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Abstract
Multi-stage stochastic linear programs (MSLPs) are notoriously hard to solve in gen-
eral. Linear decision rules (LDRs) yield an approximation of an MSLP by restricting
the decisions at each stage to be an affine function of the observed uncertain parameters.
Finding an optimal LDR is a static optimization problem that provides an upper bound
on the optimal value of the MSLP, and, under certain assumptions, can be formulated
as an explicit linear program. Similarly, as proposed by Kuhn et al. (Math Program
130(1):177–209, 2011) a lower bound for anMSLP can be obtained by restricting deci-
sions in the dual of the MSLP to follow an LDR. We propose a new approximation
approach for MSLPs, two-stage LDRs. The idea is to require only the state variables
in an MSLP to follow an LDR, which is sufficient to obtain an approximation of an
MSLP that is a two-stage stochastic linear program (2SLP). We similarly propose to
apply LDR only to a subset of the variables in the dual of the MSLP, which yields
a 2SLP approximation of the dual that provides a lower bound on the optimal value
of the MSLP. Although solving the corresponding 2SLP approximations exactly is
intractable in general, we investigate how approximate solution approaches that have
been developed for solving 2SLP can be applied to solve these approximation prob-
lems, and derive statistical upper and lower bounds on the optimal value of the MSLP.
In addition to potentially yielding better policies and bounds, this approach requires
many fewer assumptions than are required to obtain an explicit reformulation when
using the standard static LDR approach. A computational study on two example prob-
lems demonstrates that using a two-stage LDR can yield significantly better primal
policies and modestly better dual policies than using policies based on a static LDR.
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1 Introduction

We present a new approach for approximately solving multi-stage stochastic linear
programs (MSLPs). MSLPs model dynamic decision-making processes in which a
decision is made, a stochastic outcome is observed, another decision is made, and
so on, for T stages. At each stage, the decision vectors are constrained by linear
constraints that depend on the history of observed stochastic outcomes. A solution of
anMSLP is a policy, which defines the decisions to be made at each stage as a function
of the observed outcomes up to that stage. The objective in an MSLP is to choose a
policy that minimizes the expected cost over all stages. Although MSLPs can be used
to model a wide variety of problems (e.g., [61]), they are notoriously hard to solve in
general [17,57].

There are a variety of methods available for MSLPs in the case that the stochas-
tic process is represented by a scenario tree [12,28,32,55]. Such algorithms include
nested Benders decomposition [8,10,22], progressive hedging [49], and aggregation
and partitioning [2,9], and enable the solution of MSLPs with possibly very large
scenario trees. Unfortunately, as discussed in [57], the size of a scenario tree needed
to obtain even a modestly accurate approximation grows exponentially in the number
of stages. For example, a 10-stage problem in which the uncertainty in each stage is
represented by just 50 realizations would yield a scenario tree having nearly 2× 1015

scenarios, making any approach that requires even a single pass through the scenario
tree impossible.

Under some conditions, including stage-wise independence of the random vari-
ables, stochastic dual dynamic programming (SDDP) [42] can overcome the difficulty
in exploding scenario tree size, by constructing a single value function approximation
for each stage. The SDDP algorithm converges almost surely on a finite scenario tree
[14,53] (see also [24,26,44] for related results). In some cases, such as additive depen-
dence [33] and Markov dependence [43], the assumption of stage-wise independence
can be satisfied via an appropriate reformulation, e.g., see Example 10 in [54] (see
also [25] for other types of dependence). However, such reformulations are not appli-
cable for stage-wise dependence of random recourse matrices (i.e., in the coefficients
of the constraints) or objective coefficients. Similar approaches that exploit stage-
wise independence and value function approximations include multi-stage stochastic
decomposition [51] and approximate dynamic programming [47].

An alternative approach to handling the complexity of MSLP is to restrict the
functional form of the policy. One such approach is the use of linear decision rules
(LDRs). The idea of an LDR is to require that all decisions made in each stage be
a linear (or affine) function of the observed random outcomes up to that stage. The
problem then reduces to a static problem of finding the best LDR, whose expected cost
then yields an upper bound on the optimal value of the MSLP. In this paper, we refer
this use of an LDR as a static LDR. While LDRs have a long history (see, e.g., [21]),
they have recently gained renewed interest in the mathematical optimization literature
after their application to adjustable robust optimization in [4]. The adaptation of this
approach toMSLPwas presented in [57], and Kuhn et al. [35] analyzed the application
of a static LDR in the dual of the MSLP, which yields a lower bound on the optimal
value of the MSLP. Moreover, under certain assumptions, the static approximations
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obtained after restricting the primal and dual policies to be an LDR are both tractable
linear programs, as shown in [35,57], respectively. The assumptions include stage-
wise independence (or a slight generalization), compact and polyhedral support, and
that uncertainty is limited to the right-hand side of the constraints.While in some cases
static LDR policies provide high quality approximations to MSLP, they have potential
to be significantly suboptimal. Better policies (primal and dual) can be obtained by
considering more flexible (nonlinear) rules such as (static) piecewise linear decision
rules [13] and polynomial decision rules [3].

We propose a new use of an LDR, which we refer to as two-stage linear decision
rules. The key idea is to partition the decision variables into state and recourse decision
variables, with the property that if the state variables are fixed, then the problem
decouples into a separate problem for each stage, involving only recourse decision
variables. If one applies an LDR only to the state variables, then the problem reduces
to a two-stage stochastic linear program (2SLP), in contrast to a static problem which
is obtained when using a static LDR. The advantage of two-stage LDRs is that they
free the recourse variables from the LDR requirement, thus allowing for a potentially
improvedpolicy. Indeed, there exist feasible 2SLPs that are infeasible if one enforces an
LDRon the recourse variables [21]. This idea of reducing anMSLP to a 2SLP is similar
to that proposed by Ahmed [1], except that in [1] the state variables are completely
decided in the first-stage and fixed, whereas we allow them to vary according to an
LDR. We also consider applying a two-stage LDR in the dual of an MSLP, exploiting
the observation that imposing an LDR restriction only on the dual variables associated
with the state equations is sufficient to obtain a 2SLP that approximates themulti-stage
dual problem. We investigate how approximate solutions to the associated primal and
dual approximation problems can be used to obtain feasible policies with associated
statistical estimates on the optimality gap. Our analysis suggests that this can be
done under mild assumptions, for example that the primal problem exhibits relatively
complete recourse (i.e., for any current state there exists a feasible next decision and
state) and has a bounded feasible region with probability 1. We illustrate the two-stage
LDR approach on two example problems: an inventory planning problem similar to
that studied in [4,35], and a capacity expansion problem proposed in [15].We find that,
for these problems, using two-stage LDRs yields significantly better primal policies
(upper bounds), and modestly improves on the lower bounds, when compared to using
static LDRs. For the capacity expansion problem, we also compare the two-stage LDR
policies and bounds to those obtained using the SDDPalgorithm,when run for a similar
amount of computational time. We find that the SDDP algorithm yields similar lower
bounds and better policies for this problem, as expected since the SDDP algorithm is
known to converge to an optimal solution. Thus, the two-stage LDR approximation
is expected to be useful primarily for problems where the SDDP algorithm does not
apply.

A significant challenge to using two-stage LDRs is that the resulting 2SLP is in
general intractable to solve exactly. Indeed, 2SLP is #P-hard [17,27] due to the dif-
ficulty in evaluating the expectation of the recourse function. However, as argued in
[57], under mild conditions Monte Carlo sampling-based methods can provide solu-
tions of modest accuracy to a 2SLP (such a statement cannot be made for MSLP).
Thus, an important benefit of the two-stage LDR approach is that it enables the appli-
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cation of the long history of research into solving 2SLPs to the multi-stage setting.
While using a sampling-based method may lead to a suboptimal solution of the 2SLP
approximations, our hope is that this suboptimality may be more than offset by the
improvement gained by eliminating the LDR requirement on the recourse decisions
that is imposed when using a static LDR. In addition, when using a sampling-based
approach, the assumptions that are required for obtaining a tractable reformulation
when applying a static LDR are no longer needed. In particular, the random variables
need not have polyhedral (or even bounded) support, the constraint matrices may be
random and dependent across time stages, and the LDR may be based on nonlinear
functions of the random variables.

The two-stage LDR approach we propose can also be applied to certain multi-stage
stochastic integer programs, in which some of the decision variables are required to
be integer valued. In particular, for the primal problem, the approach applies directly
provided integrality restrictions are imposed only on the recourse variables. When
the state variables have integrality restrictions as well, the form of the decision rule
applied to the state variablesmust bemodified, but the two-stage approach still applies.
We refer to [7] for one possible such decision rule based on piecewise-linear binary
functions.We remark that combiningour approachwith that of [7]would havepotential
benefit in terms of both tractability and policy quality, as removing the piecewise-linear
binary decision rule requirement from the recourse variables both eliminates the need
to design such a rule, and gives those decisions more flexibility.

The rest of this paper is organized as follows. Section2 defines the MSLP, reviews
the static LDR approach, and presents the proposed two-stage LDR approach, includ-
ing discussion of how to solve the approximate problem and obtain statistical upper
bounds on the original MSLP. Section3 conducts a similar analysis for the dual of
an MSLP, yielding an approach for finding statistical lower bounds on an MSLP. We
present illustrative applications in Sects. 4 and 5, and make concluding remarks in
Sect. 6.

2 Primal two-stage linear decision rules

We formulate an MSLP with T ≥ 2 stages as follows, where throughout the paper,
for integers a ≤ b, [a, b] := {a, a + 1, . . . , b} and [b] := {1, . . . , b}:

min
x,s

E

[ ∑
t∈[T ]

ct (ξ
t )�xt (ξ t ) + ht (ξ

t )�st (ξ t )
]

(1a)

s.t. At (ξ
t )st (ξ

t ) + Bt (ξ
t )st−1(ξ

t−1) + Ct (ξ
t )xt (ξ

t ) = bt (ξ
t ),

t ∈ [T ], P-a.s., (1b)

(xt (ξ
t ), st (ξ

t )) ∈ Xt (ξ
t ), t ∈ [T ], P-a.s. (1c)

where for t ∈ [T ]

Xt (ξ
t ) := {xt ∈ R

pt , st ∈ R
qt : Dt (ξ

t )st + Et (ξ
t )xt ≥ dt (ξ

t )}.
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Here, {ξt }Tt=1 is a stochastic process with probability distribution P and support Ξ ,
where ξ1 = 1 for all ξ ∈ Ξ (i.e., data in stage 1 is deterministic), ξr is a random
vector taking values in R

�r for r ∈ [2, T ], and ξ t := (ξ1, . . . , ξt ) for t ∈ [T ].
Letting �1 = 1, we denote �t := ∑t

r=1 �r for t ∈ [T ]. The s and x variables are
referred to as state and recourse variables, respectively. Similarly, (1b) and (1c) are
referred to as state equations and recourse constraints, respectively. The objective is
to minimize the expected total cost. The functions bt : R�t → R

mt , dt : R�t → R
nt ,

At : R�t → R
mt×qt , Bt : R�t → R

mt×qt−1 , Ct : R�t → R
mt×pt , Dt : R�t → R

nt×qt ,
and Et : R�t → R

nt×pt define the random coefficients as a function of ξ t . Frequently
in the literature, these are assumed to be affine functions of ξ t , but wewill not need this
assumption in this work. In (1b) for t = 1, we adopt the convention that s0(ξ0) = 0.
The constraints are required to be almost surely satisfiedwith respect to the distribution
of the stochastic process, denoted by “P-a.s.” We note that any MSLP can be brought
into the form of (1) by introducing additional variables and constraints. Throughout
the paper, we assume that (1) is feasible and has an optimal solution, and we denote
its optimal objective value as zMSLP.

