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Classical diffusiophoresis describes the motion of particles in an electrolyte or non-
electrolyte solution with an imposed concentration gradient. We investigate the au-
tophoresis of two particles in an electrolyte solution where the concentration gradient is
produced by either adsorption or desorption of ions at the particle surfaces. We find that
when the sorption fluxes are large, the ion concentration near the particle surfaces, and
consequently the Debye length, is strongly modified, resulting in a nonlinear dependence
of the phoretic speed on the sorption flux. In particular, we show that the phoretic velocity
saturates at a finite value for large desorption fluxes, but depends superlinearly on the
flux for adsorption fluxes, where both conclusions are in contrast with previous results
that predict a linear relationship between autophoretic velocity and the sorption flux.
Our theory can be also applied to precipitation/dissolution and other surface chemical
processes.

1. Introduction

A particle adsorbing or desorbing solutes in an otherwise uniform solution creates
a concentration gradient, which may cause the particle to move due to diffusiophoresis.
This process, which can occur without applying any external concentration fields, is called
“autophoresis” or “self-diffusiophoresis”. There are mainly two types of approaches to
model this process: the first exploits continuum mechanics by neglecting the finite size
of solute molecules (Anderson 1989; Golestanian et al. 2007; Sharifi-Mood et al. 2013;
Michelin et al. 2013; Michelin & Lauga 2014) and steric effects of solute molecules are only
considered when the solute concentration is large (Kilic et al. 2007; Bazant et al. 2009).
The second approach adopts a colloidal perspective by modeling both the particle and
solute molecules as interacting colloids (Córdova-Figueroa & Brady 2008; Brady 2011).
Results of these two approaches have been found to be the same when the solution is
dilute and the size of solute molecules is small (Brady 2011). In this paper, we utilize
the continuum approach, which is valid in many experiments on self-propelled colloids
(Paxton et al. 2005; Howse et al. 2007; Sen et al. 2009; Wang et al. 2013; Brown & Poon
2014).

For the common limit of a low-Reynolds-number and low-Péclet-number motion, an
isolated sphere with uniform surface reactions in an electrolyte solution will not move due
to symmetry. Therefore, symmetry should be broken to establish a preferred direction for
translation. This symmetry breaking is usually introduced either via chemical (Mozaffari
et al. 2016) or geometric asymmetry (Shklyaev et al. 2014; Michelin & Lauga 2015;
Schnitzer & Yariv 2015; Yariv 2016). However, in the moderate-Péclet-number regime,
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Michelin et al. (2013) predicted that an isolated isotropic particle is unstable above a
critical Péclet number, resulting in a spontaneous autophoretic motion, which was later
verified in experiments (Izri et al. 2014). In this paper, we assume both Reynolds and
Péclet numbers are small and consider the interactions of two particles .

A chemical asymmetry requires that the chemical properties of the particle are nonuni-
form, such as occurs for Janus particles, whose surface is non-uniformly covered by
active chemicals that can either dissolve into or react with the surrounding solution
(Mozaffari et al. 2016; Sen et al. 2009; Moran & Posner 2011); also, see reviews by
Velegol et al. (2016), Moran & Posner (2017) and Safdar et al. (2018). Recently Ibrahim
et al. (2017) studied the electrokinetic effects on the self-propulsion of a Janus particle
and Tătulea-Codrean & Lauga (2018) calculated the motion of Janus particles in a
chemical gradient. On the other hand, a geometric asymmetry is much easier to generate
without the need to modify the surface chemical properties (Baraban et al. 2012). Typical
asymmetric geometries include a sphere in a fluid with nearby boundaries (Yariv 2016),
two spheres in an infinite fluid (Michelin & Lauga 2015; Moerman et al. 2017), and
an asymmetric particle shape (Michelin & Lauga 2015; Schnitzer & Yariv 2015). These
theoretical studies all assume a linear relation between the diffusiophoretic slip velocity
and the local concentration gradient, and as a consequence, predict a linear increase
of the diffusiophoretic particle speed with the ion flux due to sorption at the particle’s
surface, independent of the local concentration on the particle surface.

In this paper, using a more systematic account of diffusiophoretic mechanisms, we
study the autophresis of two particles with uniform sorption fluxes and show that the
results in previous studies only apply to small sorption fluxes. The diffusiophoretic slip
velocity not only depends on the concentration gradient, but also on the range over
which the intermolecular potential decays. This range is usually related to the local
concentration on the particle surface. Therefore, when the sorption flux is large enough
to significantly modify the solute concentration and consequently the typical range of the
intermolecular potential on the particle surface, the diffusiophoretic slip velocity is no
longer independent of the local concentration (Prieve et al. 1984). A consequence of this
feature is that the autophoretic velocity is not linear in sorption flux. In particular,
we find that in electrolyte solutions, for large desorption fluxes, the diffusiophoretic
velocity saturates at a finite value, and that for large adsoption fluxes, the velocity grows
superlinearly with flux. Both predictions are in contrast with the theoretical results of
diffusiophoresis in a non-electrolyte solution reported by Michelin & Lauga (2014) and
Yariv (2016). However, these earlier results can be recovered as a limiting case of our
analysis for weak sorption fluxes. Furthermore, we argue that the large-flux regime is
relevant to many experimental studies on phoretic self-propulsion (Paxton et al. 2005;
Howse et al. 2007), and the dependence of the interaction layer thickness on the local
concentration field is qualitatively to be expected for a wide range of surface potentials.

