip at all, whereas a compulsory work trip may have a utility based on comparing 

against another travel mode even if only walking is available. Parameter estimation for 

mathematical programming models can be done using inverse optimization (Ahuja and Orlin, 

2001; Xu et al., 2018).  

 

3.2. Stable matching properties 

 The optimal solution to the assignment game determines the assignment of users and operators 

to each other as well as the cost allocation space. Let’s consider a cost transfer (e.g. fare price, 
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among others shown in Table 1) from user 𝑠 to operator route 𝑟, 𝑝𝑠𝑟, and 𝑣𝑟𝑠 be the profit that 

operator 𝑟 earns from serving user 𝑠. By definition, 𝑝𝑠𝑟 = 𝑐𝑠𝑟 + 𝑣𝑟𝑠. Let 𝑢𝑠 be the value gained by 

user 𝑠 from matching. 

Cost allocation between the users and operators should lead to a stable outcome. Before 

starting to define the stability criteria, let us define the notation used. We define 𝐷(𝑟, 𝑥) as the set 

of users that are unmatched to 𝑟⁡under 𝑥 assignment, 𝐶(𝑟, 𝑥) as the set of users that are matched 

to 𝑟 (except the unmatched quota we assumed that are matched to null user) (𝐷(𝑟, 𝑥) ∪ 𝐶(𝑟, 𝑥) =
𝑆\{𝑘}). The same definitions hold for 𝐷(𝑠, 𝑥) and 𝐶(𝑠, 𝑥). As defined earlier 𝑅̅ is the set of routes 

that are matched to at least one user. 𝑣𝑟 = ∑ 𝑣𝑟𝑠𝑠∈𝐶(𝑟,𝑥)  is the total benefit that route 𝑟 gains from 

its matches in assignment 𝑥. 

 

Definition 1. (Sotomayor, 1992) Outcomes 𝑢𝑠 and 𝑣𝑟 are feasible and denoted by ((𝑢, 𝑣); 𝑥) if: 
(i) ∑ 𝑢𝑠𝑠∈𝐶(𝑟,𝑥) + 𝑣𝑟 = ∑ 𝑎𝑠𝑟𝑠∈𝐶(𝑟,𝑥) − 𝐶𝑟 and 𝑢𝑠 ≥ 0, 𝑣𝑟 ≥ 0  ∀𝑟 ∈ 𝑅̅⁡  

(ii) 𝑣𝑟 = 0 ∀𝑟 ∈ 𝑅\𝑅̅ 

(iii) 𝑢𝑠 = 0⁡⁡⁡∀⁡𝑠⁡𝑠𝑢𝑐ℎ⁡𝑡ℎ𝑎𝑡⁡𝐶(𝑠, 𝑥) = ∅ 

 

Definition 2. (Core) A feasible outcome ((𝑢, 𝑣), 𝑥) of the assignment game in Eq. (5) - (9) is stable 

if it satisfies Eq. (14). 

 

∑ 𝑢𝑠
𝑠∈𝐺𝑟

+ 𝑣𝑟 ≥ ∑ 𝑎𝑠𝑟
𝑠∈𝐺𝑟

− 𝐶𝑟 ∀⁡𝐺𝑟⁡𝑎𝑛𝑑⁡𝑟 ∈ 𝑅 (14) 

 

where 𝐺𝑟 is set of user groups that can be feasibly matched to route 𝑟 (i.e. satisfies constraint of 

Eq. (7)).  

 

This stability condition ensures that no other coalition of users can make a better payoff than the 

current assignment solution and outcome allocation. Based on the definitions, the amount of 

generalized cost that users transfer to operators, 𝑝𝑠𝑟, depends on the values allocated to operators, 

𝑣𝑟𝑠, and the 𝑎𝑠𝑟 which is obtained from the utilities. 

To clarify the definitions of stability and feasibility of outcomes, we show them in a small 

example shown in Figure 2.  
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Figure 2. Users and routes interaction in stability. 

 

As shown in Figure 2, suppose there is a set of three routes {𝑟1 = (1 → 3 → 2 → 5 → 4 →
6), 𝑟2 = (3 → 6), 𝑟3 = (5 → 4)} where each has a quota of 2 on each of its links, and a set of four 

users 𝑆 = {(1,6), (3,2), (5,4), (3,6)}. Under assignment 𝑥, 𝑠1,⁡𝑠2,⁡𝑠3 and 𝑠4 are respectively 

matched to routes 𝑟1, 𝑟1,⁡𝑟1 and 𝑟2. Then we have: 𝐶(𝑟1, 𝑥) = {𝑠1,⁡𝑠2, 𝑠3}, 𝐶(𝑟2, 𝑥) = {𝑠4}, 
𝐶(𝑟3, 𝑥) = ∅ and 𝐷(𝑟1, 𝑥) = {𝑠4}, 𝐷(𝑟2, 𝑥) = {𝑠1, 𝑠2, 𝑠3}, 𝐷(𝑟3, 𝑥) = {𝑠1, 𝑠2, 𝑠3, 𝑠4}. The equations 

for stability and feasibility conditions for this example are shown below. 

 

Conditions for Feasibility 
(𝑢1 + 𝑢2 + 𝑢3) + 𝑣1 = (𝑎11 + 𝑎21 + 𝑎31) − 𝐶1 

𝑢4 + 𝑣2 = 𝑎42 − 𝐶2 

𝑣3 = 0 

𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣1, 𝑣2, 𝑣3 ≥ 0 

  

Conditions for Stability 
(𝑢1) + 𝑣1 ≥ (𝑎11) − 𝐶1 (𝑢2 + 𝑢3) + 𝑣1 ≥ (𝑎21 + 𝑎31) − 𝐶1 
(𝑢2) + 𝑣1 ≥ (𝑎21) − 𝐶1 (𝑢1 + 𝑢2 + 𝑢3) + 𝑣1 ≥ (𝑎11 + 𝑎21 + 𝑎31) − 𝐶1 

(𝑢3) + 𝑣1 ≥ (𝑎31) − 𝐶1 (𝑢1 + 𝑢4) + 𝑣1 ≥ (𝑎11 + 𝑎41) − 𝐶1 
(𝑢1 + 𝑢2) + 𝑣1 ≥ (𝑎11 + 𝑎21) − 𝐶1 (𝑢4) + 𝑣1 ≥ (𝑎41) − 𝐶1 
(𝑢1 + 𝑢3) + 𝑣1 ≥ (𝑎11 + 𝑎31) − 𝐶1 (𝑢3) + 𝑣3 ≥ (𝑎33) − 𝐶3 

 

 

Proposition 2. The set of stable outcomes for the assignment game in Eq. (5) – (9) consists of a 

convex space. 

 

Proof. 

The proof follows directly from the fact that the set of stable outcomes is defined by a set of linear 

constraints (Eq. (14) and feasibility definition) so the space of stable outcomes is convex. ∎ 
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We can now establish the necessary and sufficient conditions to relate an optimal assignment to a 

stable outcome with Proposition 3. Furthermore, it is known assignments and even the dual 

variables corresponding to the line capacities can be non-unique (e.g. Larsson and Patriksson, 

1999); we show that non-unique assignments nonetheless share the same stable outcome space 

with Proposition 4. 

 

Proposition 3. Assignment x corresponding to stable outcome ((𝑢, 𝑣); 𝑥) satisfying Eq. (14) is an 

optimal assignment solution to the assignment problem in Eq. (5) – (9). 

 

Proof. 

