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Model predictive control (MPC) has drawn a considerable amount of attention in auto-
motive applications during the last decade, partially due to its systematic capacity of
treating system constraints. Even though having received broad acknowledgements, there
still exist two intrinsic shortcomings on this optimization-based control strategy, namely
the extensive online calculation burden and the complex tuning process, which hinder
MPC from being applied to a wider extent. To tackle these two drawbacks, different
methods were proposed. Nevertheless, the majority of these approaches treat these two
issues independently. However, parameter tuning in fact has double-sided effects on both
the controller performance and the real-time computational burden. Due to the lack of
theoretical tools for globally analyzing the complex conflicts among MPC parameter tun-
ing, controller performance optimization, and computational burden easement, a look-up
table-based online parameter selection method is proposed in this paper to help a vehicle
track its reference path under both the stability and computational capacity constraints.

MATLAB-CARSIM conjoint simulations show the effectiveness of the proposed strategy.
[DOLI: 10.1115/1.4042196]

1 Introduction

Due to its ability of systematical handling states and inputs con-
straints, model predictive control (MPC) gained a great attention
in automotive applications during the last decade. For instance, in
Ref. [1], nonlinear MPC algorithms were designed to restrict esti-
mated ammonia coverage ratios within the target regions in order
to maintain the performance of a degraded selective catalytic
reduction system. In Ref. [2], MPC-based torque-split strategies
for hybrid electric vehicles demonstrated satisfying fuel saving
result. In Ref. [3], both holistic and hierarchical MPC controllers
were utilized to stabilize a critically unstable vehicle by control-
ling the independent braking toques of rear wheels. In addition, in
Ref. [4], a linear-time-varying (LTV) MPC controller was
designed to coordinate active front steering (AFS) system and
independent wheel braking/tracking for helping a car follow its
reference path.

Even with the prevalence of MPC, two inherent drawbacks of
this optimization-based control law, which indeed impede its real-
time implementation, remain salient. On the one hand, the
receding-horizon characteristic of MPC necessitates in solving a
constrained optimization problem within each sampling interval,
which leads to an extensive calculation burden. On the other hand,
an MPC controller typically includes a considerable number of
parameters to be tuned, which can be a laborious task especially
when multiple competing objectives exist. To tackle these two
aforementioned issues, substantial efforts have been made. To
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alleviate the huge computational burden of MPC, the explicit
MPC [5] solves the optimization problem offline and exploits a
look-up table to realize online evaluation. However, explicit MPC
can only treat the optimization problem with a relative small
dimension: a few states or/and manipulated variables, loose con-
straints, and short prediction horizon, etc., and cannot handle
time-varying systems [6]. Besides, several mechanisms have been
proposed to decrease the dimension of the constrained optimiza-
tion problem and consequently to mitigate the computational bur-
den. For instance, in Ref. [7], a Kreisselmeier—Steinhauser
function was employed to replace soft constraints of the optimiza-
tion problem. In Ref. [8], a combination of the “moving block”
and the “constraint set compression” strategies exhibited a favor-
able computational efficiency. In addition, efficient optimization
solvers, such as the Newton—Raphson iteration [9], were also pro-
posed to accelerate problem solving. Apart from the theoretical
progress, hardware advances with field-programmable gate array
[10] shed some light on the possibility of rapid implementation of
MPC on more general embedded systems. Other than the mitiga-
tion of computational load, effective parameter tuning also plays a
crucial role in a successful MPC implementation as well, since it
has a direct influence on the performance of an MPC controller.
Roughly speaking, existing MPC tuning methods in the literatures
could be divided into three groups: thumb rules, auto-tuning strat-
egies, and analytical approaches. Exhaustive tuning guidelines for
MPC controller were introduced in Ref. [11]. However, a common
weakness of these general tuning rules lies in the fact that they
may become invalid when any system constraints become active.
In contrast to the thumb rules, auto-tuning strategies grounded on
genetic algorithms [12], particle swarm optimization [13], or
fuzzy logic [14] change tuning parameter values in a self-adaptive
manner, which could handle constraint violation easily.
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Nonetheless, the auto-tuning strategies make the computational
burden issue of MPC even more pronounced since at each time-
step, an extra optimization problem needs to be solved to simulta-
neously determine the control parameters. Finally, analytical
approaches [15] study the effect of parameter values from a con-
trol theory viewpoint, which create some new tuning guidelines
for MPC.