2. Discussion of the slip velocity due to diffusiophoresis

The diffuse layer of solute molecules/ions residing adjacent to a particle surface is the
region where the diffusive solute flux due to gradients in chemical concentration balances
the flux due to an intermolecular potential φ describing short-range interactions between
the particle and solute molecules/ions. The thickness of the diffuse layer (Anderson et al.
1982; Israelachvili 2011), denoted by L, is the typical length scale over which φ decays
away from the surface. For ions, the diffuse layer is referred to the electric double layer, φ
is the electrostatic potential and L = λD, the Debye layer thickness. In a z:z electrolyte
solution with a solute concentration c and dielectric constant ε, the Debye layer thickness
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is (Prieve et al. 1984)

λD =

√
εkBT

2z2e2c
, (2.1)

where e is the electric charge, kB is the Boltzmann constant and T is the temperature.
When the diffuse layer thickness L is much smaller than the radius of a spherical

particle a, a slip velocity, at the outer boundary of the diffuse layer, can be assumed on
the particle due to diffusiophoresis. For non-electrolytes, this slip velocity v at position
x is solely determined by chemiphoresis, or pressure gradients established by osmotic
effects, which is (Derjaguin et al. 1947; Anderson 1989; Michelin & Lauga 2014; Mozaffari
et al. 2016)

vs(x) = −kBTL
2

µ

∫ ∞
0

y

[
exp

(
−φ(y)

kBT

)
− 1

]
dy ∇sc, (2.2)

where µ is the fluid viscosity, ∇s is the gradient operator along the surface and c
is the solute concentration field at the outer boundary of the diffuse layer. Here, the
dimensionless coordinate y = (rn−a)/L is normal to the surface, where rn is the normal
coordinate. The potential distribution φ(y) is determined by interactions of the solute
with the surface. For electrolytes, the slip velocity is (Prieve et al. 1984)

vs(x) = −kBTL
2

µ

[
−2βζ +

4kBT

ze
ln
(
1− γ2

)]
∇sc, (2.3)

with

β =
D+ −D−
D+ +D−

and γ = tanh

(
zeζ

kBT

)
, (2.4)

where D+ (D−) is the diffusivity of the cations (anions) and ζ is the zeta potential of
the particle. We note that the second term in (2.3) is just an explicit form of (2.2), when
φ is the electrostatic potential, while the first term in (2.3) is due to electrophoresis
(Prieve et al. 1984); the difference in diffusivities of the cations and anions (β 6= 0)
generates an electric field when there is a concentration gradient, and the electric field
moves the particle. Therefore, diffusiophoresis in an electrolyte solution consists of both
chemiphoresis and electrophoresis contributions (Prieve et al. 1984; Anderson 1989).

Many papers (Golestanian et al. 2007; Michelin & Lauga 2014; Schnitzer & Yariv 2015;
Michelin & Lauga 2015; Mozaffari et al. 2016; Yariv 2016) in the study of diffusiophoresis
use the slip velocity

vs(x) = b∇sc, (2.5)

by assuming that the diffuse layer thickness L and so

b = −kBTL
2

µ

∫ ∞
0

y

[
exp

(
−φ(y)

kBT

)
− 1

]
dy (2.6)

are constants. The form of the slip velocity (2.5) together with (2.6) was first derived by
Derjaguin et al. (1947) for the flat-plane geometry and was shown to be true at leading
order in L/a for a spherical particle by Anderson et al. (1982), where L is defined as
the range of the solute-particle interaction. We note that the typical range L for many
intermolecular potentials φ also depends on the local solute concentration c. For example,
the range of L for electrostatic interactions is just the Debye length, i.e.,

L = λD ∝ c−
1
2 , (2.7)

as given in (2.1). As a result, the prefactor b in (2.5) is not a constant but a function of
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c. An appropriate form of the slip velocity for diffusiophoresis in electrolyte solutions, by
taking the variation of L along the particle surface into account, is (Prieve et al. 1984;
Anderson 1989)

vs(x) = χ∇s ln c, (2.8)

in which

χ = −ε(kBT )2

2µ(ze)2

[
−2βζ +

4kBT

ze
ln
(
1− γ2

)]
(2.9)

is constant. Here, χ is referred to as the particle mobility.
It has been found experimentally that the autophoretic speed of Pt/insulator (Ebbens

et al. 2014) and Pt/Au (Paxton et al. 2006; Moran & Posner 2014) Janus particles can be
significantly decreased by adding a small amount of salt, which can be mainly explained
by the combination of two mechanisms. The first is that the addition of salt changes
the surface chemical reactions (Ebbens et al. 2014) and the second mechanism is that
the autophoretic speed is proportional to the inverse of the conductivity S of the bulk
solution (Moran & Posner 2014; Paxton et al. 2006). Since S−1 ∝ λ2D with λD the Debye
length, the autophoretic speed should be proporational to λ2D, which agrees with the slip
velocity expression (2.3), (2.8) and (2.9).

Within the diffuse layer, there are mainly five types of interactions driving the flow,
namely, solute/solute, solute/solvent, solute/colloid, solvent/solvent and solvent/colloid
interactions. In electrolyte diffusiophoresis, only the electrostatic interactions associated
with solute/solute and solute/colloid interactions are considered (Prieve et al. 1984),
which results in the diffuse layer thickness L ∼ c−1/2. However, in classical non-electrolyte
diffusiophoresis, only solute/colloid and solvent/colloid interactions are considered and
the solute/solute interaction is neglected by assuming dilute solutions, which makes L
independent of c (Sharifi-Mood et al. 2013). In the general case, L will depend on the
solute concentration, solvent and colloid properties and therefore also on the relative
strengths of the different interactions, although we note that the dependence of L on c
may be a higher-order effect for non-electrolyte diffusiophoresis.