Stability of outcomes in assignment 𝑥 with respect to any other assignment 𝑥′ implies that 

  

∑ 𝑢𝑠
𝑠∈𝐶(𝑟,𝑥′)

+ 𝑣𝑟 ≥ ∑ 𝑎𝑠𝑟
𝑠∈𝐶(𝑟,𝑥′)

− 𝐶𝑟 = ∑ 𝑎𝑠𝑟𝑥𝑠𝑟
′

𝑠∈𝑆\{𝑘}

− 𝐶𝑟 ∀𝑟 ∈ 𝑅 (15) 

 

Summation of Eq. (15) over all the 𝑟 ∈ 𝑅̅ in 𝑥′ results in Eq. (16). 

 

∑ 𝑢𝑠
𝑠∈𝑆\{𝑘}

+∑𝑣𝑟
𝑟∈𝑅̅

≥ ∑ ∑𝑎𝑠𝑟𝑥𝑠𝑟
′

𝑟∈𝑅̅𝑠∈𝑆\{𝑘}

−∑𝐶𝑟
𝑟∈𝑅̅

= ∑ ∑𝑎𝑠𝑟𝑥𝑠𝑟
′

𝑟∈𝑅𝑠∈𝑆\{𝑘}

−∑(1 − 𝑥𝑘𝑟
′ )𝐶𝑟

𝑟∈𝑅

 

 (16) 

 

Using the feasibility definition, the left side of Eq. (16) can be rewritten as Eq. (17). 

 

∑ 𝑢𝑠
𝑠∈𝑆\{𝑘}

+∑𝑣𝑟
𝑟∈𝑅̅

= ∑ 𝑢𝑠
𝑠∈𝑆\{𝑘}

+∑𝑣𝑟
𝑟∈𝑅

= ∑ ∑𝑎𝑠𝑟𝑥𝑠𝑟
𝑟∈𝑅𝑠∈𝑆\{𝑘}

−∑(1 − 𝑥𝑘𝑟)𝐶𝑟
𝑟∈𝑅

 

 (17) 

 

By inserting Eq. (17) into Eq. (16) we have Eq. (18). 

 

∑ ∑𝑎𝑠𝑟𝑥𝑠𝑟
𝑟∈𝑅𝑠∈𝑆\{𝑘}

−∑(1 − 𝑥𝑘𝑟)𝐶𝑟
𝑟∈𝑅

≥ ∑ ∑𝑎𝑠𝑟𝑥𝑠𝑟
′

𝑟∈𝑅𝑠∈𝑆\{𝑘}

−∑(1 − 𝑥𝑘𝑟
′ )𝐶𝑟

𝑟∈𝑅

  (18) 

 

Eq. (18) can be re-written in the form of Eq. (19). 

 

∑∑𝑎𝑠𝑟𝑥𝑠𝑟
𝑟∈𝑅𝑠∈𝑆

≥∑∑𝑎𝑠𝑟𝑥𝑠𝑟
′

𝑟∈𝑅𝑠∈𝑆

  (19) 

 

This means the objective function of assignment 𝑥 is better than any other assignment 𝑥′ which 

shows the optimality of assignment 𝑥.⁡⁡∎ 
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Proposition 4. Any optimal assignment solution 𝑥 to the assignment problem in Eq. (5) – (9) 

shares the same stable outcome area with every other optimal assignment solution 𝑥′. 
 

Proof. 

Let’s say we have two optimal assignment solutions 𝑥⁡and 𝑥′. If we show that the stable outcome 

((𝑢, 𝑣); 𝑥) is generally feasible for assignment 𝑥′ then we can say that ((𝑢, 𝑣); 𝑥) is also the stable 

space for assignment 𝑥′. 
From the stability condition we have Eq. (15) and summing up over all the routes 𝑟 we get the 

Eq. (16). Since the 𝑥′ is also an optimal solution, the Eq. (16) will be in the form of equality. This 

means that all the Eq. (15) also have the form of equality necessary for the feasibility of ((𝑢, 𝑣); 𝑥) 

for assignment 𝑥′. ∎ 

 

Lastly, we show with Proposition 5 that the stability conditions extend to a generalized assignment 

problem with multiple travelers per OD pair, i.e. when 𝑞𝑠 > 1. The proposition clarifies the 

distinction, from individual behavior in which users select different routes, to the Wardrop’s 

equilibrium that arises when identical travelers end up choosing different routes. In essence, the 

routes are chosen only if they are equivalent in value when considering the dual values of the link 

capacities. This proposition also maintains that the problem is strictly a many-to-one assignment 

game cast within a capacitated network context. 

 

Proposition 5. Identical users (like user demand sharing the same OD when 𝑞𝑠 > 1 for the user 

bundle version of assignment game in Eq. (5) – (9)) gain equal benefit from their match to different 

routes. 

 

Proof. 

In Proposition 4 we saw that all the stable outcomes are sharing the same stable outcome space. 

Let’s say the user bundle 𝑠 includes two agents 𝑒 and 𝑒′. In an optimal assignment solution 𝑥, 𝑒 is 

matched to route 𝑟 and 𝑒′ to 𝑟′ and in the other optimal assignment solution 𝑥′, 𝑒 is matched to 

route 𝑟′⁡ and 𝑒′ to 𝑟. Note that two agents 𝑒 and 𝑒′ are completely identical. Stability conditions 

for assignment 𝑥 implies Eq. (20) – (23). 

𝑢𝑒 + ∑ 𝑢𝑠
𝑠∈𝐶(𝑟,𝑥)\{𝑒}

+ 𝑣𝑟 = 𝑎𝑒𝑟 + ∑ 𝑎𝑠𝑟
𝑠∈𝐶(𝑟,𝑥)\{𝑒}

− 𝐶𝑟 
(20) 

𝑢𝑒 + ∑ 𝑢𝑠
𝑠∈𝐶(𝑟′,𝑥)\{𝑒′}

+ 𝑣𝑟′ ≥ 𝑎𝑒𝑟′ + ∑ 𝑎𝑠𝑟′

𝑠∈𝐶(𝑟′,𝑥)\{𝑒′}

− 𝐶𝑟′ 
(21) 

𝑢𝑒′ + ∑ 𝑢𝑠
𝑠∈𝐶(𝑟′,𝑥)\{𝑒′}

+ 𝑣𝑟′ = 𝑎𝑒′𝑟′ + ∑ 𝑎𝑠𝑟′

𝑠∈𝐶(𝑟′,𝑥)\{𝑒′}

− 𝐶𝑟′ 
(22) 

𝑢𝑒′ + ∑ 𝑢𝑠
𝑠∈𝐶(𝑟,𝑥)\{𝑒}

+ 𝑣𝑟 ≥ 𝑎𝑒′𝑟 + ∑ 𝑎𝑠𝑟
𝑠∈𝐶(𝑟,𝑥)\{𝑒}

− 𝐶𝑟 
(23) 

 

Stability condition for assignment 𝑥′ implies Eq. (24) – (27). 