Even though both the methods that can adequately alleviate
MPC computational burden as well as the approaches that lead to
effective parameter tunings exist in the literature, there are few
techniques treating these two problems within a unified frame-
work. Actually, a group of tuning parameters, which ensures a
higher controller performance, generally renders the optimization
problem to be solved at each time-step more complicated, and
such complicatedness entails a more marked computational bur-
den of the MPC control law. By virtue of the fact that MPC per-
formance and computational burden are closely coupled with each
other, they should be handled dependently instead of separately
when parameters are selected. Due to the lack of theoretical tools
for analyzing the entangled difficulties among efficient MPC
parameter tuning, controller performance optimization, as well as
computational burden easement, a look-up table-based online
parameter selection method of an LTV-MPC controller for vehicle
path tracking is proposed in this paper.

To begin with, a standard LTV-MPC controller was derived.
Then various tuning parameters in the controller were divided
into two groups separately as the significant parameters, i.e., the
prediction horizon, the control horizon, and the sampling period,
and the insignificant parameters, such as the weighting matrices,
hard constraint bounds on system input and system input chang-
ing rate, as well as soft constraint bounds on vehicle tire sideslip
angles for ensuing vehicle stability. Subsequently, methodologi-
cal approaches for tuning the insignificant parameters were
deigned and verified. After that, the performance of the LTV-
MPC controller was quantitatively analyzed from three distinct
aspects, i.e., path-tracking performance, vehicle stability, and
entailed computational load under various combinations of the
three significant parameters. Consequently, three performance
maps as look-up tables were constructed. Finally, grounded in
the three performance maps, a constrained optimal tracking
parameter selection algorithm was proposed to achieve the high-
est attainable path-tracking performance while considering a
minimum stability requirement under a limited exploitable cen-
tral process unit (CPU) computational capacity. The major con-
tribution of this paper is a systematic approach to synchronously
adjust the three significant parameters, i.e., the prediction hori-
zon, the control horizon, and the sampling frequency of the
LTV-MPC controller in real-time to negotiate the intricate con-
flicts among path-tracking performance optimization, vehicle
stability maintenance, and computational load limitation.

The rest of the paper is organized as follows: To begin with,
system modeling and a classical AFS MPC controller are intro-
duced in Sec. 2. Thereafter, insignificant parameters’ setting strat-
egies are illustrated and verified in Sec. 3. The definition of
“significant” and “insignificant” parameters will also be given in
this section. Afterward, controller performance index definitions
are given in Sec. 4, followed by the generation of performance
maps. Subsequently, based on the generated performance maps,
an on-line parameter selection algorithm is proposed and validated
in Sec. 5. As a final point, Sec. 6 concludes the paper.

2 Active Front Steering Model Predictive Control
Controller Design for Vehicle Path Tracking

Since the focus of this paper is to propose a systematic parame-
ter selection approach for extant MPC controllers rather
than designing new controllers, a classical LTV-MPC AFS con-
troller similar in Ref. [4] is utilized here with only minor
improvements.
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2.1 System Modeling. A three degrees-of-freedom bicycle
model for a front steering vehicle is used here to represent the
dynamics of the system, as Ref. [4]

. Fy . F,

Vy = _VxV"’%v Vy = V}'7+Zm \a

Y =v,sin(¥) + vy cos(yh), ¥ =7, (1)
R M.

X = vecos(h) — vy sin(y), 5 ==

with m being the mass of the vehicle; /. as the yaw inertia;
Vi, vy, andy representing vehicle’s longitudinal velocity, lateral
velocity, and yaw rate at the center of gravity (CG); X,Y, andy
demonstrating separately the position of vehicle’s CG in the inertial
coordinate as well as the yaw angle of the vehicle. In addition,
>>Fy,> Fy, and ) M. represent the total lateral tire force, longitu-
dinal tire force, and yaw moment acting on the vehicle, as Ref. [4]

Y Fy = (Fyr+ Fip)sin(0y) + (Fyr + Fyr)cos(6f) + Fyt + Fyy

()
ZFX = (Fy1 4 Fy)cos(dr) — (Fyp + Fyp)sin(dy) + Fug + Fror
3)
ZMZ = lf[(Fup + Fir)sin(0r) + (Fyn + Fyr)cos ()]
= L[Fy + Fyp] + La[(Fyp — Fypr)sin(0f)
+ (=Fu1 + Fyr)c0s(6f) — Fut + Fa] 4)

with I;, 1, l; representing the distances from the CG to the front/
rear axle and the half of the vehicle width, J; as the front road
steering angle of the vehicle, which serves as the unique output
of the MPC controller. Finally, Fy, 1y (i € {(f)ront, (r)ear},
J € {(eft, (r)ight}) exhibit the longitudinal/lateral tire forces act-
ing on each wheel.