2.1 Static linear decision rules

A tractable approximation ofMSLP can be obtained by restricting the decision policies
to a certain form, i.e., by restricting the decisions to be a special function of the
uncertain parameters. A linear decision rule is a policy in which the decisions at each
stage t are restricted to be a linear function of the observed random variables ξ t up
that stage. We refer to the policies in which all the decisions are required to follow an
LDR as static LDR policies. Specifically, a static LDR policy has the form:

st (ξ
t ) = βt�t (ξ

t ), (2a)

xt (ξ
t ) = �t�t (ξ

t ), (2b)

where �t ∈ R
pt×Kt and βt ∈ R

qt×Kt are free parameters of the LDR, and �t (ξ
t ) =

(�t1(ξ
t ), . . . , �t Kt (ξ

t )) : R
�t → R

Kt for all t ∈ [T ] is a vector of given LDR
basis functions. We refer to the � and β variables as the LDR variables. We assume
K1 = 1 and �t1(ξ

t ) ≡ 1 for all t ∈ [T ]. Often, the basis functions are the uncertain
parameters themselves, i.e., Kt = �t and �tk(ξ

t ) = (ξ t )k , where (ξ t )k denotes the
kth component of ξ t vector. In this case, we refer to the basis functions as the standard
basis functions. Note that the convention ξ1 ≡ 1 implies that the decisions made
at stage t are actually affine functions of the random variables (ξ2, . . . , ξt ). Finally,
for notational convenience we adopt the convention that �0 ≡ 0, so that any term
involving �0 disappears.

Substituting the LDRs of the form (2) into MSLP given in (1) yields the following
approximation of MSLP, which we call P-LDR:

min
�,β

E

⎡
⎣ ∑
t∈[T ]

ct (ξ
t )��t�t (ξ

t ) + ht (ξ
t )�βt�t (ξ

t )

⎤
⎦
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s.t. At (ξ
t )βt�t (ξ

t ) + Ct (ξ
t )�t�t (ξ

t )

+ Bt (ξ
t )βt−1�t−1(ξ

t−1) = bt (ξ
t ), t ∈ [T ], P-a.s.,

Dt (ξ
t )βt�t (ξ

t ) + Et (ξ
t )�t�t (ξ

t ) ≥ dt (ξ
t ), t ∈ [T ], P-a.s.,

�t ∈ R
pt×Kt , βt ∈ R

qt×Kt , t ∈ [T ]. (3)

We let zLDR denote theoptimal valueofP-LDR,where here and elsewhere,weadopt the
convention that if a minimization (maximization) problem is infeasible, the associated
optimal value is defined to be +∞ (−∞). Note that all the decision variables are
deterministic, i.e., they have to be determined before observing any random outcomes,
and hence this problem is a static problem. P-LDR is a semi-infinite program having
infinitely many constraints. It is observed in [57] (see also [13,35]) that P-LDR can
be reformulated as a linear program (LP) using robust optimization techniques under
the following assumptions:

A1. The standard basis functions are used.
A2. For all t ∈ [T ], the constraint matrices, At , Bt ,Ct , Dt , Et , are independent of

the random vector ξ T , and bt (ξ t ) and dt (ξ t ) are affine functions of ξ t .
A3. The support, Ξ , is a nonempty compact polyhedron.

TheLP reformulation has constraints of the form (β,�,w) ∈ D, wherew are auxiliary
variables and D is an explicitly given polyhedron. The size of this LP scales well
(typically grows only quadratically) with the number of stages T . Moreover, the LP
does not require any discretization of P (e.g., by Monte Carlo sampling), and instead
only uses a polyhedral description of Ξ and the second order moment matrix of the
random variables. These results have been generalized in [23] to the case of conic
support, where A3 is replaced by an assumption that Ξ is described by a finite set of
conic inequalities, in which case P-LDR (3) is reformulated as a conic program.

As P-LDR (3) is a restriction of MSLP, it provides an upper bound to MSLP.
However, the benefit of tractability comes at the expense of loss of optimality. That
is, the obtained upper bound can be substantially far from the optimal value of MSLP.
Indeed, for 2SLPs, the optimal recourse decisions are very rarely linear in the random
variables, but there always exists an optimal piecewise linear decision rule [21].

2.2 Two-stage linear decision rules

We propose two-stage LDRs which yield upper bounds to MSLP that cannot be worse
than the ones obtained by P-LDR (3). The key idea is to apply an LDR only on
the state variables to obtain a two-stage approximation of MSLP, rather than a static
approximation. Substituting the LDR of the form (2a) into the MSLP given in (1)
yields

min
x,β

∑
t∈[T ]

E
[
ct (ξ

t )�xt (ξ t )
] +

∑
t∈[T ]

E
[
ht (ξ

t )�βt�t (ξ
t )

]

s.t. At (ξ
t )βt�t (ξ

t ) + Ct (ξ
t )xt (ξ

t )

+ Bt (ξ
t )βt−1�t−1(ξ

t−1) = bt (ξ
t ), t ∈ [T ], P-a.s.,
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Dt (ξ
t )βt�t (ξ

t ) + Et (ξ
t )xt (ξ

t ) ≥ dt (ξ
t ), t ∈ [T ], P-a.s.,

xt (ξ
t ) ∈ R

pt , t ∈ [T ], P-a.s.,

βt ∈ R
qt×Kt , t ∈ [T ]. (4)

We denote this problem as P-LDR-2S and the optimal value of this problem as z2S .
This problem is a 2SLP, which can be equivalently written as follows, where we drop
dependence of the first-stage variables on ξ1 ≡ 1 and use β1 = s1(ξ1) = �1(ξ

1)β1,

z2S = min
x1,β

c�
1 x1 +

∑
t∈[T ]

E

[
ht (ξ

t )�βt�t (ξ
t )

]
+ E

[
Q(β, ξ T )

]

s.t. A1β1 + C1x1 = b1,

D1β1 + E1x1 ≥ d1,

x1 ∈ R
p1 ,

βt ∈ R
qt×Kt , t ∈ [T ],

where Q(β, ξ T ) := ∑
t∈[2,T ]Qt (β, ξ t ) and for t ∈ [2, T ],

Qt (β, ξ t ) := min
xt

ct (ξ
t )�xt (5a)

s.t.Ct (ξ
t )xt = bt (ξ

t ) − At (ξ
t )βt�t (ξ

t )

− Bt (ξ
t )βt−1�t−1(ξ

t−1), (5b)

Et (ξ
t )xt ≥ dt (ξ

t ) − Dt (ξ
t )βt�t (ξ

t ), (5c)

xt ∈ R
pt . (5d)

The following proposition, immediate from the definitions of the associated prob-
lems, summarizes the relationship between the optimal values of MSLP, P-LDR (3),
and P-LDR-2S (4).

Proposition 1 The following inequalities hold:

zMSLP ≤ z2S ≤ zLDR.

The difference between zLDR and z2S can be arbitrarily large. In particular, an
example is given in [21] of a 2SLP having relatively complete recourse for which
P-LDR (3) is infeasible (zLDR = ∞), while the 2SLP [and hence P-LDR-2S, (4)] is
feasible.

Unfortunately, the techniques used to derive a static approximation of P-LDR (3)
do not yield an efficiently computable reformulation of P-LDR-2S (4), even under
assumptions A1–A3. In the next section, we review approaches for obtaining an
approximate solution, say β̂, of P-LDR-2S (4). Then, in Sect. 2.4 we discuss tech-
niques for obtaining a feasible policy (and hence estimating an upper bound on zMSLP)
using such a solution.
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2.3 Approximate solution of P-LDR-2S

There is a huge literature on (approximately) solving 2SLP problems. In this section,
we present a brief overview of relevant approaches, with a focus on identifying the
required assumptions. We refer the reader to [55] for more details.

A common approach for approximately solving a 2SLP is sample average approx-
imation, in which P is approximated by a discrete probability measure P̂ that assigns
positive weights only to a finite (relatively small) number of realizations of ξ T which
are called scenarios. In this way, the intractable expectation term is replaced with a
sum. Scenarios may be constructed by a variety of techniques, such as Monte Carlo,
quasi-Monte Carlo, and Latin hypercube sampling (e.g., [30,34,38,41,56]). For the
purpose of this paper, we consider only the conceptually simplest case in which sce-
narios are generated via independent Monte Carlo sampling.

Let ξ Tj , j = 1, . . . , N , be an independent and identically distributed (i.i.d.) random

sample of the random vector ξ T , and define the sample average approximation (SAA)
problem:

ẑ2SN := min
x1,β

c�
1 x1 +

∑
t∈[T ]

E

[
ht (ξ

t )�βt�t (ξ
t )

]
+ 1

N

∑
j∈[N ]

Q
(
β, ξ Tj

)
(6a)

s.t. A1β1 + C1x1 = b1, (6b)

D1β1 + E1x1 ≥ d1, (6c)

x1 ∈ R
p1 , (6d)

βt ∈ R
qt×Kt , t ∈ [T ]. (6e)

Once the sample is fixed, the SAA problem can be solved by any approach for solv-
ing the above, now deterministic, problem. In particular the L-shape decomposition
algorithm [59] or a regularized variant [36,50] can be applied, with the further advan-
tage that the subproblem obtained with fixed β̂ decomposes by both scenario and
stage due to the relationship Q(β, ξ T ) = ∑

t∈[2,T ] Qt (β, ξ t ). The coefficients on βt

in the objective function (6a) can also be estimated by sampling in case the terms
E[ht j (ξ t )�tk(ξ

t )] cannot be computed efficiently.
If (i) there exists a β̄ such that E[Q(β, ξ T )] < ∞ for all β in a neighborhood of β̄,

and (ii) the set of optimal solutions to P-LDR-2S (4) is nonempty and bounded, then
because Q(·, ξ T ) is a convex function for all ξ T ∈ Ξ , Theorem 5.4 of [55] applies
and implies that

ẑ2SN → z2S with probability 1 as N → ∞ (7)

and also that the set of optimal solutions to (6) converges to the set of optimal solutions
of P-LDR-2S (4).

Stronger results on the convergence of ẑ2SN to z2S require additional assumptions.
For example, a central limit theorem result (e.g., Theorem 5.7 in [55]) can be obtained
under the assumptions that E[Q(β̄, ξ T )2] < ∞ for some β̄, and that there exists a
measurable function f : Ξ → R+ such that E[ f (ξ T )2] is finite and
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∣∣∣Q(β, ξ T ) − Q(β ′, ξ T )

∣∣∣ ≤ f (ξ T )‖β − β ′‖

for all β, β ′ and almost every ξ T ∈ Ξ . Bounds on the sample size required for (6)
to yield an ε-optimal solution to P-LDR-2S (4) with probability at least 1 − α are
derived in [52,55–57]. These bounds scale linearly with the dimension of the first-
stage variables, β and x1 in this case. Dependence on the confidence α is ln(1/α)

so that high confidence can be achieved, but the dependence on ε is O(1/ε2), which
is why sampling is limited to obtaining “medium accuracy” solutions [57]. These
stronger results all require, at least, thatQ(β, ξ T ) is finite for every first-stage solution
β and almost every ξ T ∈ Ξ .

