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Abstract
Drought is increasing in frequency and severity, exacerbating foodandwater security risks in an eraof
continuedglobalwarmingandhumanpopulationgrowth.Here,we analyzed a severe summerdrought
affecting theUSNorthernPlains region in2017.Weexamined the spatial pattern and seasonal progression
of vegetationproductivity andwateruse in the regionusing satellite-based estimates offield-scale (30m)
cropland evapotranspiration (ET), county level annual cropproduction statistics, andGOME-2 satellite
observationsof solar-induced chlorophyllfluorescence (SIF). The croplandETrecord shows strong
potential to track seasonal croplandwater demands spatially,with strong correspondence to regional
climate variables in theNorthernPlains. TheGOME-2SIF record shows significantbut limited correlations
withfiner scale climate variability due to the coarse sensor footprint, but captured ananomalous regional
productivity decline coincidentwithdrought relateddecreases in cropproduction andET.Thedrought
contributed to anoverall 25%reduction in croplandET, 6%decrease in cropproduction, and11%
reduction inSIFproductivity over the region fromApril to September in2017 relative to the longer
(2008–2017) satellite record.More severely impacted agricultural areas indicatedby theUSDrought
Monitor exceptional drought (D4) category represented11%of the region and showedmuch larger
anomalousET (20%–81%) andproductivity (11%–73%)declines. The regional patternof drought impacts
indicatedmore severeproductivity andETreductions in thenorth central and southern countieswith
extensive agriculture, and less impact in thewestern counties of theNorthernPlains.This studyprovides a
multiscale assessmentofdrought related impacts on regional productivity andETover a crop intensive
region, emphasizing theuseof global satellite observations capableof informing regional to global scale
water and food security assessments.

1. Introduction

Global warming is enhancing the frequency and
severity extreme climatic events including drought

(Hao et al 2013, AghaKouchak et al 2014, Trugman
et al 2018), which is one of the most complex and
costliest natural disasters affecting humans and the
environment (Luo and Wood 2007, Mishra and
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Singh 2010, Wang et al 2014). Large-scale droughts
have been reported to weaken the terrestrial carbon
sink and intensify competition between food demand
and biofuel production (Zhao and Running 2010).
Drought often shows direct and immediate impacts on
agricultural land due to the strong dependence of
various stages of crop growth on water resources
(Narasimhan and Srinivasan 2005, Martínez-Fernán-
dez et al 2016, Peng et al 2018), severely influencing
crop production and food security (Lobell et al 2011,
Trnka et al 2012, Madadgar et al 2017). For example,
the negative effects of drought resulted in 0.1%–1.2%
reductions in annual corn and soybean yields in
dryland counties in the United States from 2001 to
2013, while irrigated counties showed slightly smaller
(0.1%–0.5%) reductions in annual crop yields
(Kuwayama et al 2018). Less frequent, but more
extreme drought events have had amuch larger impact
on agricultural productivity and economic losses, even
in regions with a relatively well developed water
management infrastructure. For example, a recent
severe droughtwas reported to have cost theCalifornia
agricultural industry $1.5 billion in 2014 (Howitt et al
2014).

Flash drought usually occurs with decreased soil
moisture associated with anomalously high tempera-
tures and increases in evapotranspiration (ET) (Mo
and Lettenmaier 2015, Otkin et al 2018). It is difficult
to predict and has a substantial impact on agricultural
lands due to the extreme heat or precipitation deficit
associated with its occurrence (Gerken et al 2018,
Otkin et al 2018). In 2017, the US Drought Monitor
(USDM, Svoboda et al 2002) documented a particu-
larly severe flash drought over the Northern Plains
region of the continental US (CONUS), with about
83% of the total land area experiencing abnormally
dry conditions, which severely impacted the agri-
cultural industry. Agriculture is the leading industry in
the Northern Plains, contributing about $4.39B,
$7.56B, $6.05B and $1.72B to the economy in 2016 for
the states of MT, ND, SD and WY, respectively. Thus,
agriculture is a very important economic force in the
Northern Plains. However, relatively few studies have
explored the impact of the recent drought on crop-
lands in the Northern Plains, while detailed climate
impact assessments and capabilities for regional mon-
itoring are constrained by a relatively sparse regional
weather station network (Horel and Dong 2010).
Alternatively, consistent multi-scale satellite observa-
tional records may provide a new perspective on the
regional impact of the 2017 drought on croplands
across theNorthern Plains. These records include field
scale cropland ET and regional scale solar-induced
chlorophyll fluorescence (SIF) observations that are
sensitive to land use and climate variability, and pro-
vide continuous observations over multiple years and
the entire region. When used on context with other
available information, these observations may provide

an effective assessment of drought related impacts on
croplandwater use and productivity.

