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One of the desired outcomes of dam decommissioning and removal is the recovery of aquatic and riparian ecosystems. To investigate this
common objective, we synthesized information from empirical studies and ecological theory into conceptual models that depict key physical
and biological links driving ecological responses to removing dams. We define models for three distinct spatial domains: upstream of the former
reservoir, within the reservoir, and downstream of the removed dam. Emerging from these models are response trajectories that clarify potential
pathways of ecological transitions in each domain. We illustrate that the responses are controlled by multiple causal pathways and feedback
loops among physical and biological components of the ecosystem, creating recovery trajectories that are dynamic and nonlinear. In most cases,
short-term effects are typically followed by longer-term responses that bring ecosystems to new and frequently predictable ecological condition,
which may or may not be similar to what existed prior to impoundment.
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Once a river is dammed, is it damned forever? The
purposeful removal of dams has accelerated in the last
several decades. In the United States alone, over 1400 dams
have been deliberately removed since the 1970s, and the pace
of removal will likely continue as many dams approach the
end of their engineered life expectancies (Doyle et al. 2008,
O’Connor et al. 2015, American Rivers 2018). Although
dams are removed for multiple reasons (e.g., safety, costs,
loss of function), a common objective is the recovery of
ecosystem function, often centered on species of economic
and cultural importance (Bednarek 2001). But do ecosys-
tems recover after dam removal? And do they recover to a
condition similar to what existed prior to dam emplacement
or have factors—both intrinsic and extrinsic—changed such
that the newly undammed river enters a new ecological
state? These questions are challenging, but understand-
ing and predicting ecological responses to dam removal is
crucial for prioritizing which dams to remove and how to
remove them (Poff and Hart 2002), as well as for setting
realistic expectations about the magnitude and timing of
ecological recovery, which may lag far beyond dam removal.

A challenge in understanding and predicting recovery
trajectories is that ecological responses vary spatially and

temporally. The local and regional context of each dam is
distinct, and therefore, the responses to removal are—more
often than not—unique (Foley et al. 2017a). In addition, the
size and purpose of a dam affects the method and pace of its
removal and the magnitude and timing of potential ecologi-
cal perturbations and recovery. And for rivers with multiple
dams, the outcomes of any one dam removal depend on the
watershed location (upstream or downstream) and context
(e.g., purpose, management practices) of any remaining
dams (Skalak et al. 2013, Foley et al. 2017a).

Despite the importance of the physical and ecological
context of the specific dam and river, we suggest that eco-
logical responses to dam removal are generally governed by
a shared set of physical and biological links and feedback
loops. Variation in ecological response is not a function of
unique processes operating only at specific locations but,
rather, is driven by differences in the strength of shared links
and feedback loops common to most dam removals. From
this perspective, understanding and predicting ecological
responses is enabled by employing a systems approach,
which is explicitly focused on these shared causal links and
feedbacks among physical and biological components of
the ecosystem (Hart et al. 2002, Doyle et al. 2005), while
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Figure 1. Spatial domains influenced by dam removal: (a) upstream of the
reservoir, (b) within the reservoir or former impoundment, and (c) downstream
of the dam. The boxes on the right represent the dominant processes that

influence ecological responses in each domain.

simultaneously accounting for the context-dependent fac-
tors, which vary from dam to dam and which control the
strength of these linkages (Foley et al. 2017a,b).

The ever-increasing number of empirical dam-removal
studies provides the basis for understanding these links
and feedback loops (Bellmore et al. 2017a). However, these
empirical studies individually have limited inferential power
(Hart et al. 2002). Most dam-removal studies are of short
duration (1-2 years) and, therefore, provide only narrow
windows onto the ecological response at a specific site
(Bellmore et al. 2017a). Moreover, in many studies, responses
are monitored only for specific species or trophic levels
and, therefore, lack the ecological resolution necessary to
mechanistically explain observed responses (Bellmore et al.
2017a). Nevertheless, we synthesize these studies by weaving
together the threads of empirical information into a tapes-
try patterned with broader ecologic theory and knowledge.
Empirical studies provide information on specific elements
of the ecosystem, and conceptual models and theory guide
predictions of how the different elements interact—the links
and feedback loops that drive system behavior.

Using this approach, we develop conceptual ecological-
response models for three distinct spatial domains affected
by dam removal: upstream of the former reservoir, within
the former reservoir, and downstream of the removed
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dam (figure 1). We use these concep-
tual models to explore the ecological
responses likely to emerge from the
physical and ecological links in each spa-
tial domain, and we illustrate how these
models can be used to inform numerical
modeling efforts. These models provide
a needed systems approach to our con-
ceptual understanding of the ecological
responses to dam removal and build on
recent syntheses of physical processes
(Major et al. 2017), management con-
cerns (Tullos et al. 2016), and the land-
scape context of biophysical responses to
dam removal (Foley et al. 2017a).

Conceptual models of river ecosystem
response: Assembling the pieces

The conceptual models for each spatial
domain (figures 2, 3, and 4) are framed
as causal-loop diagrams depicting rela-
tions among key physical and biologi-
cal components of the ecosystem. From
these links, we postulate longer- and
shorter-term ecological responses to dam
removal in each domain as a function
of overall watershed conditions and his-
tory (figure 5). Although some ecological
responses to dam removal are conceptu-
ally and even quantitatively predictable,
responses commonly follow a transient,
nonlinear pathway. We refer to this as an ecological response
trajectory. Although it is theoretically possible to duplicate
a previously observed trajectory, variation in the local and
regional context of each dam assures that most dam removals
will have different ecological response trajectories, even if they
follow similar generalized forms.