In order to facilitate the solution of P-LDR-2S (4) via a sampling procedure, we
also consider adding additional constraints β ∈ B ⊆ R

τP , where τP := ∑
t∈[T ] qt Kt ,

to P-LDR-2S (4) [and to the SAA (6)]. For example, some of the convergence results
require the first-stage feasible region to be bounded, in which case wemay defineB by
limiting the absolute value of each component ofβ to be less than a large constant. If the
constant is not chosen large enough, then this may degrade the quality of the solution
obtained, but this could be detected after solving the SAA problem by determining if
any of the bound constraints are tight.More significantly,most of the SAAconvergence
results require the following relatively complete recourse assumption on the set B:
Assumption 1 For all β ∈ B, Q(β, ξ T ) < + ∞ P-a.s..

If P-LDR-2S (4) already has relatively complete recourse, then we can take B =
R

τP , and hence impose no additional constraints. Otherwise, adding the constraints
β ∈ B has the potential to make the approximation more conservative. Derivation of
a set B that satisfies Assumption1 is a difficult task in general. However, relatively
complete recourse can often be achieved by appropriate modeling, e.g., by introducing
“artificial” variables that allow violation of a constraint, where the violation amount is
then penalized in the objective function. Derivation of a set B satisfying Assumption1
may then be possible using ad hoc techniques. We provide an example of how this
can be done in an inventory planning problem in Sect. 4.2. Another possibility, if
assumptionsA1-A3hold, is to use the robust optimization techniques used in [35,57] to
derive a tractable setD such that (β,�) is feasible to P-LDR (3) if and only if there are
values of auxiliary variables w such that (β,�,w) ∈ D. Then, B = projβ(D) would
satisfy Assumption1. This construction of B is more conservative than necessary,
because it restricts β to values for which there is also a � that makes the static LDR
policy defined in (2) feasibleP-a.s.. However, the resulting policy could still potentially
be better (and for sure would not be worse) than the static LDR policy obtained from
P-LDR (3), since enforcing β ∈ projβ(D) would not require the recourse decisions to
follow an LDR policy (it only requires existence of a feasible LDR policy).

P-LDR-2S (4), with the additional constraints β ∈ B, can also be approximately
solved by stochastic approximation [48] or one of its robust extensions, e.g., [40,46],
when Assumption1 holds and B is bounded.

Finally, we remark that if we cannot derive a set B satisfying Assumption1, results
about sampling-based approximation of chance-constrained programs derived in [11]
can be used to show that an optimal solution of the SAAproblem (6) yields a policy that
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is feasible for a large fraction of the random outcomes. This has been previously used
in [6,7,60] when using sampling to approximately solve static approximations derived
from finitely adaptable and piecewise-linear decision rules. Although the two-stage
LDR policy itself is not necessarily feasible P-a.s. in this case, in the next section we
discuss how an approximate solution β̂ could still be used to guide a feasible policy.

2.4 Feasible policies and upper bounds on zMSLP

Let (x̂1, β̂) be an approximate first-stage solution to P-LDR-2S (4). We discuss how
such a solution can be used to obtain a feasible policy for the MSLP (1), which in turn
can be used to estimate an upper bound on zMSLP. We consider two possibilities for
obtaining such a policy, depending on whether or not a set B satisfying Assumption1
is used.

We first consider the case that β̂ ∈ B for a set B satisfying Assumption1. In this
case, (x̂1, β̂) defines a feasible solution to P-LDR-2S (4) and a feasible two-stage
LDR policy for MSLP. In particular, at stage t , if the current history is ξ t , the state
variable decisions are given by using β̂ in the LDR (2a) and the recourse decisions are
obtained by solving (5), again substituting β̂ for β. As this solution defines a feasible
policy, the expected cost of this solution provides an upper bound on z2S and zMSLP.
The expected cost of the policy defined by (x̂1, β̂) can be estimated by generating an
independent sample of ξ T , say {ξ Tj }N ′

j=1 , and computing

c�
1 x̂1 +

∑
t∈[T ]

E
[
ht (ξ

t )�β̂t�t (ξ
t )

] + 1

N ′
∑
j∈[N ′]

Q(β̂, ξ Tj ).

Because β̂ is fixed in this evaluation step, it would generally be computationally
feasible to use N ′ � N . The values Q(β̂, ξ Tj ) for j ∈ [N ′] can also be used to

construct a confidence interval on the objective value of (x̂1, β̂), and hence a statistical
upper bound on zMSLP.

We next consider the case when we do not know β̂ ∈ B for a set B satisfying
Assumption1, so that we do not know a priori that the two-stage LDR defined by β̂

defines a feasible policy. To construct a policy in this case, we make the following
relatively complete recourse assumption for the original problem MSLP.

Assumption 2 For all ξ T ∈ Ξ , and each t ∈ [2, T ], if the random vectors
{(sr (ξ r ), xr (ξ r )}r∈[t−1] satisfy the constraints of MSLP for r ∈ [t − 1], then there
exists (st , xt ) that satisfies the constraints of MSLP in stage t :

At (ξ
t )st + Ct (ξ

t )xt = bt (ξ
t ) − Bt (ξ

t )st−1(ξ
t−1),

(xt , st ) ∈ Xt (ξ
t ).

In other words, this assumption states that in any stage t , for any value of the previous
state variables st−1(ξ

t−1) that could be obtained from past realizations of the random
outcomes and past feasible decisions, there always exists a feasible set of decisions in
the current stage (see e.g., [29]).
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Under Assumption2, we can implement a policy which is guided by β̂, which
we refer to as a state-target tracking (STT) policy. Specifically, at stage t = 1, we
implement the solution x ST T1 = x̂1 and sST T1 = β̂1. Then, for each stage t ∈ [2, T ],
we first observe ξt (thus, we have ξ t ), and then solve the problem (deterministic for
this fixed ξ t ):

min
xt ,st

ct (ξ
t )�xt + ht (ξ

t )�st + ρ‖st − β̂t�t (ξ
t )‖ (8a)

s.t. At (ξ
t )st + Ct (ξ

t )xt = bt (ξ
t ) − Bt (ξ

t )sST Tt−1 (ξ t−1),

(xt , st ) ∈ Xt (ξ
t ), (8b)

where ρ ≥ 0 is a parameter of the policy and ‖ · ‖ is any norm, and let the optimal
solution be x ST Tt (ξ t ), sST Tt (ξ t ). For any ξ T ∈ Ξ , all problems in this sequence are
feasible when Assumption2 holds, and hence this yields a feasible policy to MSLP.
Observe that when ρ = 0, the policy reduces to a pure myopic policy that only
considers the cost of decisions in each stage, without considering the impact of st on
future costs. Using larger values of ρ > 0 has the effect of encouraging the decisions
to be made in a way that keeps the state close to what would have been achieved if we
could exactly follow the LDR policy defined by β̂ on the state variables. The cost of
the STT policy under a realization ξ of the stochastic process is

∑
t∈[T ]

(
ct (ξ

t )�x ST Tt (ξ t ) + ht (ξ
t )�sST Tt (ξ t )

)
.

The expected cost of the STT policy is an upper bound on the optimal value of MSLP,
and a confidence interval on this expected cost can be obtained by simulation with
independent replications.Wedonot knowan a priori upper bound on the optimality gap
between the expected cost of the STT policy and the optimal value zMSLP. However,
the dual two-stage LDR discussed in Sect. 3 may be used to estimate a lower bound on
zMSLP, which can be used to provide an a posteriori statistical bound on the optimality
gap of the STT policy. The value of the parameter ρ can be selected by estimating the
expected cost of the policy under different values ofρ and choosing themost promising
value, or by using optimization via simulation techniques [20,31]. For example, in our
numerical experiments, we used a fixed relatively small sample (N ′ = 100), and
applied a variant of a golden section algorithm to find a value of ρ that approximately
minimizes the estimated cost given by this sample. See Sect. 5.2 for more details. Once
the value of ρ is chosen, the expected cost of the resulting policy is evaluated using a
larger sample. Note that using the STT policy, even the decisions sST Tt (ξ t ) may not
necessarily have the form of an LDR. Thus, simulating this policy yields an estimate
of an upper bound on zMSLP, but not necessarily on z2S .

3 Dual two-stage linear decision rules

In this section, we apply a two-stage LDR to the dual of MSLP, with the goal of
obtaining lower bounds on the optimal value of MSLP. The dual of MSLP, which we

123



M. Bodur, J. R. Luedtke

refer to as D-MSLP, is the problem (see [18]):

max
λ,γ

E

[ ∑
t∈[T ]

bt (ξ
t )�λt (ξ

t ) + dt (ξ
t )�γt (ξ

t )
]

(9a)

s.t.E
[
Bt+1(ξ

t+1)�λt+1(ξ
t+1)

∣∣∣ξ t
]

+ At (ξ
t )�λt (ξ

t ) + Dt (ξ
t )�γt (ξ

t ) = ht (ξ
t ), t ∈ [T ], P-a.s., (9b)

Ct (ξ
t )�λt (ξ

t ) + Et (ξ
t )�γt (ξ

t ) = ct (ξ
t ), t ∈ [T ], P-a.s., (9c)

γt (ξ
t ) ≥ 0, t ∈ [T ], P-a.s., (9d)

λt (ξ
t ) ∈ R

mt , γt (ξ
t ) ∈ R

nt , t ∈ [T ], P-a.s., (9e)

where BT+1(ξ
T+1) = 0. For t ∈ [T ], the dual decisions λt (·) (corresponding to

constraints (1b) in MSLP) and γt (·) (corresponding to constraints (1c) in MSLP) are
functions of the data ξ t observed up to stage t . Weak duality holds for MSLP and
D-MSLP, i.e., the optimal objective value of D-MSLP provides a lower bound on
zMSLP. Moreover, under some conditions, strong duality holds (i.e., optimal value of
D-MSLP equals zMSLP) [18], although we only require weak duality.

3.1 Static linear decision rules

In [35] it has been proposed to use a static LDR to obtain a tractable approximation
of D-MSLP, and thus an efficiently computable lower bound on zMSLP. Specifically,
the idea is to require all the dual decisions to be an LDR, i.e.,

λt (ξ
t ) = �t�t (ξ

t ), (10a)

γt (ξ
t ) = �t�t (ξ

t ), (10b)

where �t ∈ R
mt×Kt , �t ∈ R

nt×Kt , for all t ∈ [T ] are the parameters of the decision
rule. Imposing (10) yields the following static approximation of D-MSLP, which we
call D-LDR:

max
�,�

E

[ ∑
t∈[T ]

bt (ξ
t )��t�t (ξ

t ) + dt (ξ
t )��t�t (ξ

t )
]

s.t. E
[
Bt+1(ξ

t+1)��t+1�t+1(ξ
t+1)

∣∣∣ξ t
]

+ At (ξ
t )��t�t (ξ

t ) + Dt (ξ
t )��t�t (ξ

t ) = ht (ξ
t ), t ∈ [T ], P-a.s.,

Ct (ξ
t )��t�t (ξ

t ) + Et (ξ
t )��t�t (ξ

t ) = ct (ξ
t ), t ∈ [T ], P-a.s.,

�t�t (ξ
t ) ≥ 0, t ∈ [T ], P-a.s.,

�t ∈ R
mt×Kt , �t ∈ R

nt×Kt , t ∈ [T ]. (11)

We refer to the optimal value of D-LDR as vLDR . The semi-infinite program D-LDR
(11) can be reformulated as an efficiently solvable LP if assumptions A1–A3 stated
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in Sect. 2 hold, the problem MSLP is strictly feasible, and the following additional
assumption holds [35]:

A4. The conditional expectation E(ξ T |ξ t ) is almost surely linear in ξ t for all t ∈ [T ]
(e.g., this occurs when {ξt }t∈[T ] are mutually independent, known as stage-wise
independence).