In this study, we evaluated the impact of the 2017
Northern Plains flash drought on regional cropland
ET and productivity (figure 1). A satellite-based 30 m
8 d CONUS cropland ET record (He et al 2019) was
used with coarser (0.5°) monthly SIF observations
from the GOME-2 satellite (Joiner et al 2016) to char-
acterize the patterns and seasonal changes in cropland
water use and productivity. The satellite observations
were used with reported county-level crop production
and available climate data to characterize drought rela-
ted impacts relative to the recent historical record
(2008–2017). The following sections provide a
description of the Northern Plains and summary of
the data and methods used in this study (section 2), a
presentation of the major results from this invest-
igation (section 3), and a concluding discussion of the
study implications for regional drought monitoring
and agricultural watermanagement (section 4).

2.Materials

2.1. Study domain and theUSDM
The domain for this study includes the CONUS
northern-tier states of the Northern Plains
(figure 1(a)), including Montana (MT), Wyoming
(WY), North Dakota (ND) and South Dakota (SD).
The region encompasses the epicenter of the 2017
Northern Plains summer flash drought according to
the USDM (figure 1(c)). Croplands accounted for
about 28%–32% of the total land area of the Northern
Plains from 2008 to 2017, with the largest area planted
in 2017 (5.24× 107 hectares) and the smallest area in
2011 (4.59× 107 hectares). The major crops in this
region include alfalfa, barley, wheat (spring, winter,
durum), maize, and soybeans, which were mainly
distributed in northern and eastern MT, eastern ND
and SD in 2017 (figure 1(b)).

The USDM (Svoboda et al 2002) has been used as a
benchmark for the identification of drought (Ford et al
2015, Schroeder et al 2016), providing a weekly map
assessment showing the occurrence, spatial extent and
relative severity of drought over the CONUS domain.
The USDM is determined from expert assessments
using climatological, hydrological and satellite-based
information, including the Palmer Drought Severity
Index, Standardized Precipitation Index, satellite-
based assessments of vegetation health, and various
indicators of soil moisture. According to the USDM,
the study domain experienced a severe summer flash
drought in 2017. The largest influencing areas of
drought (D0: abnormally dry)were observed on 5 Sep-
tember 2017 (figure 1(c)), which affected about 83%of
the total land area in the Northern Plains. About 23%
of the domain was influenced by extreme drought
(D3), which induced major crop losses and wide-
spreadwater shortages (Gerken et al 2018).
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2.2.Data andmethods
2.2.1. ET data summary
Satellite-based ET modeling can provide an effective
means for regional monitoring of ET water losses to
inform operational water management, agricultural
water use conditions (Anderson et al 2012) and
regional drought assessments (Maes and Steppe 2012,
Wardlow et al 2017). A consistent and continuous
30 m 8 d cropland ET record was recently developed
using a satellite-based ET modeling framework that
enables the delineation of field scale cropland water
use across CONUS croplands, and is functionally
consistent with coarser scale ET assessments available
from global operational satellites (He et al 2019). The
CONUS ET record provides the means for evaluating
recent drought related impacts on cropland water use
that account for the influence varying crop type
conditions.

The 30 m and 8 d CONUS cropland ET record
from He et al (2019) was extracted for the study
domain (figure 1(a)). The ET record extends from
2008 to 2017, andwas used to define the climatological
conditions for evaluating potentially anomalous crop-
land water use variations during the 2017 drought
relative to the long-term record. The cropland ET pro-
duct used in this study employs a version of the
MOD16 algorithm (Mu et al 2011) calibrated for C3
and C4 crop types and driven by finer scale regional

inputs, including 30 m 8 d satellite vegetation cover
(e.g. enhanced vegetation index), dynamic land cover
from the USDA NASS Cropland Data Layer (CDL),
and 4 km daily meteorological data from University
of Idaho Gridded Surface Meteorological Dataset
(Gridmet; Abatzoglou 2013). The ET product has also
been found to provide favorable accuracy for the
major CONUS crop types (He et al 2019). Unlike the
global MOD16A2 record, the CONUS cropland ET
record used in this study preserves field scale cropland
ET heterogeneity, crop type differences and inter-
annual variability across different agricultural fields
under varying climate conditions. The 8 d ET anomaly
is estimated in this study as the difference between ET
estimates in 2017 and the mean 8 d ET climatology
established from the 2008–2017 record. The cumula-
tive ET anomalies are calculated as the sum of the 8 d
ET anomalies for a given period for the entire study
domain. The ET anomalies are extracted for each
county in the study domain during the 2017 summer
months (June–August) and used for analyzing the spa-
tial and seasonal pattern of drought impacts on crop-
landwater use.