Short and long term are difficult to define precisely for
these conceptual models, because events may occur relatively
quickly (e.g., months) for some removals but much slower
(e.g., decades) for others. Short-term responses are generally
those directly associated with the removal sequence, such as
reservoir sediment release and associated habitat and organ-
ismal impacts. Long-term responses are those associated
with trajectories toward a new dynamic equilibrium, such as
the reestablishment of organisms following the initial release
of reservoir sediments. The duration of short- and long-term
effects is governed by the specific controlling processes, the
manner and rate of dam removal, and its overall watershed
and ecological context. But in all cases, short-term refers to
those physical and ecological responses that occur prior to
long-term responses and vice versa.

We focus on the effects of dam removal on taxonomic
groups of aquatic and riparian organisms (fishes, aquatic
invertebrates, aquatic primary producers, and riparian veg-
etation). We intentionally omit the identity of specific
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such as fish, are also crucial to the func-
tion of river ecosystems (Pringle 1997).
Dams can reduce biodiversity and pro-
ductivity by severing these upstream
flows (Pess et al. 2008). When dams are
removed and longitudinal connectiv-
ity is restored, fishes, invertebrates, and
commensal microorganisms living on or
within these mobile species can recol-
onize (or initially colonize) upstream
habitats. This upstream movement of
organisms is a major driver of ecologi-
cal responses above the former dam and
reservoir (figure 2).

Asisillustrated in the upstream causal-
loop diagram in figure 2, reestablishment
of longitudinal connectivity can increase
@ species richness, life history diversity,

and the delivery of nutrients and organic
matter upstream of the former dam.
For example, in the midwestern and
eastern United States, low-head dam

Life history
diversity

Figure 2. Causal-loop diagram depicting the cause-and-effect links and
associated feedback loops influencing dam removal responses upstream of
the former reservoir. Following dam removal, mobile organisms such as

fish can recolonize upstream habitats, increasing upstream species richness.
Recolonization is self-reinforced by feedback loops that promote productivity
and diversity of upstream habitats. The shaded shapes indicate key ecological
parameters. The arrows indicate the direction of influence, and the plus and
minus signs indicate whether the influence is positive or negative. When they
are positive, the variables change in the same direction (when causal variable

removals resulted in increased numbers
of fish species upstream of the former
dam sites (Burdick and Hightower 2006,
Catalano et al. 2007, Burroughs et al.
2010, Magilligan et al. 2016). Upstream
migration was evident within weeks or
months of the dam removals, and up to
95% of all species found downstream
of the dams migrated upstream within

increases the effected variable also increases or vice versa). When they are
negative, the variables change in the opposite direction (when causal variable
increases the effected variable decreases or vice versa). Causal links that control
responses at short time scales (hours to years) and long time scales (years to

decades) are shown in orange and yellow, respectively.

species and complex food-web interactions in order to make
the models broadly generalizable. The models also do not
explicitly include local and regional contexts, such as dam
size and purpose, the presence of other dams in the river
network, and watershed land-use patterns. Although these
factors can play large roles in ecological responses to dam
removal and can influence the duration of response times-
cales, conceptual models including all such influences would
be intractable and would lack heuristic value. Nevertheless,
these generalized models provide a basis for more complex
or location-specific conceptual models and, as is described
below, a blueprint for quantitative models.

Upstream of the former reservoir:

Going against the flow

Conceptual models of river ecosystems frequently emphasize
downstream fluxes of nutrients, organic matter, and organ-
isms (Vannote et al. 1980, Newbold et al. 1981, Humphries
et al. 2014). However, upstream movement of organisms,

28 BioScience « January 2019/ Vol. 69 No. 1

1-3 years (Burdick and Hightower 2006,
Catalano et al. 2007, Burroughs et al.
2010, Hitt et al. 2012). Colonizers deliver
nutrients and organic matter sequestered
in downstream habitats (including the
ocean in coastal dam removals) that
can be incorporated into aquatic and riparian food webs
(Gende et al. 2002, Pess et al. 2014). Within a year following
the removal of Elwha Dam (one of two large dams removed
from the Elwha River, Washington), marine-derived nutri-
ents from adult Pacific salmon were detected upstream of
the former dam site in American dippers (Cinclus mexica-
nus)—an obligate aquatic songbird that feeds on aquatic
invertebrates, small fish, and salmon eggs (Tonra et al. 2015).

Changes in life-history diversity above former dams
are not as well documented as changes in species richness
and nutrients. However, once-isolated fish populations can
reexpress migratory life-history strategies once downstream
connection is reestablished (Morita et al. 2000, Pascaul et al.
2001, Quinn et al. 2017). For example, before the Elwha
River was dammed, it had a high proportion of stream-type
juvenile Chinook salmon that reared in freshwater for 1
year, relative to ocean-type fish that migrated to sea within
months of emergence (Pess et al. 2008). The expression of
the stream-type life history was generally confined to the
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colder waters upstream of the former dams. After the Elwha
was dammed, Chinook salmon were restricted to warmer
reaches lower in the river, promoting an ocean-type life his-
tory strategy (Pess et al. 2008). Within the first 3 years after
the dam removals, adult Chinook recolonized and began
spawning upstream of the former dam sites, and some of
these fishes began adopting a stream-type life history.

