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Abstract—This paper considers the problem of state-to-
state transition with state and control constraints, for a
linear system with time-invariant model parameter un-
certainties. Polynomial chaos is used to transform the
stochastic model to a deterministic surrogate model. This
surrogate model is used to pose a chance-constrained op-
timal control problem where the state constraints and the
residual energy cost are represented in terms of the mean
and variance of the stochastic states. The resulting con-
vex optimization problem is numerically illustrated on the
problem of rest-to-rest maneuver of the benchmark floating
oscillator and on an experimental two-tank setup.

Index Terms—Chance constraint, polynomial chaos (PC),
stochastic optimal control, uncertain system, vibration
control.

|. INTRODUCTION

ESIGNING control strategies under assumptions of un-
Dcertainties in the model has been a topic of research
interest for many years and a number of researchers have
made contributions to the field [1], [2], and [3]. Such ro-
bust control techniques find applications spread across vari-
ous domains in engineering. Mechatronic applications such as
nanopositioning devices such as scanning probe microscope,
wafer scanners, atomic force microscopes, and scanning elec-
tron microscopes, require precise positioning for their optimal
performance [2], [4]. Some other applications which have shown
benefits from the design of robust open-loop control for vibra-
tion suppression include industrial robots [5], and even wa-
ter level control for an industrial boiler unit (with parameter
uncertainties) [6] among many others.

One of the open-loop approaches of dealing with model pa-
rameter uncertainty is input shaping which reduces the sensitiv-
ity of the cost function in the proximity of the nominal model by
forcing the local sensitivity to zero [1], [7]. The other popular
approach has been to design controllers so as to take care of
worst case scenarios [8]. But this method can often lead to very
conservative results which may not be practical.
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A way to mitigate the issues of both these methods is to
use the information available in the probability distributions
of the uncertain variables to address robustness. In doing so,
it often leads to posing the optimization problems (i.e., opti-
mal control problems) with probabilistic or chance constraints
(see [9]-[11]). These chance constraints can in fact be written
as deterministic constraints to solve the optimization problem.
For example, Calafiore and El Ghaoui [12] investigate linear
chance constraints which are robust to the distribution of the
random variables (r.v.). Their approach allows one to write any
linear chance constraint as a deterministic constraint based on
the available r.v. parameters such as mean, variance, and support.

Mesbah et al. in [13] present a generic framework for
implementing linear chance inequality constraints in model
predictive control (MPC) for nonlinear systems with paramet-
ric uncertainties. Polynomial chaos (PC) which was first in-
vestigated by Norbert Wiener in [14], for Gaussian processes
and was generalized by Xiu ef al. [15] was used to determine
the first two moments of the stochastic states which are then
used to enforce these chance constraints. However, the nonlin-
ear inequality constraints remain deterministic and are limited
to the nominal trajectories of the states. The cost in the MPC
framework is also considered to be nonprobabilistic.

In this paper, the focus is on linear systems with linear con-
straints and a residual energy cost which has a quadratic form,
making the entire problem convex in a deterministic framework.
In a probabilistic framework, most often, the worst case state
trajectories have significantly low associated probabilities of re-
alization [16]. It is also common knowledge that one needs to
tradeoff a performance for robustness when dealing with the un-
certain systems. Consequently, considering a probabilistic cost
function permits a simple approach for the tradeoff analysis. The
chance constraint corresponding to a linear constraint for an un-
certain system results in a cone constraint, but does not permit
posing a quadratic cost using the same framework. This prompts
using a linear approximation of the quadratic cost, which per-
mits using the chance constraint to pose a convex optimization
problem for the design of controllers. Although the individual
ideas of representing stochastic states using the PC expansion,
the linear approximation of [; norm and chance-constrained-
based optimization is not new, the novelty of this paper lies
in the fluid integration of the three frameworks resulting in
a convex optimization framework. The flowchart presented in
Fig. 1 encapsulates the sequential exercise of various conceptual
components that lead to the chance-constrained problem formu-
lation. The flowchart also includes the section titles which can
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Fig. 1. Flowchart of the algorithm.

help the reader visualize how the disparate algorithms/concepts
are integrated.

The structure of the paper is as follows. Section II defines
the mathematical optimization problem whose solution is being
sought. Section I1I presents details about the proposed technique
to solve the optimization problems. Section IV presents the Wie
and Bernstein [17] benchmark problem which has been selected
to illustrate the proposed method. Finally, the paper is completed
with the experimental results on a two tank system in Section V
and concluding remarks in Section VL.

[I. PROBLEM STATEMENT

This section of the paper describes the formulation of a opti-
mization problem to design the controllers for the point-to-point
maneuvers of the spring-mass-dashpot class of systems. Euler—
Lagrange equations for the linear mechanical systems can be
represented as the vector second-order models

MzZ+Cz4+ Kz=Du (1)
where M, C, K, and D are mass, damping, stiffness, and control

influence matrices, respectively; the energy (E) in the system at
any time instant is

E = %z‘TMz' == %zTKz. )

A state-space representation of the system is given by

z B 1] I z 0 3
s(= v~ ez (T |2-p|® @
——— ™ Mt s pom—

v

z A’ Zz B’

ol

where A’ is the state matrix and B’ is the control influence
matrix of the continuous time system. Assuming z € R" (i.e.,
z=z1,...,2za]7), Z € R™. The discrete-time representation
of (3) is

z (k+1) = AZ (k) + Bu (k) @)

which will be used for the controller design, where k represents
the kth time-step. The control objective is to determine (k)
which can be used to drive the system from an initial state
(Z(0) at time ¢ = 0) to a final desired state (Z4(T) at time
t =T'¢) with constraints on the states and control input during
the transition. However, since the system is considered to have
parametric uncertainties, it is impossible to find an open-loop
control u(k) which assures all the realizations of the dynamic
system reach Z4(7Ty). To make all the realizations reach as
close to the desired value as possible, a quantity of measure is
necessary which characterizes this closeness. A popular choice
for this quantity in the literature has been the residual energy
(and thus, the same is chosen for this paper).