  

𝑢𝑒 + ∑ 𝑢𝑠
𝑠∈𝐶(𝑟′,𝑥′)\{𝑒}

+ 𝑣𝑟′ = 𝑎𝑒𝑟′ + ∑ 𝑎𝑠𝑟′

𝑠∈𝐶(𝑟′,𝑥′)\{𝑒}

− 𝐶𝑟⁡ ′ 
(24) 
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𝑢𝑒 + ∑ 𝑢𝑠
𝑠∈𝐶(𝑟,𝑥′)\{𝑒′}

+ 𝑣𝑟 ≥ 𝑎𝑒𝑟 + ∑ 𝑎𝑠𝑟
𝑠∈𝐶(𝑟,𝑥′)\{𝑒′}

− 𝐶𝑟 (25) 

𝑢𝑒′ + ∑ 𝑢𝑠
𝑠∈𝐶(𝑟,𝑥′)\{𝑒′}

+ 𝑣𝑟 = 𝑎𝑒′𝑟 + ∑ 𝑎𝑠𝑟
𝑠∈𝐶(𝑟,𝑥′)\{𝑒′}

− 𝐶𝑟 (26) 

𝑢𝑒′ + ∑ 𝑢𝑠
𝑠∈𝐶(𝑟′,𝑥′)\{𝑒}

+ 𝑣𝑟′ ≥ 𝑎𝑒′𝑟′ + ∑ 𝑎𝑠𝑟′

𝑠∈𝐶(𝑟′,𝑥′)\{𝑒}

− 𝐶𝑟′ 
(27) 

 

Since agents 𝑒 and 𝑒′ have the same characteristics, 𝑎𝑒𝑟 = 𝑎𝑒′𝑟 and 𝑎𝑒𝑟′ = 𝑎𝑒′𝑟′. From this and 

Eq. (20) - (27) we can say that 𝑢𝑒 = 𝑢𝑒
′ . ∎ 

 

 

3.3. Solution method 

The proposed model is conveniently cast as an integer programming problem with quota 

constraints, but with route flows for different OD pairs and line capacities. The model is a type of 

capacitated multicommodity flow problem, where the latter is known to be NP-hard (Even et al., 

1975) with unsplittable or discrete flows. Any conventional IP solution algorithm can be applied 

to solve this model and LP relaxation can be applied when allowing for continuous flows. There 

are several approaches which can be divided into three main categories of methods: cutting planes 

(e.g. reducing feasible area by adding extra constraints), heuristic methods (e.g. search methods, 

subgradient optimization, see Held et al., 1974), and implicit enumeration techniques (e.g. Branch 

and Bound, see Lawler and Wood, 1966).  

Having found a set of assignments, a stable cost sharing problem is expressed as Eq. (28) to 

(33). The decision variables are 𝑢𝑠 and 𝑣𝑟. Constraint (29) is related to definition of stability. The 

objective function max𝑍 represents a desired cost allocation mechanism, such as maximizing 

revenue, social welfare, fairness, etc.  

 

max𝑍  (28) 

s.t.   

∑ 𝑢𝑠𝑠∈𝐺𝑟 + 𝑣𝑟 ≥ ∑ 𝑎𝑠𝑟𝑠∈𝐺𝑟 − 𝐶𝑟  ∀𝐺𝑟⁡𝑎𝑛𝑑⁡𝑟 ∈ 𝑅 (29) 

∑ 𝑢𝑠𝑠∈𝐶(𝑟,𝑥) + 𝑣𝑟 = ∑ 𝑎𝑠𝑟𝑠∈𝐶(𝑟,𝑥) − 𝐶𝑟  ∀⁡𝑟 ∈ 𝑅̅ (30) 

𝑣𝑟 = 0  ∀𝑟 ∈ 𝑅\𝑅̅ (31) 

𝑢𝑠 = 0⁡⁡ ∀𝑠⁡𝑠. 𝑡. 𝐶(𝑠, 𝑥) = ∅ (32) 

𝑢𝑠 ≥ 0, 𝑣𝑟 ≥ 0   ∀𝑟 ∈ 𝑅̅ (33) 

 

When 𝑍 is set as either ∑ 𝑢𝑠𝑠∈𝑆  or ∑ 𝑣𝑟𝑟∈𝑅 , the solutions obtain the user-optimal and operator-

optimal outcomes, respectively. These two objective functions form opposite vertices of the space 

of the set of stable outcomes. Another objective function may obtain an outcome allocation that 

lies somewhere between these two bounds. Different cost allocation mechanisms may be used, 

although some may not result in allocations within this stable outcome space. By setting a desired 

mechanism we can use Eq. (28) – (33) to set prices for the assignment. When Z is linear, the 

resulting model is a simple LP for obtaining the cost allocations under the stable matching. 
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The stable cost allocation of this study is based on the definition of the core. A core is a strong 

stability condition that leads to two issues. First, as illustrated with the example in Figure 2, all the 

possible coalitions need to be checked so that they cannot generate more payoff than what they get 

in the core (Eq. (29)). Generation of all possible coalitions can be computationally expensive. On 

the other hand, the core may not always be non-empty. This can be advantageous in the design of 

a system because one that results in an empty core suggests there is no advantage for the operators 

to serve the users. In the next section, we show a numerical example where the core has different 

conditions with different parameters.  

The computational complexities of the assignment game and core allocation depend on the 

number of routes enumerated. Implicit enumeration techniques are the most obvious way to 

improve computational efficiency for large scale application. For example, Barnhart et al. (1994) 

proposed using column generation for implicit route enumeration to tackle large scale problems 

which we will investigate further in future research.  

 

3.4. Illustration with fixed route transit service 

3.4.1. Network parameters 

 To illustrate how this model works, we present a simple 4-node transit route network example 

shown in Figure 3. The number over each link in the figure represents the travel time between the 

nodes. In this network, we allow for all possible routes to be enumerated, of which there are 52 

candidate routes (𝑅 = {𝑟1, … ,  𝑟52}). We consider a cost structure based on the number of links in 

the route (a route with more links has higher operating cost), which is set to 𝐶𝑟 = 4.5 + 0.5 × |𝐴𝑟|. 
 

1

43

23

4 2

1.5

5 2

 
Figure 3. 4-node network example. 

 

Two different problem settings are considered. The first illustrates individuals with binary 

decisions where no capacity is assumed (𝑤𝑟 → ∞⁡). In the second case, for each “user” there is 

demand of 5 individuals for each OD pair. The line capacity is set to 2 in this latter case. These 

examples can be interpreted as transit routes that serve a population of travelers. In the 

computational experiments we set prices based on user-optimal (𝑍 = ∑ 𝑢𝑠𝑠∈𝑆\{𝑘} ) and operator-

optimal (𝑍 = ∑ 𝑣𝑟𝑟∈𝑅 ) mechanisms. Commercial optimization packages use one or combine some 

of these methods to solve the integer programming problems. For convenience we used Matlab’s 

intlinprog solver for the numerical examples in this study, as it uses a variant of the branch and 

bound algorithm to obtain a solution. 

 

3.4.2. Binary, non-capacitated case 
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A set of demand OD pairs between some of the OD pairs are randomly chosen (𝑆 =
{(1,2), (1,3), (2,3), (3,2), (4,1), (4,2)}) for this experiment. The utility (𝑈𝑟𝑠) for conducting each 

trip for all users is set constant (𝑈𝑠𝑟 = 𝑈 = 20⁡⁡⁡⁡∀𝑠 ∈ 𝑆\{𝑘}, 𝑟 ∈ 𝑅). 

 After solving the assignment model of Eq. (5) - (9), the optimal assignments is shown in Table 

3a and Figure 4. The objective value for the optimal assignment solution is 88.5. Solving the LP 

in Eq. (28) to (33) with 𝑍 equal to ∑ 𝑢𝑠𝑠∈𝑆  and ∑ 𝑣𝑟𝑟∈𝑅  results in the payoffs for user-optimal and 

operator-optimal cases as the ticket price relating to these two optimal payoffs are shown in Table 

3b and 3c. The 𝑍∗ for user- and operator-optimal objective values are 88.5 and 0.5 respectively. 