To describe the longitudinal and lateral tire forces generated
from the friction between tire and road surface, different tire force
models have been proposed [16]. In this paper, the Brush tire
model in Ref. [17] is applied. The expression of the longitudinal
and lateral tire forces F, at each wheel reads

2 2
- 0 N > tan o
f\/C"(s+1) +C-V(s+1> ©)

1 2 1 3
- + E S 3 FZ7
oV Tt TS o
uF:, f>3uF:

(F., F},)<C,V<H_L1)F/f, —cy(;a:?)F/f) %

where C,; is the longitudinal and cornering tire stiffness of a sin-
gle tire, i represents the tire-road friction coefficient, F; is the ver-
tical tire force, and s and « are separately the tire slip ratio and the
tire slip angle.

The vertical tire force F; acting on each tire can be calculated
as [4]
Fp=m(l.g —ach)/2(ly + 1) — L,mayh/214(l; + 1),

)
Fpo=m(l.g —ach)/2(ly + 1) + Lmayh/21,(I; + 1),
Fzrl = m(lfg + a‘h)/z(lf + l’) - lfmayh/ZId(lf + l")?
Fop =m(lpg +ach)/2(ly + 1) + lrmayh /21,1y + 1))

®)

with 7 as the height of CG and g as the gravity constant.
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In Eq. (5), the tire slip angles and tire slip ratios read [4]

/ 4+
o = tan~! (—Vy + fy) — 5/7 oy = tan~! (—V) + f"/) — 5]07

v — I Ve -+ Ly
V\' B ld: L IAM dy 9)
oy = tan~! <}7") , 0y = tan~! <}7”)
Vy — ldy Vy + ld'})
- waﬂ — Vil B waﬁ. — Vafrr
S ="\ ST .\
max(waﬂ, vxﬂ) max(waf,.7 vxf,.) (10)

Ry — Vin R, — vy,

Sr1 = s S =

max ( Ry, Vi ) max ( Ry Vi )

where R, is the effective rolling radius of each wheel, wy; ;) is the
wheel spinning angular velocity, and v,y; ;) represents the longitu-
dinal velocity at each wheel’s center, whose expressions can be
shown as [4]

vt = Oy + [7)sin(e) + (v — Lp)oos(dy),
v = (vy + py)sin(0f) + (v + Lay)cos(dy),
Vrl = Vx — ldyv

Vir = Vy + ld Y

1D

Equations (1)—(11) constitute the whole dynamics of the sys-
tem. An equivalent compact form can be represented as

{é(r) = (50, u(); 1)
(1) = h(&(1), u(7))
with § = [vy, v, ¥, 7, Y,X]T, n=[.Y, o, 05, oc,.l,oc,.,.]T, u= 0o as

separately the state vector, output vector as well as the unique sys-
tem input. In the output vector 1, the first two items, i.e., the vehi-
cle yaw angle i and the ordinate of vehicle’s CG Y, constitute the
variables to be predicted and controlled toward their referential
values within the prediction horizon, and the tire sideslip angles
of the front-left, front-right, rear-left, and rear-right wheels, which
also need to be predicted within the prediction horizon as the con-
strained variables on which soft constraints were imposed to
ensure the stability of the vehicle. Detail on this soft constraint
will be revealed in MPC controller design in Sec. 2.2.

To apply a standard MPC, Eq. (12) needs to be discretized and
successively linearized online to produce an approximated linear-
time-varying discrete system [4], as

C(k + 1) = Ak,rC(k) + B/“,u(k) +dg,
nk+1)= Ck,tg(k) + Dk,r“(k) + €y, (13)
u(k) = u(k — 1) + Au(k)
with
19) 0
Akﬁr f Bk.t af
g ulk—1) Ul w(k— 1)
oh oh 14
Ckﬁt = 3 Dk,t = 8_
u G ulk—1)
where k =t...t + N — 1, and d;, e, correspond to the lineariza-

tion residual items.

