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A B S T R A C T

Evapotranspiration (ET) is a key variable linking the global water, carbon and energy cycles, while accurate ET
estimates are crucial for understanding cropland water use in context with agricultural management. Satellite
remote sensing provides spatially and temporally continuous information that can be used for global ET esti-
mation. The NASA MODIS MOD16A2 operational product provides 500-m 8-day global ET estimates extending
from 2001 to present. However, reliable estimates for delineating field level cropland ET patterns are lacking. In
this investigation, we modified the MOD16 global algorithm to better represent cropland ET by calibrating
model parameters according to C3 and C4 crop types, and incorporating finer scale satellite vegetation inputs to
derive 30-m cropland ET estimates over the continental USA (CONUS). Similar overlapping enhanced vegetation
index (EVI) records from Landsat and MODIS were used to generate a continuous 30-m 8-day fused EVI and ET
record extending from 2008 to 2017 over CONUS croplands. The satellite-based ET estimates were compared
with tower based ET observations over different crop types, and more traditional cropland actual ET (AET)
estimates derived from reference ET and crop-specific coefficients. The new satellite based 30-m cropland ET
estimates (ET30m) corresponded favorably with both tower ET observations (ETflux; R2= 0.69, RMSE=0.70mm
d−1, bias= 0.04mm d−1) and the baseline global MOD16A2 ET product (ETMOD16). The ET30m results also
showed better performance against the ETflux observations than ETMOD16 (R2= 0.54, RMSE=0.82mm d−1) or
AET (R2=0.52, RMSE=2.47mm d−1) for monitoring CONUS croplands. The spatial and temporal patterns of
the ET30m results show enhanced delineation of agricultural water use, including impacts from variable climate,
cropland area and diversity. The resulting ET30m record is suitable for operational applications promoting more
effective agricultural water management and food security.

1. Introduction

Evapotranspiration (ET) is the loss of water from land surface eva-
poration (soil and plant surface) and vegetation transpiration, re-
presenting the primary link between terrestrial water, energy, and
carbon cycles (Allen et al., 2007a; Anderson et al., 2008; Mu et al.,
2007; Xiong et al., 2015; Yang et al., 2013). ET is a major hydrological
variable in the soil-vegetation-atmosphere system (Senay et al., 2011)
and represents approximately 60% of water loss from terrestrial pre-
cipitation (Oki and Kanae, 2006). Accurate ET estimates are crucial for

understanding local to global water cycle dynamics (Cheng et al., 2011;
Nishida et al., 2003), and improving water resource management and
drought monitoring (Mu et al., 2013). However, ET is one of the most
problematic water cycle elements for effective regional monitoring due
to uncertainty contributed from land surface heterogeneity and en-
vironmental controls (Mu et al., 2007; Senay et al., 2011; Xu and Singh,
2005).

Several methods have been proposed in recent decades to estimate
ET from available ground measurements (Allen et al., 2011), such as the
eddy covariance technique (Baldocchi, 2003) and Bowen ratio method
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(Scott et al., 2006). However, the general effectiveness of these ap-
proaches are restricted to homogeneous sampling areas of approxi-
mately 1 km2, while the available instrumentation and measurement
networks are costly and sparsely distributed. Alternatively, satellite
remote sensing provides spatially and temporally continuous environ-
mental information that can be used for ET estimation over local to
global extents (Allen et al., 2007a, 2007b, 2011; Mu et al., 2007, 2011;
Mueller et al., 2013, 2011). The Atmosphere-Land Exchange Inverse
(ALEXI) model was developed for mapping ET and soil moisture stress
with minimal inputs from ancillary meteorological data while main-
taining a physically realistic representation of land-atmosphere ex-
change over diverse vegetation conditions (Anderson et al., 2007a,
2007b, 2011). Gowda et al. (2009) used a Simplified Surface Energy
Balance (SSEB) approach with Landsat TM spectral imagery to estimate
ET regionally at fine spatial resolution (30-m) suitable for water re-
source management (Senay et al., 2011). A global monthly 0.5° re-
solution land ET record was developed by Jung et al. (2010) using a
machine learning empirical model upscaling approach driven by in situ
tower site observations (FLUXNET), satellite and surface meteorological
data. Zhang et al. (2010) developed a satellite NDVI (normalized dif-
ference vegetation index) based ET algorithm using both Penman-
Monteith and Priestley-Taylor approaches to assess global terrestrial
ET. Allen et al. (2007a, 2007b) introduced the satellite-based METRIC
(mapping ET at high resolution with internalized calibration) model,
which computes ET as a residual of the surface energy balance, while
benefiting from the use of reference conditions for estimating in-
stantaneous ET. METRIC also has advantages of using the surface en-
ergy balance to determine ET, since the energy balance can detect re-
duced ET caused by water shortage, salinity or frost that may not
correlate with changes in vegetation cover (Allen et al., 2013). Fisher
et al. (2008) used NOAA AVHRR (Advanced Very High Resolution
Radiometer) spectral data to estimate global ET using a modified
Priestley-Taylor method, calculating ET as the sum of canopy tran-
spiration and evaporation from soil, and canopy intercepted water. The
Breathing Earth System Simulator (BESS) is a simplified process-based
model coupling atmosphere and canopy radiative transfer, canopy
transpiration, photosynthesis and the energy balance, providing a 1-km
resolution global ET product from 2000 to 2015 (Jiang and Ryu, 2016).
All of these satellite based approaches can provide accurate geospatial
ET information, though the utility and reliability of these data are
strongly influenced by the quality of the remote sensing data, including
sensor spatial and temporal coverage, and signal-to-noise.

The MODIS (Moderate Resolution Imaging Spectroradiometer)
sensors on the NASA EOS Terra and Aqua satellites currently provide
the only global operational ET product (MOD16A2), which is available
at 500-m resolution and 8-day fidelity from 2000 to present (Mu et al.,
2007, 2011). The MOD16 ET algorithm is the basis of the MOD16A2
operational product. In the MOD16 algorithm, terrestrial ET is calcu-
lated using a modified Penman-Monteith equation as the sum of eva-
poration from wet and moist soil, evaporation from wet canopy and
plant transpiration through canopy stomata. The MOD16 ET record was
previously validated against daily and monthly ET observations from a
network of global flux tower sites and basin scale water balance cal-
culations, and showed favorable performance (Jung et al., 2010; Mu
et al., 2011; Velpuri et al., 2013). These studies indicate general
MOD16 ET consistency and utility for local, regional and global scale
assessments.