 
Table 3a. Result of assignment game for four node network 

𝑟 Users (O,D) 
𝑛𝑢𝑚𝑏𝑒𝑟⁡ 
𝑜𝑓⁡𝑟𝑜𝑢𝑡𝑒 

Links⁡of⁡⁡route 
𝐶𝑜𝑠𝑡 
⁡𝑜𝑓⁡𝑟𝑜𝑢𝑡𝑒 

(1,2) (1,3) (2,3) (3,2) (4,1) (4,2) 

29 1 − 3 − 4 − 2 6  ∗  ∗  ∗ 
51 4 − 1 − 2 − 3 6 ∗  ∗  ∗  

 

Table 3b. Ticket prices in a user-optimal allocation mechanism 

Route Links of route 

Cost 

of 

route 

User ticket prices (O,D) 
Operator 

revenue (1,2) (1,3) (2,3) (3,2) (4,1) (4,2) 

29 1 − 3 − 4 − 2 6  0.98  2.42  2.60 6 

51 4 − 1 − 2 − 3 6 2.24  2.79  0.97  6 

 
Table 3c. Ticket prices in an operator-optimal allocation mechanism 

Route Links of route 

Cost 

of 

route 

User ticket prices (O,D) 
Operator 

revenue (1,2) (1,3) (2,3) (3,2) (4,1) (4,2) 

29 1 − 3 − 4 − 2 6  1  2.39  2.62 6.01 

51 4 − 1 − 2 − 3 6 2.65  2.85  0.98  6.48 

 

 

31 4 2

2

2

Route 29

4

4

1

1

6

6  

14 2 3

5

1

1

5

3

3

Route 51

 
s User s indicator

n Node n of network  

 

Figure 4. 4-node example user route matching in different optimal solutions. 
 

Based on feasibility of outcomes, matched partners have the following payoffs: 𝑢2 + 𝑢4 +
𝑢6 + 𝑣29 = 44.5; 𝑢1 + 𝑢3 + 𝑢5 + 𝑣51 = 44. Both 𝑏𝑟𝑠 and 𝑔𝑠𝑟 are assumed to be zero.  

The result for payoff splitting between the players is shown in Table 3b and 3c. In the user-

optimal allocation, the ticket prices are as small as possible and the operators gain no profit in this 

matching. On the contrary, in the operator-optimal allocation, the prices are set as high as possible. 
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Since the set of stable outcomes is convex, every other ticket price between these two ticket prices 

are also stable ticket prices. 

 

3.4.3. Integer, capacitated case 

 In this scenario, users from the prior setting are modified into user bundles with 𝑞𝑠 = 5⁡⁡∀𝑠 ∈
𝑆\{𝑘}. A line capacity is added to each route as well, where 𝑤𝑟 = 2, ∀𝑟 ∈ 𝑅.  

 The result of the assignment game is shown in Table 4 and Figure 5. In Figure 5 the number 

of passengers is written on the edge from user to network node. Due to capacity, some users switch 

to other operator routes. For this problem with these parameters, the set of stable outcomes is 

empty (Core is empty). It means that constraints of Eq. (29) to (33) do not contain any feasible 

area.  

Now consider a user group size of 𝑞𝑠 = 2⁡⁡∀𝑠 ∈ 𝑆\{𝑘} instead. The assignment solution is 

shown in Table 5a. The optimal objective value is 187.5. The operator-optimal and user-optimal 

allocations from Eq. (28) to (33) for this case are shown in Table 5b, illustrating the stable outcome 

under operator- and user-optimal mechanisms. The value of 𝑍∗ for user- and operator-optimal 

objectives are 93.75 and 0 respectively. In this scenario, the outcomes for both the operator- and 

user-optimal mechanisms are identical which means the core is a single point. 

 
Table 4. Result of assignment for 4-node network with demand (𝒒𝒔 = 𝟓⁡⁡∀𝒔 ∈ 𝑺\{𝒌}) and route link capacity 

𝑟 User group (O,D) 
𝑟𝑜𝑢𝑡𝑒 
⁡𝑛𝑢𝑚𝑏𝑒𝑟 

Links⁡of⁡⁡route 
𝐶𝑜𝑠𝑡 

⁡𝑜𝑓⁡𝑟𝑜𝑢𝑡𝑒 
(1,2) (1,3) (2,3) (3,2) (4,1) (4,2) 

6 4 − 2 5      2 

7 1 − 3 − 2 5.5  2  2   

9 1 − 2 − 3 5.5 2  2    

25 4 − 1 − 2 5.5 2    2  

28 4 − 2 − 3 5.5   2   2 

29 1 − 3 − 4 − 2 6  1  1  1 

49 4 − 1 − 3 − 2 6  2  2 2  

51 4 − 1 − 2 − 3 6 1  1  1  

Total 5 5 5 5 5 5 

 
Table 5a. Result of assignment for 4-node network with demand (𝒒𝒔 = 𝟐⁡⁡∀𝒔 ∈ 𝑺\{𝒌}) and route link capacity 

𝑟 User group (O,D) 
𝑟𝑜𝑢𝑡𝑒 
⁡𝑛𝑢𝑚𝑏𝑒𝑟 

Links⁡of⁡⁡route 
𝐶𝑜𝑠𝑡 

⁡𝑜𝑓⁡𝑟𝑜𝑢𝑡𝑒 
(1,2) (1,3) (2,3) (3,2) (4,1) (4,2) 

1 1 − 2 5 2      
28 4 − 2 − 3 5.5   2   2 
49 4 − 1 − 3 − 2 6  2  2 2  

Total 2 2 2 2 2 2 

 

 
Table 5b. Ticket prices in operator-optimal and User-optimal allocation mechanisms 

Cost 

allocation 

mechanism 

Route Links of route 

Cost 

of 

route 

User group (O,D) 
Operator 

revenue (1,2) (1,3) (2,3) (3,2) (4,1) (4,2) 

1 1 − 2 5 2.5      5 
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User 

optimal 

28 4 − 2 − 3 5.5   0.25   2.5 5.5 

49 4 − 1 − 3 − 2 6  0.46  2.29 0.25  6 

Operator 

optimal 

1 1 − 2 5 2.5      5 

28 4 − 2 − 3 5.5   0.25   2.5 5.5 

49 4 − 1 − 3 − 2 6  0.46  2.29 0.25  6 
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Figure 5. Matching of users and network nodes in 4-node network example with capacity. 
 

 

This test demonstrates how the stable matching assignment game can be applied to OD-level 

population groups in a network of routes that exhibit line capacities. The results show that a stable 

matching can be found along with a corresponding unique stable outcome space for determining 

stable cost allocations. Moreover, it shows how the core is dependent on different parameters of 

an example. 

 

 

4. Case study 
 

4.1. Experimental design 

 Having demonstrated how the model works, we now apply it to a case study calibrated to real 

data to illustrate the model in a more realistic setting as a proof-of-concept. We choose a taxi case 

study instead of a public transit one for several reasons: 

1) Taxi ridership data is readily available through the NYC Open Data portal. 

2) Taxi trips represent individual trips, and recent news about allowing shared rides (Hu, 

2017) suggests the question of demand for shared rides remains an open question that is of 

interest to policymakers. 