If assumptionA3 is replacedbyan assumption thatΞ is describedbyconic inequalities,
D-LDR (11) can be reformulated as a conic program [23].

3.2 Two-stage linear decision rules

Examining the structure of D-MSLP, given in (9), we observe that if the values λt (ξ
t )

are fixed, then (9) decomposes by stage. We thus propose to apply an LDR only to the
λ variables, leaving the decision variables γ as recourse variables. Imposing the LDR
of (10a) collapses D-MSLP into the following 2SLP, which we refer to as D-LDR-2S:

v2S := max
γ1,�

d�
1 γ1 +

∑
t∈[T ]

E
[
bt (ξ

t )��t�t (ξ
t )

] + E[G(�, ξ T )]

s.t. E
[
B2(ξ

2)��2�2(ξ
2)

] + A�
1 �1 + D�

1 γ1 = h1,

C�
1 �1 + E�

1 γ1 = c1,

γ1 ∈ R
n1+ ,

�t ∈ R
mt×Kt , t ∈ [T ], (12)

where we have dropped the dependence on ξ1 ≡ 1 on the first-stage decision variables.
Here, G(�, ξ T ) is the second-stage value function,

G(�, ξ T ) :=
∑

t∈[2,T ]
Gt (�, ξ t ) (13)

where for each t ∈ [2, T ]

Gt (�, ξ t ) := max
γt

dt (ξ
t )�γt (14a)

s.t. Dt (ξ
t )�γt = ht (ξ

t ) − At (ξ
t )��t�t (ξ

t )

− E

[
Bt+1(ξ

t+1)��t+1�t+1(ξ
t+1)

∣∣∣ξ t
]
, (14b)

Et (ξ
t )�γt = ct (ξ

t ) − Ct (ξ
t )��t�t (ξ

t ), (14c)

γt ∈ R
nt+ . (14d)

The following proposition, immediate from the definitions of the associated prob-
lems, summarizes the relationship between the optimal values of MSLP, D-LDR (11),
and D-LDR-2S (12).
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Proposition 2 The following inequalities hold:

zMSLP ≥ v2S ≥ vLDR .

As D-LDR-2S (12) is a 2SLP, the discussion in Sect. 2.3 of methods to obtain an
approximate solution to P-LDR-2S (4) applies also to D-LDR-2S (12). In particular,
one possibility is to obtain an i.i.d. sample {ξ Tj }Nj=1 of ξ

T and solve the SAA problem:

v̂2SN := max
γ1,�

d�
1 γ1 +

∑
t∈[T ]

E
[
bt (ξ

t )��t�t (ξ
t )

] + 1

N

∑
j∈[N ]

G(�, ξ Tj ) (15a)

s.t. E
[
B2(ξ

2)��2�t (ξ
2)

] + A�
1 �1 + D�

1 γ1 = h1, (15b)

C�
1 �1 + E�

1 γ1 = c1, (15c)

γ1 ∈ R
n1+ , (15d)

�t ∈ R
mt×Kt , t ∈ [T ]. (15e)

As in the primal, note that theSAAproblemcanbe solvedbydecomposition algorithms
as the second-stage problem decomposes by both scenario and by stage due to the
relationship (13). The expected value coefficients in the objective and constraints (15b)
may be further estimated by sampling in case they cannot be computed efficiently.

3.3 Obtaining lower bounds on zMSLP

Next, we discuss how to use an approximate solution of D-LDR-2S (12) to estimate
a lower bound on zMSLP. As in the primal case, in order to assure that we obtain a
two-stage LDR policy that is feasible for all possible realizations, we consider the
possibility of adding a set of constraints � ∈ L ⊆ R

τD to D-LDR-2S (12) and its
SAA counterpart (15) where τD := ∑

t∈[T ] Ktmt . The following assumption on L
assures that the problem D-LDR-2S (12) has relatively complete recourse when the
constraints � ∈ L are enforced.

Assumption 3 For all � ∈ L, G(�, ξ T ) > −∞ P-a.s..

The following assumption provides a sufficient condition under which the set L =
R

τD satisfies Assumption3 (i.e., no additional constraints are necessary).

Assumption 4 The set Xt (ξ
t ) is bounded for all t ∈ [T ] and P almost all ξ T ∈ Ξ .

A special case of this assumption occurs when x and s variables have explicit upper
and lower bounds. An important feature of this assumption is that the sets Xt (ξ

t ) are
not required to be uniformly bounded. For example, bounds on the decision variables
of the form 0 ≤ xt (ξ t ) ≤ M(ξ t ) (and similarly for s variables), are sufficient for
satisfying this assumption, even if M(ξ t ) is not bounded over ξ T ∈ Ξ .

Proposition 3 If Assumption4 is satisfied, then L = R
τD satisfies Assumption3.
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Proof We show that for any given � ∈ R
τD and ξ T ∈ R

�T , (14) is feasible for any
t ∈ [T ]. Let Rb(ξ

t ) and Rc(ξ
t ) denote the right-hand sides of the constraints (14b)

and (14c), respectively. Then, the dual of (14)

min Rb(ξ
t )�st (ξ t ) + Rc(ξ

t )�xt (ξ t )
s.t. (xt (ξ

t ), st (ξ
t )) ∈ Xt (ξ

t ),

xt (ξ
t ) ∈ R

pt , st (ξ
t ) ∈ R

qt ,

is bounded due to Assumption4. It is also feasible as MSLP is assumed to be feasible.
This implies that (14) cannot be infeasible. 
�

Now, suppose we have an approximate solution (γ̂1, �̂) to D-LDR-2S (12), where
�̂ ∈ L for some set L that satisfies Assumption3. In this case, (γ̂1, �̂) defines a
feasible solution to D-LDR-2S (12), and hence its objective value provides a lower
bound on v2S , and hence is a lower bound on zMSLP. The objective value of (γ̂1, �̂)

can be estimated by generating an independent sample of ξ T , say {ξ Tj }N ′
j=1 (where

possibly N ′ � N ), and computing

d�
1 γ̂1 +

∑
t∈[T ]

E
[
bt (ξ

t )��̂t�t (ξ
t )

] + 1

N ′
∑
j∈[N ′]

G(�̂, ξ Tj ).

The values G(�̂, ξ Tj ) for j ∈ [N ′] can also be used to construct a confidence interval

on the objective value of (γ̂1, �̂), and hence a statistical lower bound on zMSLP.
We close this section by discussing an approach for estimating the gap between

a primal two-stage LDR policy defined by (x̂1, β̂) and a dual two-stage LDR policy
defined by (γ̂1, �̂). Following [39], the motivation is that if the same sample (common
random numbers) is used in estimating the upper and lower bounds, then the variance
of the gap estimator can be reduced if the upper and lower bound sample estimates
are positively correlated. Specifically, given a sample {ξ Tj }N ′

j=1, the gap observations
are then calculated as

Gap j =
[
c�
1 x̂1 +

∑
t∈[T ]

E
[
ht (ξ

t )�β̂t�t (ξ
t )

] + Q(β̂, ξ Tj )
]

−
[
d�
1 γ̂1 +

∑
t∈[T ]

E
[
bt (ξ

t )��̂t�t (ξ
t )

] + G(�̂, ξ Tj )
]
,

for j ∈ [N ′]. These values can then be used to construct a confidence interval on the
gap.

4 Illustrative example: inventory planning

We first present a numerical example on an inventory planning problem to investigate
the performance of two-stage LDR policies and bounds, in comparison to static LDR
policies and bounds.
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4.1 Problem description

We consider a variation of the inventory planning problem used for numerical illus-
tration in [4,35]. The system consists of I factories and a single product type, and the
goal is to meet demands over the planning horizon at minimum expected cost. The
model is stated as follows:

min E

[ ∑
t∈[T ]

∑
i∈[I ]

cit xit (ξ
t )

]
(16a)

s.t. st−1(ξ
t ) − st (ξ

t ) +
∑
i∈[I ]

xit (ξ
t ) = ξt , t ∈ [T ], P-a.s., (16b)

s ≤ sit (ξ
t ) ≤ s̄ t ∈ [T ], i ∈ [I ], P-a.s., (16c)

0 ≤ xit (ξ
t ) ≤ x̄i t ∈ [T ], i ∈ [I ], P-a.s.. (16d)

Here, ξt is a scalar random variable representing demand for the product in each
t ∈ [T ]. The recourse decision variable xit (ξ t ) determines amount of the product to
produce in factory i at stage t , while the state variable st (ξ t ) represents the inventory
level at the end of stage t . Constraints (16b) are the inventory balance equations, (16c)
limit the inventory level to be between lower bound s and upper bound s̄, and (16d)
are the limits on production in each stage to be at most x̄i .

The model in [4,35] also has a constraint on the total amount that can be produced
from any single factory over all the stages in the planning horizon. Modeling this
constraint in our standard model format requires introducing an additional state vari-
able for each factory i , representing the cumulative amount of production from each
factory. Imposing an LDR on that state variable would in turn imply that the variables
xit (ξ t ) also follow an LDR, and hence for that model the static and two-stage LDR
policies are identical. This illustrates an example where there is no benefit to using
a two-stage LDR over a static LDR. In the version we consider, the xit (ξ t ) are still
flexible when the state variables st (ξ t ) follow an LDR, and hence there is potential
for a two-stage LDR to yield better solutions.

Following the data in [4,35], we consider an instance with I = 3, s = 500,
s̄ = 2000, and x̄i = 567 for i ∈ [I ]. The random demand ξt in stage t ∈ [T ] is
uniformly distributed in the interval Ξt = [(1 − θ)ξ∗ζt , (1 + θ)ξ∗ζt ], where θ =
0.3 is the variability parameter, ξ∗ = 1000 is the nominal demand, and ζt = 1 +
(1/2) sin(π(t−1)/12) is the seasonality factor. Finally, the cost coefficients are defined
as cit = αiζt , where α1 = 1, α2 = 1.5, and α3 = 2.

4.2 Implementation details

For both the static and two-stage LDR policies, we use the standard basis functions,
ξ t , in stage t . For the static LDR, we implemented the deterministic reformulations
proposed in [35,57] to obtain upper bounds (with a primal LDR policy) and lower
bounds (with a dual LDR policy).
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For the primal two-stage LDR policy, we first observe that this problem as stated
does not satisfy relatively complete recourse, Assumption2, although we remark that
this assumption is satisfied in a slightly modified version of the problem in which
variables are introduced to allow some amount of demand to go unserved, with a
large penalty. Rather than making this modification, however, we demonstrate how
for this problem a set of constraints satisfying Assumption1 can be derived. Using the
standard basis functions, the state variables st (ξ t ) take the form

st (ξ
t ) = βtξ

t

where βt ∈ R
1×t . Thus, the constraints (16c) take the form

s ≤ βtξ
t ≤ s̄, t ∈ [T ],∀ξt ∈ [1 − θξ∗ζt , (1 + θ)ξ∗ζt ].