However, uncertainty in the ET estimates from different models can
range from 5 to 50% (Morton et al., 2013; Mu et al., 2007), while the
MOD16 ET product produced mean uncertainties of 50–60% in monthly
ET estimates from several tower observation sites. MOD16 shows a
general underestimation of ET in Continental U.S. (CONUS) croplands,
which was attributed to model parameterization uncertainty and lack of
spatial heterogeneity due to the coarse MODIS footprint (Velpuri et al.,
2013; Vinukollu et al., 2011). The MOD16 algorithm also showed an
apparent 10Wm−2 overestimation of latent energy from 34 global

cropland flux towers (Feng et al., 2017), which may reflect model
parameterization uncertainty for croplands. Khan et al. (2018) reported
generally low agreement (R2= 0.35) and positive bias (0.22mm 8-
day−1) between MOD16 and in-situ ET measurements for three rice
paddy sites in Asia, which was attributed to local vegetation and mi-
croclimate variability missing from the global land cover classification
and spatially coarse (~ 0.5-degree) resolution GMAO meteorological
data used as model drivers. Vapor pressure deficit (VPD) derived from
the coarse GMAO meteorological data may not adequately reflect water
stress conditions over smaller sub-regions, contributing additional un-
certainties to the MOD16A2 ET product (Wang et al., 2015). Therefore,
further refinements to the MOD16 framework are needed to better re-
present field level vegetation and meteorological conditions influencing
ET and associated water use conditions in croplands.

Traditionally, ET in croplands is calculated as the product of crop-
specific empirical coefficients multiplied by a reference ET rate, which
has been the standard approach for cropland ET calculations in the
United States for> 40 years (Allen et al., 2005, 2007a; Tasumi and
Allen, 2007). Reference ET (ETref) is the rate at which available water is
vaporized from a reference vegetated surface (alfalfa or grass) where
water is non-limiting (Jensen et al., 1990). Here, ETref defines the po-
tential upper bound of evapotranspiration under variable climate con-
ditions using a fixed vegetation reference (alfalfa), while an empirical
crop coefficient (Kc) is used with ETref to derive an estimate of actual ET
(AET) for different crop types. The Kc value is generally determined for
different crop types and growth stages ranging from emergence to
termination. However, the assigned Kc values may not represent actual
vegetation and growing conditions of different crops, especially in
water limited areas (Allen et al., 2007b). Kc values generally cannot
extend beyond about 1.0–1.05 times the reference condition, but may
actually be up to 1.1 times the reference condition in arid and semi-arid
regions for a given crop type (Allen et al., 2011); this uncertainty makes
it difficult to predict the actual Kc over large regions with variable
climate.

The objective of this study is to improve the delineation of field
scale (30-m) cropland ET dynamics over the CONUS domain using a
satellite-based modeling framework that builds on the MOD16 ET al-
gorithm logic. A modified version of the MOD16 algorithm is used in
this study to estimate cropland ET at 30-m and 8-day resolution span-
ning the CONUS domain and recent satellite record (2008–2017).
Annual variations in crop type and area are defined using the 30-m
Cropland Data Layer (CDL) from the U.S. Department of Agriculture
(USDA) National Agricultural Statistics Service (NASS). A continuous
30-m 8-day Enhanced Vegetation Index (EVI) record is generated by
fusing 30-m EVI records from Landsat 5 and 7, with similar but coarser
resolution MODIS EVI observations. The fused EVI record is used to
define canopy cover and ET partitioning between evaporation and
transpiration in the ET algorithm. A 4-km CONUS surface meteorology
record is used to provide daily meteorological inputs to the ET model,
which is calibrated to distinguish C3 and C4 crop types and validated
against flux tower-based daily ET observations from seven CONUS
cropland sites. The model results are also compared with the opera-
tional MODIS MOD16A2 (version 6) global ET product and ETref and
AET estimates for different CONUS cropland areas over the multi-year
study period. The estimated 30-m ET results are examined over two
selected sub-regions with different climate and cropland conditions to
document potential model improvements in representing field-level ET
patterns and seasonal to inter-annual variability over heterogeneous
croplands. These results provide a new regional data record for doc-
umenting cropland ET trends, with suitable accuracy and performance
for water resource assessment and monitoring applications.
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2. Materials and methods

2.1. Study domain

The domain for this investigation encompasses CONUS cropland
areas from 2008 to 2017. The USDA NASS CDL provides dynamic an-
nual cropland distribution information at 30-m resolution over the
CONUS domain from 2008 to present. The CDL reported total cropland
area shows a significant increasing trend (r=0.85; p < 0.05), ranging
from 1.32 * 108 ha (2010) to 1.42 * 108 ha (2017), and accounting for
about 17% ~ 18% of the total CONUS land area from 2008 to 2017. The
CDL captures substantial variability in cropland type and area over the
study period that reflects changes in underlying vegetation, land use
and management practices, which are expected to strongly influence
ET.

The CONUS CDL cropland classification in 2008 is shown in Fig. 1.
Croplands are mainly distributed in the CONUS midwest, southwest,
northwest and southern areas (Fig. 1a). There are seven available flux
tower sites representing different crop types within the domain
(Fig. 1a), which are summarized in Table 1; these sites provide eddy
covariance flux measurements and supporting meteorological data for
the study period obtained from the FLUXNET2015 record, including
latent heat flux measurements used to obtain tower daily ET observa-
tions (ETflux). Three of the tower sites (US-Tw2, US-Tw3 and US-Twt)
are located in California (Fig. 1b); three other tower sites (US-Ne1, US-
Ne2, and US-Ne3) are located in Nebraska (Fig. 1c), and the remaining
tower site (US-ARM) is located in Oklahoma (Fig. 1a). The crop types

represented by the tower sites include maize, soybean, winter wheat,
rice and alfalfa (Table 1), which vary across sites and also over the
study period at some sites due to crop rotation practices.