Following the necessary first step—removing a dam—the
recovery process can be reinforced by positive ecological
feedback loops (figure 2). These feedbacks likely operate
at longer time scales of years to decades and are yet to be
observed following dam removal but are nevertheless sup-
ported by the broader ecological literature. We note three
example ecological feedback loops. First, nutrients and
organic matter delivered by organisms colonizing upstream
can enhance biological productivity or food availability for
consumers in receiving waters. In turn, enhanced productiv-
ity may increase the rate of colonization and success of colo-
nizers. This feedback may be particularly important when
upstream habitats are recolonized by keystone species that
strongly affect aquatic or riparian communities and food
webs, such as anadromous salmonids (Gende et al. 2002,
Morley et al. 2016) and amphidromous fishes and shrimp in
tropical rivers (Pringle et al. 1999). Second, increased life-
history diversity promotes species persistence and coloniza-
tion. Species that exhibit a diversity of life histories are more
resilient to environmental change, are less likely to experi-
ence local extirpation (Schindler et al. 2010), and are more
likely to have migratory variants that can recolonize after
disturbances (Waples et al. 2009). Third, having a greater
number of species (species richness) may, in some cases,
reduce extinction rates by stabilizing community dynam-
ics, as has been postulated through theoretical and math-
ematical models, as well as observations that more diverse
communities are more stable (McCann 2000). For instance,
greater species richness is often associated with more
complex food webs that have a higher proportion of weak
predator—prey interactions that counteract the destabilizing
effects of strong interactions (McCann 2000). Moreover,
the reestablishment of organism movement across the river
network could allow recoupling of previously isolated food
webs (by movement among upstream, downstream and
tributary habitats); these spatially structured meta food webs
may also promote community stability and species persis-
tence (Bellmore et al. 2015). As is indicated in figure 2, these
feedback loops likely interact among each other to affect the
overall ecological response.

On the basis of these hypothetical causal links and feed-
backs, we expect the upstream ecological response trajectory
following dam removal to be roughly sigmoidal in shape
(figure 5). Responses can occur relatively quickly following
dam removal and may be reinforced by positive feedback
loops. However, overall ecosystem recovery is limited by
the availability of colonizers. Therefore, the recovery pro-
cess will slow as upstream species and life-history diversity
approach the levels found in the downstream river network
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(Pess et al. 2012). Moreover, if some life-history variants or
species have been extirpated while the dam was in place, a
full recovery that approaches predam conditions may not
be possible without interventions, such as species reintro-
duction. Altered environmental conditions, particularly
flow, sediment, and temperature, may limit the suitability
of upstream habitats to possible colonizers (Anderson et al.
2014). In particular, the presence of other upstream dams
may limit the spatial scope of recovery and the suitability
of upstream habitats. Dam removal may also facilitate the
spread of undesirable, nonnative, or highly invasive species
upstream of the former dam site (Doyle et al. 2005, Kornis
etal. 2015). In such cases, the response trajectory for native
species may be negative, creating conflicting conservation
outcomes (Fausch et al. 2009, Tullos et al. 2016).

Within the former reservoir: Ponds to rivers
The former reservoir can be the reach most altered physi-
cally and ecologically by both dam emplacement and dam
removal. When a dam is constructed, the impounded reach
is often converted from a flowing river (lotic) to a slower,
lake-like (lentic) environment that stores sediment, organic
matter, and nutrients and that favors organisms adapted
to slower waters (Ward and Stanford 1983). Removing the
dam starts a sequence of commonly rapid physical and
hydrologic changes, whereby the reservoir reverts back to a
flowing river. These profound physical changes trigger large
ecological responses within the former reservoir (figure 3).
Conversion from a lentic to a lotic system following
dam removal can drive fundamental shifts in community
structure (figure 1). As the reservoir is drained, the water
depth decreases, and the flow velocity increases. These
hydraulic changes, in turn, adversely affect pelagic organ-
isms, such as plankton and lentic-adapted fishes (Foley et al.
2017b). Plankton can be exported downstream, and aquatic
vegetation growing in the littoral zone can be stranded on
reservoir margins. At the same time, these new hydraulic
conditions favor organisms adapted to flowing waters (e.g.,
Ephemeroptera, Plecoptera, Tricoptera [EPT]; Smokorowski
et al. 2011), create better foraging conditions for lotic fish
species, and allow more light to penetrate to the streambed,
facilitating benthic primary production (Allen and Castillo
2007). The spatial and temporal trajectories of these pro-
cesses, however, are strongly controlled by the size of the
dam and reservoir, the rates and processes of reservoir sedi-
ment erosion, and the ensuing channel dynamics within the
evolving reservoir reach. For instance, ecological transitions
may occur quickly behind shallow run-of-the-river dams,
where lotic species predominate before the dam is removed.
Dam removal typically causes erosion of the sediment
accumulated in the former reservoir as the base level of the
dam is lowered (Major et al. 2017). Dynamic channel pro-
cesses erode and transport reservoir sediment downstream
and can initially create bed conditions too transient to sup-
port benthic producers and consumers—particularly dur-
ing and immediately after removal. However, as sequential
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Figure 3. Causal-loop diagram depicting the cause-and-effect links and
associated feedback loops influencing dam removal responses within the
former reservoir. Sediment erosion and changes in channel hydraulics alter
the environment from one that favors pelagic production and lentic fish

assemblages to one that favors benthic production and lotic fish assemblages.

The shaded shapes indicate key ecological parameters. The arrows indicate
the direction of influence, and the plus and minus signs indicate whether the

influence is positive or negative. When they are positive, the variables change

in the same direction (when causal variable increases the effected variable
also increases or vice versa). When they are negative, the variables change in
the opposite direction (when causal variable increases the effected variable

aquatic food webs (Wallace et al. 1999,
Baxter et al. 2005).