We note that both (2.2) and (2.3) are derived by assuming local equilibrium within the
diffuse layer, i.e., there is no desorption or adsorption flux. However, it has been shown
that the effect of a non-zero diffusive flux within the diffuse layer on the slip velocity
is only O(L/a) for L/a � 1 for both ionic (Rubinstein & Zaltzman 2001; Zaltzman &
Rubinstein 2007) and non-ionic autophoresis (Sabass & Seifert 2012; Sharifi-Mood et al.
2013; Michelin & Lauga 2014; Shklyaev et al. 2014). Therefore, (2.2) and (2.3) are still
valid to leading order when L/a� 1. We demonstrate this idea, i.e., the solute flux does
not change the leading-order expression of the slip velocity, in Appendix A.

3. Reciprocal theorem

In this section, we assume that the slip velocity distribution (2.8) is known on the
surfaces of the particles, which here are assumed to be two spheres of equal radius. Then,
we will show that accounting for hydrodynamic interactions, the velocities of the two
spheres in a Stokes flow can be computed through the reciprocal theorem.

Consider two spherical particles O1 and O2, with radii a, which are steadily adsorbing
ions from or desorbing ions into an unbounded electrolyte solution, as shown in Fig.
1. The particle surfaces are denoted by S1 and S2, respectively. A spherical coordinate
system is fixed onto the center of O1. We want to study the interaction of the two particles
due to the asymmetric solute concentration field that is established.

The translation velocities of the two particles are denoted as vp,1 and vp,2, respectively.
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Then, the fluid velocity on the particle surfaces can be written as

v1(x) = vp,1 + vs,1(x), (3.1a)

and v2(x) = vp,2 + vs,2(x), (3.1b)

respectively, where vs,i (i = 1, 2) is the slip velocity on particle i. As discussed in the
introduction, the slip velocities for electrolyte solutions have the form (2.8), i.e.,

vs,i = χi∇s ln c, (3.2)

where χi is constant when the surface charge (or the zeta potential) is uniform on the
particles, and c is the concentration field, which can vary along the surface. The final
goal is to calculate vp,i for a concentration field determined by the two particles.

The typical diffusiophoretic speed of colloids (a ≈ 1 µm) in an aqueous solution is on
the order of 1 µm/s (Palacci et al. 2010; Shin et al. 2016). Therefore, the particle-scale
Reynolds number Re = O

(
10−6

)
and the flow field is governed by the Stokes equations,

assuming incompressible flow, i.e.,

∇ · σ = 0, (3.3a)

∇ · v = 0, (3.3b)

where σ is the stress tensor and v is the fluid velocity. The Lorentz reciprocal theorem
is ∫

S

n · σ′ · v dS =

∫
S

n · σ · v′ dS, (3.4)

where v′ and σ′, respectively, are the velocity and stress fields for a model problem with
different boundary conditions on the boundary surfaces S, including the surfaces Si of
particle i = 1, 2. The domain of integration for (3.4) is S = S1 + S2 + S∞, where S∞ is
a surface at infinity enclosing both particles and the normal vector n points away from
the particle into the fluid, as shown in figure 1(a).

In the sections below, we choose our model problem as two uncharged particles
translating either towards each other or at the same velocity. In either case, v′ is constant
and can be taken out the integral in (3.4), and the integral

∫
n·σ dS is the hydrodynamic

force on the particles and their electric double layers, which is zero (Prieve et al. 1984).
Therefore, we have (Stone & Samuel 1996)∫

S

n · σ′ · v dS =

∫
S

n · σ · v′ dS = v′ ·
∫
n · σ dS = 0. (3.5)

Substituting (3.2) and (3.1) into (3.5), we have

0 = vp,1 ·
∫
S1

n·σ′dS+vp,2 ·
∫
S2

n·σ′dS+χ1

∫
S1

n·σ′ ·∇s ln c dS+χ2

∫
S2

n·σ′ ·∇s ln c dS.

(3.6)
In deriving (3.6), we use the fact that the surface integral at infinity is zero because the
integrand decays sufficiently fast to a fluid at rest. Now we consider two special cases:
(a) χ1 = χ2 and (b) χ1 = −χ2. Then, for arbitrary mobilities χ1 and χ2, the velocity of
each particle vp,i is a linear combination of these two special cases.

3.1. Case (a): χ1 = χ2

We choose a low-Reynolds-number model problem (a) as two uncharged particles
translating towards each other at velocity v′a. This problem is identical to a single sphere
translating towards a symmetry plane and has a well-known solution (Brenner 1961).
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Figure 1. Model setup. (a) Two spheres O1 and O2 with radii a are suspended in an infinite
fluid field with an initial separation distance between the centers h. Their surfaces are labeled
by S1 and S2, respectively, with the unit normal denoted by n. A spherical coordinate system
is fixed at O1 and ez is a unit vector directed from O1 to O2. (b) The bi-spherical coordinate
system represented by equation (6.1). The solid (dashed) lines indicate the surfaces of constant
ξ (η) and ξ = ±ξ0 represents the surfaces S1 and S2, respectively.