2.2.2. Satellite SIF
Solar-induced chlorophyll florescence (SIF) is emitted
directly by vegetation as a byproduct of photosynth-
esis, and provides a close observational proxy of

Figure 1. (a) Location of theNorthern Plains in theContinental USA; (b) cropland distributions across theNorthern Plains in 2017
based onCroplandData Layer (CDL) fromUSDepartment of Agriculture (USDA)National Agriculture Statistics Service (NASS);
(c)USDroughtMonitor released on 5 September 2017; (d)Cumulative precipitation anomaly in 2017 over theNorthern Plains
relative to the ten-year time period (2008–2017) and cumulative number of days that vapor pressure deficit (VPD) and temperature
(Ta) above themultiyear record.
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vegetation status and productivity (Meroni et al 2009,
Sun et al 2017). Global satellite observations of SIF
from the ESA GOME-2 (Global Ozone Mapping
Experiment 2) sensor have been used as a unique
benchmark for agricultural productivity and climate
impacts on crop yields (Guanter et al 2014, Guan et al
2016). The GOME-2 SIF record was able to track the
spring onset and autumn termination of photosynth-
esis indicated by upscaled vegetation gross primary
productivity estimates over croplands (Joiner et al
2014). The GOME-2 SIF record has also shown
drought-related productivity declines, providing an
important source of information for regional drought
impact assessments (Sun et al 2015, Yoshida et al
2015). Recently, ground-based SIF measurements
were found to correspond closely with plant transpira-
tion (Lu et al 2018), owing to similar canopy stomatal
controls on both photosynthetic CO2 exchange and
transpiration (Miao et al 2018, Yang et al 2018).

The monthly 0.5° v27 SIF product (Joiner et al
2016) from the GOME-2 instrument on the ESA
MetOp-A satellite (https://avdc.gsfc.nasa.gov/) was
extracted for the study domain and 2008–2017 record.
The GOME-2 SIF record was used in this study as a
regional indicator of changes in vegetation productiv-
ity, but is too coarse to distinguish cropland from
other surrounding vegetation communities. The SIF
anomalies in 2017 were calculated as differences from
a monthly SIF climatology derived from the longer
GOME-2 operational record from 2008 to 2017 for
each GOME-2 grid cell in the domain. County-level
extractions of the GOME-2 SIF anomalies were also
compared with similar aggregated cropland ET and
NASS county crop production data over the domain.

2.2.3. Other supporting geospatial data
TheUSDANASS annual 30mCDL product was used to
characterize spatial and annual variations in crop type
and planted area across the study region over the
2008–2017 record (figure 1(b)). Annual county-level
crop production data was also obtained from the NASS
record to investigate the drought impact on annual
croplandproductivity across the region in 2017.

The Gridmet meteorological database (Abatzoglou
2013) is derived from temporally rich data from the
North American Land Data Assimilation System Phase
2 (NLDAS-2;Mitchell et al 2004), and spatially rich data
from the Parameter-elevation Regressions on Indepen-
dent Slopes Model (PRISM; Daly et al 2008). Gridmet
was used in this study to analyze variations in key regio-
nal climate variables over the 2008–2017 record. For
analyzing regional climate patterns, the Gridmet daily
precipitation was aggregated to coarser 8 d, monthly
and annual time steps, while air temperature (Ta) and
atmospheric vapor pressure deficit (VPD) were aver-
aged over the same time steps for each grid cell, and
then summed or averaged for the entire study region.
Precipitation, Ta and VPD anomalies in 2017 were cal-
culated on a grid cell basis as the difference from the

climatological mean values established from the long-
term (2008–2017) record. The anomalies were then
summed or averaged over the entire Northern Plains
domain. Reference ET (ETref) conditions for alfalfa
were obtained using Gridmet daily meteorological
inputs, following the methods of (He et al 2019). The
regional cumulative ETref was then used with cumula-
tive precipitation to calculate the climate aridity index
(AI=precipitation/ETref), as an indicator of the
degree of climate dryness over the study region in 2017.
The resulting AI values were grouped into five general
climate categories, including hyper-arid (AI<0.05),
arid (0.05�AI<0.20), semi-arid (0.20�AI<0.5),
sub-humid (0.50� AI�0.65), and humid
(AI>0.65) conditions (UNESCO1979).