Contrasting with upstream habitats,
causal links and feedback loops oper-
ating in the former reservoir reach
commonly produce a shorter-term
(days to years) perturbation response
to dam removal, largely driven by
sediment erosion and dynamic chan-
nel processes. Over longer time scales
(months to decades), this initial per-
turbation response will typically tran-
sition toward ecological recovery and
a new equilibrium condition as reser-
voir sediment stabilizes and more nat-
ural flow, temperature, and sediment
regimes are reestablished (figure 5).
The strength and duration of the ini-
tial perturbation and subsequent geo-
morphic and ecological responses will
vary according to the magnitude of
change, which depends on physical
aspects such as the dam’s size, the
reservoir’s sediment volume and com-
position, the watershed area, and the
overall sediment supply that accu-
mulated during the dam’s presence
(Bednarek 2001). Studies of aquatic
invertebrate and fish responses to dam
removal generally support this tra-

decreases or vice versa). Causal links that control responses at short time scales
(hours to years) and long time scales (years to decades) are shown in orange and

yellow, respectively.

hydrologic events winnow these sediments, feedback pro-
cesses can result in a more stable streambed (Collins et al.
2017). Rapid river incision into stored sediments commonly
forms knickpoints (abrupt changes in riverbed slope) that
migrate upstream of the former dam site (e.g., Randle et al.
2015, Major et al. 2012, 2017). Downstream of the knick-
point, bank failures and lateral channel migration accelerate
overall reservoir erosion (Evans 2007). Reservoirs can lose
50% or more of their impounded sediment volumes within
the first few weeks to months after dam removal (Wilcox
et al. 2014, Warrick et al. 2015, Major et al. 2017). However,
as sequential flows entrain the most mobile sediments,
channels tend to stabilize (Collins et al. 2017), facilitating
a shift from pelagic to benthic communities. Over years to
decades, riparian vegetation can recolonize and further sta-
bilize reservoir terraces and stream banks (Orr and Stanley
2006, Shafroth et al. 2002), although colonization by invasive
vegetation species is a management concern (Tullos et al.
2016). Riparian vegetation that establishes after removal
also contributes leaf litter and terrestrial invertebrates to the
river—important allochthonous inputs providing energy for
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jectory (Bushaw-Newton et al. 2002,
Stanley et al. 2002, Dorobek et al.
2015). In a meta-analysis of numerous
dam removals, Carlson and colleagues
(2018) found that lentic invertebrates
first declined in density after dam removal but subse-
quently recovered within 15-20 months. During the
recovery phase, lotic invertebrate taxa, such as EPT,
tended to become more prevalent (Bushaw-Newton
et al. 2002), attaining community assemblages similar
to upstream free-flowing reference sites (e.g., Stanley
et al. 2002). Shifts in the aquatic invertebrate community
may not increase species richness or diversity, however,
because similar numbers of taxa may be lost and gained
in the shift from lentic to lotic conditions. Nevertheless,
increases in invertebrate taxa richness, biomass, and
density are evident in some former impoundments fol-
lowing dam removal (Thomson et al. 2005, Hansen and
Hayes 2012, Carlson et al. 2018). In some settings, fish
diversity has increased following dam removal, likely
because of restored longitudinal connectivity and the
development of more suitable habitats in the former res-
ervoir (Catalano et al. 2007, Foley et al. 2017a, 2017b),
such as the formation of riffles that are important habi-
tats for many riverine fishes and invertebrates (Cook and
Sullivan 2018). Changes in aquatic-terrestrial trophic
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Figure 4. Causal-loop diagram depicting mechanistic links and feedback loops
influencing dam removal responses downstream of a former dam site. Release
of sediment, nutrients, and organic matter from the former reservoir effect
aquatic organisms and riparian vegetation via numerous causal pathways.
Initial deposition of sediments, for example, can bury benthic and riparian
organisms, but as this initial sediment pulse is eroded, new habitats for aquatic
organisms are created (e.g., spawning gravel for fish). The long-term recovery
of species is facilitated by the reestablishment of the natural flow, temperature,
sediment, and nutrient regimes to which native organisms are adapted. The
shaded shapes indicate key ecological parameters. The arrows indicate the
direction of influence, and the plus and minus signs indicate whether the
influence is positive or negative. When they are positive, the variables change
in the same direction (when causal variable increases the effected variable

also increases or vice versa). When they are negative, the variables change in
the opposite direction (when causal variable increases the effected variable
decreases or vice versa). Causal links that control responses at short time scales
(hours to years) and long time scales (years to decades) are shown in orange
and yellow, respectively.

dynamics may be subtle in former reservoir reaches fol-
lowing dam removal and may be overshadowed by other
variables governing riverine ecosystems, such as flow and
temperature variability (Sullivan et al. 2018).

Ecological recovery may be rapid—months to years—par-
ticularly if the geomorphic response is swift. The long-term
ecologic conditions, however, may or may not resemble
the predam conditions (figure 5). Similar to the upstream
domain, the former reservoir is more likely to trend toward
its predam conditions if the species and life-history variants
that existed prior to the dam’s emplacement are still present
and capable of colonizing. Similarly, the presence of nonna-
tive species, incomplete export of sediment from the former
reservoir (Tullos et al. 2016), contaminants (Magilligan et al.
2016), and other watershed-scale land-use changes, such as
other dams or altered hydrology and water temperature, may
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prevent former reservoirs from attain-
ing predam ecological conditions (e.g.,
Hobbs et al. 2009).

Downstream of the dam:

Here it comes!