Also, due to symmetry of the concentration field for the two dissolving/precipitating
particles, we have vp,1 = −vp,2 and∫

S1

n · σ′a dS = −
∫
S2

n · σ′a dS, (3.7a)∫
S1

n · σ′a · ∇s ln c dS =

∫
S2

n · σ′a · ∇s ln c dS, (3.7b)

where σ′a is the stress field for model problem (a). By defining the hydrodynamic force
f ′H,a =

∫
S1
n · σ′a dS, with (3.7), equation (3.6) becomes

vp,1 · f ′H,a = −χ1

∫
S1

n · σ′a · ∇s ln c dS. (3.8)

Because of the symmetry of the two-sphere configuration, vp,1 is parallel to f ′H,a, and
we have

vp,1 = −vp,2 = χ1v+ = − χ1

|f ′H,a|2
f ′H,a

∫
S1

n · σ′a · ∇s ln c dS, (3.9)

which serves to define v+.

3.2. Case (b): χ1 = −χ2

We choose a model problem (b) as two uncharged particles translating at the same
velocity v′b in a Stokes flow, for which the flow field is given by Stimson & Jeffery (1926).
Similarly, due to symmetry, we have vp,1 = vp,2 and∫

S1

n · σ′b dS =

∫
S2

n · σ′b dS, (3.10a)∫
S1

n · σ′b · ∇s ln c dS = −
∫
S2

n · σ′b · ∇s ln c dS, (3.10b)
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where σ′b is the stress field for model problem (b). Similar to the steps in section 3.1, by
defining f ′H,b =

∫
S1
n · σ′b dS, with (3.10), equation (3.6) then becomes

vp,1 · f ′H,b = −χ1

∫
S1

n · σ′b · ∇s ln c dS, (3.11)

i.e.,

vp,1 = vp,2 = χ1v− = − χ1

|f ′H,b|2
f ′H,b

∫
S1

n · σ′b · ∇s ln c dS, (3.12)

which defines v−.

3.3. Arbitrary χ1 and χ2

For arbitrary constant values of χ1 and χ2, we use the decomposition

χ1 =
χ1 + χ2

2
+
χ1 − χ2

2
, (3.13a)

χ2 =
χ1 + χ2

2
− χ1 − χ2

2
, (3.13b)

together with (3.9) and (3.12). Thus, we have

vp,1 =
χ1 + χ2

2
v+ +

χ1 − χ2

2
v−, (3.14a)

vp,2 = −χ1 + χ2

2
v+ +

χ1 − χ2

2
v−. (3.14b)

where v+ and v− are determined by ∇s ln c and the geometry, i.e., σ′a and σ′b. Now,
for a spherical particle in an axisymmetric configuration it suffices to determine the
concentration field c(r, θ, t) after which v− and v+ follow, respectively, from (3.9) and
(3.12). Note that the linear superposition in (3.14) is only valid when the governing
equations and corresponding boundary conditions for both the velocity and concentration
fields are linear. The Stokes equations are linear for the velocity field, and conditions for
the linearity of the equations governing the concentration field will be discussed in (4.1)
and (4.2) in the next section.

4. Concentration field: governing equations and boundary conditions

The typical diffusiophoretic velocity u ≈ 1 µm/s (Palacci et al. 2010; Shin et al. 2016)
and the typical diffusivity for ions D ≈ 10−9 m2/s (Bird et al. 1960). For particles with
radius a ≈ 1 µm, the Péclet number Pe = au/D ≈ 10−3 � 1. Thus, we can neglect
the advection of ions when considering the transport of solute. Assuming that c adjusts
quasi-statically to changes in geometry, the governing equation and boundary conditions
for the concentration field are

∇2c = 0. (4.1)

Since the emphasis of this paper is on the effects of a slip velocity, we assume the
sorption kinetics satisfies the zero-order model, i.e., the sorption flux j is constant. It
can be shown that at the outer boundary of the diffuse layer, the diffusive flux satisfies
(Yariv 2011; Michelin & Lauga 2014)

−D∂c

∂r
= j at S1 and S2, (4.2)
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where the diffusion coefficient in (4.2) is

D =
2D+D−
D+ +D−

. (4.3)

Recall that D+ and D− are the diffusivity of cations and anions, respectively. Equation
(4.2) serves as the boundary condition for the concentration field at the particle surface
in the limit L � a. We note that j can be either positive or negative, corresponding to
desorption or adsorption of solute, respectively. The boundary condition (4.2) can also be
used for surface chemical reactions (e.g., catalysts) satisfying Michaelis-Menten kinetics
when the reactant concentration is large (Michaelis & Menten 1913; Johnson & Goody
2011), or any kinetics satisfying a zero-order model (Dash et al. 2010). It is convenient to
define an unperturbed concentration of ions c∞ and an excess concentration ce = c−c∞,
which is positive for desorption and negative for adsorption of solutes. Then (4.2) becomes

D
∂ce
∂r

= −j. (4.4)

Based on (4.4), we define ∆c = ja/D as the typical scale for ce. In electrolyte
solutions, using (2.6), vs ∝ ∇sc, instead of (2.8), vs ∝ ∇s ln c, leads to errors of order
∆c/c∞. As a result, we will show the asymmetric affects of absorption and desorption
and the saturation of the autophoretic velocity for large adsorption fluxes (j). In the
following analysis, we first calculate the autophoresis of two adsorbing/desorbing particles
asymptotically when they are far apart (h � a), then for arbitrary distances h > 2a in
bi-spherical coordinates.