The residual energy (excursion from the desired terminal en-
ergy) is defined as E, (Ty) = 1&" Md + ta” Kx, where the
residual states are defined by

z(Ty)
&(Ty)

= Z(Ty) — Z4(Ty). (5)

Z(Ty) is the terminal value of the states of any realization of
the model in (4). Note that, K is singular when the system
includes a rigid body mode. In such a scenario, a pseudoenergy
function [8] is included to ensure that E, is positive definite.
Equation (4) can also be written as a linear function of only
the control inputs and the initial conditions as
— E“ =
Z(k+1)=A*Z(0) + ) | A*~ Bu(i). (6)

i=0

This linear mapping can then be used to write the state con-
straints at any instant in time (and if need be at all instants in
time i.e., ¥ k) with the help of an appropriate output matrix.

Finally, the optimal control problem (P1) of interest can be
posed as

minimize,, FE,

subjectto  wp < u (?Zz) < Ugp VE
rZ (i) <® vk %)

where I' is an output matrix and @ is the output constraint.
However, E, is a r.v. and therefore (P1) needs to be rewritten
in a more meaningful way. A popular approach in the literature
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has been to seek the worst case (minimax) solution to (P1). The
minimax optimal control problem (P2) can be posed as

minimize, ; f

subjectto  EW) < f Vi=1,...,p
Uy g u (jﬁ;) S Uyb, VE?
rz (k)< vk (8)

where f (cost function) represents the upper bound on the resid-
ual energy E,. and p represents the number of different realiza-
tions of the uncertain system. These realizations could be gen-
erated using Monte Carlo (MC), latin hypercube, or any other
sampling approaches. If the state constraints are linear, then the
optimization problem can be shown to be convex.

Since there lies motivation to incorporate information present
in the probabilities of the states into the control design, two
more optimal control problems can be posed where the state
constraints and the energy constraints in problem ( P2) are prob-
abilistic. The stochastic optimal control problem where only the
state constraints are probabilistic (P3) is posed as

minimize,, ; f

subject to EWD L f Vi=1,...,p

up < u (k) < Uyp, Vk

P(rz(fé)gé)zpq vk (9)
where P(W) represents the probability with which event W
occurs and €; represents the risk level for the state constraint.
Similarly, the stochastic optimal control problem where the state
constraints as well as the energy constraints are probabilistic
(P4) is posed as

minimize,, ; f

subject to PE . <f)21—g

wp < U (R) < Uyp, vk

P(I‘Z (i&) < @) >1—¢ Vk (10
and e; represents the risk level for the energy constraint. This
paper is aimed at presenting an algorithm to solve (P3) and
(P4).

[ll. CONTROLLER DESIGN

This section presents details on the methodology being used
to solve (P3) and ( P4) and has been divided into subsections to
explain various parts of the process. Section III-A summarizes
ways to approximate the quadratic residual energy by a set of
linear functions. Section III-B presents the manner in which
a linear chance constraint can be written as a nonprobabilistic
cone constraint. Section III-C gives a short overview of the
PC and shows its application in estimating the moments of the
stochastic states.

A. Linear Approximation of the Residual Energy

The residual energy (which is a quadratic function of the
residual states) can be approximated by a linear function of a
new set of states defined by

1 [VKE o
:ﬁlo mlx 11
L

InY space, E, represents a hypersphere (since E, = Y7 Y).
The idea is to approximate this hypersphere with a set of hy-
perplanes such that the volume enclosed by the hyperplanes
would be circumscribed by the hypersphere. This idea was first
developed in [18] where a systematic method was presented
in generating the necessary hyperplanes for approximating a
hypersphere in any dimension. Theoretically it would need an
infinite number of hyperplanes to exactly reproduce a hyper-
sphere. However, for implementation only a finite number of
them are used. The number of hyperplanes generated, therefore,
depends on the level of approximation desired.

For example, the most basic approximation (a.k.a. a Level 0
approximation) of the space (E, < f) would simply be given
by the intersection of the half-spaces described by

Y|l < f. (12)

IfY eR” (e, Y =[y1,...,va]"), (12) is equivalent to the
convex space formed from the intersection of the 2" half-spaces
bounded by the 2" hyperplanes

ﬂ:y|:l:y2...:|:yﬁ:f.

Similarly, [18] allows one to determine higher Level approxi-
mations to the space enclosed within the F, hypersphere. Fig. 2
illustrates the first octant for three different Levels of approxi-
mation for a three dimensional (3-D) hypersphere.