Dam-induced changes in natural flow,
temperature, sediment, nutrient, and
organic matter regimes (Ward and
Stanford 1983, Humphries et al. 2014,
Wohl et al. 2015) significantly alter
the structure and function of down-
stream ecosystems. In reaches down-
stream of removed dams, the return of
these “natural” regimes—to which many
native organisms are adapted—provides
an opportunity for ecological recovery
(Bednarek 2001). But removing dams
also releases decades or more of stored
sediment, which affects habitat structure
downstream for years or longer (Major
et al. 2017). Ecological responses in the
downstream domain are determined by
the relative effects of initial fluxes of
water, sediment, and organic materi-
als from the reservoir reach in con-
junction with the longer-term effects of
reestablished river network connectivity
(figure 4).

Short-term downstream ecologi-
cal responses (days to years) for most
dam removals owe chiefly to reservoir
sediment erosion, which increases the
downstream transport and deposition
of sediment, nutrients, and organic mat-
ter and temporarily raises water tur-
bidity (figure 4). The initial deposition
of reservoir sediment, in turn, disturbs
benthic organisms (algae, invertebrates,
and fish eggs) by burial and suffocation

(Sethi et al. 2004, Orr et al. 2006) and creates an unstable
streambed not suitable for many species (Collier 2002).
These effects can temporarily decrease the abundance and
richness of downstream periphyton and invertebrate com-
munities after the dam’s removal (Chiu et al. 2013, Carlson
et al. 2018) and can shift invertebrate assemblages to
more disturbance-oriented taxa (Renofalt et al. 2013). For
instance, Orr and colleagues (2006) observed significant
decreases in benthic chlorophyll a and invertebrate density
associated with downstream sediment deposition at two
small dam removals in Wisconsin. Increased water turbidity
following a dam’s removal may also reduce primary produc-
tion by limiting light penetration (Morley et al. 2008). High
turbidity from suspended sediments can also negatively
affect fish via reduced foraging efficiency, physical abrasion,
clogging of gills, and interference with orientation (Kjelland
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et al. 2015). However, the greater mobility of fishes than
of invertebrates, as well as their adaptation to seasonally
high flows and sediment loads, may limit direct mortality.
Nonetheless, in some cases, lowered fish abundance after
a dam’s removal has persisted for as long as 15 years before
populations increased (Burroughs et al. 2010). These per-
turbations are likely to be strongest immediately below the
removed dam and to dissipate downstream with sediment
diffusion and tributary influences.

Nutrients and organic matter associated with reservoir
sediments may buffer aquatic organisms from some of
these negative impacts (figure 4). Although this effect has
not yet been empirically documented in dam removal stud-
ies, increased nutrient loads can result in increased aquatic
primary production where the bed is stable and light levels
are adequate (Allan and Castillo 2007). Moreover, organic
matter from the reservoir may provide food for heterotro-
phic microbes and invertebrates. This may stabilize higher
trophic level production during the initial sediment dis-
turbance by shifting the food web from reliance on green
(periphyton, macrophytes) to brown (detritus) sources
of energy (Wolkovich et al. 2014). Additional research
is needed to quantify the strength of these potentially
stabilizing links.

Although sediment deposition may initially perturb
aquatic organisms and riparian vegetation, it is also a
resource for ecological recovery. Sediment-starved river
channels downstream from dams can become incised,
armored, and disconnected from their floodplains (Ligon
et al. 1995). Deposition and subsequent redistribution of
reservoir sediments create new gravel bars, a more hetero-
geneous streambed, and more suitable spawning habitats
for nest-building fishes (Kibler et al. 2011). Entrained res-
ervoir sediments can also aggrade downstream channels
and reconnect lateral floodplain habitats (East et al. 2015,
Magilligan et al. 2016). Increased channel migration, cre-
ation of new gravel bars, and sediment deposition on flood-
plains provide new surfaces for colonization by pioneer plant
species and potentially restore a shifting riparian habitat
mosaic (Shafroth et al. 2002, 2016). Moreover, reestablish-
ment of downstream transport of plant seeds from upstream
of the former dam may facilitate vegetation recovery on new
floodplain surfaces (Cubley and Brown 2016)

Over timescales of years to decades, physical and ecologi-
cal recovery are strongly controlled by the reestablishment
of natural flow, temperature, sediment, nutrient, and organic
matter regimes to which native organisms are adapted (Ward
and Stanford 1995). For example, the reestablishment of
more natural hydrologic and sediment regimes typically cre-
ates more dynamic river channels, promoting greater habitat
diversity for aquatic and riparian species (Poff et al. 1997,
Wohl et al. 2015). This is yet to be documented for many
recent dam removals, because many have been relatively
small, run-of-the-river dams that did not significantly alter
downstream material and energy fluxes. As larger dams are
removed, such as the Elwha River dams and the pending
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removals of those on the Klamath River (California and
Oregon), physical and ecological recovery will depend on
the extent to which these natural regimes are restored.

Similar to those in the former reservoir, causal links and
feedback loops in the downstream domain are likely to
produce an initial perturbation response to dam removal—
primarily associated with transport and deposition of reser-
voir sediment—followed by evolution to new geomorphic
and ecological conditions associated with reestablishment
of unimpeded fluxes of water, energy, and materials from
the upper watershed (figure 5). The timing, magnitude, and
duration of the initial perturbation response to dam removal
depends on the amount and locations of sediment deposited
downstream (Orr et al. 2008, Chiu et al. 2013, Tullos et al.
2014, East et al. 2015), which are a function of the amount of
sediment stored in the former reservoir and the ability of the
river to mobilize this sediment (Major et al. 2017). Recovery
follows this initial perturbation as reservoir erosion slows
and the downstream sediment pulse disperses, but the over-
all magnitude of recovery may vary considerably, depending
upon local and regional conditions. Evolution of physical
and ecological conditions may tend toward a state similar to
the dammed condition, the predam condition, or some new
condition (figure 5), depending on a broad range of water-
shed and land-use factors (Foley et al. 2017a). For instance,
predam ecological conditions are unlikely if natural flow,
temperature, sediment, and nutrient regimes remain altered
by other dams, if reservoir sediment contains contaminants,
and if nonnative species are present.