It is straightforward to nondimensionalize the excess concentration field by ja/D.
The typical length scale is a and from (2.8), the typical velocity is χ1/a. Then we can
nondimensionalize forces by µχ1 and stresses by µχ1/a

2. We introduce dimensionless
variables

C =
c

c∞
, Ce =

Dce
ja

, R =
r

a
, H =

h

a
,

J =
∆c

c∞
=

ja

c∞D
, U =

au

χ1
, F =

f

µχ1
, Σ =

a2σ

µχ1
. (4.5)

We note that the background concentration c∞ and the excess concentration ce are scaled
differently in (4.5), by a factor of J , therefore, the dimensionless concentration field can
be written as

C = 1 + JCe. (4.6)

The corresponding nondimensional equation for the concentration distribution is

∇2Ce = 0 (4.7)

with boundary conditions

∂Ce
∂n

= −1 at S1 and S2, (4.8a)

Ce = 0 as R→∞. (4.8b)

5. Asymptotic analysis: H � 1

In this section, we calculate the autophoretic particle velocity for the asymptotic case of
large separation distance, i.e., when H = h/a� 1, and use the methods of reflections to
solve for the concentration field. The presence of the second particle breaks the symmetry
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and induces translation of the particles. We use a spherical coordinate system centered on
sphere O1, as shown in figure 1(a). In the absence of sphere O2, the excess concentration
field, which satisfies (4.7) to (4.8b), is

C
(0)
e1 (R) =

1

R
, (5.1)

where R is the dimensionless position vector and the superscript “(n)” indicates the
solution under the nth reflection. Similarly, the excess concentration induced by sphere
O2 in the absence of O1 is

C
(0)
e2 =

1

|R−Hez|
=

1

H
+
ez ·R
H2

+O(H−3), (5.2)

where ez is the unit vector pointing from O1 to O2, as shown in figure 1(a), and we
assume H � 1. The reflection of the field Ce2 due to the presence of O1, denoted by

C
(1)
e2 , is

C
(1)
e2 =

ez ·R
2H2R3

+O(H−3). (5.3)

Thus, the dimensionless concentration field in the vicinity of the sphere O1 (i.e., R =
O(1)) is

C(R) = 1 + JCe = 1 + J

(
1

R
+

1

H

)
+

J

H2

(
1 +

1

2R3

)
ez ·R+O(H−3). (5.4)

Note that the scaling of Ce and C are different by a factor of J in (4.5). By symmetry,
the surface integral of the slip velocity on sphere O1 is∫

S1

∇s lnCdS =
4πJ

(1 + J)H2
ez +O(H−3). (5.5)

At leading order for H � 1, the stress distribution on the particle surfaces of both model
problems (a) and (b) are the same as that of a single sphere translating through an
unbounded fluid under a (dimensionless) hydrodynamic force F ′. A well-known result
for this problem is (Leal 2007)

4πn ·Σ′ = F ′, (5.6)

where Σ′ is the constant surface stress vector on the sphere surface. Therefore, based on
the reciprocal theorem (3.8) and (5.5), the velocity of particle 1 is

Up,1 = − J

(1 + J)H2
ez, (5.7)

where we only keep the leading order O(H−2) terms. We notice that a similar asymptotic
analysis for non-electrolyte autophoresis was given by Yariv (2016), who adopted the
formula of slip velocity (2.5) to obtain

Une
p,1 = − J

H2
ez, (5.8)

This result can be obtained from (5.7) in the limit |J | � 1. The comparison of these two
velocities are plotted in figure 2.

The non-electrolyte result (5.8) will increase without bound when J = ja/Dc∞ →∞,
because (2.5) leads to the largest deviation in this limit, as discussed at the end of section
4. On the other hand, the autophoretic velocities produced by desorption fluxes (J > 0)
in electrolyte solutions are bounded by H−2, as shown in figure 2. For adsorption fluxes
J < 0, figure 2 shows that the autophoretic velocity will grow superlinearly and diverges
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Figure 2. Asymptotic results based on equation (5.7) and (5.8) for the autophoretic velocity,
plotted as UH2, as functions of J . The dashed line UH2 = −1 is the lower limit of (5.7) and
the open circles are theoretical results calculated by numerically integration of (6.10). H = 10
for all the curves plotted.

as J → −1, because the concentration field at the particle surfaces C → 0 as J → −1,
which results in a large slip velocity ∇ lnC → ∞. As shown in figure 2, our theoretical
results from numerically integration of (6.10) in section 6 are in good agreement with the
asymptotic results except for near J → −1 where the autophoretic velocity diverges and
higher-order corrections in (5.5) are not negligible anymore. Since our analysis is based
on the assumption of a thin Debye layer, our results are valid for λD/a � 1. When the
two particles are far apart (H � 1), with (2.1), (4.5) and (5.4), the thin-Debye-layer
criterion with sorption fluxes becomes(

λD∞
a

)2

� 1 + J, (5.9)

where

λD∞ =

√
εkBT

2z2e2c∞
(5.10)