3) Tools to address this question have looked at either simulations that assume inelastic 

demand (Santi et al., 2014) or considered demand only for very specific trip purposes like 

airport access (Ma et al., 2017). Equilibrium assignment that considers both taxi operator 

and user incentives has not been conducted. 

 

We choose to study this problem as follows. A random sample of taxi riders is selected based 

on pickups and drop-offs during a particular time period in lower Manhattan. Two scenarios are 

defined; one in which only single rider taxi routes are used, and one in which ridesharing is an 

option. The single rider taxi data are used to calibrate the payoff values. We assume utilities are 

equal to the cost of the trips made in that base scenario. The assignment game model is expected 

to inform on: 

• Percent of users who choose to share rides considering incentives 

• Price allocations under two schemes: user-optimal and taxi-optimal allocation 

• Decision support for designing a cost allocation policy to request travelers meet the 

vehicles at a common distance 

 

Taxi operations are dynamic whereas our proposed model is a static model. To deal with this 

discrepancy, we carefully calibrate our base case such that representing the observed data with a 

static, multiperiod assignment would be stable. For more rigorous treatment of dynamic 

assignment, non-myopic assignment considerations with potential spillovers of requests (e.g. 

Sayarshad and Chow, 2015) and online cost allocations (Furuhata et al., 2015) would be needed, 

which are beyond the scope of this study. While this simplification and the small sample size 
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prevent us from drawing rigorous empirical conclusions about the shared taxi policy across the 

whole NYC, we can at least use the experiment to illustrate how the model can be used.  

 

4.2. Data 

NYC Taxi and Limousine Commission releases data every month on taxi trips in NYC. The 

data provides valuable information about each trip, such as pick up and drop off times and 

locations, trip distance, number of passengers, payment type and detailed fare data (fare + tax + 

tip). For this example, taxi data from Wednesday October 5th 2016 from 8AM to 8:30AM was 

used. There are 19,972 taxi trips made in NYC during this time. We consider the lower Manhattan 

region below 23rd Street as our study area, as shown in Figure 6. We create 21 nodes to represent 

zone centroids. Distance and travel time matrices between the nodes are extracted from Google 

API. 

 

 
Figure 6. Study area of NYC taxi case study. 

  

Within these 21 zones, 755 taxi trips were conducted during the study period. A set of potential 

routes are generated: single rider pickups and drop-offs as well as all possible combinations of two 

rider pickups and drop-offs. For each pair combination, the best route is generated. For example, 

two users 𝑓 and 𝑔 have origins and destinations (𝑂𝑓 , 𝐷𝑓) and (𝑂𝑔, 𝐷𝑔) respectively. The shortest 

travel route from the following set is added to the route set: {(𝑂𝑓 − 𝑂𝑔 − 𝐷𝑓 − 𝐷𝑔), (𝑂𝑓 − 𝑂𝑔 −

𝐷𝑔 − 𝐷𝑓), (𝑂𝑔 − 𝑂𝑓 − 𝐷𝑓 − 𝐷𝑔), (𝑂𝑔 − 𝑂𝑓 − 𝐷𝑔 − 𝐷𝑓)}. For each pair of users we have three 

routes. If |𝑆| is the number of users, the number of routes in this case study is |𝑅| = (|𝑆|
2
) ×

3

2
. 
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We break the study period into multiple time intervals Δ𝑇 and solve the problem as a static, 

multi-period assignment. In each interval, all the generated trips are pooled together and all the 

possible routes are generated to run the assignment model of Eq. (5) - (9). A Δ𝑇 is chosen to ensure 

that the static assignment problems within each interval contains non-empty stable outcomes in 

the base case. We initially assume Δ𝑇 equals 1 minute and keep dividing intervals with empty sets 

by two until the space of stable outcomes is non-empty. The same inferred stable intervals are used 

across the alternatives so that our comparison of single ride with shared ride policies is consistent. 

We find that an average stable interval length across the population of 46 seconds satisfies this 

objective. 

It is assumed that each person’s utility is equal to the travel time that they had in their observed 

single taxi ride plus the amount of fare they paid (which is known from the data). This utility is a 

lower bound of actual utility that each person has from doing his trip. This is a conservative choice 

for utility since these trips have already happened and if the actual utility was less, the user 

wouldn’t have made the trip in the first place. In the numerical example, it does matter for each 

user which route they choose. As a direct route, a single ride obviously will have less travel time 

(more payoff) than a shared ride that has some delay due to detour.  

In the numerical experiment of NYC taxi, the routes are explicitly generated beforehand. 

Based on generated routes the payoff value is independent of the user match (𝑥𝑠𝑟). There is no 

congestion effect from taxi rides on the road travel times – when a person chooses to ride one way 

or another, it will not impose crowding cost on another route at all (especially since taxis are only 

a small fraction of total traffic in lower Manhattan). The travel times do consider congested 

background traffic since the travel time matrices are drawn from Google API under the presence 

of congestion. Not considering congestion for shared taxi (and other fleet-oriented services) is 

normal and have been done in other shared ride studies (for a similar numerical example) such as 

Santi et al. (2013) and Alonso-Mora et al. (2017).  

We consider the line capacity of route links equal to three passengers (𝑤𝑟 = 3⁡, ∀⁡𝑟 ∈ 𝑅). Each 

taxi user is assumed to be a single passenger so 𝑞𝑠 = 1. All the cost and gain values are converted 

to monetary values. The value of time for travelling (TVOT) is assumed to be $0.40/min. The 

value of waiting time (WVOT) is assumed to be more than traveling value of time and is equal to 

twice that amount, $0.80/min. These values are conservative estimates based on numbers reported 

in Balcombe et al. (2004). Operating costs of routes are assumed to be $0.90/mile (based on an 

estimate of annual cost of $36,000 (including fixed and variable costs) and average annual mileage 

of 40,000 miles). 

 

4.3. Results 

4.3.1 Comparison of total shared taxi rides versus single taxi ride 

 All the calculations are performed with a desktop computer with core i7 @3.40 GHz processor 

and 8.0 GB RAM. All the codes are written in MATLAB 2016a. The full set of results for all 755 

users will be uploaded to GitHub (https://github.com/BUILTNYU) upon publication of this study. 

We run the assignment game model on this data for the shared ride policy with a run time of 

35.53 seconds. The total mileage of taxis for serving 755 users allowing shared rides is 1588.4 

miles, compared to a total mileage for single-ride taxi in the original data of 1996.9 miles. This 

shows a 21% decrease in vehicle miles traveled.  

Second, the assignment shows that 523 of 755 users (69%) decide to rideshare. This is similar 

but lower than the 80% estimate from Santi et al. (2014). Our value is more pessimistic because it 

https://github.com/BUILTNYU


23 

 

 

requires both users and operators to have sufficient incentive to switch. In Figure 7, the matches 

before (single taxi ride) and after (shared taxi ride allowed) matching taxi riders are shown. 

 

  
a) Single ride taxi b) Shared ride taxi 

Figure 7. NYC taxi assignment results for single and shared taxi riding. 

 

In Figure 8, the generalized ticket price in three conditions of single riding taxi data, user-

optimal shared taxi assignment, and operator-optimal shared taxi assignment are shown. The blue 

line represents the single ride taxi ticket price observed from the data. The red and green lines are 

ticket prices under operator- and user-optimal ticket pricing respectively (without minimum 

acceptable profit for operator and user). The space between these two lines is the space that a 

decision maker can use to evaluate stability of policies. With a positive minimum acceptable profit 

for users, the green and red lines would shift right, while a subsidy would shift them left.  
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Figure 8. Ticket price percentage of users pay in three different scenario. 