The regional ET and productivity anomalies in this
studyweredeterminedusingnormalizedZ-scores to clar-
ify the significance of the 2017 anomalies relative to ‘nor-
mal’ conditions represented by the recent historical
record (2008–2017), and for more consistent compar-
isons among variables with different magnitudes and
units.Here, theZ-score is calculated as Z x ,m s= -( )/
where x represents thedifferent croplandvariables exam-
ined, including ET, crop production, and SIF, while m
and s represent the associatedmeans and standarddevia-
tions of these variables, respectively. In contrast, pre-
cipitation, Ta and VPD data were not normalized using
the Z-score in this study; instead, the cumulative pre-
cipitation anomaly was computed as the difference from
the long-term (2008–2017) mean, while the number of
days and area in 2017 with above-normal Ta and VPD
conditions was derived from the long-term record. Pear-
son’s correlation coefficient (r) and the coefficient of
determination (R2) are used in this study as measures of
agreementusing a95%significance threshold (p�0.05).

3. Results

3.1. Climate conditions in 2017 across the northern
plains
The estimated AI from April to September in 2017
indicates that the study region is predominantly semi-
arid (AI=0.24), with a significant drying trend over
the 2017 growing season (r=−0.84; p<0.05). The
greatest dryness (AI=0.20) is observed in early
September, which is also depicted in the USDM
(figure 1(c)).

Precipitation was very low for the region in 2017,
indicated by large negative anomalies relative to the
2008–2017 record (figure 1(d)). Summer precipitation
in the region for 2017 was about 26% below normal
conditions and only accounted for 25% of the total
annual precipitation. The rapid increase in the num-
ber of higher-than-normal Ta and VPD days also indi-
cate generally warmer and drier conditions in 2017
compared to the recent historical record (figure 1(d)).
The above results indicate a severeflash drought across
the region in 2017, while this study provides an
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assessment of the associated impact of the drought on
cropland ET and productivity.

3.2. Seasonal variation of drought impacts
The satellite-based 30 m 8 d cropland ET estimates in
the growing season (April–September) of 2017 all
shownegative Z-scores, indicating that croplandwater
use was below-normal relative to the multiyear
(2008–2017) average (figure 2). The VPD and Ta
records show predominantly positive anomalies
encompassing over 25% of the total land area in the
domain (figure 2), indicating drier conditions in 2017
relative to the historical period; both parameters
accounted for approximately 86% (R2) of the esti-
mated ET seasonal anomaly in the region. A positive
SIF Z-score in April reflects a relatively early growing
season onset and enhanced spring productivity in
2017 (figure 2). However, the early growing season
onset was followed by a large SIF decline and negative
Z-scores from June to August, indicating 16%–18%
below-normal summer productivity. Below-normal
SIF summer productivity was followed by a return to
near-neutral conditions in September coincident with
the end of the effective growing season (figure 2). The
growing season SIF anomaly is inversely proportional
to VPD over the region (r=−0.58; p<0.05),
indicating reduced productivity under larger atmo-
spheric moisture deficits. However, no obvious rela-
tionships were found between SIF and air temperature
for the same period.

Cumulative cropland ET anomalies extending from
April to Septemberwere estimated over the entireNorth-
ern Plains in 2017 (figure 3(a)). The resulting ET anoma-
lies show a strong declining regional trend indicating
cumulatively lower cropland water use over the 2017
growing season, especially during the summer months.
The cumulative ET anomaly was directly proportional
to the cumulative precipitation anomaly (r=0.90;
p<0.05; figure 3(b)). The negative ET anomalies are
exacerbated under drier conditions and reduced in more

humid environments (figure 3(b)), showing significant
positive correlations with AI (r=0.89; p<0.05). The
SIF anomalies are also directly proportional to cumula-
tive precipitation (r=0.67; p<0.05), cumulative ET
(r=0.40; p<0.05), and AI (r=0.60; p<0.05), indi-
cating a strong moisture constraint on vegetation pro-
ductivity in the region (figure 3(b)).