The cropland ET is simulated at 30-m resolution in this investiga-
tion, resulting in a very large (> 12 TB) CONUS cropland ET data re-
cord for the 2008 to 2017 period. Thus, two sub-regions (Fig. 1b, c),
each representing about 50-km x 75-km, were selected for more in-
tensive investigations of cropland heterogeneity. The sub-regions were
delineated around selected tower sites in California and Nebraska re-
presenting different climate, crop type and management conditions.
The Aridity Index (AI), calculated as the ratio of annual precipitation to
ETref, is used as an indicator of climate dryness (UNESCO, 1979) in each
sub-region, including hyper-arid (AI< 0.05), arid (0.05≤AI<0.20),
semi-arid (0.20≤ AI<0.5), sub-humid (0.50≤AI≤0.65), and humid
(AI> 0.65) conditions. The California region of interest (ROI1) has
annual precipitation of 399 ± 145mmyr−1 over the 2008–2017 re-
cord (Fig. 1f), while ETref is much higher than the annual precipitation
in this region, leading to a very low AI (0.20 ± 0.08) and indicating
that ROI1 is water-limited. The estimated AI in 2013 and 2015 was only
0.07 and 0.09, respectively, suggesting very dry conditions in ROI1. The
major ROI1 crop types include maize, alfalfa, and winter wheat during
the study period (Fig. 1d). In contrast, the Nebraska region (ROI2) has
much higher annual precipitation (841 ± 173mm yr−1) than ROI1,
with semi-arid or sub-humid AI conditions for most of the study period
(AI= 0.53 ± 0.10), except for particularly dry conditions in 2012
(AI= 0.21) (Fig. 1g). The dominant ROI2 crops are maize, soybean,
winter wheat and alfalfa over the study period. Both sub-regions show

Fig. 1. Cropland distributions across the CONUS domain in 2008 (a); locations of two regions of interest centered over flux tower sites in (b) California (ROI1) and (c)
Nebraska (ROI2); 30m cropland patterns over ROI1 (d) and ROI2 (e) are also shown, along with variations of mean annual precipitation, reference ET (ETref) and
climate aridity index (AI) during 2008–2017 for the ROI1 (f) and ROI2 (g) sub-regions. The AI classifications represent: hyper-arid (AI< 0.05), arid
(0.05≤AI<0.20), semi-arid (0.20≤AI< 0.5), sub-humid (0.50≤AI≤0.65), and humid (AI> 0.65) categories.

Table 1
Summary of the seven CONUS cropland flux tower sites used in this study.

Tower site Latitude Longitude Date period Crop Reference

US-ARM 36.6058 −97.4888 2008–2012 Maize, winter wheat Fischer et al. (2007)
US-Ne1 41.1651 −96.4766 2008–2012 Maize, soybean Suyker et al. (2005)
US-Ne2 41.1649 −96.4701 2008–2012 Maize, soybean Suyker et al. (2004)
US-Ne3 41.1797 −96.4397 2008–2012 Maize, soybean Suyker et al. (2004)
US-Tw2 38.1047 −121.643 2012–2013 Maize Knox et al. (2015)
US-Tw3 38.1159 −121.647 2013–2014 Alfalfa Oikawa et al. (2017)
US-Twt 38.1087 −121.653 2009–2014 Rice Baldocchi et al. (2016)
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contrasting climate and crop conditions encompassing the general
range of CONUS cropland and ET variability.

2.2. MOD16 ET algorithm

The MOD16 ET algorithm (Mu et al., 2011, 2007) is based on the
well-known Penman-Monteith equation (Eq. (1)). The algorithm cal-
culates evaporation from the soil and wet canopy, along with plant
transpiration, while the ET is derived as the daily sum of these com-
ponents. A detailed description of the MOD16 algorithm is provided by
(Mu et al., 2011), and summarized below.

=
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Where λE is the latent energy of ET (Wm−2), which can be con-
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sistances to evaporation, respectively, which are among the most im-
portant variables in the algorithm, especially in calculating transpira-
tion (Mu et al., 2011). In the plant transpiration process, rs represents
the surface resistance to canopy transpiration, which is equivalent to
the inverse of canopy conductance (Cc), and calculated as follows (Mu
et al., 2011).
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Stomatal conductance (Gs
1, m s−1) is constrained by dimensionless

scalars ranging between 0 (fully constrained) and 1 (no constraint) for
VPD (m(VPD)) and daily minimum air temperature (m(Tmin)), corrected
by the function, rcorr, indicating stomatal conductance variations with
air temperature and atmospheric water demands. Pa (Pa) is the atmo-
spheric pressure, calculated as a function of elevation. Gcu (m s−1) is the
leaf cuticular conductance, while Gs

2 (m s−1) is the leaf boundary-layer
conductance, and gcu is the leaf conductance per unit leaf area index
(LAI, m2m−2), prescribed as a constant (0.00001m s−1). Fwet is the
water cover fraction within a grid cell, estimated from the relative
humidity. All of the parameters (CL, Tminopen, Tminclose, VPDopen, VPDclose,

glsh) in Eqs. (2)–(9) are vegetation-specific, and defined from a global
Biome Property Look Up Table (BPLUT) in the MODIS MOD16A2 op-
erational product (Running et al., 2018), where the BPLUT only defines
a single cropland biome type.

In this study, we developed a more detailed MOD16 BPLUT cali-
bration and parameterization that distinguishes C3 and C4 crop types
for estimating ET. Model simulations were conducted using both the
original BPLUT representing a single global crop type (Running et al.,
2018) and the new BPLUT C3 and C4 crop type parameterizations to
clarify the impact of the more detailed crop type delineation on model
ET performance. Approximately 30 site-years of observations from
seven CONUS cropland flux tower sites were used for model calibration
and validation. The tower site records included 18 site-years re-
presenting C4 crops (maize) and 12 other site-years representing C3
crops, including soybean, winter wheat, rice and alfalfa. The sensitivity
of the major MOD16 BPLUT parameters were checked against tower
observations at each of the seven cropland tower sites. The model
sensitivity results indicated that CL, VPDclose, and VPDopen (Eqs. (2) and
(5)), used for calculating the surface resistance to plant transpiration,
were the three most sensitive parameters in simulating cropland ET
(results not shown). The Markov Chain Monte Carlo (MCMC) method
was used for simultaneous iterative calibration of the three model
parameters (Table 2) by minimizing the root mean square error (RMSE)
between model ET calculations and ETflux. The model BPLUT calibra-
tion was conducted separately for C3 and C4 crop types. Two-thirds of
the tower based ET estimates were randomly selected for model cali-
bration, while all available tower observations were used for model ET
validation.

Several different ET model scenarios were used in this study and
summarized in Table 3. ETsim is the 30-m cropland ET derived from the
MOD16 ET algorithm using the original BPLUT, while ET30m represents
the 30-m cropland ET calculated from MOD16 ET algorithm with the
updated BPLUT representing both C3 and C4 crops. Both ET30m and
ETsim use the same 30-m vegetation and 4-km daily surface meteor-
ology inputs (described below), which provide 12–16-fold resolution
enhancement over the MOD16A2 operational ET product.