An alternative to approximating the E,. hypersphere is to
substitute it by another relevant geometric shape made from
hyperplanes. One such example would be to use a cube. The
cube can be described by the intersection of the half-spaces

¥l < f (14)
which is equivalent to 27 half-spaces bounded by 2n planes
—fEus<f V=1 (15)

It should also be pointed out that for spring-mass-dashpot class
of systems, n = 2n.

(13)

B. Implementation of Probabilistic Constraints

As alluded to previously, [12] provides an approach to rewrite
the linear probabilistic inequalities as the nonprobabilistic in-
equalities. In their work, they prove that if a and b are r.v. with

known means and variances, then the constraint
Prob{a"z+b<0} >1—¢ (16)

can be conservatively approximated with the constraint

\.’lzf{var [Tz +b]}*+E[a"z+b] <0  (7)
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where e represents the risk level i.e., the probability with which
the constraint is permitted to be violated. It should be noted that
the constraint is conservative since it subsumes all distributions
with the same mean and variance. This means that the equality
sign of (16) is going to be active for only a particular distribution
(which is unknown).

Therefore, this simple formulation now allows us to enforce
the linear probabilistic constraints as long as the mean and the
variance of the r.v. are known.

C. Uncertainty Quantification Using the PC

This section presents a tool which allows one to character-
ize the evolution of the uncertainty for the stochastic systems
by expressing the stochastic states as a polynomial function of
the uncertain parameters of the model and determine the mean
and variance that are needed for implementing the chance con-
straints.

Let a stochastic linear dynamical system be expressed in the
form

@(t,£) = A(§)z(t) + B(§)u(t) and z(to,§) =m0 (18)

where, = € R" is the state vector, £ € R™ is the vector of r.v.
with known probability density function (pdf), and (%) is the
control input.

From generalized polynomial chaos (gPC) theory, the states
can be expressed as

2(t,6) = 3 z,,()Ti(€)

i=0

(19)

where, ¥;(£) is a complete set of multivariate orthogonal (w.r.t.
the pdf of £€) polynomials and x.; € R" is the time varying
coefficient vector (ie., ©.; = [T1; ... Iﬁ,‘j]T) of U;(&). The
selection of the set of orthogonal polynomials (¥;(£)) for pop-
ular distributions is given by the Wiener—Askey scheme [15].
For other general distributions, a set of corresponding orthog-
onal polynomials can also be generated via the Gram—Schmidt
orthogonalization method.

As an approximation, the expansion is usually truncated to
a finite number of terms (depending on the desired accuracy)
[15]. Hence, (19) is rewritten as

W
o(t, &) ~ Y . (t)T;(8).

i=0

(20)

(a) Level 0 approximation for 71 = 3. (b) Level 1 approximation for #i = 3. (c) Level 2 approximation for i = 3.

el
we) i A B
21 Z3
L L

Fig. 3. Two Mass—Spring—Damper System.

The objective is to evaluate the unknown vectors . ; () over
time. Equation (20) is substituted in (18) to get

N N
D @ ()W) = A6) lz . i (t)¥; (5)] + B(&)u(?).

i=0 i=0
(21)

Galerkin projection is then exercised on (21) over each of the or-
thogonal basis functions (i.e., ¥;, where j = 0,1,..., N) to get
a set of deterministic differential equations for the coefficients
. ;. The solution to these equations yield the sought elements
of x. ; (t). The desired moments (such as mean and variance) of
the stochastic states x(¢, £) can subsequently be calculated from
x. ; (t), completing the final piece of the puzzle. A more detailed
implementation for the Galerkin projection can be found in [19].

Once the mean and variance are known, chance energy con-
straints as well as the chance state constraints can be imposed.
As a result, the optimization problems (P3) and (P4) can now
be solved using any convex programming solver.

IV. SIMULATED EXAMPLE PROBLEM

This section uses the benchmark two mass floating oscillator
(see Fig. 3) to illustrate the solutions catering to the (P2), (P3),
and (P4) problems.

The M, C, K, and D matrices corresponding to the oscillator

are given by
C
o= [
—i

50
0 5|
and D = [1,0]".

It is assumed that k and c are uncertain. The control objective
in this example is to find the control trajectory u(k) which can
move the system from an initial rest state Z(0) = [0, 0,0, 0]” to
afinal desired rest state Z4(Ty) = [1, 1,0, 0]” under the control

k

] (22)
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constraints
|u (f&)| <1 VK (23)
and the state constraints
# (fc) S (k)‘ <015 VE. (24)

All simulations in this paper were done with Ty = 15. The
sampling time for discretization used was 7 = 0.1. Therefore
the total number of steps were N; = T /T, +1 = 151.

A. Minimax Solution

This section presents the results for the case when both the
energy and state constraints are nonprobabilistic. This basically
comprises solving the optimal control problem (P2), corre-
sponding to a minimax problem where the maximum residual
energy over the domain of uncertain variables is minimized.
The variables k and ¢ are assumed to be uniformly distributed
with the distributions: k € U[0.7,1.3] and ¢ € U[0.8, 1.2], re-
spectively. In this example, uniformly gridding the domain of
the two uncertain variables into 21 points each results in 212 dis-
tinct realizations of k and c. This results in p = 217 constraints
at any time which can include the energy (terminal time) and
state constraints (all sampling times). It should be noted that
gridding the uncertain space guarantees the satisfaction of the
constraints only at the grid points. For illustration, the residual
energy which is a quadratic function of the system states, is cho-
sen as the cost function. MC simulations of the dynamic system
with the obtained control solution and the resulting relative dis-
placement of the masses for all the realizations are shown in
Fig. 4.