3.3. Spatial distribution of drought impacts on
cropland
About 64% of the Northern Plains region experienced
moderate drought (figure 1(c)) by early September of
2017, which coincided with cropland summer ET and
SIF observations that were 21% and 19% below
normal conditions indicated from the multi-year
(2008–2017) record. The associated county-level sum-
mer ET, NASS annual crop production and summer
SIF Z-scores (figure 4) show general consistency over
the Northern Plains counties, with the largest drought
related declines in ET (93%), crop production (99%)
and SIF (59%) occurring in counties with extensive
ranching and dryland agriculture. The NASS reported
annual crop production levels for 2017 show large
spatial variability across theNorthern Plains relative to
average conditions indicated from the long-term
(2008–2017) record (figures 4(a) and (d)). Most
counties (63%) show declines in annual crop produc-
tion in 2017, with the most severe production
decreases (11%–99%) in the north-central and south-
ern portions of the region, where the USDM indicates
severe to exceptional drought (figure 1(c)). The crop-
land ET (figure 4(b)) and SIF records show similar
summer reductions (7%–93% and 3%–59%, respec-
tively) in 2017 over themost drought-impacted north-
central and southern counties (figure 4(c)). Annual
crop production in 2017 shows slight increases in the
northeastern counties of the domain (figure 4(a)),
where the USDM documents abnormally dry condi-
tions (figure 1(c)). Neutral conditions or small reduc-
tions in cropland ET during the summer of 2017 also

Figure 2.Temporal variations of z-scores of the 2017 growing season cropland evapotranspiration (ET), and solar-inducefluorescence
(SIF); and the temporal variations of percentage of area that vapor pressure deficit (VPD) and air temperature (Ta) in 2017 above the
average conditions of 2008–2017 in theNorthern Plains.
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occurred in this region (figure 4(b)). However, the
2017 summer SIF observations over the same region
show spatial fluctuations both above and below
normal conditions (figure 4(c)). The reported NASS
crop production in 2017 (figure 4(a)) also indicates
small productivity increases in the southeastern coun-
ties of the Northern Plains, where the USDM suggests
no apparent drought impacts (figure 1(c)). The 2017
cropland summer ET results show both small positive
and negative anomalies in this region (figure 4(b)).
However, the 2017 SIF record shows generally less-
than-normal summer productivity over the same
counties (figure 4(c)). For allNorthern Plains counties,
the 2017 NASS reported annual crop production
Z-scores were positively correlated with estimated
cropland summer ET (r=0.36; p<0.05) and sum-
mer SIF (r=0.36; p<0.05). The above results
indicate strong potential for the satellite-driven 30 m

cropland ET estimates to represent cropland drought
impacts. The GOME-2 SIF observations also show
regional drought-induced productivity declines coin-
cident with lower reported cropland production
and ET.

4.Discussion

The 2017 drought (USDM D2-D4) over the Northern
Plains affected 46% (7.51× 107 hectares) of the domain,
while counties with extensive ranching and rainfed crops
that experienced the most severe summer drought
conditions showed 3%–93% and 11%–99% reductions
in ET and productivity, respectively. Above-normal
precipitation and higher temperature (figure 1(d)) from
January toApril in 2017 triggered anearly spring growing
season onset. However, subsequent warmer and drier
climate conditions (figures 1(d) and 2) damaged crop

Figure 3. (a)Cumulative ET anomalies fromApril to September during 2008–2017 across the entireNorthern Plains; (b) correlations
between cumulative ET anomaly and cumulative precipitation anomaly (r=0.90; p<0.05), aridity index (AI; r=0.89; p<0.05),
andGOME-2 SIF anomaly (r=0.67; p<0.05)during April–September in 2017 spanning the entireNorthern Plains. (c) Inter-
annual variations of growing season precipitation, crop production and cropland ET from2008 to 2017 over theNorthern Plains
domain showing the 2017 drought in context with amore severe drought in 2012.
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growth and reduced crop production and ET due to
rapidly drying soils over the region. According to the
UnifiedNorth American SoilMap (Liu et al 2013, 2014),
the Northern Plains is characterized by predominantly
loam soils; whereby, crops grown on these soils may be
more susceptible to flash drought due to a rapid
reduction in water potential at lower soil moisture levels,
reducing crop production and ET. The relatively severe
regional reductions in ET and productivity in 2017
indicated from our study coincided with large negative
impacts to regional croplands and the agricultural
industry, including a 13%decrease in crop values in 2017
relative to average annual crop values from 2008 to 2017,
while influencing subsequent management actions to
maintain production (Wurster 2018,Wurster et al 2019).
The drought impact on croplands was likely exacerbated
by the extensive rainfed or only partially irrigated
agriculture in the region, which is more susceptible to
climate extremes.