In this study, all of the data including model inputs and MODIS
products are converted to a consistent geographic projection and
WGS84 datum. Daily meteorological data are used as key model dri-
vers, including shortwave solar radiation, surface air temperature, VPD
and relative humidity. The MOD16A2 operational product uses daily
surface meteorology inputs from the ~ 0.5° resolution NASA Global
Modeling and Assimilation Office (GMAO) product (Schubert et al.,
1993). In this study we used a finer resolution (4-km) CONUS daily
surface meteorology record from the University of Idaho Gridded Sur-
face Meteorological dataset (Gridmet; Abatzoglou, 2013). The ET
model calculations in this study were conducted on a daily basis for
each 30-m cropland grid cell defined from the annual CDL land cover
record and fused Landsat-MODIS EVI record (described below). The
MODIS daily 500-m global albedo product (MCD43A3 v6; Schaaf and
Wang, 2015) was used to derive the available surface solar radiation.
The resulting model daily ET calculations were then averaged over a
coarser 8-day time step for each grid cell, consistent with the MOD16A2
ET record.

The estimated 30-m 8-day ET record from this study was compared
against the 500-m 8-day MODIS MOD16A2 (v6) ET product (ETMOD16)
over the CONUS cropland domain and 2008–2017 study period. The
MODIS annual 500-m land cover product (MCD12Q1 Type 2; Friedl and

Table 2
The calibrated parameters used in this study for C3 and C4 crops.

Crop type VPDclose (pa) VPDopen (pa) CL (m s−1)

C3 4347 804 0.014
C4 4575 885 0.016
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Sulla-Menashe, 2015) is used in this study to characterize cropland in
the ETMOD16 product. Since the MCD12Q1 land cover product only
extends to 2016, we used the 2016 land cover information to represent
2017, assuming no obvious land cover changes between the two years.

2.3. Generating 30-m 8-day Landsat-MODIS fused EVI data for CONUS
over 2008–2017

In the original MOD16 algorithm logic, EVI is used for estimating
the vegetation canopy cover fraction (Fc; Eq. (10)) for partitioning net
radiation between the canopy and soil surface (Mu et al., 2007).

= −
−

Fc EVI EVI
EVI EVI

in

max min

m

(10)

where EVImin and EVImax are the minimum and maximum EVI during
the study period, respectively. In the current study, a pixel-wise linear
regression model is developed to generate a 30-m 8-day EVI record to
calculate Fc for the cropland ET calculations. The 30-m EVI record was
derived by empirically fusing similar overlapping EVI records from
MODIS and Landsat (5 and 7) over CONUS croplands using the Google
Earth Engine (GEE) platform, which includes extensive geospatial data
libraries and provides efficient and fast calculations involving very
large datasets. The 30-m surface reflectance data for bands 1 (blue), 3
(red) and 4 (near infrared) from Landsat 5 and 7 had a 16-day revisit
interval, and were processed to screen out cloud-contaminated pixels.
The remaining clear-sky spectral data were used to derive the Landsat
30-m EVI record (Huete et al., 1997). Similar surface reflectance data
for bands 1 (red), 2 (near infrared), and 3 (blue) from the 500-m 8-day
MODIS surface reflectance product (MOD09A1 v6; Vermote, 2015)
were also extracted and screened for cloud-contaminated pixels to
calculate the coarser resolution MODIS EVI record. Since MODIS and
Landsat provide similar spectral vegetation information for the same
region and time period, we assumed that the overlapping EVI retrievals
from these sensors are consistent and comparable. We therefore de-
veloped a pixel-wise linear regression model describing relationships
between Landsat and MODIS EVI retrievals for each year of record
following a similar approach developed for estimating CONUS cropland
productivity (He et al., 2018). The resulting models were then used to
generate a continuous 30-m 8-day EVI product for the CONUS domain
from 2008 to 2017, which was used as a model input to derive cropland
ET simulations at the same scale using the MOD16 framework.

2.4. Cropland reference ET and actual ET calculations

The standardization of the ETref calculation (Eq. (11); Allen et al.,
2005), as recommended by the Task Committee on Standardization of
Reference Evapotranspiration of the ASCE-EWRI, is simplified from the
Penman-Monteith equation (Eq. (1)):
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where s is the slope of saturation vapor pressure-temperature curve
(kPa °C−1); Rn is the net solar radiation at the crop surface (MJm−2

d−1); G is the soil heat flux density (MJm−2 d−1); γ is the

psychrometric constant (kPa °C−1); Cn and Cd (Kmm s3Mg−1 d−1) are
constant values based different reference vegetation surfaces (grass and
alfalfa); T (°C) is the mean daily air temperature at 1.5 to 2.5m height;
u2 (m s−1) is the mean daily wind speed at 2m height; and VPD (kPa) is
the vapor pressure deficit at 1.5 to 2.5 m height (Allen et al., 2005).

Here, ETref (mm d−1) is derived for an alfalfa reference condition at
a daily time step using the 4-km Gridmet meteorological data from
2008 to 2017 across the CONUS domain. Empirical crop coefficients
(Kc) are incorporated to estimate actual cropland ET (AET) from ETref

using the following equation.

= ∗AET ET Kcref (12)

Kc represents the ratio of AET to ETref for different crop types and
growth stages, while Kc values for the major CONUS crop types were
obtained from the US Bureau of Reclamation's AgriMet program
(https://www.usbr.gov/pn/agrimet/cropcurves/crop_curves.html).
The Kc values were spatially applied to the 4-km ETref calculations to
derive 30-m AET over the CONUS croplands and 2008–2017 study
period, where annual crop type and cropland area were defined from
the USDA NASS CDL. The AET results were then used with the other ET
metrics (ETMOD16, ETsim, ETflux) for validating the ET30m record.

2.5. Statistical metrics

In this study, the ET estimates, including ETMOD16, ETsim, ET30m and
AET, were extracted as spatial mean values within a 1-km by 1-km
window centered over each tower site, which is similar to the tower
observation footprint (Baldocchi et al., 2001), and compared with the
associated tower ETflux observation. However, the 4-km ETref was ex-
tracted from the same locations as the tower observations. Model per-
formance was evaluated using the coefficient of determination (R2),
RMSE and bias between the model ET estimates (ETsim, ETMOD16,
ET30m, ETref and AET) and the corresponding tower ETflux observations.
The RMSE and bias were expressed as relative percentages of ETflux for
the model assessment. Pearson's correlation coefficient (r) was also used
to evaluate the sign and strength of the relationships between the model
ET estimates and selected climate variables, where significant re-
lationships were assessed at the 95% significance threshold (p-
value≤0.05).

3. Results

3.1. CONUS cropland 30-m ET simulations

The ETMOD16 record shows relatively good correspondence with
ETflux for both C3 and C4 crop types represented at the seven CONUS
tower sites examined (Fig. 2, Table 4). In this study, the ET model
performance was evaluated at the 8-day time step consistent with the
MOD16A2 operational ET product, while the daily model ET results
(not shown) were found to be consistent with the coarser averaged 8-
day results. For all of the cropland tower sites, ETMOD16 explains about
54% of the variability in the ETflux observations, but with large un-
certainty (62%≤ relative RMSE ≤63%; Table 4), and general over-
estimation (9%≤bias ≤15%) compared with ETflux. The ETsim results
show stronger correspondence with ETflux than ETMOD16, with

Table 3
Descriptions of different ET estimates included in this study.