 

 

4.3.2 Illustration of cost allocation mechanism design using the stable cost allocation space 

The benefit of the proposed model is that the set of stable outcomes is a convex polyhedron, 

which means that any weighted average price between the user-optimal and operator-optimal ticket 

price for each user and operator is also a stable price that can be used. In fact, this method provides 

a tool for explicitly pricing or setting design constraints for cost allocation mechanisms rather than 

blindly finding prices. This tool is a powerful method for pricing any matching situation in 

transportation systems, of which the NYC taxi is one example. 

Consider the case of what happens if the shared ride taxi policy was incorporated with a fare 

price set at the user-optimal fare pricing level with the additional policy of requiring users to move 

up to a distance 𝐷 to be picked up. From the stable price space we know how much we can 

equivalently transfer operator cost to passenger cost without causing some users to break from the 

coalition. The total cost of the two minus the average operating cost savings per person should not 

exceed the operator optimal cost allocation.  

This model allows us to determine a good threshold for 𝐷. If 𝐷 = 1⁡𝑏𝑙𝑜𝑐𝑘, assuming 1 mile 

is approximately 20 blocks, pedestrian walking speed is 4 ft/s, and value of time of walking is 

approximately 1.5 of in-vehicle time (Balcombe et al., 2004), then the policy can impose up to an 

average of $0.44 on each traveler. Let us look at the distribution of gaps between the operator- and 

user-optimal pricing in Figure 9. It shows if the operator does not reallocate any costs to users 

along with the policy, there are only 99 out of 755 travelers (13.1%) who would have enough gap 

to stably absorb the additional walking cost without having to reduce operating cost to compensate. 

For the remaining 86.9%, however, the average gap is $0.03. If we want to ensure that no passenger 

is turned away by the walking policy, (0.44⁡– ⁡0.03) ×
656

755
= $0.35 per user should be transferred 

to the users from the cost savings from rerouting the vehicles. This conclusion illustrates how the 

operator can define performance benchmarks to evaluate a routing algorithm that requires the 1-

block walking policy: e.g. one that saves less than $0.35 per user may not be stable without losing 

some users. The insight illustrates the strength of this modeling framework: for any general 
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transportation system with routes and line capacities, generalized cost allocation trade-offs 

between users and operators can be quantified and benchmarked for performance evaluation. 

 

 
Figure 9. Sorted gap between user- and operator-optimal pricing under shared taxi policy. 

 

 

4.3.3 Detailed breakdown for select trips 

Lastly, we look more closely at what happens to single users. As shown in Figure 10, three 

users with OD pairs (11,13), (17,20) and (20,13) originally conducted their trips as solo taxi rides 

based on the data. Because of the availability of shared rides, they are now incentivized to share 

their rides together with the route (𝟏𝟕 → 𝟏𝟏 → 𝟐𝟎 → 𝟏𝟑). For each of these users there are other 

available options such as sharing their ride with other users or even riding alone. 

The results for pricing users (11,13), (17,20) and (20,13) are shown in Table 7. In the single 

taxi riding condition, users (11,13), (17,20) and (20,13) are observed to pay $11.76, $6.30 and 

$8.15 respectively for their trips. The total profit of the operators from running these three trips is 

$8.34⁡ + ⁡$3.6⁡ + $7.34⁡ = ⁡$19.28.  
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Figure 10. Illustration of single taxi riding (dashed) versus ridesharing for two select users (solid). 

 
Table 7. Pricing of users (1,2) and (1,7) in single and ridesharing taxi riding 

 
𝑃𝑎𝑡ℎ Results 

𝑈𝑠𝑒𝑟𝑠 

 (11,13) (17,20) (20,13) 

𝑆
𝑖𝑛
𝑔
𝑙𝑒
⁡𝑡
𝑎
𝑥
𝑖⁡
𝑟𝑖
𝑑
𝑖𝑛
𝑔

 

1
→
6

 

𝑇𝑟𝑎𝑣𝑒𝑙⁡𝑡𝑖𝑚𝑒⁡(𝑚𝑖𝑛) 15   
𝑇𝑖𝑐𝑘𝑒𝑡⁡𝑝𝑟𝑖𝑐𝑒⁡($) 11.76   
𝑈𝑠𝑒𝑟⁡𝑝𝑟𝑜𝑓𝑖𝑡⁡($) 0   

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟⁡𝑝𝑟𝑜𝑓𝑖𝑡⁡($) 
(𝑡𝑖𝑐𝑘𝑒𝑡⁡𝑝𝑟𝑖𝑐𝑒⁡– ⁡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛⁡𝑐𝑜𝑠𝑡) 

8.34  
 

5
→
1

 

𝑇𝑟𝑎𝑣𝑒𝑙⁡𝑡𝑖𝑚𝑒⁡(𝑚𝑖𝑛)  13  
𝑇𝑖𝑐𝑘𝑒𝑡⁡𝑝𝑟𝑖𝑐𝑒⁡($)  6.3  
𝑈𝑠𝑒𝑟⁡𝑝𝑟𝑜𝑓𝑖𝑡⁡($)  0  

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟⁡𝑝𝑟𝑜𝑓𝑖𝑡⁡($) 
(𝑡𝑖𝑐𝑘𝑒𝑡⁡𝑝𝑟𝑖𝑐𝑒⁡– ⁡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛⁡𝑐𝑜𝑠𝑡) 

 3.6 
 

5
→
6

 

𝑇𝑟𝑎𝑣𝑒𝑙⁡𝑡𝑖𝑚𝑒⁡(𝑚𝑖𝑛)   6 
𝑇𝑖𝑐𝑘𝑒𝑡⁡𝑝𝑟𝑖𝑐𝑒⁡($)   8.15 
𝑈𝑠𝑒𝑟⁡𝑝𝑟𝑜𝑓𝑖𝑡⁡($)   0 

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟⁡𝑝𝑟𝑜𝑓𝑖𝑡⁡($) 
(𝑡𝑖𝑐𝑘𝑒𝑡⁡𝑝𝑟𝑖𝑐𝑒⁡– ⁡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛⁡𝑐𝑜𝑠𝑡) 

  
7.34 

𝑅
𝑖𝑑
𝑒𝑠
ℎ
𝑎
𝑟𝑖
𝑛
𝑔
⁡ 

𝑡𝑎
𝑥
𝑖⁡
𝑟𝑖
𝑑
𝑖𝑛
𝑔

 

1
→
2
→
7

 

𝑇𝑟𝑎𝑣𝑒𝑙⁡𝑡𝑖𝑚𝑒⁡(𝑚𝑖𝑛) 30 19 6 

𝑇𝑖𝑐𝑘𝑒𝑡⁡𝑝𝑟𝑖𝑐𝑒⁡($) 
𝑈𝑠𝑒𝑟⁡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑏 + 9.34 𝑏+7.82 𝑏 + 3.13 

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟⁡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑏 + 9.35 𝑏 + 7.9 𝑏 + 3.15 

𝑈𝑠𝑒𝑟⁡𝑝𝑟𝑜𝑓𝑖𝑡⁡($) 
𝑈𝑠𝑒𝑟⁡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 8.41 − 𝑏 3.67 − 𝑏 7.39 − 𝑏 

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟⁡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 8.40 − 𝑏 3.60 − 𝑏 7.41 − 𝑏 

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟⁡𝑝𝑟𝑜𝑓𝑖𝑡⁡($) 
(𝑡𝑖𝑐𝑘𝑒𝑡⁡𝑝𝑟𝑖𝑐𝑒⁡– ⁡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛⁡ 

𝑐𝑜𝑠𝑡) 

𝑈𝑠𝑒𝑟⁡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 3𝑏 

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟⁡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 0.1 + 3𝑏 
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In the ridesharing condition, one operator serves these three users by a single route of (𝟏𝟕 →
𝟏𝟏 → 𝟐𝟎 → 𝟏𝟑). Stability conditions from Section 3.2 lead to the values shown in the lower 

portion of Table 7. The value 𝑏 is assumed to be a constant minimum acceptable profit for these 

two operators (𝑏 < $3.6) that can serve these two users. For example, assuming 𝑏 = $3, the 

operator profit from operating one route will vary from $9 in user-optimal ticket pricing to $9.1 in 

operator optimal ticket pricing. These values compare to $8.34, $3.6 and $7.34 for each route in 

single riding taxi.  