The different climate factors examined in this study
express different impacts on NASS crop production,
summer cropland ET and summer SIF regionally.
Annual crop production in 2017 was negatively impac-
ted by summer VPD (r=−0.26; p<0.05) and Ta
(r=−0.16; p<0.05) for the Northern Plains. The esti-
mated summer decline in cropland ET in the region also
corresponded with larger VPD (r=−0.58; p<0.05)
and warmer air temperatures (r=−0.32; p<0.05),
respectively. Summer precipitation across the Northern
Plains significantly influenced annual county-level crop
production (r=0.18; p<0.05) and summer cropland
ET (r=0.46; p<0.05) in 2017. There was no obvious

relationship between summer precipitation and pro-
ductivity indicated from the SIF record. The limited cor-
relations between the climate factors and GOME-2 SIF
record may reflect the scale discrepancy between the
coarse (0.5°) footprint SIF observations and finer spatial
heterogeneity represented by the 4 km Gridmet climate
and30mETrecords.

The 2017 summer flash drought had a major
impact on NP croplands but was less severe than the
2012 Great Plains drought (Hoerling et al 2013, Wolf
et al 2016), which coincided with the driest year of the
recent historical record (2008–2017) for the region;
whereas, the 2017 event was the second most severe
drought for the period of record (figure 3). Growing
season precipitation was extremely low in 2012
(figure 3(c)), with more extreme aridity (growing sea-
son AI of 0.16 in 2012 versus 0.24 in 2017), and higher
growing season VPD and Ta levels than in 2017 or the
long-term record (2008–2017). Cropland ET also
showed a much lower cumulative anomaly in 2012
(figure 3(a)), while the NASS reported annual crop
production was also the lowest in 2012 relative to the
other years of record in the region, followed by 2017
(figure 3(c)). The lower crop production in 2012 may
also reflect annual variations in crop types and planted
area in addition to drought-induced declines. How-
ever, the combined results indicated that Northern
Plains croplands experienced amore severe drought in
2012 than 2017, which may obscure the impact of the
2017 event due to themore extreme 2012 outlier.

The 30 m cropland ET estimates used in this study
are driven by a satellite-based ET model (MOD16

Figure 4. Spatial distributions of county-level z-scores of annual crop production (a), cropland evapotranspiration (ET; (b)) and
GOME-2 solar-induced florescence (SIF; (c)) from June to August in 2017 across theNorthern Plains relative to the data period of
2008–2017; (d) 2017 drought impacts over theNorthern Plain informed by cropland ET, and crop production for all the counties, and
SIF for crop dominated counties (cropland area�20%of the total land area).
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ET algorithm), which has shown favorable regional
accuracy in representing field scale cropland ET het-
erogeneity (He et al 2019). However, there are still
uncertainties in the ET estimates contributed from
input meteorological and land cover data, and algo-
rithm assumptions, which may influence this study.
For example, there is no direct soilmoisture constraint
in the ET algorithm even though ET is strongly sensi-
tive to soil moisture variability (De Lannoy et al 2006,
Sun et al 2013). This lack of a specific soil moisture
constraint may contribute to greater model uncer-
tainty at finer spatiotemporal scales where soil and
atmospheric moisture conditions may be less corre-
lated (Novick et al 2016).