It is evident from the figure that the relative displacements (in
this case) always lies (i.e., at all times) within the imposed state
constraint bounds indicated by the solid red lines (even though
the constraints were imposed only at the grid points).

B. Probabilistic State Constrained Solution

This section is used to present results for the floating oscillator
maneuver when the optimization problem (P3) is solved.

To illustrate that different probability distributions yield dif-
ferent results, three separate distributions with same means
(E[k] =1, E]¢] = 1) and variances (o”[k] = 0.018, o?[c] =
0.008) for k and c in the example problem are considered. Note
that EJ[.] refers to the expectation operation and 0[] refers to
the variance.

The first case is for the uniform distributions and is defined
in terms of two independent r.v. &,; and &,» (where £,1,&0 €
U[—1, 1]). Therefore, we have

k=140.2324§,; and c=1+ 0.1549¢,,. (25)
The second case is for beta distributions and is defined via two
independent beta distributed r.v. & and &, (where &, & €
[—1,1]) with the distribution parameters a =1 and b= 1.

Therefore, we get

k=1+ 0.3&,] and c=1+ 0.2&;2. (26)

The r.v. for the final case (£, &m2) is chosen from the work
in [20]. &1, €ma € [—1, 1], are independent and have marginal
pdfs given by

i=0

(27)

where W = —(3)!, A; = (El);;?" ,and!C; = :F[_Illrv k and ¢

are written in terms of &, and &, as

k=1403674,1 and c=1+40.2449,>. (28)
Since posing the chance constraints requires the mean and the
variance, the first step at this point is to obtain a PC expansion
of the stochastic model.

Development of the PC model is shown only with respect to
the uniform distribution case; the PC coefficients for the other
distributions can be evaluated in an identical fashion.

The orthogonal basis functions ¥; (&) for a uniform distribu-
tion are the Legendre polynomials. Since there are a couple of
uncertain parameters, 2-D Legendre polynomials (derived from
a tensor product of 1-D Legendre polynomials) form the basis
functions.

The basis functions ¥; (&) where £ = [£,1,£y2)7 are derived
from the tensor product of the first six Legendre polynomials
in &1 and &,5. (The choice of six is chosen as a compromise
between the level of accuracy desired and computational ex-
pense.) This leads to a total of 6% = 36 basis functions (i.e.,
N = 35). Using the Galerkin approach and recognizing that for
the example 7 = 2n = 4, (N + 1)n = 144 deterministic equa-
tions are formed which are used to evaluate the PC coefficients.
Therefore, if the states are expanded as

Z Zio VAR 2135
Z Z Z Z
72| 2| _ |50 g |2 e 4.k |2 6,
Z3 Z30 231 Z335
Zs Zso Zy, Z43s
(29)



NANDI AND SINGH: CHANGCE-CONSTRAINT-BASED DESIGN OF OPEN-LOOP CONTROLLERS FOR LINEAR UNCERTAIN SYSTEMS 1957
where Z = [z1,22,71,7]7 then the deterministic equations Where
formed are given by [0, Uy 0

Z)0(0o, ¥ Z -

1,0{ %o, ¥o) 1,0 - _lIf
: =G + Hu (30) (Rl | T, Ty
: 37
Z435(W3s, Uss) Z435 _ (37
EY = | gk~1p Ak—2p n 0T

where (p(€),q(€)) is the inner product equal to [ p(&) Acq (k) I _A B A™°B B o } (38)
g(&)pdf(£)dg, G and H are matrices determined from the (RN xN:)

Galerkin projection.

Equation (30) can be solved to determine the coefficients Z, o
through Z, 35. Consequently, all the moments of the states can
then be determined from these coefficients. Our studies confirm
the assessment of Kim ef al. [21] that the mean and variance can
be computed accurately with the low-order PC expansion. Since,
the proposed chance-constrained optimization only requires the
mean and variance, the gPC serves as a computationally efficient
tool for estimating them.

Moreover, since the control problem has been posed in the
discrete domain, (30) is discretized as

%o (fc+ 1) — AZc (k) + Bu (fc) 31
where Zc = [ Z]I_o, PR .,Zle.,Z?“IO., .va Z3,D, »h 4y Z4,35 ]T. A
similar development for any distribution of k and ¢ can be made.

The PC expansions for each of these three cases are used to
determine the mean and the variance of the states at each time
instant. Then these means and variances are used to implement
a probabilistic state constraint where the probabilistic state con-
straint is written in the form of (17). In this section, the optimal
control problem (P3) is chosen to be solved with a Level O ap-
proximation of the residual energy for the example problem. A
linear version of the residual energy need not be chosen though
and any of the other formulations are acceptable. The control
constraints are the same as (23). The relative displacement state
constraint is however modified to the probabilistic constraints

Prob {21 (i) =g (A) —015< 0} >l-a (32

Prob{—Z1 (i) % (k) _0.15< 0} >S1—6  (33)

Vk. Equation (32) is equivalent to
ke{var [Z, — Z, — 0.15]}"/2 + E[Z) — Z, — 0.15] < 0 (34)

L5 If a vector is defined as Ceon =

[1,—1,0,0]", then the constraint can be simplified to

where k. =

k. {va:[cf;nz(fc) = 0.15} o E[GE;,,Z(J}) 2 0.15] <o0.