These constraints can be reformulated with deterministic linear constraints in an
extended variable space using standard robust optimization techniques [5]. To ensure
βt , t ∈ [T ] are selected such that constraints (16b) can be satisfied for some
xt (ξ t ), i ∈ [I ] satisfying (16d), it is sufficient to enforce

ξt −
∑
i∈[I ]

x̄i ≤ βt−1ξ
t−1 − βtξ

t ≤ ξt , t ∈ [T ],∀ξt ∈ [(1 − θ)ξ∗ζt , (1 + θ)ξ∗ζt ],

where the lower bound is based on the maximum total production and the upper bound
is based on the minimum total production in each period. Again, these constraints can
be reformulated as deterministic linear constraints using robust optimization tech-
niques.

For both the primal and dual two-stage LDR policy, we use 250 scenarios to con-
struct an SAA, and solve the resulting problem by explicitly solving the determistic
equivalent formulation. Given the resulting LDR coefficients, we then use an inde-
pendent sample of 105 scenarios to evaluate the quality of the primal policy and dual
bound.

4.3 Results

Table1 provides the results comparing the bounds obtained for this instance, for vary-
ing values of T = 2, . . . , 10. The columns under Static LDR provide the lower bound
(LB), upper bound (UB), and optimality gap [Gap (%)], respectively, where optimality
gap for an instance is calculated as (UB − LB)/UB. For the two-stage LDR policy,
95% confidence intervals for the lower bound (LB CI) and upper bound (UB CI) are
provided, along with an estimate of the optimality gap, which is computed by using
the lower end of the lower bound confidence interval and the upper end of the upper
bound confidence interval. We find that the two-stage LDR policy can yield modestly
better lower bound estimates than the static LDR lower bounds, and somewhat more
significantly better primal policies. In terms of solution time, the static LDR lower and
upper bounds were computed very quickly, less than 0.02 s in all cases. For the two-
stage LDR policies, solving the two SAA problems took at most 3.98 s, and evaluating

123



M. Bodur, J. R. Luedtke

Table 1 Comparison of static and two-stage LDR policies for inventory problem

Static LDR 2S LDR

T LB UB Gap (%) LB CI UB CI Gap (%)

2 1972.4 2026.0 2.65 1974.4 ± 2.7 1993.9 ± 1.9 1.21

3 3825.0 3940.2 2.92 3831.6 ± 4.0 3856.1 ± 3.2 0.82

4 6089.8 6345.0 4.02 6102.4 ± 5.5 6146.9 ± 4.7 0.89

5 8664.4 9021.3 3.96 8669.1 ± 6.6 8737.6 ± 5.9 0.93

6 11482.4 11975.0 4.11 11515.2 ± 10.2 11594.8 ± 7.3 0.84

7 14431.1 15076.3 4.28 14482.3 ± 12.3 14618.8 ± 8.6 1.08

8 17431.6 18200.3 4.22 17527.4 ± 13.7 17660.4 ± 9.9 0.89

9 20251.8 21147.9 4.24 20326.2 ± 14.9 20535.3 ± 10.9 1.14

10 22764.8 23738.3 4.10 22809.5 ± 15.0 23067.0 ± 11.5 1.23

the bounds took at most 5.17 s. Thus, as expected, in this case where the assumptions
required for obtaining a deterministic formulation of static LDR apply, the solution
time for the static LDR policy are significantly faster than for the two-stage LDR. On
the other hand, the solution times for the two-stage LDR policy were still modest, and
yielded better policies.

5 Illustrative example: capacity expansion

We next consider a capacity expansion problem. On this problem, we again compare
the two-stage LDRpolicies and bounds to those obtained from static LDRpolicies, and
also compare to the policy and lower bound obtained from using the SDDP algorithm.

5.1 Problem description

We consider a variant of the stochastic capacity expansion problem given in [15]. We
wish to determine an investment schedule over T stages for the installation of new
capacities of I different power generation technologies, togetherwith someoperational
decisions to meet demand for power over time. The demand is modeled by a load
duration curve, which is approximated by partitioning each stage into J segments (of
possibly different length). The demand corresponding to segment j ∈ [J ] in t ∈ [T ]
is denoted by dt j . The amount of new capacity of technology i ∈ [I ] added in stage
t ∈ [T ] is represented by u+

ti , and is assumed to be available for use immediately, i.e.,

at the beginning of stage t . The unit cost of u+
ti is denoted by cu

+
ti . The state variable

sti represents the current installed capacity of technology i ∈ [I ] in the beginning of
stage t ∈ [T ], which incurs holding cost of csti per unit. We assume that it is possible
to discard (i.e., remove) some capacity of i ∈ [I ] in t ∈ [T ], denoted by u−

ti , at a

(possibly zero) unit cost of cu
−

ti . The operating level of i ∈ [I ] at t ∈ [T ] for meeting
the demand in segment j ∈ [J ] is represented by the decision variable xti j , while
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the amount of unsatisfied demand is represented as zt j , whose unit costs are cxti j and
czt j , respectively. Then, the stochastic capacity expansion problem is formulated as an
MSLP as follows:

min E

∑
t∈[T ]

[ ∑
i∈[I ]

(
cu

+
ti u+

ti (ξ
t ) + cu

−
ti u−

ti (ξ
t ) + csti sti (ξ

t ) +
∑
j∈[J ]

cxti j xti j (ξ
t )

)

+
∑
j∈[J ]

czt j zt j (ξ
t )

]
(17a)

s.t. sti (ξ
t ) − st−1,i (ξ

t−1) − u+
ti (ξ

t ) + u−
ti (ξ

t ) = 0,

t ∈ [T ], P-a.s., i ∈ [I ], (17b)

sti (ξ
t ) − xti j (ξ

t ) ≥ 0, t ∈ [T ], P-a.s., i ∈ [I ], j ∈ [J ], (17c)∑
i∈[I ]

xti j (ξ
t ) + zt j (ξ

t ) ≥ dt j (ξ
t ), t ∈ [T ], P-a.s., j ∈ [J ], (17d)

0 ≤ zt j (ξ
t ) ≤ dt j (ξ

t ), t ∈ [T ], P-a.s., j ∈ [J ], (17e)

0 ≤ u+
ti (ξ

t ) ≤ Mu+
ti , t ∈ [T ], P-a.s., i ∈ [I ], (17f)

0 ≤ u−
ti (ξ

t ) ≤ Mu−
ti , t ∈ [T ], P-a.s., i ∈ [I ], (17g)

0 ≤ sti (ξ
t ) ≤ Ms

ti , t ∈ [T ], P-a.s., i ∈ [I ], (17h)

xti j (ξ
t ) ≥ 0, t ∈ [T ], P-a.s., i ∈ [I ], j ∈ [J ]. (17i)

The objective function (17a) minimizes the expected total cost. The constraints (17b)
are the only state equations, which keep track of the available capacity of each tech-
nology. Constraints (17c) limit the operating levels to the available capacity level,
while (17d) ensure that either demand is met, or unmet demand is recorded in the zt j
variable values. Constraints (17e)–(17h) represent the bounds on the shortfall, instal-
lation, removal, and inventory level variables, respectively. Note that (17h) constitute
upper bounds also on the x variables due to (17c), and thus this formulation satis-
fies Assumption4. In addition, we assume that Mu−

ti ≥ Ms
t−1,i which ensures that

this formulation satisfies relatively complete recourse, Assumption2, since at stage t ,
given any feasible value of st−1,i (ξ

t−1), it is feasible to set u−
ti (ξ

t ) = st−1,i (ξ
t−1) for

i ∈ [I ], zt j (ξ t ) = dt j (ξ t ) for j ∈ [J ] and all remaining variables to zero.
To the extent possible, we use data from [15], which focuses on a German system,

althoughwe extend their 3-stage example to T = 5, 10, 15, 20. In [15], there are I = 3
technologies (coal-fired power plant, combined cycle gas turbine and open cycle gas
turbine). Each stage is divided into L = 8 periods, and W = 5 wind regimes are
considered for each period. We model this as J = LW = 40 segments at each stage,
corresponding to each period/wind regime pair. For t ≥ 2, the demand corresponding
to the segment j = (�,w) ∈ [L] × [W ] is modeled as

dt j (ξ
t ) = max

{
d0,�

t∏
r=2

ξ
g
r − ηwKw

t

t∏
r=2

ξw
r , 0

}
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where d0,� is the base demand value of period �, ξ
g
t is a random variable reflecting

the demand growth of stage t , ηw is the parameter denoting the wind efficiency, Kw
t

is the wind power generation target, and ξw
t is a random variable representing the

growth in the wind power generation in stage t . The values of d0,� and ηw are from
Tables 2 and 3 of [15], and are reproduced in “AppendixA”. We use Kw

2 = 36.64
and Kw

t = 45.75 for all t ≥ 3. We assume ξ
g
t has lognormal distribution with μ =

0.2 and σ = 0.1 + 0.01t , and ξw
t has lognormal distribution with μ = 0.15 and

σ = 0.25 + 0.025t . For the first stage, we use the deterministic demand values of
d1, j=(�,w) = d0,�E[ξ g1 ]− ηwE[ξw

1 ] = 1.229d0,� − 1.207ηw. The units of all demands
(and all primal decision variables) are gigawatts.

We assume there are no holding costs and no costs for removing capacity, i.e., we use
cu

−
ti = csti = 0 for all i ∈ [I ], t ∈ [T ].We use discounting to determine the other costs,

setting cu
+

ti = 5ιi/1.1t , cxti, j=(�,w) = 0.001ciτ�τw/1.1t and czt, j=(�,w) = τ�τw/1.1t

where the values of the annualized costs ιi , operation costs ci , τ� and τw values are
from [15] (see “AppendixA”). All costs are inmillion of Euros. Finally, we assume the
maximum installation per stage is a constant Mu+

ti = C , and derive redundant upper

bounds on s and u−, i.e., Ms
ti = ∑t

r=1 M
u+
ri and Mu−

ti = Ms
t−1,i . In our experiments

we consider two different sets of instances defined using C = 50 and C = 100.

5.2 Implementation details

We compare the primal and dual bounds obtained using two-stage and static LDR.
For the LDR basis functions, for each t ∈ [T ], we let Kt = 3, and

�t1(ξ
t ) = 1, �t2(ξ

t ) =
t∏

r=2

ξ
g
r , �t3(ξ

t ) =
t∏

r=2

ξw
r .

Because assumptionsA3 and A4 do not hold for this problem (the random variables
do not have bounded support and E(ξ T |ξ t ) is not linear in ξ t ), the reformulation
approach from [13,35,57] used for the static LDR cannot be applied to solve P-LDR
(3) and D-LDR (11). We therefore use a sampling strategy to approximately solve
these problems. Specifically, the sample approximations of P-LDR (3) and D-LDR
(11) are identical to P-LDR (3) and D-LDR (11), respectively, except that the infinite
set of constraints P-a.s. are replaced by the finite set corresponding to the sample.
Approximate solutions to P-LDR-2S (4) and D-LDR-2S (12) are obtained by solving
the SAA problems (6) and (15), respectively. We solve all sample approximations
using the same sample of size N = 150T .