2.2 Model Predictive Control Controller Design. Grounded
on the discrete system (13), a constrained optimization problem
can be formulated as

min J((1), AU, €)

AUs (s
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such that
Clk+1) = Ap,L(k) + B (u(k — 1) + Au(k)) + dy,
Nk + 1) = Cp,L(k) + Dy (u(k — 1) + Au(k)) + e,
Unin < U < Umax, (16)
Attin < Au < AMmz\xa
Oijmin — &ij < iy < Oijmax + &y 1€ {f,rh i€ {Lr}
with
H,
J(&(1), AU, ¢) Z Byyis — t+1r||Q + Z a1l
H.—1 l{eft}  r{ear}
) A+ Y > eyl (7
Jj=0 J=r{ight} i=f{ront}

Equation (16) summarizes the constraints on the formulated
optimization problem, including the inherent system dynamics
described in Eq. (13), the constraint on the road front steering
angle u, the limit on the increment of the road front steering angle
Au, and the constraints on the tire sideslip angles of front-left,
front-right, rear-left, and rear-right wheels oy, o, 4, 07, used for
ensuring the stability of vehicle during path tracking. In order to
improve the feasibility of the constrained optimization problem,
the constraints on the tire sideslip angles were made soft by adopt-
ing slack variables &;.

In the cost function Eq. (17), AU, = [Auy,...... Au,+HL,1.,]T
represents the optimal front road steering angle increment
vector along the control horizon H. at the time instant f.
Then, & = [eg, &, &, s,.,.]T represents the slack variable vector of
the soft constraint on each tire sideslip angle o;;. AU, =

[Augy...... Augigr t] and & = (g7, &, &, 8,,]T constitute together
the mampulated variables to be calculated at each time-step.
Besides, h,+,1, = [lp, ir YH,’,] represents the predictive vehicle
yaw angle and CG’s ordinate along the prediction horizon H,,
which shall be veered toward the corresponding reference vector
h;_; . Finally, positive-definite weighting matrices Q, S, R, p regu-
late the relative importance of different control objectives.

Hence, the meaning of each item in the cost function Eq. (17)
becomes clear: The first term shows the accumulated predictive
tracking. The second term and the third term represent the control
effort and its changing rate along the control horizon. The last
term demonstrates the cost of violating the soft constraints. In
addition, there exist two implicit constraints, as H, > H. and
AuH»j.t = O:v/ > H.,.

After solving the constrained optimization problem described
in Egs. (15)—(17), the first element of AU, will be used to con-
struct the sole controller output at the time instant ¢, as

u(t) = u(t— 1) + Auy, (18)
At the next time-step 7+ 1, the same constrained optimization
problem will be solved again with updated state measurements
Cr+1).

Remark. Compared with the original MPC controller in
Ref. [4], the number of slack variables ¢;; is augmented from one
to four to better reflect the discrepancy among sideslip angles of
each tire.

3 Insignificant Parameter Settings

There are a bunch of parameters to be tuned in the MPC con-
troller, including the prediction horizon H,, the control horizon
H., the sampling period 7 that is implicitly used for the system
discretization in Eq. (13), the weighting matrix Q,S,R, p, the
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upper and lower bounds of control/control changing-rate
Unax, Umin, AUmax; AUnin, as well as the upper and lower bounds
on the soft constraints o; jmax % jmin-

In this paper, more attention will be paid to the parameters
directly affecting both the controller performance and the compu-
tational load. As indicated in Refs. [18] and [19], the performance
and computational load of a digitally implemented MPC control-
ler are essentially influenced by the prediction horizon H,, the
control horizon H. and the sampling period T,. Actually, /H, and
H. govern the complexity of the constrained optimization problem
to be solved at each time instant. As H, and H. become longer,
both the number of manipulated variables and the number of con-
straints boost, which substantially increases the CPU execution
time to find the optimal solution, and this execution time is rigor-
ously bounded by the sampling period T. Accordingly, H,, H,,
and T are regarded as the significant parameters in this paper due
to their conspicuous double-sided effects on both controller per-
formance and computational burden. All other parameters are
regarded as insignificant parameters.

To make the conclusion of this paper more universally valid,
instead of arbitrarily fixing these insignificant parameters as con-
stants, a group of methodical parameter-tuning strategies will be
used to assign them with reasonable values.