(35

Z(k) can be represented as a linear function of the control
input as

Z (JE) = TA,, (A) U (36)

and U = [u(0),...,u(k),...,u(150)]7. The last column of
Acq(E) is a null matrix whose dimension is (N 4 1) x N; —
k + 1. This null matrix shows that control input at the time in-
stants greater than k do not influence the states at k. One must
be aware that Z¢ in (31) is basically Z¢ (k) = Aeq(k)U.

It should be noted that ¥ is different for the three distinct
cases. The basis functions (¥, through Wy ) for the first case
are 2-D Legendre polynomials. The basis functions for the sec-
ond case are 2-D Jacobi polynomials and the basis functions for
the final case are generated using the Gram—Schmidt orthogo-
nalization. Therefore, different values of A, B, A, , and ¥ are
calculated for each distribution. However, the order of the PC is
chosen to be N = 35 to be the same for all the three cases.
Now, using (36) we get

E [c“g;nz (k) 5, 0.15] —CLE [‘IJAEQ (L) U] —0.15.
(39)
Since, the only r.v. is ¥, the equation reduces to

E [OEMZ (}Z) » 0.15] = CL E[¥]A,, (JE) U - 0.15. (40)

Similarly, var[CZ_Z (k) — 0.15] can be reduced to
UT AL, (E [¥ CeonCL,¥] — E [¥7] ConCLE[¥]) AegU

"

v

s
(41)

v k. Defining a new matrix S (S is real symmetric positive
semidefinite) in (41), we can derive

var |CL Z (k) —0.15 -] AV2VT AU (42)
[Coz (k) —013] ;

where an SV D decomposition of S is done as, S =VAVT.
Once again, the matrices comprising expected values (E[¥] and
S) are distribution dependent. Finally, the constraints described
in (32) and (33) can be summarized by the convex constraints

ke ||A'/2VTABQUH + ChouB[¥) A, () U —0.15 <0,
2

ke ||A'/2VTABQUH — T E[¥]A,, (k) U —0.15 < 0.
2
(43)

Equation (43) is used to enforce the state constraints when solv-
ing for U.

Fig. 5(a) shows a plot with the MC realizations of the relative
displacement (for €; = 0.5, i.e., for a 50% constraint violation
allowance). It presents results for the case of the beta distributed
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Fig. 5. (a) Relative displacement versus time for probabilistic state constraint. (b) Percentage violation versus time. (c) Residual energy plot.
TABLE | An approach similar to the probabilistic state constraints is
COMPARISON ACROSS DISTRIBUTIONS FROM 100 000 MC SIMULATIONS used to enforce the probabilistic terminal residual energy con-
Uit Beta Custom straint. Since, the formulation only allows for linear constraints,
€1 f [Max. V f [Max. V f [Max. V only the linear versions of the residual energy (see Section I1I-A)
0.2(/00388 | 492 || 0.0516| 5.85 ||D.0651| 567 can be incorporated.
0.5([0.0316 | 20.71 | 0.0451| 18.39 |/ 0.0596| 17.31 : = : s : s i
08 l00287| 3477 ||0.0424 | 3443 |[00572| 3350 Therefore, in this section, (P4) is solved with the probabilistic

r.v. [i.e., when k and ¢ are given by (26)]. It can be seen that
the state constraints are in fact violated. Fig. 5(b) shows the
percentage of times these violations take place from 100 000
simulations.

Although a 50% violation was allowed, a maximum violation
of only 18.39% is observed. This is not an anomaly, since we
must remember that the probabilistic constraint is a conservative
one and that the violations are a function of the distribution.
Table I presents the different maximum percentage violations
(Max. V) that were observed for the three distributions.

Another interesting observation about the results can be made
from the optimal value of the cost (i.e., f). For a Level 0 approx-
imation E,, in the deterministic case (where state constraints are
nonprobabilistic) the cost f is seen to be 0.0610; while the prob-
abilistic case with a beta distribution is seen to have a cost of
0.0451 [Fig. 5(c)]. It should be noted that the r-axis and the
y-axis correspond to the measures of the violations of the states
associated with the first and second masses, respectively, from
the desired terminal states. The dashed black line is the energy
bound determined from the deterministic problem formulation.
The red dashed line is the residual energy bound corresponding
to the case where the state constraints are probabilistic and the
terminal energy constraint is deterministic. The blue dots rep-
resent the components of the terminal residual energy for every
realization of the MC simulations.

A lower cost for the probabilistic state constraints is expected
since a probabilistic constraint is not a hard one. Therefore, if
certain violations are allowed, the final residual energy cost is
bound to improve. This trend of decreasing optimal cost with the
increased probability constraint violations can be seen across all
distributions (see Table I).