Under the same assumption for 𝑏, user benefits for users (11,13), (17,20) and (20,13) would 

vary respectively from $9.34, $7.82 and $3.13 in operator-optimal ticket pricing to $9.35, $7.9 and 

$3.15 in user optimal ticket pricing condition. This value compares to the baseline of $0 in single 

taxi riding (since we set the utility to be the single ride cost). This quantification of the benefits 

can be used by public agencies to deploy pricing schemes to encourage people to shift to shared 

rides. 

 

4.4. Computational performance 

Like other capacitated multicommodity flow problems, the performance of the mixed integer 

programming solution method depends on the number of routes generated for each OD pair. In the 

assignment model of Eq. (5) - (9), for a set of 𝑛 unique user ODs, we have 𝑛 constraints (6), 
𝑛(3𝑛−1)

2
 

constraints (7), and 
𝑛(𝑛+1)

2
 constraints (8). So, for 𝑛 unique user OD pairs, we have constraints on 

the order of 𝑛2. With an increase in the number of unique user OD pairs, the number of constraints 

increases drastically. As suggested in section 3.3, one way to address this computational challenge 

is to introduce implicit enumeration using column generation (Barnhart et al., 1994), which we 

will examine more closely in future research. 

To provide a measure of the computational complexity of solving the assignment problem 

using mixed integer program without any decomposition, we tested the method on different 

numbers of unique user OD pairs. In a rectangular study area, we generated origin and destination 

locations for 𝑛 requests (in Euclidian space). In a similar process to section 4.2, for each OD pair, 

a set of potential routes are generated: single rider pickups and drop-offs as well as all possible 

combinations with other OD. For each pair combination, the best route is generated. For example, 

two OD pairs of 𝑓 and 𝑔 have origins and destinations (𝑂𝑓, 𝐷𝑓) and (𝑂𝑔, 𝐷𝑔) respectively. The 

shortest travel route from the following set is added to the route set: {(𝑂𝑓 − 𝑂𝑔 − 𝐷𝑓 − 𝐷𝑔), (𝑂𝑓 −

𝑂𝑔 − 𝐷𝑔 −𝐷𝑓), (𝑂𝑔 − 𝑂𝑓 − 𝐷𝑓 − 𝐷𝑔), (𝑂𝑔 − 𝑂𝑓 − 𝐷𝑔 − 𝐷𝑓)}. Figure 11 shows how the solution 

time and number of constraints increase with number of OD pairs.  

We can see that the solution time goes up exponentially while the number of constraints 

increases quadratically. This computational analysis confirms the need to explore decomposition 

algorithms in future research. 
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(a) (b) 

Figure 11. (a) Solution time and (b) number of constraints of assignment problem for different number of unique OD 

pair. 

 

 

5. Conclusion 
 

There is currently no computational transportation assignment model for a broad class of 

mobility services in MaaS because existing models do not jointly model user and operator 

behavior. We propose a generalized assignment game model to overcome this problem, which has 

the potential to transform the transportation planning practice with a new quantitative tool for 

evaluating emerging mobility services in a smart cities era. We show that using this model has 

several benefits over the state of the art: 

• It is generalized prescriptive assignment methodology that is not restricted to just one type of 

mobility service and can handle both decentralized and centralized operators with line capacity 

effects. 

• Unlike most of the studies that assume a cost allocation policy or mechanism, the proposed 

model outputs a stable payoff space for post evaluation of cost allocation mechanisms. We 

show that decision-makers need to have either full control or partial control (through sequential 

design) of the assignment and cost allocation mechanisms to use the model for system design. 

• By considering the behavior and incentives of both users and operators, the model allows 

policymakers and operators to evaluate the stability and pricing (in general costs: fare, access, 

wait, transfer, in-vehicle time) requirements of operating policies and cost allocation 

mechanisms. 

• In the conventional assignment game, a user uses a whole product of a seller. In transportation, 

however, passengers may be matched only to sections of a route. This makes the stability 

condition of our proposed model markedly different from prior assignment games. In section 

3.2 the stability principles for this proposed model are derived.  

 

We examined our model through several different examples. The first set of examples deal 

with a 4-node fixed route transit network. The last set of examples investigates a case study 

calibrated from real NYC taxi data as a proof-of-concept to illustrate the proposed methodology. 

Using the proposed model, we assigned taxi users to share their cab with a range of stable pricing. 

In this study with 755 trips from downtown Manhattan, we showed that 69.3% (523 trips) of users 
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are willing to share their taxis. Ridesharing of this 69.3% of users decreases the vehicle miles 

traveled by 20.5%.  

Several directions for future research are possible. The model can be extended to consider 

routes having to share limited space with congestion effects. Generally, the focus of MaaS systems 

is on vehicle and line capacity, but certainly in highly congested cities with limited space and very 

large fleets it is important to study the congestion effects that different operators have on each 

other based on serving travelers.  For example, in NYC there is consideration of a surcharge on 

taxis and for-hire vehicles because they crowd the streets which slow down bus routes. 

A second issue to consider is route enumeration. The model assumes matching users to 

operator routes, which requires having operator routes beforehand. This is a problem in the line 

planning literature as well. Solutions include using heuristics (Ceder and Wilson, 1986) and 

column generation methods (Barnhart et al., 1994; Borndörfer et al., 2007) to generate routes. 

Future research may consider endogenous equilibration of the route set as well (e.g. as studied by 

Watling et al., 2015, and Rasmussen et al., 2015). 

A third potential future study is dynamic assignment. The current methodology and examples 

deal with static assignment games, even though dynamic assignment would be more appropriate 

for some analysis. We know that several ridesharing companies currently need dynamic 

assignment since their demand is not known in advance. As a result, an interesting direction for 

future studies can be also considering stable matching and its dynamic pricing that considers 

sequential cost allocations (e.g. Gopalakrishnan et al., 2016).  

The model can be used to evaluate flexible route decisions for multimodal transit services. 

Instead of matching a user’s OD pair to a portion of an operator’s route, we can match portions of 

operator routes to portions of a user’s route, allowing for truly multimodal assignment. In those 

cases, the operators may have to cooperate by considering cost transfers with each other (e.g. fare 

bundles) to serve the passengers. This becomes a many-to-many assignment game like in 

Sotomayor (1999), but with line capacity effects on top of that. 