Models P-LDR-2S (4) and D-LDR-2S (12) corresponding to model (17) and its
dual are given in “AppendixB”. Although the MSLP given in (17) has relatively
complete recourse (Assumption2), its two-stage primal approximation P-LDR-2S (4)
does not have relatively complete recourse. Thus, for obtaining a primal policy using
P-LDR-2S (4), we implement the STT policy proposed in Sect. 2.4. The parameter ρ

is determined by conducting a golden section search using a fixed evaluation sample
of 100 scenarios. Specifically, starting with a lower bound of 0 and an upper bound of
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1000, a golden section search is performed in which a simulation of the STT policy
with these 100 scenarios is used to guide the search. In case the current upper estimate
of ρ in the search process yields the minimum estimated cost, the search is restarted
with the new lower estimate set to the current upper estimate of ρ, and the new upper
estimate set to four times the current upper estimate. The search is terminated when
either the upper estimate and lower estimates of ρ differ by less than 1.0, or the
difference in the estimated objective values between the upper and lower estimates is
less than 10−6 times the sum of the two objective estimates. The resulting value of ρ

is then used in the simulation with N ′ = 5000T replications to estimate the quality of
the resulting policy. The time to select ρ in this process was vastly dominated by the
time to simulate the policy, but is included in all numerical results that follow.

Since Assumption4 is satisfied, any solution to the SAA problem (15) provides
a feasible solution to D-LDR-2S (12), and hence evaluating this solution using N ′
independent replications yields a statistical lower bound on zMSLP. In our experiments
weuse N ′ = 5000T scenarios for estimating the value of this policy.Unfortunately, the
sample approximations of P-LDR (3) and D-LDR (11) do not yield policies (primal or
dual) that are feasible under all scenarios. Thus, when evaluating these policies with
the independent replications, we report two measures: the average objective value
over scenarios that are feasible, and the fraction of scenarios that are infeasible. By
averaging only over feasible scenarios, these estimates are optimistically biased, i.e.,
they underestimate the bound on the primal problem, and overestimate the bound
for the dual problem. As a result, these estimates do not necessarily provide valid
(statistical) upper and lower bounds on zMSLP, but we use them to provide a “best
case” estimate when comparing to the estimates obtained from the two-stage LDR
policies.

All of our numerical results are carried out using IBM ILOG CPLEX 12.6 as the
LP solver. We perform all experiments using a single thread on a Mac OS X 10.12
with 4 GHz Intel Core i7 CPUs and 16 GB RAM.

The SAA problems (6) and (15) are solved with a sample size of N = 150T .
The primal SAA problem (6) is solved with Benders decomposition, using a single
aggregate cut per time-stage. The Benders decomposition is run until no violated
cuts are found. The dual SAA problem (15) is solved with the bundle-level method
[19,37]. The level method for solving the dual SAA problem is terminated when the
relative gap between the lower and upper bounds is less than 10−5. The details of the
Benders decomposition and the level method are provided in “AppendicesB.1 and
B.2”, respectively.

5.3 Comparison between static and two-stage LDR

Tables2 and 3 present 95% confidence intervals (CIs) on the expected costs of primal
policies and dual lower bounds, respectively, obtained using the two-stage and static
LDR policies. These results are reported only for the instances having T = 5, 10. The
costs are normalized such that for each instance, the estimated lower bound obtained
by the two-stage LDR policy has value 100.0. In these tables, the CIs are presented
with their mean and half-width (±). In Table2, the upper end of the CI the two-stage
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Table 2 Confidence intervals for
expected costs of the primal
policies

2S LDR Static LDR

C T Mean ± Mean ± Inf. (%) %UΔ

50 5 100.8 0.3 138.0 0.2 3.0 36.7

10 114.6 0.6 232.9 0.4 3.8 102.7

100 5 101.3 0.3 138.4 0.2 2.9 36.5

10 109.2 0.4 195.8 0.3 4.0 78.8

Table 3 Confidence intervals for
expected costs of the dual
policies

2S LDR Static LDR

C T Mean ± Mean ± Inf. (%) %LΔ

50 5 100.0 0.3 98.7 0.3 2.4 − 1.3

10 100.0 0.5 97.1 0.4 3.5 − 2.9

100 5 100.0 0.3 100.0 0.3 2.1 0.0

10 100.0 0.4 98.1 0.4 3.2 − 1.8

LDR policy is an upper bound on the expected cost of using that policy, and hence
is a statistical upper bound on zMSLP. We also report under column ‘Inf. (%)’ the
percentage of the scenarios (out of 5000T evaluated scenarios) for which the static
LDR policy is infeasible. To give an idea of the relative improvement in the expected
policy cost obtained by using the two-stage LDR, the column ‘%UΔ’, presents the
percentage increase in the upper bound on the cost obtained with the static policy
over the upper bound on the cost obtained with the two-stage LDR policy. We observe
that the expected cost of the static LDR policy is between 36 and 102% higher than
that of the static LDR policy, with the most significant differences occurring with
larger time stages. We also observe that the static LDR policy is frequently infeasible.
Finally, although not presented in the table, we find that the estimated expected cost of
the STT policies was consistently similar (within 2.3%) to the objective value of the
SAA problem (6), indicating that the STT policy is effectively “tracking” the obtained
two-stage LDR policy.

Considering the CIs of the lower bounds obtained from using two-stage and static
LDR policies presented in Table3, we again find that the static LDR policy is often
infeasible. Column ‘%LΔ’ presents the percentage difference between the lower end
of the CI obtained from the static and two-stage LDR policies, and indicates that the
(95% confidence) lower bounds obtained by the static LDR range from being similar
to 2.9% lower than those obtained by the two-stage LDR policy.

5.4 Comparison with SDDP

We next compare the two-stage LDR approximation with the results obtained using
SDDP. In order to apply SDDP, we need a formulation having a finite number of
scenarios per stage and stage-wise independent random variables. We obtain a model
with stage-wise independence by introducing new state variables v

g
t and vw

t to repre-
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sent
∏t

r=2 ξ
g
r and

∏t
r=2 ξw

r , respectively, which is implemented by adding the state
equations

v
g
t = ξ

g
t v

g
t−1, vw

t = ξw
t vw

t−1, t ∈ [2, T ] (18)

and v
g
1 = vw

1 = 1. With these state variables, the demand in stage t ≥ 2 is then
represented as max{d0,�vgt − ηwKw

t vw
t , 0}. In particular, the right-hand side of con-

straints (17d) are replaced with the expression d0,�v
g
t − ηwKw

t vw
t , and the redundant

upper bounds zt j (ξ t ) ≤ dt j (ξ t ) in (17e) are removed. Thus the only random variables
appearing in stage t constraints are ξ

g
t and ξw

t , which are stage-wise independent. We
use SAA to construct scenario trees with a finite number of outcomes per stage. In an
SAA problem, we approximate the joint distribution of ξ

g
t and ξw

t with 200 scenarios,
obtained by independent Monte Carlo sampling. Note that the SAA approximation
has 200T−1 total sample paths. The number of scenarios per stage was determined
based on initial experiments solving multiple replications of the SAA problem, and
was found to provide a good trade-off between difficulty in solving each individual
SAA problem by SDDP and the variability of the SAA estimates. The optimal value
of an SAA problem is random because it is defined by a random sample. The expected
value of this optimal value is a lower bound on the true optimal value [39]. Thus, by
solving multiple SAA problems with independent samples, a confidence interval on
the expected value of the SAA problem, and hence a lower bound on the true optimal
value, can be obtained. We thus generate 25 independently generated SAA problems,
and for each one we obtain a lower bound by solving it with SDDP for a limited time.
These replication values are then used to construct a confidence interval on the lower
bound on zMSLP.

We use the SDDP implementation sddp.jl [16] to solve each SAA problem.
This algorithm is implemented in Julia. In benchmarks reported in [16], it was found
that the computation times for sddp.jl were about 30% higher than those for the
C++ code DOASA [45], on a test instance for which DOASA was designed for. The
code sddp.jl does not directly support having random constraint coefficients, as
in (18). However, the algorithm does support solving a problem with an underlying
state evolving according to a Markov chain, and with parameters in the constraints
dependent on the state of theMarkov chain. Thus, wemodel the stochastic process as a
Markov chain having 200 states corresponding to the 200 scenarios of joint realizations
of (ξ gt , ξw

t ) in each stage t ∈ [2, T ]. The transition probability from each state in stage
t to each state in stage t+1 is 1/200. To limit the risk that the cutting planemodels used
in the SDDPalgorithmgrow too large,we set the parameter “cut_selection_frequency”
to 50, which means that after every 50 iterations of the SDDP algorithm, cuts that are
not currently binding are removed. Finally, to be consistent with the implementation
of the two-stage LDR approximation, we run sddp.jl serially, although we note
that both sddp.jl and the two-stage LDR approximation have significant potential
for speedup via parallelization.

The time limit for each SDDP replication is set as follows. We let tLDR be the
total time required to solve the SAA problems (6) and (15), and evaluate the value
of the obtained dual policy with an independent sample of size N ′ = 5000T . We
run the SDDP algorithm on each of the 25 SAA replications with two time limits:
TL:=1.5∗tLDR/25 and 10∗TL. The first time limit is used to approximately match the
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Table 4 Comparison of lower bounds obtained form two-stage LDR and SDDP algorithm

D-LDR-2S SDDP TL SDDP 10X TL

C T tLDR Mean ± Mean ± %LΔ Mean ± %LΔ

50 5 188 100.0 0.3 100.6 0.7 0.2 100.8 0.7 0.4

10 866 100.0 0.5 101.5 1.3 0.6 103.2 1.3 2.4

15 1728 100.0 1.3 94.3 2.6 − 7.1 103.9 2.9 2.3

20 2897 100.0 1.5 80.8 3.4 − 21.4 94.2 3.8 − 8.2

100 5 171 100.0 0.3 101.5 0.7 1.1 101.7 0.7 1.3

10 1094 100.0 0.4 100.8 1.1 0.1 101.6 1.2 0.9

15 2235 100.0 0.9 102.4 2.3 1.0 108.6 2.5 7.1

20 3827 100.0 1.8 88.3 3.4 − 13.5 101.4 3.8 − 0.6

total time (over all replications) allotted to the SDDP algorithm with the time used
by the two-stage LDR approach (where the factor 1.5 is used to compensate for the
fact that sddp.jl is implemented in Julia whereas the two-stage LDR approach is
implemented in C++). The second time limit is used to demonstrate the potential of
SDDP to obtain improved lower bounds andpolicieswhengivenmore time.Estimating
the expected cost of the SDDP and STT policies requires a separate simulation of these
policies, which has very similar computational effort for the two policies, and thus
this time is excluded from tLDR.

The lower bound results are reported in Table4, in which again the objective val-
ues are scaled such that the estimated lower bound obtained by the two-stage LDR
algorithm is 100.0. In the table, tLDR is rounded to the nearest second. In aggregate,
40% of this time is spent solving (6), 48% is spent solving (15), and 12% is spent
evaluating the dual bound with the independent sample. The table also presents the
mean and half-width (±) of the lower bound obtained using two-stage LDR and the
SDDP algorithm given time limits TL and 10∗TL. The columns %LΔ present the per-
centage difference between the lower end of the 95% CI on the lower bound obtained
by the SDDP algorithm and that obtained by the two-stage LDR algorithm. Here a
negative number indicates the lower boundwas smaller (worse), and a positive number
indicates an improvement over two-stage LDR. We find that when given a time limit
similar to the time used by the two-stage LDR approximation, the SDDP algorithm
obtains slightly better lower bounds on instances with fewer time stages, but some-
what worse lower bounds on the instances with more time stages. On the other hand,
when given more time, the SDDP algorithm is able to achieve noticeably better lower
bounds on instances with the fewer time stages, and closes much of the gap on the
instances with more stages.