3.1 Output Weighting Matrix. The output-weighting matrix
O indicates the relative importance of different tracking objec-
tives. A larger weight on a specific tracked variable implies that
more control effort will be conducted to minimize the correspond-
ing tracking error. A popular approach to fix Q is to take variable
scaling and normalization into account [20]. Consequently, the
matrix Q is fixed as

— l/wmax
Q [ 1/ Yimax :| 19

with ¥, and Yy, corresponding to the maximal heading angle
and maximal ordinate of the tracked reference path in the inertial
coordinate system.

3.2 Input/Input Rate Weighting Matrix. Input weighting
matrix S reflects the importance of the actuator output. A higher S
will decrease actuator’s control effort. Meanwhile, input rate
weighting matrix R influences the fluctuation of actuator output
and a higher R renders the actuator output smoother. Similarly, to
normalize control effort, the input weighting matrix as well as the
input changing-rate weighting matrix is separately fixed as

R =1/(max(6;)T;), S = 1/max(d;) (20)
where max(dy) and max(Jy) are individually the mechanical limit
of the front road steering angle and the maximal steering angular
velocity of d¢, with T as the sampling period. Further, Eq. (20)
indeed implies that the upper and lower bounds of the control/con-
trol changing rate shall be consequently chosen as

{ Umax = mMax(dy), Aty = max(éf)TS,

Umin = —Max(0f), Aumin = —max(éf)TS

3.3 Bounds on the Soft Constraints. Soft constraints on
each wheel’s sideslip angle are crucial to establish the stability of
the vehicle. In Ref. [4], the upper and lower bounds of «;; were
constantly fixed as *£3 deg. Virtually, the allowable limits of tire
slip angles shall be determined by vehicle states, tire’s proper
characteristics, as well as road condition. Therefore, adaptive con-
straints of tire sideslip angles inspired by Katriniok and Abel [21]
will be adopted in this paper. According to the Brush tire model
described in Eqgs. (5)—(7), the lateral tire force will saturate if the
absolute value of slip angle reaches above a threshold. Hence, the
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Fig.1 Bounds on tire slip angle

bounds of tire slip angle o; jmax, %;jmin Must ensure that the lateral
tire force of each tire is restricted within a region where its
extreme value is not totally saturated in the prediction horizon.
Consequently, the procedure to find o jmax, % jmin Can be summar-
ized as:

(1) Linearize the tire force curve around the current tire slip
angle.

(2) Then, find the intersection between the tangent and the
maximum of the lateral tire force if the current sideslip
angle is negative.

(3) The abscissa of this intersection point, named oy, repre-
sents the lower-bound o, of the tire sideslip angle within
the prediction horizon, and the upper-bound o, of the tire
sideslip angle is simply the opposite number of the lower
bound.

On the contrary, if the current sideslip angle is positive, then
just find the intersection between the tangent and the minimum of
the lateral tire force, whose abscissa will become the upper bound
omax Of the tire sideslip angle within the prediction horizon, and
the opposite number of this value will become the lower bound
oumin Of the tire sideslip angle. Figure 1 illustrates the lower bound
of the tire sideslip angle oy, = omin With parameters fixed as:
s=0,u=0.8,F. =4000N, C, = 62,700 N/rad.

Remark. o serves as the unique output of the MPC controller in
this paper. Therefore, the tire slip ratio of each wheel s;; remains
zero.

34 Slack Variable Weighting Matrix. As indicated in
Eq. (16), the slack variables ¢;; were introduced in the soft con-
straints on each tire slip angle to ensure the feasibility of the con-
strained optimization problem. In general, it is preferable that ¢;;
could remain as small as possible to render these constraints,
which are pivotal to ensure the stability of the vehicle, still effec-
tive. Hence, the slack variable weighting factor p; ; of each tire is
defined as

(22)

i j =0 jlim

which is the absolute value of the reciprocal of the partial deriva-
tive of the lateral tire force F;; with respect to the tire sideslip
angle o;;, evaluated at the adaptive bound ;iim of the current
tire sideslip angle o;;. As demonstrated in Sec. 3.3, if the current
sideslip angle o;; > 0, the adaptive bound o; i, will be the
upper-bound  ;jmax > 0. Instead, if the current sideslip angle
o;; <0, the adaptive bound o;in will be the lower-bound
% jlim = % jmin < O.

The relationship between p; ; and ¢;; is shown in Fig. 2.