With the increasing devastation of catastrophic disasters, it has become necessary to be better 

prepared for these kinds of events. For future studies, we will also consider stochastic scenarios 

for risk pooling (cost allocations between operators) in the case of such events. 
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Appendix. Model variations 
Variations can be modeled. For example, direct services like taxis may be represented by 

single link routes with some dynamic filtering of available routes. A route can also be replaced 

with a cycle without altering the model. If the operator is a single centralized decision-maker, then 

the matching would be made between the set of users with a single seller. Operators may be toll 

road operators, public transport providers, taxis, or TNCs, among others mentioned earlier. The 

following sections describe how centralized decision-making and vehicle-route framework can be 

modeled. 
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A.1. Operator-route case 

Although the base model assumes each operator is a separate route, it is also possible to 

consider operators as collections of routes, or even as a system-wide centralized agency. This 

section demonstrates how that can be accomplished using our underlying model.  

In the centralized case, as before, set 𝑃 represents the set of operators. Operator 𝑝 ∈ 𝑃 owns 

the set of routes to operate (𝑅𝑝). 𝑂(𝑟) is the operator that owns route 𝑟 (e.g. 𝑂(𝑟 ∈ 𝑅𝑝) = 𝑝).  In 

a decentralized situation, each operator owns only one route. The main assignment model (5) - (9) 

remains valid for the centralized case because users and routes would be matched to the routes that 

generate maximum payoff together. The key difference between the centralized and decentralized 

case is in their stability definitions.  

A modification is made to the stability defined by the convex area in Eq. (29) to (33). In a 

centralized case, the stability related to different operators (as opposed to different routes) should 

be checked. While an operator wants to make sure that their users won’t switch to another 

operator’s route, they don’t mind if their user switches to a different route belonging to the same 

operator. This is a looser stability condition which can be obtained by replacing Eq. (29) with Eq. 

(34). The set of stable outcomes in this case includes the stable outcomes that are defined in 

decentralized case. 

 

∑ 𝑢𝑠𝑠∈𝐺𝑟 + 𝑣𝑟 ≥ ∑ 𝑎𝑠𝑟𝑠∈𝐺𝑟 − 𝐶𝑟  
∀𝐺𝑟⁡𝑎𝑛𝑑⁡𝑟 ∈ 𝑅 

∃𝑠 ∈ 𝐺𝑟: 𝑂(𝑟) ≠ 𝑂(𝐶(𝑠, 𝑥)) 

(34) 

 

In Eq. (34), stability is checked to ensure a user cannot generate more payoff with a route of another 

operator. This change ensures the stability over different operators. This variant can be used to 

model either centralized operators with multiple routes or exogenous coalitions of operators. 

Handling endogenous coalition formation between operators would require extending this model 

to include network flow games, which we reserve for future research. 

 

A.2. Operator-vehicle-route case 

We introduce another variation of the model under the operator-route case. We model a market 

where operators own a fleet of vehicles. Set 𝑃 represents the set of operators. Operator 𝑝 ∈ 𝑃 owns 

a set of vehicles (𝑉𝑝∈𝑃) with which to operate from a set of candidate paths. For example, a train 

can be operated along certain paths and a taxi vehicle can be operated along different paths at 

different times. In this case the two sides of the market are users and vehicle-paths. Let’s call 𝑟𝑝𝑖 

the set of candidate paths for vehicle 𝑖 ∈ 𝑉𝑝. 𝑅𝑝 is the set of candidate paths for all the fleet of 

operator 𝑝 (⋃ 𝑟𝑝𝑖𝑖∈𝑉𝑝 = 𝑅𝑝). The assignment model of Eq. (5) - (9) remains the same for this 

vehicle based system except it needs one more set of constraints (Eq. (35)). For each 𝑟𝑝𝑖 set, a 

maximum of one (non-k) path is chosen (i.e. each vehicle cannot have more than one 𝑟 where 

𝑥𝑘𝑟 = 0 because that implies more than one path operating at the same time per vehicle). 

 

∑ (1− 𝑥𝑘𝑟)

𝑟∈𝑟𝑝𝑖

≤ 1 ⁡∀𝑖 ∈ 𝑉𝑝, ∀𝑝 ∈ 𝑃 (35) 
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Another modification that should be made for this case is related to the stability conditions. 

Since the introduced case of this section is a centralized decision making system, the stability 

equations of Eq. (34) should be used instead of Eq. (29). 

  

A.3. Example of operator-vehicle-path case 

A 3-node network is considered. The network is identical to the 4-node network of Section 

3.4.1 but without the 4th node. The link costs are in units of operating miles. There are two 

operators, each with a fleet of 2 vehicles, and each vehicle has a passenger capacity of 2. The initial 

locations of the fleets are node 1 for operator 1 and node 3 for operator 2. The vehicle speeds are 

40⁡𝑚𝑝ℎ. The set of users’ OD is 𝑆 = {(1,2), (1,3), (2,3), (3,2)}. The utility of all passengers is set 

to the value of $20 (𝑈𝑠𝑟 = 20$⁡∀𝑠 ∈ 𝑆\{𝑘}, 𝑟 ∈ 𝑅). The value of time is $0.4/min and cost of 

operation to $0.9/mile. The direct cost that each passenger experiences is the waiting time plus 

travel time. Waiting time is multiplied by 1.25. Operator 1’s vehicles each have 6 candidate paths 

𝑟1𝑖∈𝑉1 = {(1 → 2), (1 → 3), (1 → 2 → 3), (1 → 3 → 2), (1 → 2 → 3 → 1), (1 → 3 → 2 → 1)}. 

Operator 2’s vehicles have 5 candidate paths 𝑟1𝑖∈𝑉2 = {(3 → 2), (3 → 1 → 2), (3 → 2 → 1), (3 →

1 → 2 → 3), (3 → 2 → 1 → 3)}. The results of assignment and ticket prices is shown in the Table 

A1. 

 
Table A1. Results of assignment and payoff allocation in centralized case 

 Chosen path 
User (O,D) 

(1,2) (1,3) (2,3) (3,2) 

Vehicle 1 of operator 1 1 − 2 − 3 1 1 1  

Vehicle 1 of operator 2 3 − 2    1 

Waiting time (min) 0 0 4.5 0 

Travel time (min) 4.5 7.5 3 3 

User optimal ticket price 1.5 + 𝑏1 1.5 + 𝑏1 1.5 + 𝑏1 1.8 + 𝑏1 

Operator optimal ticket price 5.55 + 𝑏2 − 𝑏1 2.25 + 𝑏2 − 𝑏1 8.55 + 𝑏2 − 𝑏1 1.8 + 𝑏1 − 𝑏2 

 

Based on Table A1, Vehicle 1 of Operator 1 is assigned to path 1 → 2 → 3 to serve passengers 
(1,2), (1,3)⁡and⁡(2,3). Vehicle 1 of Operator 2 is assigned to path 3 → 2 to serve the passenger 

(3,2). 𝑏1 and 𝑏2 are the minimum acceptable profits for Operators 1 and 2. The operator-optimal 

ticket price for a passenger is a function of the minimum acceptable profit by the matched 

operators. For a smaller value of rival operator acceptable profit, the operator would charge their 

passenger less to keep the coalition stable.  

Minimum acceptable profit is a policy making tool for operators to compete in a market. For 

example, sometimes the operator loses some gains over some routes to compete on other routes in 

different timetables. A newcomer operator to a market may want to penetrate the market by 

maximizing the number of matches initially without concern for profit. In this context, even 

negative values for minimum acceptable profit have economic interpretation.  
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