The GOME-2 SIF record shows unique sensitivity
to agricultural productivity and climate variability
(Guanter et al 2014), and demonstrates effective cap-
ability for representing drought-related impacts
(Yoshida et al 2015) despite the coarse scale of the
observations. The GOME-2 satellite record also pro-
vides global coverage and consistent monitoring cap-
abilities that are particularly useful for areas with
sparse ground observations, including the Northern
Plains. In this investigation, the SIF observations
showed a similar regional drought-induced pro-
ductivity decline in 2017 consistent with finer scale
observations from a satellite 30 m cropland ET record
and county-level crop production surveys across the
Northern Plains. These records also showed similar
climate sensitivity indicated from comparisons with
VPD, cumulative precipitation, and AI (figures 2 and
3(b)), confirming that the GOME-2 SIF record is sen-
sitive to drought related impacts on cropland water
use and productivity (Liu et al 2018, Zhang et al 2019).
The GOME-2 record has been corrected for sensor
degradation (Joiner et al 2016), however, remaining
artifacts include decreasing inter-annual trends
(Zhang et al 2018), which may contribute uncertainty
to the SIF results from this investigation. While the
GOME-2 SIF based assessment of the 2017 drought
impact on regional productivity was generally con-
sistent with the finer scale cropland ET and NASS
annual crop production assessments the SIF record
was unable to distinguish cropland heterogeneity or
croplands from other land cover types within a 0.5°
resolution grid cell.

Our approach emphasizes global satellite observa-
tions to facilitate extrapolations and applications to
other regions. Satellite SIF observations have been
shown to be sensitive to crop productivity (Guanter
et al 2014), and used for drought monitoring (Sun et al
2015, Yoshida et al 2015, Zhang et al 2019), though the
coarse resolution of GOME-2 SIF records may be a
major constraint for effective monitoring over hetero-
geneous landscapes. Next generation SIF satellites (e.g.
TROPOMI; Köhler et al 2018)withmuch finer resolu-
tion (e.g. 7 km by 3.5 km pixel with daily visit) may
havemuch greater potential formonitoring ecosystem

productivity response to drought in these hetero-
geneous regions. The cropland ET and crop produc-
tion datasets used in this study are largely constrained
to the continental US domain due to their reliance on
USDA NASS CDL and Gridmet meteorological
inputs. However, other synergistic satellite products
are available, including the MODIS MOD16A2 ET
(Mu et al 2011, 2007) and SMAP L4_C productivity
records (Jones et al 2017), providing moderate
(500–1000 m and daily to 8 d) resolution global obser-
vations with generally favorable accuracy over crop-
lands, and less ancillary data requirements for
potential monitoring and drought impacts assessment
in data sparse regions.

5. Conclusion

This study investigates the impact of the 2017 North-
ern Plains summer drought on regional cropland
productivity and ET water losses. The significance of
the 2017 summer drought impact was assessed relative
to a multi-year observational record (2008–2017)
including satellite-driven 30m cropland ET estimates,
NASS annual county-level crop production surveys
and GOME-2 SIF regional productivity observations.
The extent and severity of the drought indicated from
the satellite and NASS records were also evaluated
against the USDM. The results indicate that the
satellite-based 30 m cropland ET estimates are capable
of tracking the seasonal dynamics in the water deficit
and evaluating field level cropland drought impacts
(figure 3(a)), accounting for approximately 80% of
the seasonal dynamics in cumulative precipitation
(figure 3(b)). The cropland ET and coarser satellite SIF
records showed similar seasonal Z-scores over the
region (figure 2), while the SIF anomalies also
corresponded strongly with cumulative precipitation
(r=0.67; p<0.05), VPD (r=−0.58; p<0.05),
and AI (r=0.60; p<0.05) during the 2017 growing
season. The spatial patterns of Z-scores for annual
crop production, summer cropland ET and summer
SIF indicate large drought impacts (figure 4) in the
north central and southern portions of the domain
in 2017, consistent with the USDM assessment
(figure 1(c)). Themost severely drought impacted area
(USDM D2-D4) involved counties with extensive
cropland cover, while regions with sparse cropland
and a greater proportion of natural vegetation showed
more limited drought impacts. Overall, the 2017
drought reduced cropland ET by 25%, crop produc-
tion by 6% and SIF by 11%across the study domain.

Drought is projected to be more frequent and
intense in the future (IPCC 2014). Regional VPD is
increasing (Ficklin and Novick 2017), while growing
season precipitation is declining and the intervals
between precipitation events are increasing (Holden
et al 2018). This will have direct and immediate

8

Environ. Res. Lett. 14 (2019) 074019



impacts on croplands that can result in major eco-
nomic losses (Narasimhan and Srinivasan 2005,
Howitt et al 2014,Martínez-Fernández et al 2016). The
spatially and temporally complex and dynamic nature
of drought constrains capabilities for effective regional
monitoring needed for managing water resources and
food security risks. This study documents an effective
approach for regional drought monitoring in agri-
cultural regions using multi-scale satellite observa-
tions that are able to distinguish both field level ET and
regional scale productivity changes.
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