is the unperturbed Debye length. Therefore, J > −1 must be satisfied for adsorption
fluxes because the solute concentration cannot be negative near the particles. For a
typical system with λD∞ = 10 nm and a = 1 µm, the thin-Debye-layer criterion (5.10)
requires that 1 + J � 10−8, which means that the thin-Debye-layer assumption can still
hold as J → −1 when the particles are far apart. The analysis in Appendix A gives an
upper limit of J in (A 6). For the same system (λD∞ = 10 nm and a = 1 µm), (A 6)
requires that J � 104. Typical values of desorption flux j measured in experiments are
around 7×10−6−4×10−2 mol/(m2 ·s) (Sen et al. 2009; Wang et al. 2013; Brown & Poon
2014; Paxton et al. 2005; Howse et al. 2007), for particles with radius a = 1 µm in an
electrolyte solution with background concentration c∞ = 0.1 mM and diffusion coefficient
D = 1× 10−9 m2/s. The concomitant range of J is between 7× 10−2 and 4× 102, where
the theory for non-ionic solvents severely over- or under-predicts the phoretic motion
(e.g. see figure 2). Therefore, our theory is relevant to many experiments with large J .
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We note that when the flux J is large, steric effects may be significant due to a
high solute concentration (Kilic et al. 2007). For non-desorbing particles, the ionic steric
effects can be characterized by the packing parameter ν = 2d3ionc∞ (Kilic et al. 2007;
Figliuzzi et al. 2014), with dion the ionic diameter and c∞ the bulk solution concentration
far away from the particle. For particles with a desorption flux j, we replace c∞ with
c∞ + ja/D to estimate the effects of the flux on the background concentration so the
packing parameter for desorbing particles can be written as ν′ = 2d3ionc∞(1 + J). Steric
effects can be neglected when ν′ � 1. The typical value of dion for potassium, sodium and
chloride ions is ≈ 1 Å (Mancinelli et al. 2007). For a typical background concentration
c∞ = 0.1 M, we have d3ionc∞ ≈ 6 × 10−5. Therefore, steric effects can be neglected
when J � 104. We remark that this limit is greater than those typically realized in
experiments, as discussed above.

Moreover, the expression (5.8) predicts the effects of adsorption and desorption fluxes
J are symmetric to the autophoresis, with only a difference of sign. However, this is
not true for an electrolyte solution when vs ∝ ∇s ln c and the resultant autophoretic
velocity (5.7) shows that an adsorption flux J < 0 is more effective in creating stronger
autophoresis because it decreases the concentration field. We note that the results of Yariv
(2016) are recovered as a limit of our theory for |J | � 1. The asymmetric contributions
of desorption and adsorption fluxes will also be illustrated in figure 3 in the next section,
where we provide an analysis for an arbitrary separation distances H.

6. General case: an arbitrary distance H

Laplace’s equation (4.7) in an unbounded fluid with two identical spherical boundaries
can be solved in a bi-spherical coordinate system (Jeffery 1912) and is well known. By
defining ξ0 = arccosh(H/2), which establishes the separation distance, the transformation
from the cylindrical coordinate system (R, Z, φ) to the bi-spherical coordinate system
(ξ, η, φ) is given by

R =
sinh ξ0 sin η

cosh ξ − cos η
, Z =

sinh ξ0 sinh ξ

cosh ξ − cos η
. (6.1)

The particle surfaces S1 and S2 can be described by ξ = ±ξ0 in this coordinate system, as
shown in figure 1(b). By further changing variable τ = cos η, the solution to the Laplace
equation (4.7) in bi-spherical coordinates is (Jeffery 1912; Michelin & Lauga 2015)

Ce(ξ, τ) = (cosh ξ − τ)
1
2

∞∑
n=0

fn(ξ)Pn(τ), (6.2)

where Pn is the Legendre polynomial of degree n and

fn(ξ) = 2γne
−(n+ 1

2 )ξ0 cosh

(
n+

1

2

)
ξ, (6.3)

in which γn are constant. The coefficients γn can be further determined by the boundary
conditions (4.8a)

(cosh ξ − τ)

sinh ξ0

∂Ce
∂ξ

= 1 at ξ = ξ0. (6.4)
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Due to symmetry, using the flux boundary condition on S1 is sufficient to determine the
concentration field. Equation (6.4) can be written explicitly as

sinh ξ0
2 sinh ξ0

Ce +
(cosh ξ0 − τ)

3
2

sinh ξ0

∞∑
n=0

dfn
dξ

(ξ0)Pn(τ) = 1, (6.5)

which after substituting for Ce with (6.2) yields,

∞∑
n=0

[
sinh ξ0

2 sinh ξ0
fn(ξ0) +

cosh ξ0 − τ
sinh ξ0

dfn
dξ

(ξ0)

]
Pn(τ) = (cosh ξ0 − τ)

− 1
2 . (6.6)

Using the properties of Legendre polynomials listed in Appendix B, we have

1

2
fn(ξ0) +

dfn
dξ

(ξ0) coth ξ0 −
1

sinh ξ0

[
n+ 1

2n+ 3

dfn+1

dξ
(ξ0) +

n

2n− 1

dfn−1
dξ

(ξ0)

]
=
√

2e−(n+1/2)ξ0 (6.7)

Substituting (6.3) into (6.7), we obtain a recursion relation for the coefficients γn:

γn+1 =
eξ0

(n+ 1) sinh
(
n+ 3

2

)
ξ0

{[
sinh ξ0 cosh

(
n+

1

2

)
ξ0

+ (2n+ 1) cosh ξ0 sinh

(
n+

1

2

)
ξ0

]
γn − neξ0γn−1 sinh

(
n− 1

2

)
ξ0 −

√
2 sinh ξ0

}
.(6.8)

We solve the linear system (6.8) numerically for the coefficients γn.
For both model problems (a) and (b), the normal stress can be written as (Rallabandi

et al. 2017)

n ·Σ = −P ′n+Ω′s (6.9)

where s is the unit tangent vector on the sphere, P ′ is the pressure and Ω′ is the vorticity.
Based on (3.9) and (3.12), by defining the mobility ratio α = χ2/χ1, we find that the
velocity of particle 1 for the cases α = ±1 are

U+ = −2πF−1H,a

∫ 1

−1
R(ξ0, τ)Ω′a(ξ0, τ)

J

1 + JCe(ξ0, τ)

∂Ce(ξ0, τ)

∂τ
dτ, (6.10a)