According to Fig. 2, the function of using such a dynamic pen-
alty p;; is twofold. First, if the magnitude of a tire sideslip angle
o;; is small, the weight on the slack variable is negligible, which
in turn encourages more control effort to achieve a better path-
tracking result. Instead, if the tire sideslip angle approaches to the
critical value corresponding to a saturated lateral tire force, then
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Table 1 Simulation configurations

Symbol Value Unit
Iy 1.232 m
I 1.468 m
lq 0.77 m

h 0.54 m
m 1723 kg
R, 0.3 m
I 1960 kg/m?
Cy 66,900 N
C, 62,700 N/rad
Winax 0.1489 rad
Yinax, 2.8921 m
maxdy 17.5 deg/s
maxdy 20 deg
u 0.8 \

the weight on the slack variable drastically rises into infinity,
which prevents the sideslip angle ¢;; further enlarging and conse-
quently improves the stability of the vehicle.

3.5 Verification. In Secs. 3.1-3.4, all the insignificant param-
eters are methodically fixed and only three significant parameters,
namely, the prediction horizon H,,, the control horizon H., and the
sampling period T are left for tuning. Before entering into the
next phase to illustrate the online selection strategy with respect
to these three significant parameters, it is necessary to verify the
efficiency of the proposed tuning methods for these insignificant
parameters. Thus, a path-tracking simulation under a typical dou-
ble lane-change (DLC) scenario on the MATLAB-CARSIM conjoint
simulation platform was conducted.

CARSIM is a vehicle dynamics simulation software, widely used
for vehicular system analysis, controller design, and performance
assessment. To effectuate the verification, vehicle configurations,
e.g., physical size, mass, tire characteristics, yaw inertial, etc.,
were first set up. Then, the test maneuver of the default DLC sce-
nario in CARSIM was chosen, with a constant tire-road friction coef-
ficient as 0.8. The longitudinal velocity remained as 30 m/s during
the simulation. After the configurations on vehicle and test
maneuver, the carsiv model was imported into Simulink for the
conjoint simulation.

The vehicle configurations and other constant parameters used
for the simulation are listed in Table 1.

The three significant parameters were arbitrarily fixed as:
H, =30, H. = 10, T, = 0.05. The vehicle longitudinal velocity
remained 108 km/h during the simulation. Figure 3 shows the
path-tracking result, Fig. 4 presenting the front road steering angle
as well as its increment value, and Fig. 5 demonstrating the side-
slip angle of each tire.

According to Figs. 35, conclusion can be drawn that the pro-
posed systematic insignificant parameter tuning strategies can suc-
cessfully realize the path-tracking task without violating neither
the hard constraints on actuators nor the soft constraints on side-
slip angles.

Journal of Dynamic Systems, Measurement, and Control
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4 Performance Map

Fixing all the insignificant parameters adequately decreases the
degrees-of-freedom for MPC tuning. In this section, a look-up
table-based online parameter selection method will be illustrated
to set the rest three significant parameters. As mentioned in
Sec. 1, the selected significant parameters should lead to the high-
est attainable tracking performance while considering the minimal
stability requirement under a given CPU computational capacity.
Hence, all three aspects, namely, tracking performance, vehicle
stability, and computational load, need to be defined and quanti-
fied to show the overlapping effects of the significant parameters.

4.1 Performance Index Definition. Tracking index, stability
index, and computational load index form the three fundamental
performance indices.

To begin with, tracking index reflects the capacity of a vehicle
to maintain itself along the centerline of the reference path in
order to stay away from road boundaries. In other words, the
larger the minimal distance between vehicle body and road boun-
daries, the higher the tracking performance shall be. Therefore,
the concept of the safe driving envelop in Ref. [22] is utilized here
to define the tracking performance. Instead of treating vehicle as a
mass point at its CG, vehicle’s physical dimension is taken into
consideration when the minimal distance between vehicle body
and road boundaries is determined. Precisely speaking, the ordi-
nates of four wheels in an inertial coordinate can be calculated as

MAY 2019, Vol. 141 / 051004-5



8 8
T 6F D 6
S 4 1.2 4t
CE .2 2F 4 "ED_;O 2-
— o) =)
550 1g 80
g e2f 18 .82
c) 124
-6 @ -6
-8 L . . 8 . . .
0 1 2 3 4 5 6 # 0 1 2 3] 4 5 6 7
Time (s) Time (s)
8 T T 8 T T
o5 6f o 6
S 4f LS4t
gL 2+ 188 2} 1
%?O}ﬁ 7 \ r——‘EébO}ﬁ/ N7 1. Al
< < = <
& 5 2f 1822 -
2 4
‘@ -6 @ 6F
-8 - ‘ : ‘ : -8 ; : : : :
0 1 2 3 4 5 6 7 0 1 2 3 4 S 6 7
Time (s) Time (s)
Fig.5 Four tire sideslip angles
Ya(t) = Yeo(1) + /l? + B sin(Ay (1) + tan~' (I4/1)), 1
Y (1) = Yoo (t) — /I + I sin(—=Ay (1) +tan~" (L /1)), 08y
(23) 0.6
Yu(t) = Yeo(£) + /2 + B sin(—Ay (1) + tan~' (14/1,)), : i