Interactions across spatial domains

The river connects all three spatial domains as a corridor
for upstream and downstream fluxes of energy, materi-
als, and organisms. Therefore, dam-removal responses in
one domain can accelerate or attenuate the rate of change
and subsequent recovery in other domains. One obvious
interdomain interaction is reservoir sediment erosion and
downstream deposition. Prolonged erosion of sediment
from the former reservoir could slow downstream ecological
recovery. In turn, the rate of downstream ecological recovery
could influence the timing, composition, and magnitude of
upstream organism colonization. Understanding these links
may influence decisions on the rate and style of dam removal.
For situations in which voluminous or contaminated reser-
voir sediments are present, dam removal practitioners may
decide to remove or stabilize reservoir sediments as part
of the dam-removal process (e.g., Randle and Greimann
2006, Woelfle-Erskine et al. 2012) to protect downstream
communities. The condition of the river network upstream
of the dam and reservoir may also influence downstream
recovery. For example, ecological recovery in the reservoir
and downstream reaches depends in part on colonization
by organisms from upstream, such as aquatic invertebrates
that actively and passively drift downstream (Naman et al.
2016). Downstream recovery may be hampered if the diver-
sity and abundance of these potential colonizers has been
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Dam removal

Pre-dam condition

Upstream

Ecological condition

Impoundment

Downstream

Ecosystem response scenarios

Restored organism passage and successful recolonization
increases species richness.

Organism passage returns native species to historical distribution,
some species or life-history forms extirpated from system.

Non-native organisms homogenize upstream community, driving
extirpation of some native species.

Rapid revegetation of reservoir surfaces with native plants
and upstream/downstream recolonization by native lofic species.
Reservoir reach reassembles into river continuum.

Some pre-dam species missing from reconstituted lotic river system.

Invasive riparian species persist on reservoir surfaces ("arrested
succession’), and non-native fish persisting in former resesrvoir
channels.

Short-duration downstream sediment effects allow downstream
reach to reassemble into river continuum. Most likely if no other
dams are present in the system.

Protracted sediment perturbation, emergence of alternative
stable state (e.g., driven by combination of native species
extripations and invasives) impairs original ecosystem function.

Large and long-lasting downstream effects from sediment (e.g.
contaminants) causes longer recovery and alternative stable
state quite different from pre-dam condition.

Time

Dominant perturbation-response controls
I Short-term dam removal effects (hours to years)

Long-term dam removal effects (years to decades)

Figure 5. Ecological-response trajectories in upstream, reservoir, and
downstream reaches following dam removal. Three hypothetical trajectories are
presented for each location, with rationale that explain why these alternative
trajectories might emerge. The vertical line on each plot indicates the time of
dam removal, and the horizontal line represents the ecological condition that
existed prior to dam construction. Recovery to predam conditions are unlikely
if natural flow, temperature, sediment, and nutrient regimes remain altered

by other dams, if reservoir sediment contains contaminants, and if nonnative
species are present. The colored sections of the trajectories indicate the short-
term (orange) and long-term (yellow) ecological responses to dam removal.
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process when suspended-sediment con-
centrations and potentially deleterious
effects were greatest (Liermann et al.
2017). These transplanted coho salmon
immediately spawned, which resulted
in levels of smolt out-migrants that were
comparable (per stream kilometer) with
other established populations in the
Pacific Northwest, even during high sus-
pended-sediment levels in the mainstem
Elwha River (Liermann et al. 2017).

Quantitative modeling and
prediction
Although conceptual models are valu-
able for generating hypotheses, the many
links and feedback loops in these models
make it difficult to predict responses at a
given location without quantifying the
strength and character of these interac-
tions. Our conceptual models provide
blueprints for assembling quantitative
models, whereby links between system
elements are replaced with quantitative
statements. The resulting models can
be used to numerically model potential
ecological responses to dam removal. In
some circumstances, models may already
exist and could be modified to represent
processes in each spatial domain. For
instance, population-dynamics mod-
els could be used to simulate species
recolonization in the upstream domain
(e.g., Pess et al. 2012). In former reser-
voir reaches, hydraulic and sediment-
transport models could be linked to
habitat-suitability models to explore how
dam removal influences the quantity and
quality of habitat available for benthic
organisms and fishes (e.g., Gillenwater
et al. 2006).

To illustrate how quantitative mod-
els can be used to explore ecological
responses to dam removal, we simulated

compromised by factors such as land use, other dams, and
invasive species.

One frequently overlooked interaction is the influence of
tributaries and floodplain channels on ecological recovery.
Floodplain side channels and tributaries can serve as refuges
during the initial downstream sediment disturbance and
potentially provide important source populations for river
network colonization, assuming they are not buried by sedi-
ment (Pess et al. 2008, Peters et al. 2017). For example, adult
coho salmon in the Elwha River (Oncorhynchus kisutch)
were actively relocated to tributaries upstream of the lower
dam to accelerate recolonization early in the dam-removal

https://academic.oup.com/bioscience

response trajectories for aquatic producers (periphyton)
and consumers (fish and invertebrates) just downstream of
a hypothetical dam removal using the aquatic trophic pro-
ductivity (ATP) model (Bellmore et al. 2017b), a food-web
model that includes many of the response variables of inter-
est in dam removal (figure 6). The ATP model is a dynamic
river food-web model (e.g., Power et al. 1995), whereby
aquatic organisms—as well as dead organic matter—are
compartmentalized into trophic groups that share similar
predators and prey (figure 6). The biomass dynamics of
this generalized food web and the success of specific tro-
phic groups are linked in the ATP model to the physical,
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Figure 6. Quantitative models can be used to simulate ecological responses