Terminology Description Resolution

ETflux ET estimates derived from tower latent heat flux observations Site-level, 8-day
ETMOD16 MODIS MOD16A2 global operational ET product (version 6) 500-m, 8-day
ETsim Cropland ET estimates derived from MOD16 ET algorithm with the original BPLUT 30-m, 8-day
ET30m Cropland ET estimates derived from MOD16 ET algorithm with the calibrated parameters distinguishing C3 and C4 crops 30-m, 8-day
ETref Reference ET derived from Eq. 11, defining the potential upper bound of ET under variable climate conditions 4-km, 8-day
AET Cropland actual ET derived from ETref and crop coefficients (Kc) in Eq. 12 30-m, 8-day
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approximately 16 to 20% higher R2 correspondence and slightly re-
duced RMSE (Table 4). The improved ETsim performance reflects better
representation of field scale ET heterogeneity relative to the coarser
MOD16A2 record. However, the ETsim results show systematic ET un-
derestimation relative to the ETflux observations, with negative bias of
−0.25mm d−1 (−19%) for all crop sites examined (Table 4). These
results indicate the potential for further model enhancement through
BPLUT calibration refinements that better represent C3 and C4 crop
type characteristics.

The ET30m results explain about 64%, 71% and 69% of the varia-
bility in the tower ETflux observations for C3, C4 and all crop types

represented, respectively (Fig. 2, Table 4). No apparent ET30m bias was
found relative to the tower ETflux observations at these sites (Table 4).
Moreover, the ET30m results show 26% ~ 29% (8% ~ 9%) stronger
correspondence and 12% ~ 16% (10% ~ 16%) lower RMSE than the
ETMOD16 (ETsim) results relative to ETflux. These results indicate im-
proved ET30m accuracy and performance in representing both field
scale cropland ET dynamics and crop type differences across the
CONUS tower sites. The ET30m results show marked accuracy and
performance enhancement over ETMOD16 that reflect the advantages of
finer 30-m model land cover (CDL) and vegetation (EVI) inputs, and the
improved resolution (4-km) of the Gridmet meteorological inputs re-
lative to the global baseline. Unlike ETMOD16 and ETsim, the ET30m re-
sults also benefit from a refined model BPLUT that distinguishes C3 and
C4 crop types (Table 2). Overall, the ET30m results show generally
improved model consistency in representing the observed cropland ET
seasonal variability and magnitudes.

The variations of annual cropland ET30m for different crop types in
2008 are shown in Fig. 3. The mean annual cropland ET30m is about
467.46 ± 171mm yr−1 over the study domain in 2008, while C4 crops
show approximately 3% larger annual ET30m rates than C3 crops
(Fig. 3). Differences in annual ET30m distributions across the five major
CONUS crop types (alfalfa, barley, maize, soybean and wheat) are
presented in Fig. 3. Maize is one of the major C4 crops and is widely
distributed across the domain. Maize also shows 3% ~ 6% larger annual
ET30m than the four major C3 crop types (Fig. 3); whereas, barley (C3)
shows the smallest annual ET30m (448.29mm yr−1) among the selected

Fig. 2. Comparisons between flux tower based ET observations (ETflux) and corresponding ET estimates from the MODIS MOD16A2 (v6) 500-m 8-day operational
product (ETMOD16); finer 30-m ET estimates derived using the MOD16 ET algorithm with original BPLUT (ETsim), and the new BPLUT with calibrated C3 and C4
cropland parameters (ET30m). The models are evaluated against tower ET observations (ETflux) at seven cropland sites representing different CONUS climate, crop
type and management practices.

Table 4
Statistical comparisons between flux tower ET observations (ETflux) and the
MODIS operational ET product (ETMOD16), 30-m ET estimates derived using the
MOD16 ET algorithm with the original BPLUT (ETsim) and the new calibrated
cropland parameters at seven CONUS flux tower sites (ET30m).

Crop type ETMOD16 ETsim ET30m

R2 RMSE
(mm
d−1)

Bias
(mm
d−1)

R2 RMSE
(mm
d−1)

Bias
(mm
d−1)

R2 RMSE
(mm
d−1)

Bias
(mm
d−1)

C3 0.51 0.75 0.17 0.59 0.73 −0.20 0.64 0.66 0.06
C4 0.55 0.86 0.13 0.66 0.86 −0.27 0.71 0.73 0.03
Total 0.54 0.82 0.15 0.64 0.81 −0.25 0.69 0.70 0.04
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major crops in 2008.

3.2. Site and regional model performance evaluation in California (ROI1)

The California sub-region (ROI1) encompasses three tower sites
representing major crop types (alfalfa, maize, winter wheat) under arid
to semi-arid climate conditions (AI= 0.20 ± 0.08; Fig. 1f). At the site-
level, the ET30m and AET model results were sampled as spatial mean
values within 1-km2 windows centered over each ROI1 tower site and
evaluated against collocated ETflux observations representing maize
(US-Tw2), alfalfa (US-Tw3), and rice (US-Twt) crop types (Fig. 4); the
results were also compared with alternative ETMOD16 and ETref esti-
mates within ROI1 surrounding these tower sites (Fig. 5).

At all three tower sites, ETref, AET, and ET30m show similar seasonal
cycles as ETflux, while ETMOD16 shows slightly different seasonal dy-
namics during the study period (Fig. 4). ETref and AET are much higher
than the ETflux observations and other model results (ETMOD16, ET30m)
at all three tower sites, especially during the peak growing season (May
to August; Fig. 4); whereas the ET30m and ETMOD16 results are similar in
magnitude. ET30m shows stronger agreement with the ETflux observa-
tions at US-Tw2 (maize) than that at US-Tw3 (alfalfa) and US-Twt (rice)
sites, with higher R2 (0.72) and lower RMSE (0.53 mm d−1) and bias
(−0.13mm d−1) (Fig. 4). AET captures 44% ~ 64% seasonal variations
of ETflux, but with large overestimation (69% ~ 161%) of ETflux at the
three tower sites. ETref shows even larger overestimation of ETflux than
AET (Fig. 4), with relative bias of 134% ~ 260% at the tower sites;
however, ETref still captures 44% ~ 77% of the ETflux observed tem-
poral variability at these sites. Overall, in terms of seasonal dynamics
and magnitude, ET30m shows the best performance against the tower
ETflux observations at the three California cropland sites relative to the
other ET metrics, including the highest R2 (0.61), lowest RMSE
(0.95 mm d−1) and lowest bias (−0.37mm d−1).