We next compare estimates of the expected cost of policies obtained with the two-
stage LDR and SDDPmethods. For the two-stage LDR policy, the policy and estimate
of associated upper bound are determined as described in Sect. 5.2. For the SDDP
algorithm, a policy can be obtained by first solving a (single) SAA approximation
problem, and then using the resulting value-function approximation to drive a policy
that is then evaluated via forward simulation replications using independently gen-
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Table 5 Comparison of approximate upper bounds obtained form two-stage LDR and SDDP algorithm

P-LDR-2S SDDP TL SDDP 10X TL

C T tEVAL Mean ± Mean ± %UΔ Mean ± %UΔ

50 5 53 100.8 0.3 100.7 0.7 0.3 100.8 0.7 0.4

10 239 114.6 0.6 104.3 1.4 − 8.2 104.1 1.3 − 8.4

15 491 121.0 1.3 109.5 3.0 − 8.0 108.4 3.0 − 8.8

20 932 102.9 1.4 100.6 4.1 0.4 100.4 4.0 0.1

100 5 53 101.3 0.3 101.7 0.7 0.8 101.7 0.7 0.7

10 238 109.2 0.4 102.0 1.2 − 5.9 102.0 1.2 − 5.9

15 495 133.2 1.2 113.4 2.6 − 13.6 112.4 2.6 − 14.4

20 900 116.6 1.6 109.6 4.0 − 3.9 109.0 3.9 − 4.5

erated values of the random variables (i.e., independent from those used in the SAA
approximation). Unfortunately, the ability to run a forward simulation using samples
different from those used to solve the SDDP problem is not supported insddp.jl. To
obtain an estimate of the value of the policy that can be obtained using SDDP, for each
of the 25 SAA replications solved by SDDP, we simulated the resulting policy using
the sample distribution used in the SAA problem to estimate the expected cost of that
policy. We then constructed a 95% confidence interval of the resulting upper bounds,
and these are the values reported in Table5. The column ‘tEVAL’ in this table presents
the time, in seconds, to estimate the expected cost of the STT policy. The remaining
columns present the confidence intervals of the estimated upper bounds in format sim-
ilar to Table4. As we see from the columns %UΔ, the estimated expected cost of the
SDDP policies is in many cases significantly lower than the estimated expected cost
of the two-stage LDR policy, suggesting that SDDP obtains significantly better primal
policies for this problem.

In summary, for this problem, we find that SDDP provides similar, or slightly
worse, lower bounds, and significantly better primal policies, in a comparable amount
of time as the two-stage LDR approximation, and the lower bounds can be improved
by running SDDP for more time. Thus, for this problem, SDDP is clearly favored over
the two-stage approximation. Thus, LDR approximations (both static and two-stage)
may be most useful for problems in which the assumptions required to apply SDDP
do not hold. For example, in a hydropower planning case study presented in [58], the
time series of water inflows, Xt , was modeled as Xt = eYt , where Yt follows a first
order AR(1) autoregressive time series, making the model nonlinear in Xt , and hence
not solvable directly by SDDP.

6 Concluding remarks

We propose two-stage LDRs, a new approximate solution method for MSLPs. This
approach has two advantages over staic LDRs. Due to the flexibility in the recourse
decisions, our method potentially yields better (at least not worse) bounds and policies
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than standard static LDR policies. In addition, as our approach is based on sampling
and 2SLP, it works with very mild assumptions and can take advantage of existing
literature on methods for approximately solving 2SLP problems.We illustrate the new
approach on two example problems, an inventory planning problem and a capacity
planning problem, which indicate that two-stage LDR policies have potential to yield
significantly better policies than static LDR policies.

In future research it will be interesting to test the use of two-stage LDR policies on
more problems, and to investigate if there are problem classes where two-stage LDR
policies are provably optimal or near-optimal.

In the primal problem, a two-stage LDR can be directly applied to multi-stage
stochastic mixed integer programs, provided the integrality restrictions are imposed
only on the recourse variables. Since availability of algorithms formulti-stage stochas-
ticmixed integer programs is very limited, itwill be interesting to explore this extension
further, in particular possibly using ideas from [7] to obtain a decision rule in the case
the state variables also have integrality constraints.
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A Data for the capacity expansion problem

See Tables 6, 7 and 8.

Table 6 Fixed annual cost and
operation cost (Table 1 in [15])

i = 1 i = 2 i = 3

ιi (ke/MW) 245.8 113.9 57.8

ci (e/MWh) 41.9 58.9 90.8

Table 7 Initial demand (Table 2 in [15])

� = 1 � = 2 � = 3 � = 4 � = 5 � = 6 � = 7 � = 8

d0,� (GW) 77.1 71.4 65.7 60.1 54.4 48.8 43.1 37.4

τ� (h) 68 677 1585 1781 1367 1688 1289 305

Table 8 Wind regimes (Table 3
in [15])

w = 1 w = 2 w = 3 w = 4 w = 5

ηw (%) 92.9 81.1 54.9 21.2 0.0

τw (%) 19.8 21.78 18.2 26.7 13.5
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B Additional models for the capacity expansion example

B.1 Primal model and Benders decomposition

P-LDR-2S of the capacity expansion model is obtained by substituting

sti (ξ
t ) =

∑
k∈[Kt ]

�tk(ξ
t )βtki

in (17). Dropping ξ t dependences for variables to simplify the notation, we obtain

min
∑
i∈[I ]

(
cu

+
1i u

+
1i + cu

−
1i u

−
1i +

∑
j∈[J ]

cx1i j x1i j (ξ
t )

)
+

∑
j∈[J ]

cz1 j z1 j

+
∑
t∈[T ]

∑
i∈[I ]

csti
∑

k∈[Kt ]
E

[
�tk(ξ

t )
]
βtki +

∑
t∈[2,T ]

E[Qt (β, ξ t )] (19a)

s.t. β11i − u+
1i + u−

1i = 0, i ∈ [I ], (19b)

β11i − x1i j ≥ 0, i ∈ [I ], j ∈ [J ], (19c)
∑
i∈[I ]

x1i j + z1 j ≥ d1 j , j ∈ [J ], (19d)

0 ≤ z1 j ≤ d1 j , j ∈ [J ], (19e)

0 ≤ u+
1i ≤ Mu+

1i , 0 ≤ u−
1i ≤ Mu−

1i , 0 ≤ β11i ≤ Ms
1i , i ∈ [I ], (19f)

x1i j ≥ 0, i ∈ [I ], j ∈ [J ], (19g)

where, for t ∈ [2, T ], Qt (β, ξ t ) is defined as the optimal objective value of the
following problem:

min
∑
i∈[I ]

(
cu

+
ti u+

i + cu
−

ti u−
i +

∑
j∈[J ]

cxti j xi j
)

+
∑
j∈[J ]

czt j z j (20a)

s.t. u+
i − u−

i =
∑

k∈[Kt ]
�tk(ξ

t )βtki −
∑

k∈[Kt−1]
�tk(ξ

t−1)βt−1,k,i , i ∈ [I ], (20b)

xi j ≤
∑

k∈[Kt ]
�tk(ξ

t )βtki , i ∈ [I ], j ∈ [J ], (20c)

∑
i∈[I ]

xi j + z j ≥ dt j (ξ
t ), j ∈ [J ], (20d)

0 ≤ z j ≤ dt j (ξ
t ), j ∈ [J ], (20e)

0 ≤ u+
i ≤ Mu+

ti , i ∈ [I ], (20f)

0 ≤ u−
i ≤ Mu−

ti , i ∈ [I ], (20g)
xi j ≥ 0, i ∈ [I ], j ∈ [J ], (20h)

0 ≤ Ms
ti −

∑
k∈[Kt ]

�tk(ξ
t )βtki , i ∈ [I ], (20i)

0 ≤
∑

k∈[Kt ]
�tk(ξ

t )βtki , i ∈ [I ], (20j)

123



M. Bodur, J. R. Luedtke

We note that P-LDR-2S of the capacity expansion model does not have relatively
complete recourse since the recourse constraints (20i) and (20j) might be violated
under some scenarios.

Let ξ Tn , n ∈ [N ], be an independent and identically distributed (i.i.d.) random
sample of the random vector ξ T . We solve the obtained primal SAA problem with
Benders decomposition, using a single aggregate cut per time-stage. That is, we have
a master problem of the following form:

min
∑
i∈[I ]

(
cu

+
1i u

+
1i + cu

−
1i u

−
1i +

∑
j∈[J ]

cx1i j x1i j (ξ
t )

)
+

∑
j∈[J ]

cz1 j z1 j

+
∑
t∈[T ]

∑
i∈[I ]

csti
∑

k∈[Kt ]
E

[
�tk(ξ

t )
]
βtki +

∑
t∈[2,T ]

ηt (21a)

s.t. (19b) − (19g), (21b)
(ηt , βt11, · · · , βt Kt I ) ∈ Ot , t ∈ [2, T ], (21c)
(βt11, · · · , βt Kt I ) ∈ F t , t ∈ [2, T ], (21d)

0 ≤
∑

k∈[Kt ]
�tk(ξ

t
n)βtki ≤ Ms

ti , t ∈ [2, T ], i ∈ [I ], n ∈ [N ], (21e)

ηt ≥ 0, t ∈ [2, T ]. (21f)

The variable ηt represents the expected second-stage cost at period t ∈ [2, T ], i.e.,
1
N

∑
n∈[N ][Qt (β, ξ tn)]. Note that since all the original decision variables are defined to

be nonnegative, and all the cost parameters are assumed to be nonnegative, Qt (β, ξ t ) ≥
0 for any given β, thus (21f) are valid. Constraints (21c) and (21d) correspond to the
set of Benders optimality and feasibility cuts, respectively. As β variables belong to
the master problem, we add constraints (20i) and (20j) for each scenario in the sample
to the master problem as (21e) which can be seen as an additional set of feasibility
cuts.

The subproblem decomposes not only by scenario but also by stage. For t ∈ [2, T ]
and n ∈ [N ], we have the corresponding subproblem (20a)–(20h), denoted by SP(t, n).

At every iteration of the Benders decomposition algorithm, we solve the master
problem, get a candidate β solution which is fixed in the subproblems, and solve all
the subproblems. For t ∈ [2, T ], if there is at least one index n ∈ [N ] for which
SP(t, n) is infeasible, then we generate a Benders feasibility cut and add it to the
master problem. Otherwise, we generate a Benders optimality cut, but add it to the
master problem only if it is violated at the current master problem solution. We repeat
this procedure until all the subproblems are feasible and no violated optimality cuts
are found.