U− = −2πF−1H,b

∫ 1

−1
R(ξ0, τ)Ω′b(ξ0, τ)

J

1 + JCe(ξ0, τ)

∂Ce(ξ0, τ)

∂τ
dτ, (6.10b)

respectively, where FH is the hydrodynamic force on the sphere and the subscript a or
b represents the corresponding model problem. The expressions of FH,a, FH,b, Ω

′
a(ξ, τ),

Ω′b(ξ, τ) are listed in Appendix C. Then, for arbitrary α, the velocities of particle 1 and
2 are

Up,1 =
(1 + α)

2
U+ +

(1− α)

2
U−, (6.11a)

Up,2 = − (1 + α)

2
U+ +

(1− α)

2
U−, (6.11b)

respectively (see (3.14) for the dimensional form).
We compute the integrals in (6.10) numerically using (6.2), (6.3) and coefficients γn

obtained from (6.8). The dependence of solute fluxes J on the autophoretic speeds are
shown and compared with the asymptotic solution (5.7) in figure 3. We find that the
magnitude of the autophoretic velocity induced by adsorption fluxes, i.e., J < 0, is
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Figure 3. Dependence of (a) |U+| and (b) |U−| with H − 2 for different sorption flux J . Inset
shows values of (a) U+ and (b) U−. The asymptotic result for J = 0.25 is determined according
to (5.7) and the other curves are theoretical results obtained by numerical calculation of (6.10).

stronger than that induced by desorption fluxes, since adsorption fluxes result in a smaller
concentration field and increase∇ lnC. In figure 3, as J increases, the autophoretic speeds
converge to a finite value as opposed to diverging; since the slip velocity is proportional to
∇s lnC, increasing J will increase both ∇C and C and consequently the slip velocity will
converge to a finite value as J →∞. The boundedness of autophoretic speeds with respect
to J is consistent with the asymptotic result (5.7). For the large fluxes in self-propelling
systems with ion adsorption or desorption, the phoretic velocity does not depend linearly
on the flux. There is a saturation for desoprtion and a superlinear increase of velocity
with adsorption flux.
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7. Concluding remarks

In this paper, we have shown that the typical thickness L over which the intermolecular
potential decays away from the particle surface is generally not constant but depends on
the local concentration field along the particle surface. We review different expressions
of diffusiophoretic slip velocities in electrolyte and non-electrolyte solutions and find
that when the sorption fluxes are large enough to modify the solute concentration,
i.e., J = ja/c∞D is O(1) or greater, and consequently the interaction layer on particle
surfaces, the assumption of a slip velocity vs ∝ ∇sc will lead to significant errors. For
autophoresis of two particles in an electrolyte solution with vs ∝ ∇s ln c, we show,
both asymptotically and analytically, that the phoretic velocities due to absorption and
desorption are asymmetric, in the sense that not only the directions are opposite, but also
the trends for increasing absorption and desorption fluxes are different. For dissolving
particles, the phoretic velocity saturates with increasing desorption fluxes. On the other
hand, the magnitude of the autophoretic velocity for two identical particles that adsorb
solutes grows superlinearly with adsorption flux. These conclusions are in contrast with
the symmetric results of autophoresis in a non-electrolyte solution reported in Michelin
& Lauga (2014) and Yariv (2016); however, their calculations can be recovered by our
analysis for weak fluxes. Our theory can also be applied in dissolution/precipitation and
desorption/adsorption processes where the boundary conditions of solute fluxes can be
approximated as constant, which lays the foundation of understanding the collective
autophoretic behavior in a chemically active many-particle system.
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Appendix A. Remarks on the slip velocity in autophresis with
surface solute fluxes

In this section, we derive the slip velocity for ionic autophoresis at the outer edge of
a two-dimensional (planar) electric double layer (EDL) similar to the analysis in section
2.1 of Prieve et al. (1984) by changing the zero-flux boundary condition at y = 0 to

j± = −D±
(
∇c± ±

zec±
kBT

∇φ

)
, (A 1a)

j = j+ · ey = −j− · ey, (A 1b)

0 = j+ · ex = j− · ex. (A 1c)

At steady state, the conservation of ions requires that

∇ · j± = 0. (A 2)

Since ∂/∂y � ∂/∂x within the EDL, the leading order of (A 2) is ∂j±/∂y = 0, which
shows that the normal component of ion fluxes remains constant throughout the EDL.
By non-dimensionalizing the normal component of (A 1a) with Y = y/λD, J = aj/c∞D,
C± = c±/c∞ and Φ = zeφ/kBT , we have

λD
a
J = −D±

D

(
∂C±
∂Y

± ∂Φ

∂Y

)
(A 3)
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Therefore, when

λD
a
J � 1, (A 4)

the Boltzmann distribution will not be disturbed by the surface solute flux. Since

λD =

√
εkBT

2z2e2c
∼

√
εkBT

2z2e2c∞(1 + J)
=

λD∞√
1 + J

, (A 5)

the criteria (A 4) can be written as

λD∞J

a
√

1 + J
� 1, (A 6)

which gives an upper limit for J . For a typical system with λD∞ = 10 nm and a = 1
µm, (A 6) requires J � 104, which is valid in many experiments on self-propelled colloids
(Paxton et al. 2005; Howse et al. 2007; Sen et al. 2009; Wang et al. 2013; Brown & Poon
2014).