The regional patterns of mean annual ET from the different models
and 2008–2017 study period within ROI1 are presented in Fig. 5. ETref

shows much higher values in this region compared with AET, ETMOD16

and ET30m, along with a decreasing west-to-east trend (Fig. 5). The
large ETref magnitude in this region is expected due to the semi-arid
climate, which enhances atmospheric moisture holding capacity and
potential ET. The AET metric derived from ETref also shows very high
values (≥1100mm yr−1) in the southwest and northwest portions of
the region dominated by maize and alfalfa (Fig. 5b), and relatively low
values in the west of ROI1, where winter wheat is the dominant crop.
The ETMOD16 results show relatively low spatial heterogeneity in the

region owing to the coarser resolution vegetation (500-m) and me-
teorological (~ 0.5°) inputs used in the MOD16A2 global product;
however, the ETMOD16 results still reveal generally higher ET values in
the south, northwest and southeast portions of ROI1 (Fig. 5c). The
ET30m results show relatively lower annual ET across ROI1 than the
AET and ETMOD16 results, but with large spatial heterogeneity (Fig. 5d).
The ET30m results also show a strong regional gradient ranging from
500 to 700mmyr−1 in the southern portion of ROI1 composed mainly
of maize and alfalfa, to< 200mm yr−1 in the western and northeast
portions of the region representing winter wheat (Fig. 5d). The ET30m

results also show a strong delineation of ET variability within and
across different agricultural fields that are reduced or missing from the
coarser ETMOD16 product (Fig. 5).

3.3. Spatiotemporal variations of cropland ET from 2008 to 2017 in
Nebraska (ROI2)

The ability of the model ET30m record to represent ET variability
due to both climate and annual variations in crop type and area is
evaluated relative to ETMOD16 over the 2008–2017 study period within
a selected 50 km×75 km sub-region in Nebraska (ROI2; Fig. 1c). ROI2
is in the same size as ROI1, and also encompasses three cropland tower
sites, but with different climate conditions and crop types represented
(Fig. 1e, g). The major ROI2 crop types include maize, soybean and
winter wheat, with frequent crop rotations, while the regional climate
ranges from semi-arid to sub-humid (AI= 0.53 ± 0.10) with annual
precipitation of 841 ± 173mm yr−1 over the 2008–2017 record.

The mean annual ET30m in ROI2 is 327 ± 220mm yr−1 (Fig. 6a)
over the study period, though some areas dominated by winter wheat
show a lower annual rate (≤ 200mm yr−1). The ETMOD16 record de-
picts higher ROI2 mean annual values (475mm yr−1) and lower spatial
heterogeneity (78mmyr−1) than ET30m over the study period (Fig. 6a,
c). Similar to the ROI1 results, the ET30m results preserve field level ET
patterns better than the coarser ETMOD16 record in ROI2, despite dif-
ferences in cropland characteristics between the two sub-regions.

The ET30m results show both increasing and decreasing ET trends
across ROI2 from 2008 to 2017 (Fig. 6b). Specifically, the fluctuation of
ET30m over the ten-year study period is relatively small in the central
area of ROI2, ranging from −4 to 4mm yr−2 (Fig. 6b). The ET30m re-
sults show a decreasing ET trend in the northwest and southeast areas
of ROI2, and an increasing ET trend in the western and eastern portions
of the region. Areas with small mean annual ET30m (Fig. 6a) generally
show an increasing trend (Fig. 6b). In contrast, the ETMOD16 record
shows a larger and more uniform ET increase (> 10mmyr−2) over the
study period and ROI2 region (Fig. 6d). The largest ETMOD16 increase
(~ 40mm yr−2) is shown in the eastern and southwest areas of ROI2
(Fig. 6d), where ET30m also shows a relatively large increasing trend (~
20mm yr−2; Fig. 6b). However, the ETMOD16 record shows an in-
creasing trend (20–35mm yr−2) in the southeast area of ROI2, con-
trasting with a minimal or small decreasing ET30m trend (0 ~
−10mm yr−2) for the same area.

The spatial mean of annual ET30m for ROI2 ranges from a low in
2014 (415.61mm yr−1) to a peak in 2012 (635.07mm yr−1), with no
obvious trend over the period of record (Fig. 7a). The spatial mean of
annual ETMOD16 for ROI2 shows a weak (p=0.21) increasing trend
during the study period, with the smallest value (375.98 mmyr−1) in
2012 (Fig. 7a). 2012 was also the driest year of record (i.e. AI= 0.21)
over the 2008–2017 period in this region, indicating greater atmo-
spheric moisture demand and cropland water requirements for this
year. Furthermore, the tower ETflux at the three different cropland sites
in this region (US-Ne1, US-Ne2 and US-Ne3) all show higher annual ET
in 2012 (~ 469.17mm yr−1) relative to other years of record
(2008–2011) ranging from 432.17 to 454.13mm yr−1. The mean an-
nual ETflux from the three ROI2 tower sites shows a significant de-
creasing trend (r=−0.73; p < 0.05) with more humid climate con-
ditions (Fig. 8), indicating that crop water demands are higher under

Fig. 3. Dynamics of annual 30-m cropland ET estimates from this study (ET30m)
for all CONUS croplands (Total), along with finer delineations for C3, C4, al-
falfa, barley, maize, soybean and wheat (spring, winter, and durum) crop types
in 2008.
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dry conditions and lower in more humid conditions within the semi-
arid to sub-humid (0.20≤AI≤0.65) ROI2 domain. The spatial mean of
annual ET30m in ROI2 also exhibits higher values under drier conditions
and lower values in more humid conditions (Fig. 8); this pattern con-
trasts with a weak increasing trend (r=0.51; p=0.14) in the ROI2
annual ETMOD16 results under more humid conditions.

Many CONUS croplands undergo periodic crop rotations, changing
crop type, area and ultimately cropland ET over time. The NASS
cropland area in ROI2 fluctuates during the study period and shows a
significant (r=0.92; p < 0.05) increasing trend of 2.65*103 ha yr−1,
ranging from a low of 2.34*105 ha in 2010 to a peak of 2.60*105 ha in
2017 (Fig. 7a). Annual cropland variability depicted from the NASS
CDL and the resulting spatial mean values of the annual ET30m results
for C3 and C4 crops is shown for ROI2 over the 2008–2017 record
(Fig. 7b). The ET30m results in this region show similar ET inter-annual
variability between C3 and C4 crop types, with the highest and lowest
ET rates in 2012 and 2014, respectively (Fig. 7b). No apparent ET
trends are indicted for ether C3 or C4 crop types, though the C4 crops
show 3% larger ET interannual variability and 4% larger annual ET30m

in this region. C4 crops show a stronger increasing trend (1780 ha yr−1;
p < 0.05) in cropland area than C3 crops (870 ha yr−1; p=0.21),
making a larger (11%) contribution to the observed increase in total
cropland area in ROI2. C3 and C4 crops represent about 89% and 94%
of the inter-annual variation in total cropland ET (ET30m) in ROI2,

respectively. These results imply that the representation of C3 and C4
crop types is a prerequisite for more accurate model ET assessments of
heterogeneous croplands, especially at field scale.