to dam removal. In this case, a river food-web simulation model was used to
predict downstream trophic responses to a hypothetical dam removal. The top
panel (a) shows how physical and chemical responses to dam removal (shaded
graphs) affect the dynamics of the modeled food web (e.g., water turbidity
influences the amount of light that reaches the streambed to fuel periphyton
production). The bottom panel (b) shows the resultant biomass dynamics of fish,
aquatic invertebrates and periphyton. Abbreviations: D5y, median particle size
of benthic substrate; FNU, formazin nephelometric units; SRP, soluble reactive
phosphorus.

chemical, and hydraulic conditions of the river affected by
dam removal (Bellmore et al. 2017b).

We parameterized the model with idealized physical
and chemical dam-removal response trajectories. These
hypothetical trends indicate possible effects following
a rapid dam removal (figure 6). We assumed that water
turbidity and nutrient concentrations would peak quickly
following dam removal and decay exponentially, that
benthic substrate size would first decline with deposi-
tion of reservoir sediments but would later coarsen as
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finer sediments were exported and
that bankfull depth would decline,
bankfull width would increase, and
channel gradient would decrease with
deposition of reservoir sediments and
reestablishment of natural flow and
sediment regimes. In specific applica-
tions, these model inputs could be
estimated prior to dam removal from
physical and hydraulic models (e.g.,
Cui et al. 2017) or expert opinion. In
the model, water turbidity and nutrient
concentrations influence the amount
of light and nutrients available to fuel
periphyton at the base of the food web.
Channel morphology (bankfull width,
bankfull depth, and gradient) affects
channel hydraulics, such as water
depth, width, flow velocity, and shear
stress acting on the streambed. In turn,
water depth and turbidity influence
light attenuation, channel width influ-
ences the wetted area available for bio-
logical production, and water velocity,
shear stress, and benthic sediment size
influence the mobilization, transport,
and retention of benthic organisms
and organic matter. For a full descrip-
tion of the ATP model, see Bellmore
and colleagues (2017b). Once the APT
model was parameterized, we simu-
lated ecological responses across three
trophic levels: periphyton, aquatic
invertebrates, and fish.

In the model simulation, the three tro-
phic levels followed a similar response
trajectory in the downstream domain:
declines in biomass during the initial
perturbation of the dam removal, fol-
lowed by recovery to biomass levels that
surpassed the preremoval conditions.
The initial perturbation response was
driven by two primary factors: high
turbidity, which reduced available light
for periphyton growth, and the deposi-
tion of fine-grained reservoir sediment,

which created an unstable streambed that was not suitable
for periphyton and aquatic invertebrates. But as turbid-
ity declined and the streambed grain size coarsened, the
biomass of each trophic level recovered. Final downstream
biomasses exceeded preremoval conditions owing to higher
assumed background nutrient concentrations (associated
with reestablishment of nutrient transport from upstream)
and a more biologically retentive channel that was wider
and had a lower gradient. The timescale of the mod-
eled response, however, varied among the trophic levels.
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-web responses to dam removal on the Elwha River, Washington, United States.

After nearly a century of impoundment, two dams on the Elwha River in northwestern Washington State were removed simultane-
ously, beginning in September 2011. The 32-m-tall Elwha Dam was built 8 kilometers (km) from the ocean in 1913, and the 64-m
Glines Canyon Dam was built 14 km farther upstream in 1927. Both structures lacked fish passage, resulting in precipitous declines
in anadromous salmon populations over the nearly100 years of dam emplacement. Dam removal was intended to restore migratory
access for seven species of Pacific salmon and steelhead—still present downstream of the lower dam—to pristine spawning and rearing
habitats upstream in Olympic National Park. Phasing the removals over 1 and 3 years for Elwha and Glines Canyon Dams, respectively,
helped control the release of ~30 metric tonnes of sediment accumulated in the reservoirs (Randle et al. 2015). This unprecedented
release of sediment (65% of total in the first 5 years; Ritchie et al. 2018) resulted in modified channel morphology, fining of the down-
stream river bed, increased turbidity and a pulse of sediment and nutrients (East et al. 2015, Magirl et al. 2015, Warrick et al. 2015,
Ritchie et al. 2018).

We used the ATP model (Bellmore et al. 2017b) to simulate downstream biomass responses for fish, aquatic invertebrates, periphyton
and detritus (dead organic matter) following these dam removals. We parameterized the model with measured changes in channel
morphology (East et al. 2018), turbidity (Magirl et al. 2015), nutrient concentrations (Washington Department of Ecology, Station
18B070; figure 7), and other location-specific environmental information such as water temperature, discharge, and solar radiation.

Model simulations indicate that dam removal significantly affected trophic productivity (figure 7). In reaches just downstream from
Elwha Dam, simulations showed an almost complete loss of fish, invertebrate and periphyton biomass coinciding with dam removal
in late 2011. Modeled declines were largely due to the combined effects of high turbidity that limited light availability and periphyton
growth and deposition of finer sediments that made benthic habitats unsuitable for periphyton and invertebrates. Biomass values
remained low until mid-2014, at which point turbidity decreased to levels that allowed periphyton growth to rebound. Modeled detrital
biomass was high during dam removal, reflecting the pulse of detritus from within stored sediments and restored longitudinal connec-
tivity to the upstream river network. The availability of this low-quality detritus, however, was insufficient to offset the loss of higher-
quality periphyton as a food source for aquatic invertebrates. Although empirical data directly comparable to model simulations are
currently limited, there is evidence to suggest that the downstream ecological community was indeed negatively affected. The density
of benthic invertebrates, for instance, declined by almost two orders of magnitude relative to preremoval abundance. Simulations of
ecological conditions for 2017-2021 indicated that fish, invertebrate, and periphyton biomass may increase further if turbidity contin-

ues to decline and the streambed continues to coarsen (figure 7).