Therefore, when (A 6) holds, the leading order of the concentration field still satisfies
the Boltzmann distribution as in section 2.1 of Prieve et al. (1984). Similarly, we note
that a finite ion flux at y = 0 (which satisfies (A 6)) does not affect the leading order
distribution of the electric potential and velocity field within the EDL and the expression
of the slip velocity at the outer edge of the EDL reduces to the result by Prieve et al.
(1984), given in (2.3).

It has been shown that the expression (2.3) is universal for ionic diffusiophoresis for
a z : z electrolyte with arbitrary kinetic model on the surface (Rubinstein & Zaltzman
2001; Zaltzman & Rubinstein 2007). The same conclusion for non-ionic autophoresis
with non-zero solute flux can be obtained in a similar manner. The curvature effects
are considered by Sabass & Seifert (2012) and Sharifi-Mood et al. (2013) for non-ionic
diffusiophoresis with surface fluxes and they show the same result, i.e., the solute flux
does not change the leading-order expression of the slip velocity.

Appendix B. Properties of Legendre polynomials

The properties of Legendre polynomials listed below are used in deriving (6.7) from
(6.6), i.e.,

2m+ 1

2

∫ 1

−1
Pn(τ)Pm(τ)dτ = δmn, (B 1a)

2m+ 1

2

∫ 1

−1
τPn(τ)Pm(τ)dτ =

m+ 1

2m+ 3
δn,m+1 +

m

2m− 1
δn,m−1, (B 1b)

2m+ 1

2

∫ 1

−1

Pm(τ)dτ√
cosh ξ0 − τ

=
√

2e−(m+1/2)ξ0 . (B 1c)

Appendix C. Solutions of model problems

The stream function Ψ for both model problems (a) and (b) in section 3 can be written
in bi-spherical coordinates (ξ,τ) as (Stimson & Jeffery 1926; Happel & Brenner 1983;
Brenner 1961)

Ψ(ξ, τ) = (cosh ξ − τ)
− 3

2

∞∑
n=1

Qn(ξ)Vn(τ) (C 1)
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where

Qn(ξ) = dn sinh

(
n− 1

2

)
ξ + en sinh

(
n+

3

2

)
ξ

+pn cosh

(
n− 1

2

)
ξ + qn cosh

(
n+

3

2

)
ξ (C 2a)

and

Vn(τ) =
Pn−1(τ)− Pn+1(τ)

2n+ 1
. (C 3)

We use an additional subscript “a” and “b” to distinguish the variables for models (a)
and (b), respectively. For model (a), we have (Jeffery 1912; Happel & Brenner 1983)

pn,a = qn,a = 0, (C 4a)

dn,a =
U ′an(n+ 1) sinh2 ξ0√

2(2n− 1)

2(1 + e−(2n+1)ξ0) + (2n+ 1)(e2ξ0 − 1)

2 sinh(2n+ 1)ξ0 − (2n+ 1) sinh 2ξ0
, (C 4b)

en,a = −U
′
an(n+ 1) sinh2 ξ0√

2(2n+ 3)

2(1 + e−(2n+1)ξ0) + (2n+ 1)(1− e−2ξ0)

2 sinh(2n+ 1)ξ0 − (2n+ 1) sinh 2ξ0
. (C 4c)

The corresponding hydrodynamic force is

FH,a = 8πU ′a sinh ξ0

∞∑
n=1

n(n+ 1)

(2n− 1)(2n+ 3)

[
4 cosh2

(
n+ 1

2

)
ξ0 + (2n+ 1)2 sinh2 ξ0

2 sinh(2n+ 1)ξ0 − (2n+ 1) sinh 2ξ0
− 1

]
.

(C 5)
The coefficients for model problem (b) are (Brenner 1961)

dn,b = en,b = 0, (C 6a)

pn,b = −U
′
bn(n+ 1) sinh2 ξ0√

2(2n− 1)

2(1− e−(2n+1)ξ0) + (2n+ 1)(e2ξ0 − 1)

2 sinh(2n+ 1)ξ0 + (2n+ 1) sinh 2ξ0
, (C 6b)

qn,b =
U ′bn(n+ 1) sinh2 ξ0√

2(2n+ 3)

2(1− e−(2n+1)ξ0) + (2n+ 1)(1− e−2ξ0)

2 sinh(2n+ 1)ξ0 + (2n+ 1) sinh 2ξ0
. (C 6c)

The corresponding hydrodynamic force is

FH,b = 8πU ′b sinh ξ0

∞∑
n=1

n(n+ 1)

(2n− 1)(2n+ 3)

[
4 sinh2

(
n+ 1

2

)
ξ0 − (2n+ 1)2 sinh2 ξ0

2 sinh(2n+ 1)ξ0 + (2n+ 1) sinh 2ξ0
− 1

]
(C 7)

Finally the vorticity on S1 is (Rallabandi et al. 2017)

Ω′(ξ0, τ) =
R(ξ0, τ)g(ξ0, τ)

(1− τ2) sinh4 ξ0
, (C 8)

where

g(ξ0, τ) = (cosh ξ0 − τ)5/2
∞∑
n=1

[
Vn(τ)

(
d2Qn(ξ0)

dξ2
− 2 sinh ξ0

cosh ξ0 − τ
dQn(ξ0)

dξ
+

3(cosh ξ0 + 3τ)

4(cosh ξ0 − τ)
Qn(ξ0)

)

+(1− τ2)Qn(ξ0)

(
d2Vn(τ)

dτ2
+

2

cosh ξ0 − τ
dVn(τ)

dτ

)]
. (C 9)

We note that since FH,a, FH,b and Ω′ are all linear in U ′a or U ′b, the velocities in model
problems U ′a and U ′b will cancel out in (6.11).
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