4. Discussion

The satellite based ET30m results from this study encompass all
CONUS croplands defined from USDA NASS annual cropland classifi-
cations and are derived using 30m 8-day vegetation (EVI) and 4 km
daily meteorological inputs using model parameters optimized for C3
and C4 crop types. The ET30m results from this study explained about
64% of the variance in ETflux observations across seven diverse CONUS
cropland tower sites, which is comparable with the North American
Land Data Assimilation System project phase 2 (NLDAS-2) estimated ET
performance for six CONUS cropland tower sites (Xia et al., 2015). The
Surface Energy Balance Algorithm for Land (SEBAL) showed relative ET
biases of 21% ~ 24% and −15% ~ −30% in California maize and rice
fields (Biggs et al., 2016); whereas our results show improved ET30m

relative biases of −8.6% and −23% over California maize and rice
fields, respectively. The ET30m results also exhibit higher correspon-
dence (R2=0.86–0.91) with the ETflux observations at the US-Ne1, US-
Ne2 and US-Ne3 sites, which is similar to the reported accuracy at-
tained from the SEBAL and SEBS ET models at these same sites (Singh
and Senay, 2015).

Fig. 4. Seasonal variations of reference ET (ETref), actual ET derived from ETref (AET), MODIS MOD16A2 ET (ETMOD16) and finer 30-m ET estimates derived from this
study (ET30m) for three cropland flux tower sites (US-Tw2, US-Tw3 and US-Twt) within a California cropland sub-region (ROI1) from 2008 to 2017.
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Fig. 5. Spatial patterns of mean annual reference ET (ETref, a), actual cropland ET derived from ETref (AET, b) using crop-specific Kc values, MODIS MOD16A2 for
cropland (ETMOD16, c) and 30-m cropland ET estimates derived from this study (ET30m, d) for the California sub-region (ROI1) during the 2008–2017 study period.

Fig. 6. Spatial distributions of mean annual 30-m cropland ET estimates derived from this study (ET30m, a) and the 500-m MODIS MOD16A2 ET product (ETMOD16, c)
for the selected Nebraska cropland sub-region (ROI2) and 2008–2017 study period; the associated temporal trends in annual ET30m (b) and ETMOD16 (d) are also
shown.
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The sensitivity of the ET simulations to regional climate variability
within two different CONUS sub-regions over the 10-year (2008–2017)
study period was explored in this study. The 30-m and 8-day cropland
ET estimates using the MOD16 ET algorithm with the updated BPLUT
(ET30m) were strongly correlated with air temperature (T) and vapor
pressure deficit (VPD) over the Nebraska sub-region (ROI2), respec-
tively accounting for 67% and 62% of cropland ET variability, and
indicating that T and VPD are major contributing factors influencing ET
variations in this semi-arid to sub-humid region. For the California sub-
region (ROI1), the ET30m results showed lower, but moderate corre-
spondence with T and VPD (R2= 0.40 and 0.30, respectively), sug-
gesting that T and VPD still have a significant impact on cropland water
losses under the drier climate conditions.

The favorable ET30m performance was largely attributed to the
improved model delineation of cropland heterogeneity from the finer
(30m) vegetation (EVI) and land cover (NASS CDL) inputs, and model
crop type (C3, C4) calibrations (Figs. 5, 6). However, the above results
also highlight the potential impact of the meteorological inputs on
model ET error (Wu et al., 2017; Zhao et al., 2006). The MOD16A2 (v6)
ET product (ETMOD16) uses relatively coarse (~ 0.5°) resolution global
daily meteorological inputs, limiting model performance in hetero-
geneous regions (Khan et al., 2018; Wang et al., 2015). In this in-
vestigation, much finer (4-km) resolution daily meteorology from the
CONUS Gridmet record provided the inputs for the model ET30m cal-
culations, providing>12-fold improved resolution in surface

meteorology over the global product, and with favorable regional ac-
curacy (Abatzoglou, 2013). The enhanced meteorological inputs likely
contributed to the improved ET30m accuracy relative to the MOD16A2
global ET product (Running et al., 2018), though the 4-km Gridmet data
may still be too coarse to capture field scale (30-m) meteorological
heterogeneity, including the effects of irrigation and other land man-
agement practices (Abatzoglou, 2013; Blankenau, 2017). Further study
is needed to fully distinguish the component contributions of the var-
ious inputs to the model ET30m performance.

The 30m EVI record used for the ET30m calculations in this study
was produced using an empirical linear regression approach across the
CONUS cropland domain and 2008–2017 study period by combining
similar spectral information from Landsat (5 and 7) and overlapping
MODIS data. A similar Landsat-MODIS data fusion approach was suc-
cessfully used to generate a 30-m NDVI (normalized difference vege-
tation index) record for estimating CONUS cropland productivity (He
et al., 2018). The EVI records from Landsat (5 and 7) and MODIS show
favorable correspondence over both ROI1 (r=0.59 ± 0.24;
p < 0.05) and ROI2 (r=0.90 ± 0.12; p < 0.05) during the study
period, supporting the underlying assumption of similar overlapping
spectral vegetation information from both sensors. The EVI record was
used in the MOD16 algorithm to determine available radiant energy
and vegetation, and soil contributions to ET. While the empirical EVI
downscaling approach used in this study is suitable for our MOD16 ET
agricultural application, the vegetation signal may be degraded over
complex landscapes due to different sensor footprints and view geo-
metry, and timing of observations (Gao et al., 2017; Ju and Roy, 2008;
Robinson et al., 2017). Uncertainties in the fused EVI record can
therefore propagate into spatial and temporal errors in the resulting ET
record, particularly where Landsat observations are sparse or the spatial
scale of EVI variability is below the 500-m MODIS footprint.