C. Probabilistic State and Energy Constrained Solution

This section is used to present the results for the floating
oscillator maneuver when the optimization problem (P4) is
solved.

state constraints [same as (32) and (33)] and the probabilistic
Level O residual energy constraints
Prob{ty1 - -+ya — <0} >1—@ (44)

where y; are defined through (11). It should be noted that (44)
represents a total of 16 constraints for the fourth-order system.
The control constraints are chosen to be the same as before,
given by (23).

y; has been explicitly expanded for the example problem in
the following equations:

y1 = KiCx(Z(Ty) — Za(Ty)) 45)
v = K3C(Z2(T) — Za(Ty)) (46)
y3 = MiCri(Z(Ty) — Za(Ty)) (47)
ys = MyCri (Z(Ty) — Za(Ty)) (48)

where VK = [KT ,K7|*, VM = [M{ ,M]]"

1. & 00 Do 2 9
0 il @0 0 o

One must remember that K| and K, are still random row vectors
since K is a random matrix. The development of just one of the
constraints is shown. The other constraints can be derived in an
identical fashion. The constraint shown is

Prob{y1 + 2 +ys+u—f <0} >1—-e.  (50)
Similar to the previous section, (50) is equivalent to
kc{var[ccnﬂy = f]}lfz + E[CngY = f] = 0 (51)

where k, = /=2 and Coonz = [1, 1,1, 1].



NANDI AND SINGH: CHANCE-CONSTRAINT-BASED DESIGN OF OPEN-LOOP CONTROLLERS FOR LINEAR UNCERTAIN SYSTEMS

1959

Now, E[Ceon2Y — f] = CeonE[Y] — f
E[K\C, Z(T;) — KiCy Z4(T5)]
E[K>C Z(T;) — KyCi Za(T5)]
2| E[MyCn Z(Ty) — MiCin Za(T})]
E[MyCpn Z(T§) — MoCr Za(T5)]

—f (52)

But on substituting Z(T;) = WA,,(k;)U (where k; is the final
time iteration number), (52) can be written as

E[CCOHZY = f] =

E[K\Cy V] Aeo(ks)U — E[K\|Ck Za(Ty)

. E[K2Cy V] Aey (R )U — E[K,]Ci Za(Ty) o
“ | E[MiCn W] Acq ()U — MiCon Za(T5)] '

E[M3Cp ) Ay (kf)U — MyCry Za(Ty)]

£} -

-~
Ey

Moreover,
var[Coon2Y — f] = var[CoonaY] = Coonzvar[Y]CL ,  (53)

since f is simply a number and not a r.v. Equation (53) can be
simplified to

var[CoonY — f] = sz{E [YYT]-E[Y]E [Y]T} A
(54)

After the substitution of ¥ and some algebraic manipulations
we get

var[Coor2Y] = UTPU +2QU + R (55)
where

P=A, (J}f)T (E [¥7 L7 CZ,y Ceona L¥]

— E [¥7L7] CZpyCoon E[LY]) A, (?af) (56)
Q=Z4" (E[L]" C3yCoon2 E[LY]

— B [L7ChuCeonsL¥]) Acq (ky)  and  (57)
R=Z4 (E[L* CL1,Cconl]

— E[L"]CLyyCeon2 E[L]) Za. (58)

L is defined in (11). Since, var[C.,,n Y] > 0, a factorization
exists of the form

var[Coona Y] = (MU + D)T (MU + D) (59)
in which case we get
var[Coon2Y — f]Y/2 = ||MU + D|,. (60)

Therefore, the probability constraint [see (50)] finally becomes
the convex constraint

kcHMU—'_D”?"'_CconlEy_fSO- (61)

The other probability constraints to enforce the residual energy
can be done in the same way [from a development similar to
(50) through (61)].

After the formulation of all the constraints (both the state
and terminal residual energy), the optimization problem was
solved. Results for only one of the cases (case with the beta dis-
tributed r.v. and a Level 0 approximation of the residual energy)
is presented. Fig. 6(a) shows a plot with the MC realizations
of the relative displacement (for €; = 0.2 and e; = 0.5) where
it is seen that the state constraints are violated again. Fig. 6(b)
provides an estimate of the percentage of the times; these con-
straints were violated for 100 000 MC simulations. Since, the
constraints are all conservative, a maximum violation of only
5.65% is observed (although the allowance was 20%).

Fig. 6(c) shows a plot of the residual energy. The red dotted
line indicates the cost determined for the case of probabilistic
state and energy constraints. The black dotted line is the de-
terministic counterpart and is the same as Fig. 5(c). It can be
seen that the cost (f = 0.0221) has significantly reduced since
the constraints are no longer hard (as limited violations are
permitted) compared to the deterministic case (f = 0.0610).
Furthermore, it is seen that the cost is less even compared to
when only state constraints were probabilistic (f = 0.0516 for
€y = 0.2 in Table I) as expected. The blue dots represent the
MC realizations when both the constraints (state and energy)
are probabilistic. From the 100 000 MC simulations [used to
generate Fig. 6(a)—(c)], the Max. V of an energy constraint was
estimated to be 17.33% (well within the allowed 50%). This
means that the majority of the blue dots lie within the red dotted
line.

The violations are all distribution dependent and Table II
has been used to list the results for the three distributions for
the various combinations of €; and ¢,, all assuming a Level 0
approximation of the residual energy. Max. V, and Max. V,
represents the maximum violations observed for any state and
energy constraint, respectively. Similar results were noted when
a Level 1 approximation for the residual energy was exercised.

We observe consistently that the cost is better with a Level 1
approximation as compared to a Level 0 approximation of E\.
It should be noted that this observation is not a guarantee for all
problems. It is highly dependent on the nature of the variation
of E, with respect to the uncertain parameters. However, a
higher level approximation pushes the solution towards the true
residual energy (which is quadratic in @ space) solution.