Periphyton communities on the streambed were highly sus-
ceptible to the initial dam-removal disturbance but recov-
ered more quickly because of higher turnover rates than
those of invertebrates and fish.

Responses to real dam removals are more complex than
the modeled responses presented in the present article (see
box 1, figure 7); nonetheless, this simple example illustrates
that such models may be able to predict realistic ecological
response trajectories. Moreover, such analyses can explore
potential responses before dams are removed (figures 6
and 7). For instance, different assumptions and removal
strategies (e.g., instantaneous versus phased removal) could
be simulated to identify approaches that reduce negative
impacts and provide the best chance for long-term ecologi-
cal recovery. Although simulations themselves are idealized,
the process of organizing information into a quantitative
framework can promote a greater understanding of the
factors that control system dynamics. In the case of dam
removal, making informed decisions with the aid of models
is crucial, because once a dam is removed, there is no going
back.

Conclusions

Empirical dam removal studies and ecological theory sup-
port our conceptual models defining the links and feedback
loops affecting ecological responses to dam removal. These

https://academic.oup.com/bioscience

models define response trajectories that clarify pathways
of ecological transitions upstream of the former reservoir,
within the former reservoir, and downstream of the former
reservoir. Within each spatial domain, these models illus-
trate that dam-removal responses are controlled by multiple
causal pathways and interdomain links, which interact to
strengthen or dampen responses. Together, these intercon-
nections create dynamic, nonlinear responses, which are
complex but can be predicted if the relative strengths of the
dominant links and feedback loops—controlled by local and
regional factors—are known.

Our conceptual models can be used in multiple ways to
increase understanding of these interconnections. First,
dam-removal practitioners can use these models to trace the
important causal pathways likely to determine responses at
specific locations. These qualitative exercises can improve
decision-making and prediction by fostering a holistic under-
standing of the multiple pathways by which dam removal is
likely to influence specific ecological communities. This
qualitative understanding can be used to prioritize the
physical and ecological variables that should be monitored
following removal. Second, these models provide a tem-
plate for more detailed conceptual models that account for
location-specific processes, organisms, watershed context,
and management scenarios. For instance, these models are
being adapted to evaluate potential ecological responses to
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Figure 7. Environmental data (a-g) used to parameterize the aquatic trophic productivity model for dam removal on the
Elwha River (Washington state), and simulated outputs (h-k) for fish, invertebrate, periphyton and detritus biomass.
Abbreviations: AFDM, ash-free dry mass; Ds,, median particle size of benthic substrate; DIN, dissolved inorganic
nitrogen; FNU, formazin nephelometric units; SRP, soluble reactive phosphorus

dam removals on the Klamath River in Northern California,
where several dams are being removed in series. Finally,
our models provide a foundation for constructing quantita-
tive models, parameterized with relevant local and regional
environmental information. Simulations from these mod-
els can provide alternate hypotheses, which can be tested
with empirical data following removal. Although modeled
results may not match actual outcomes, information gath-
ered during postremoval monitoring can be used to refine
model parameter values and model structure, as well as the
underlying knowledge and assumptions on which the model
is based. For instance, unanticipated results could help
identify important feedback loops and local environmental
conditions that may be important for predicting outcomes of
future dam removals.
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We conclude by returning to the original question: When
a river is dammed, is it damned forever? Our conceptual
models and a growing number of empirical studies sug-
gest that rivers, given the opportunity, can indeed recover
substantially from having been dammed. But the structure
and function of the ecosystem may not be the same or
even similar to what existed prior to dam emplacement.
Damming rivers causes changes in ecological communities
by extirpation of native species and spread of nonnative
and invasive species (Olden 2016). Therefore, the ecological
communities that assemble following dam removal may be
very different than those that existed before the dam was
constructed. Moreover, baseline conditions of the watershed
may have changed significantly while the dam was in place.
Land use, pollution, the presence of other dams, sediment
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contamination, climate change, and numerous other factors
will constrain the trajectory of both physical and ecologi-
cal recovery (Foley et al. 2017a). The ability to go back to a
predammed state will likely depend on how long the dam
existed and the magnitude of its many-faceted effects on the
ecosystem. Even if all elements of the ecosystem still exist,
it is unlikely they will reassemble in the exact fashion that
existed previously (Temperton et al. 2004).

But what is “damned forever”? The perception of ecologi-
cal recovery following dam removal ultimately depends on
societal expectations (Hobbs 2007). Recovery expectations
may be high in settings in which vivid recollections of pris-
tine predam conditions still exist. On the Elwha River, for
example, a strong written and oral history of large Pacific
salmon runs promoted expectations that dam removal would
lead to recovery of historical populations. In contrast, dam
removal expectations may be substantially different from
predam conditions in locations in which these memories
have been lost. Managers and practitioners can use models
such as those presented in the present article to help stake-
holders and community members understand the potential
range of ecological responses to dam removal and the most
likely trajectories and future conditions, thereby better shap-
ing (and even guiding) more realistic expectations for eco-
logical recovery as well as avoiding undesired outcomes.
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