An enhanced calibration for C3 and C4 croplands was used to derive
ET30m using the MOD16 ET algorithm. However, the model was cali-
brated and validated against ETflux observations from only a small
number of available CONUS cropland tower sites, which may limit
model performance over other regions and crop types. Further model
refinements, including more detailed calibrations for different crop
types, may benefit from additional cropland tower site records poten-
tially available from the global FLUXNET database (Baldocchi et al.,
2015). Additionally, the tower ETflux estimates used for the model va-
lidation represent a 100–2000m sampling footprint (Schmid, 1994),
which is too coarse for resolving finer spatial heterogeneity at the level
of the ET30m model calculations. Although tower observations have
been successfully used for model ET calibration and validation in prior
studies (e.g. Senay et al., 2016; Yang et al., 2017), finer resolution
water flux measurements (e.g. lysimeters) would enable more precise
model assessments, but these data are generally unavailable over large
regional extents.

Fig. 7. (a) Annual variations in cropland area, annual 30-m cropland ET estimates derived from this study (ET30m) and the MODIS MOD16A2 product (ETMOD16) for
the Nebraska sub-region (ROI2) and 2008–2017 study period; (b) Annual variations of C3 and C4 crop areas in ROI2 defined from the NASS CDL, along with the
associated regional mean values of annual ET30m over the period are also shown.

Fig. 8. Correlations between climate aridity index (AI) and mean annual ETflux

from 2008 to 2014 for three Nebraska flux tower sites (US-Ne1, US-Ne2 and US-
Ne3); the ROI2 spatial mean annual ET estimates derived from this study
(ET30m), and the MODIS MOD16A2 product (ETMOD16) are also shown for the
same period.
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While the ET30m results appear to provide for effective ET mon-
itoring over heterogeneous croplands and represent a significant im-
provement over the other ET records examined in this study, there are
several remaining limitations. First, while spatial and annual variations
in crop type are represented in the ET30m record from the NASS CDL,
other management practices such as the degree of irrigation are not
directly represented in the model. AET is expected to approach ETref

under active irrigation and likely contributes significant uncertainty to
the ET30m calculations, particularly under strengthening atmospheric
moisture deficits during the growing season. Spatial information on
irrigated lands and irrigation treatments are expected to further im-
prove the accuracy of the cropland ET calculations.

Another source of ET30m uncertainty is the NASS CDL, which is used
in the model to define annual variability in crop type and cropland area
across the domain. The 30-m CDL product is generated using relatively
fine-scale satellite imagery and an empirical decision-tree classifier,
while CDL accuracy is spatially and temporally variable. For example,
the reported CDL accuracy during the 2008–2017 study period ranged
from 74.7% (2010) to 92.5% (2017) for California and from 89.0%
(2017) to 96.4% (2016) for Nebraska. The CDL accuracy may be in-
flated because it does not account for edge effects (Lark et al., 2017)
and may also be lower in regions with complex or sparse agriculture
(Larsen et al., 2015). For example, the US-Twt California tower site
represents paddy rice over the 2009–2014 period overlapping with this
study (Baldocchi et al., 2016). However, the US-Twt site is classified as
rice only for 2010, and maize for the other years of record according to
the CDL; the resulting crop classification error contributes to the re-
sulting ETflux and ET30m discrepancy at this site (Fig. 4). All of the above
factors contribute to uncertainty in the resulting ET30m estimates,
which can degrade the ability of the model record to detect climate and
land use related ET trends.

The MOD16 algorithm does not directly represent soil moisture
related water supply constraints to ET, which may contribute sig-
nificant model uncertainty, particularly at finer spatial and temporal
scales where soil and atmospheric moisture conditions may be un-
correlated (Novick et al., 2016). Crops take water from soil through
their root system in order to meet atmospheric moisture demands
through transpiration, regulated by canopy stomatal control; ET is
therefore strongly sensitive to soil moisture variability (De Lannoy
et al., 2006; Sun et al., 2013). Global soil moisture observations are now
routinely collected from operational satellite microwave sensors, in-
cluding the NASA SMAP (Soil Moisture Active Passive) mission which
provides enhanced L-band microwave sensitivity to soil moisture with
1–3-day temporal fidelity but at coarse (9–36 km) spatial resolution
(Colliander et al., 2017; Reichle et al., 2017). Despite the coarse foot-
print, the SMAP observations are sensitive to cropland soil moisture and
irrigation (Lawston et al., 2017), and have been found to improve the
performance of satellite based ET assessments (Purdy et al., 2018). Si-
milar satellite soil moisture observations may further improve MOD16
ET performance, especially in water-limited regions. Adding daily
precipitation into the MOD16 algorithm could also improve the model
performance, since daily precipitation is the driving factor of daily soil
water balance, especially at local scales (Rodriguez-Iturbe, 2000). Thus,
more sophisticated approaches may be needed for more precise deli-
neations of climate related impacts affecting ET modeling and trends.
Despite the above limitations, the MOD16 algorithm provides an ef-
fective framework for field scale cropland ET monitoring based on the
well-known Penman-Monteith logic, and directly traceable to the NASA
MODIS MOD16A2 operational global ET product. MOD16 also provides
a flexible framework for further refinements to improve model perfor-
mance and utility for agricultural water management and policy ap-
plications.

5. Conclusion

This study improves the delineation of field scale (30-m) ET

dynamics over CONUS croplands using a satellite-based modeling fra-
mework similar to the MODIS MOD16A2 global operational ET pro-
duct. We used a refined MOD16 algorithm logic calibrated for C3 and
C4 crop types, along with enhanced model inputs including 30-m ve-
getation (EVI) and dynamic cropland cover (NASS CDL), and 4-km daily
surface meteorology (Gridmet). The resulting 30-m 8-day MOD16
cropland ET calculations (ET30m) showed favorable performance
against ET observations (ETflux) from seven CONUS cropland flux tower
sites (R2= 0.69; relative RMSE=53%; relative bias= 3%). The ET30m

results also showed better performance than alternative ET estimates
from the MODIS MOD16A2 global product (ETMOD16) and MOD16
calculations derived using finer (4-km) meteorological inputs but
parameterized for only a single global cropland biome type (ETsim).
Relative to ETMOD16 and ETsim, the ET30m results exhibited respective
8% and 29% enhancements in R2 correspondence, 9% reductions in
RMSE, and 22% and 8% smaller relative biases in capturing ETflux

seasonal dynamics over the cropland tower sites. More traditional
cropland ET (AET) derived from 4-km reference ET (ETref) estimates
and crop specific coefficients (Kc) accounted for approximately 52% of
the observed ETflux variability at the tower sites but with relatively
large overestimation (~ 135%) and degraded performance relative to
the ET30m results. The new fine resolution ET product is effective in
representing field scale cropland ET heterogeneity, crop type differ-
ences and seasonal to inter-annual variability across a diverse range of
climate and cropland conditions within the CONUS domain. This het-
erogeneity is greatly reduced or missing from the coarser 500-m
ETMOD16 global product.
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