Fig. 7 presents a color coded plot of the three distributions
considered in the design of the chance-constrained controllers.
The first row of the graphs represent a plan view of the pdfs
with the regions of the compact support marked in blue and
red to illustrate the regions of the uncertain domain that satisfy
and those that violate the residual energy constraint, respec-
tively. The second row presents the three distributions from a
view point that illustrate the shape of the pdf in conjunction
with the regions demarcated to illustrate the domain which sat-
isfies the chance constraint. For the uniform distribution (first
column) the region which corresponds to a smaller damping
constant is associated with the violation of the residual energy
bound. This trend is seen in the other two distributions as well.
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TABLE Il
COMPARISON ACROSS DISTRIBUTIONS FROM 100 000 MC SIMULATIONS (LEVEL 0 E, APPROXIMATION)
Uniform Beta Custom
€1 | €2 f Max. V, [ Max. V. f Max. V, | Max. V. K Max. V; [ Max. V.
0.2 (0.2 0.0347 5.64 541 0.0355 6.02 5.77 0.0361 5.76 5.59
02(05][0.0217| 4.80 20.11 0.0221 5.65 17.33 0.0223 5.56 16.23
02(08]|00126| 4.16 4243 || 0.0128| 527 40.86 || 0.0129| 534 40.00
0.5(0.2( 00273 | 2075 6.28 0.0286 18.31 6.10 0.0295 17.03 571
05(05([0.0162| 2077 1896 || 0.0168| 18.32 16.09 |[|0.0172| 1741 15.09
0.5(0.8 | 0.0090| 20.86 44.47 (1 0.0093 | 1838 41,76 || 0.0095| 17.16 40.05
08021 00242| 3489 6.36 0.0258 34.44 6.12 0.0269 | 34.09 5.70
080500140 | 3441 17.94 [ 0.0147 | 34.52 1530 || 0.0153| 33.99 14.28
0.8 08| 00077 34.62 42.51 0.0081 | 34.31 39.93 0.0083 | 33.92 36.90

However, it can be noted that in the nonuniform pdfs, as the
high probability regions (around the mean of the k-c space), gets
more prominent, larger regions of the periphery of the uncertain
domain (which correspond to the low probability regions) are
represented to a greater degree in the red region. Given that the
geometry of the region of the uncertain domain which corre-
sponds to the satisfaction of the chance constraint is complex, a
sampling-based approach would be very expensive (albeit less
conservative) to determine the optimal controller. This is in con-
trast to the convex optimization problem posed with the chance
constraint, which is only dependent of the mean and variance of
the states which can be easily determined by the PC expansion.

V. EXPERIMENTAL RESULTS

A Quanser-coupled two-tank system is used to experimentally
validate the performance of the proposed chance-constrained
controller. The specifications can be found on the website link
in [22].

The coupled tank setup was connected to a Quanser Univer-
sal Power Module (UPM-15-03) for signal amplification. Data
acquisition was accomplished on a Windows PC (Dell Opti-
plex 7020) via a Quanser NI E-Series Terminal Board with the
help of a National Instruments Data Acquisition Card (NI PCI
6221). The coupled tank system has integrated pressure/level
sensors configured for each tank. Water level measurements
were acquired from these sensors using the aforementioned
setup. Quanser real-time control software (Quarc) along with
MATLAB/Simulink was used to implement the controllers and
process measurement data.

It should be noted that the pump/motor dynamics are much
faster than the water level dynamics and therefore have been fac-
tored out of the control design. The chance constraint algorithm
proposed in this paper is for linear systems while, the cascaded
2 tank model is an inherently nonlinear one given by equations

4 = —a1V/2gv/z2/A1 + KV /Ay (62)
Z = —ax/29\/7 /A +a/2gVz /A (63)

where z; and z3 denote the levels of the upper and the lower tank,
respectively. The corresponding areas of the tanks are A; and
A, while the effluent areas are denoted by a, and a;. The gravity
is denoted by g, the voltage to input flow conversion constant
by k and the applied voltage to the pump by V. Therefore, in
this experiment the nonlinearities of the system will be charac-
terized by the uncertainties in parameters of a linearized model.
The model is linearized about a certain equilibrium operating
point ([23, z3]7 and V,,, ) to yield the linear dynamics in the
perturbation space as

5] [2RE o =] [kA -
= + m-
87 ;fl/z_% %Aﬁg 523 0

Based on this linearized model, defining the parameters
p=k/A, pr= ;7'2—% P3=35, and py= ;f}z—%
yields the transfer functions defined by S; and 5; in Fig. 8. A
transfer function block diagram of the system is illustrated in
Fig. 8 which includes a proportional integral (PI) controller. 5|
and S; are the 1st-order transfer functions mapping the change
in motor voltage (6V;,,) to the change in the water level in Tank



NANDI AND SINGH: CHANCE-CONSTRAINT-BASED DESIGN OF OPEN-LOOP CONTROLLERS FOR LINEAR UNCERTAIN SYSTEMS

1961

B Energy bound Violation part
Ml Encrgy bound Otedience part]

(a)

B Energy bound Violation part
| Energy bound Obedience part

plk.c)

(d)

Fig. 7.

(b)

(B Energy bound Viokation part
I Energy bound Obedience par

IEnergy bound Violation part
I Enorgy bound Obedience part

B Energy bound Viotation part
| Energy bound Obedience pan

pik.c)

®

Region of uncertain domain that does not satisfy the residual energy chance constraint shown in red (for ¢y = 0.2, e = 0.2). (a) and

(d) Uniform distribution. (b) and (e) Beta distribution. (c) and (f) Custom distribution.