B.2 Dual model and level method

Let λ, γ, θ+, θ−, �u+
, �u−

, �s be the dual variables associated with the constraints
(17b)–(17h) in (17), respectively. Then, the dual of (17) is:
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max E

∑
t∈[T ]

[ ∑
j∈[J ]

dt j (ξ
t )

(
θ+
t j (ξ

t )− θ−
t j (ξ

t )
)

−
∑
i∈[I ]

(
Mu+

ti �u+
ti (ξ t ) + Mu−

ti �u−
ti (ξ t ) + Ms

ti�
s
ti (ξ

t )
)]

(22a)

s.t. λti (ξ
t ) − E[λt+1,i (ξ

t+1) | ξ t ]
+

∑
j∈[J ]

γti j (ξ
t )− �s

ti (ξ
t ) ≤ csti , t ∈ [T ], P-a.s., i ∈ [I ], (22b)

− �u+
ti (ξ t ) − λti (ξ

t ) ≤ cu
+

ti , t ∈ [T ], P-a.s., i ∈ [I ], (22c)

− �u−
ti (ξ t ) + λti (ξ

t ) ≤ cu
−

ti , t ∈ [T ], P-a.s., i ∈ [I ], (22d)

θ+
t j (ξ

t )−θ−
t j (ξ

t ) ≤ czt j , t ∈ [T ], P-a.s., j ∈ [J ], (22e)

θ+
t j (ξ

t ) − γti j (ξ
t ) ≤ cxti j , t ∈ [T ], P-a.s., i ∈ [I ], j ∈ [J ], (22f)

γti j (ξ
t ) ≥ 0, t ∈ [T ], P-a.s., i ∈ [I ], j ∈ [J ], (22g)

θ+
t j (ξ

t ), θ−
t j (ξ

t ) ≥ 0, t ∈ [T ], P-a.s., j ∈ [J ], (22h)

�u+
ti (ξ t ), �u−

ti (ξ t ), �s
ti (ξ

t )≥ 0 t ∈ [T ], P-a.s., i ∈ [I ]. (22i)

Observing that θ− variables are redundant, we remove them to simplify the model.
D-LDR-2S of the capacity expansion model is obtained by substituting

λti (ξ
t ) =

∑
k∈[Kt ]

�tk(ξ
t )�tki

in (22). Dropping ξ t dependences for variables to simplify the notation, we obtain

max
∑
j∈[J ]

d1 jθ
+
1 j −

∑
i∈[I ]

(
Mu+

1i �u+
1i + Mu−

1i �u−
1i + Ms

1i�
s
1i

) +
∑

t∈[2,T ]
E[Gt (�, ξ t )] (23a)

s.t. �11i −
∑

k∈[K2]
E

[
�2k(ξ

2)
]
�2ki +

∑
j∈[J ]

γ1i j − �s
1i ≤ cs1i , i ∈ [I ], (23b)

− �u+
1i − �11i ≤ cu

+
1i , i ∈ [I ], (23c)

− �u−
1i + �11i ≤ cu

−
1i , i ∈ [I ], (23d)

θ+
1 j ≤ cz1 j , j ∈ [J ], (23e)

θ+
1 j − γ1i j ≤ cx1i j , i ∈ [I ], j ∈ [J ] (23f)

γ1i j ≥ 0, i ∈ [I ], j ∈ [J ] (23g)

θ+
1 j ≥ 0, j ∈ [J ], (23h)

�u+
1i , �u−

1i , �s
1i ≥ 0 i ∈ [I ], (23i)

where for t ∈ [2, T ], Gt (�, ξ t ) is defined as the optimal objective value of the
following problem:
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max
∑
j∈[J ]

dt jθ
+
j −

∑
i∈[I ]

(
Mu+

ti �u+
i + Mu−

ti �u−
i + Ms

ti�
s
i

)
(24a)

s.t.
∑
j∈[J ]

γi j − �s
i ≤ csti −

∑
k∈[Kt ]

�tk(ξ
t )�tki

+
∑

k∈[Kt+1]
E

[
�t+1,k(ξ

t+1)

∣∣∣ξ t
]
�t+1,k,i , i ∈ [I ], (24b)

− �u+
i ≤ cu

+
ti +

∑
k∈[Kt ]

�tk(ξ
t )�tki , i ∈ [I ], (24c)

− �u−
i ≤ cu

−
ti −

∑
k∈[Kt ]

�tk(ξ
t )�tki , i ∈ [I ], (24d)

θ+
j ≤ czt j , j ∈ [J ], (24e)

θ+
j − γi j ≤ cxti j , i ∈ [I ], j ∈ [J ], (24f)

γi j ≥ 0, i ∈ [I ], j ∈ [J ], (24g)

θ+
j ≥ 0, j ∈ [J ], (24h)

�u+
i , �u−

i , �s
i ≥ 0 i ∈ [I ]. (24i)

Let ξ Tn , n ∈ [N ], be an independent and identically distributed (i.i.d.) random sam-
ple of the randomvector ξ T .We solve the obtained dual SAAproblemwith the bundle-
level method, because the Benders decomposition method converged slowly for this
problem.We use cuts aggregated over scenarios, thus introduce ζt variable to represent
the expected second-stage cost value, i.e., 1

N

∑
n∈[N ] Gt (�, ξ tn), for t ∈ [2, T ].

We observe that the subproblem (24) can be further decomposed into two: one
problem including only the u+ and u− variables, and the other problem including the
remaining set of variables.

(DSPupart ) : max −
∑
i∈[I ]

(
Mu+

ti �u+
i + Mu−

ti �u−
i

)

s.t. (24c), (24d), (24i)
(DSPrest ) : max

∑
j∈[J ]

dt jθ
+
j −

∑
i∈[I ]

Ms
ti�

s
i

s.t. (24b), (24e)−(24h)

We exploit this decomposition to disaggregate the optimality cuts in the master prob-
lem. Thus, we introduce additional variables ζ

upart
t and ζ restt for t ∈ [2, T ] and obtain

the following master problem:

(MP) : max
∑
j∈[J ]

d1 jθ
+
1 j −

∑
i∈[I ]

(
Mu+

1i �u+
1i + Mu−

1i �u−
1i + Ms

1i�
s
1i

) +
∑

t∈[2,T ]
ζt

(25a)

s.t. (23b) − (23i), (25b)
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ζt = ζ
upart
t + ζ restt , t ∈ [2, T ], (25c)

(ζ
upart
t ,�t11, . . . , �t Kt I ) ∈ U t , t ∈ [2, T ], (25d)

(ζ restt ,�t11, . . . , �t Kt I ) ∈ Rt , t ∈ [2, T ], (25e)

ζ
upart
t ≤ 0, t ∈ [2, T ], (25f)

ζ restt ≤ 1

N

∑
n∈[N ]

∑
j∈[J ]

dt j (ξ
t
n)c

z
t j , t ∈ [2, T ], (25g)

where U t andRt represent the optimality cuts derived from problems (DSPupart ) and
(DSPrest ), respectively.Moreover, we introduce the upper bounds on the new auxiliary
variables, which are derived from the subproblems (DSPupart ) and (DSPrest ).

The level method also uses a quadratic program for regularization which projects
the previous iterate on the level set of the current approximation of the objective
function. We use the following problem for this projection:

(QP) : max||� − �̂||22
s.t. (25b)−(25g),∑

j∈[J ]
d1 jθ

+
1 j −

∑
i∈[I ]

(
Mu+

1i �u+
1i + Mu−

1i �u−
1i + Ms

1i�
s
1i

) ≥ L,

where �̂ and L denote the current � solution (i.e., the previous iterate) and the level
target, respectively. The optimal solution values of � variables determine the next
iterate.

The details of the level method are provided in Algorithm1 where LB and UB
denote lower bound and upper bound, respectively.

Algorithm 1 : Level Algorithm
1. Initialize �̂ = 0, LB = −∞, UB = ∞
2. Solve all the subproblems, i.e., (DSPupart ) and (DSPrest ) for all t ∈ [2, T ] and n ∈ [N ].

Generate Benders optimality cuts, add them to both (MP) and (QP).
Compute the objective value of the current iterate, and set it as LB.

3. do

Solve (MP). Update UB if (MP) optimal objective value is lower than UB.
Set L = 0.3 × UB + 0.7 × LB.
Solve (QP) with updated level constraint, to obtain iterate �̂.
Solve all the subproblems at current iterate.
Generate Benders optimality cuts, and add violated cuts to both (MP) and (QP).
Compute the objective value of the current iterate; if it is larger than LB, update LB.

until |UB - LB| / UB < 10−5

123



M. Bodur, J. R. Luedtke

References

1. Ahmed, S.: Multistage stochastic optimization (2016). https://www.ima.umn.edu/materials/2015-
2016/ND8.1-12.16/25386/mssp.pdf. New Directions Short Course on Mathematical Optimization

2. Bakir, I., Boland, N., Dandurand, B., Erera, A.: Scenario set partition dual bounds for multistage
stochastic programming: a hierarchy of bounds and a partition sampling approach (2016). http://www.
optimization-online.org/DB_FILE/2016/01/5311.pdf

3. Bampou, D., Kuhn, D.: Scenario-free stochastic programmingwith polynomial decision rules. In: 2011
50th IEEE Conference on Decision and Control and European Control Conference, pp. 7806–7812.
IEEE (2011)

4. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain
linear programs. Math. Program. 99(2), 351–376 (2004)

5. Ben-Tal, A., Nemirovski, A.: Robust optimization—methodology and applications. Math. Program.
92, 453–480 (2002)

6. Bertsimas, D., Caramanis, C.: Adaptability via sampling. In: 2007 46th IEEE Conference on Decision
and Control, pp. 4717–4722. IEEE (2007)

7. Bertsimas, D., Georghiou, A.: Design of near optimal decision rules in multistage adaptive mixed-
integer optimization. Oper. Res. 63(3), 610–627 (2015)

8. Birge, J.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper.
Res. 33(5), 989–1007 (1985)

9. Birge, J.R.: Aggregation bounds in stochastic linear programming.Math. Program. 31(1), 25–41 (1985)
10. Birge, J.R., Donohue, C.J., Holmes, D.F., Svintsitski, O.G.: A parallel implementation of the nested

decomposition algorithm for multistage stochastic linear programs. Math. Program. 75(2), 327–352
(1996)

11. Calafiore, G., Campi,M.: The scenario approach to robust control design. IEEE Trans. Automat. Contr.
51, 742–753 (2006)

12. Casey, M.S., Sen, S.: The scenario generation algorithm for multistage stochastic linear programming.
Math. Oper. Res. 30(3), 615–631 (2005)

13. Chen, X., Sim, M., Sun, P., Zhang, J.: A linear decision-based approximation approach to stochastic
programming. Oper. Res. 56(2), 344–357 (2008)

14. Chen, Z.L., Powell, W.: Convergent cutting-plane and partial-sampling algorithm for multistage
stochastic linear programs with recourse. J. Optim. Theory Appl. 102(3), 497–524 (1999)

15. de Maere d’Aertrycke, G., Shapiro, A., Smeers, Y.: Risk exposure and Lagrange multipliers of nonan-
ticipativity constraints in multistage stochastic problems. Math. Methods Oper. Res. 77(3), 393–405
(2013)

16. Dowson, O., Kapelevich, L.: SDDP.jl: a Julia package for stochastic dual dynamic programming.
Optimization Online (2017). http://www.optimization-online.org/DB_HTML/2017/12/6388.html

17. Dyer,M., Stougie, L.: Computational complexity of stochastic programming problems.Math. Program.
106(3), 423–432 (2006)

18. Eisner, M., Olsen, P.: Duality for stochastic programming interpreted as L.P. in L p-space. SIAM J.
Appl. Math 28(4), 779–792 (1975)
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