Fig. 8.

Block diagram of system.

1 [62z>(¢)] and the change in the water level in the Tank 1 to the
change in the water level in the Tank 2 [dz3(¢)], respectively.
The operating point is indicated by V,, the motor voltage at
which the system is at equilibrium which serves as a surrogate
for the water levels in the tank at the steady-state.

Therefore, Sy and 5; (i.e., the parameters p; through p,) were
identified separately for the different values of V;,, € [4.2,5.8].
This was done by applying a constant V,,, to the pump, allow-
ing the system to reach an equilibrium ([z7, z3]), then applying
a constant voltage of (V,, + dV,,) and observing the step re-
sponse of the change in the water level of the tanks ([§2;(t),
d23(t)]). Hence, p; through p; were calculated as a function of
the operating point V.

For illustrating the chance-constraint approach, it is assumed
that the operating point (V;;,) is uncertain (with a uniform dis-
tribution U[4.2,5.8]) and that the system model is a function
of this uncertain variable. The state-space representation of the
block diagram represented in Fig. 8 is given by

521 0 & K 52 K;
bz | =|m —-p —piKp| |022|+ |miKp | r(t)
523 0 p3 —Pa dz3 0

) X Y p

(65)

where Kp = 1 and K; = 0.03 were chosen as the PI controller
gains. The objective of the design problem is to determine a ref-
erence trajectory r(¢) which transitions the above system from
the initial equilibrium position Z(0) = [0, 0, 0] to the desired
equilibrium Zg (T = 50) = —A~' B (which effectively raises
the Tank 2 water level by 1 unit) at final time (T) irrespec-
tive of the operating point V;,,. Control constraints of the form
6V (t) < 2 and 6V, (t) = —1 are also imposed. Following the
development previously explained, a set of residual states are
defined as X = Zg(Ty) — Z(T}). Assuming a [, linear for-
mulation for the associated residual energy ([similar to (14)], a
new set of states Y = X [similar to (11)] is used to enforce the
residual energy constraints [i.e., E,. = max(|Y|)].

The chance constraint control solution [i.e., solution to (P4)]
is then obtained using the methodology outlined in the flowchart.
It should be noted that there are no state constraints in the
problem and therefore the chance constraints were only enforced
on the terminal constraints. The percentage of violation allowed
was limited to 10%. A nominal model control solution was
obtained by determining the control trajectory for the operating
point Vi, = 0.5 (4.2 + 5.8). The worst case scenario control
was obtained by solving the minimax optimization problem
(P2) where the uncertain space of V;, was uniformly sampled.

The control solutions were then applied to 52 operating points
(Vi) distributed in the uncertain domain and Y for each case
was recorded. Fig. 9 shows the variation of the residual energy
for each control algorithm with respect to the uncertain vari-
able. It is clear that the control derived from the nominal model
performs poorly as one moves away from the nominal operating
point. A significant difference, on the other hand, is visually not
clear between the worst case and the chance-constraint-based
design.
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TABLE IlI
STATISTICS ON THE OBSERVED RESIDUAL ENERGIES

[ Controller [ Chance Constraint | Nominal | Worst Case ||
Mean(E,) 0.1692 0.1925 0.1797
Variance(E.) 0.0022 0.0096 0.0017
max(Fy) 0.2335% 0.3772 0.2704

* The maximum is computed after removing the top 10% of the E, values.
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However, on calculating the mean residual energy of all
the algorithms (see Table III), it can be seen that the chance-
constraint-based design outperforms the others. In fact, an im-
provement of 12.1% with respect to the nominal mean E, is
observed for the chance constrained mean F, (as compared to a
6.7% improvement for the worst case mean E. ). Furthermore, an
improvement of 38.10% is observed for the chance constrained
control when compared to the maximum value of the nominal
control E, (as compared to a 28.31% improvement for the worst
case control). Fig. 10 shows a histogram plot of the 52 residual
energies that were obtained from the experiment. The nominal
control plot shows the worst performance with several residual
energies seen beyond the E,. = 0.25 mark. The worst case de-
sign performs reasonably well with only a single occurrence of
E, > 0.25. However, the chance constrained control (on remov-

ing the top 10%) shows no value of E, > 0.25. Furthermore, the
mean E,. for chance-constrained control is lower than the worst
case counterpart (even after including the top 10%); thereby
showing that if a modicum number of violations are acceptable,
the chance-constrained methodology provides a more robust
performance.

VI. CoNCLUSION

This paper presented a convex optimization formulation for
the design of controllers for linear systems with the model pa-
rameter uncertainties. The probabilistic representation of the
model parameter uncertainties is suited to the use of PC to con-
vert the stochastic model to a deterministic surrogate model,
which permits evaluation of the mean and variance of the evolv-
ing states. The chance constraints are used to formulate a convex
optimization problem as a function of an acceptable level of the
constraint violation. Since the problem formulation is agnostic
to the distribution of the uncertainty if their mean and variance
match, three distributions are selected to illustrate the relative
performance for the benchmark floating oscillator problem. It is
seen that the constraint violation is always significantly smaller
than the bounds that are imposed in the optimal control prob-
lem. Experimental results on a coupled two-tank system help
illustrate the benefits of the chance-constrained design approach
relative to a nominal control and worst case design.
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