Yo (£) = Yoo () — /2 + B sin(AY(1) + tan~" (Iy/1,))

where Y., (f) = Y () indicates the ordinate of vehicle’s CG and
Ay(r) shows vehicle’s yaw error with respect to the reference
path. Further, the ordinate of upper- and lower-road boundaries
can be formulated as

w

2cos(y (1))

w

2 cos(y* (1))
24)

Yupper(f) =V (t) + ; Ylower([) - Yx(t)

with Y*(¢) and /" () representing the reference centerline’s ordi-
nate and heading angle and W as the width of the reference lane,
fixed as 3.6 m [22]. Consequently, by combing Eqgs. (23) and (24),
the minimum margin between vehicle body and path boundaries
at each time instant (noted as MT(¢)) can be calculated as

MT (1) = min(Yupper (£) — max (Y (1), Y5 (), Y (0), Y, (1))

min(Yp (), Y5 (), Yr(0), Yrr (1)) = Yiower (1)) (25)
A necessary and sufficient condition to avoid collision between
vehicle and road boundaries is: MT(7) > 0,Vz > 0 and the maxi-
mal possible margin: MT,.x = W/2 —I; can be obtained only
when vehicle’s CG lays exactly on the centerline of the reference
path along with a zero yaw error. Clearly, MTy,ax can have differ-
ent value according to vehicle width /,. To normalize MT(z), a
hyperbolic tangent function was utilized to limit the value of
MT(¢) within [0, 1], which can be seen in Fig. 6.

For clarity, the normalized minimum margin between vehicle
body and path boundaries is denoted as MT,(¢). Therefore, a
larger MT, (¢) implies a better path-tracking performance. Finally,
the overall tracking index (TI) of a complete simulation maneuver
can be defined as

Ty
[ MT,(r)dt
_Jo
Ty

with T as elapse of simulation time.

TI (26)
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Afterward, stability index reflects the margin between vehicle’s
current state from the critical states under which the vehicle may
spin, drift, or roll over. The stability of a vehicle can be quantita-
tively assessed through various approaches, such as using the tire
grip margin [23]. Nonetheless, stability can be more straightfor-
wardly indicated through observing both the vehicle body sideslip
angle f=tan"!(v,/v,) as well as the yaw rate y. Empirical
thresholds about body sideslip angle and yaw rate, which may
lead to a critical instability, are [24]

B = tan~'(0.02ug),
_ 0.85ug

Vx

@7

%

Consequently, the stability margin at each time instant, noted as
Bl

MS(#), can be defined as
5 ),min(li%)) (28)

Naturally, MS(¢) > 0 implies that the absolute values of both
the body sideslip angle and the yaw rate are under their respective
critical thresholds. In addition, the most stable case occurs when
both f(z) and y(¢) remain zero, which gives birth to the maximal
stability margin MSp.x = 1. To be coherent with MT(¢) in
Eq. (25), a similar hyperbolic tangent function was also applied
on MS(¢) to produce the normalized stability margin MS, (7). Still,
a larger MS, (¢) suggests a more stable condition. As a final point,
the overall stability index (SI) for a complete simulation maneu-
ver can be formulated as

MS(f) = min (min(li
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L (29)

with Ty being the end of simulation time.

Remark. Compared with MT, (¢) and MS,,(¢), which concentrate
on the vehicle behavior at each time instant, both TI and SI are
defined from an overall average point of view. For example, SI >
0.5 does not imply that |B(¢)| < (f"/2),Vt € [0,Tf], neither
(1) < (v*/2),Vt € [0,Tf]. Instead, it is certainly possible that at
some moments, when the vehicle runs straightforward for exam-
ple, the normalized stability margin MS, (¢) of the vehicle can be
high enough to reach its maximum. However, when negotiating a
sharp curve, MS,(¢) can be quite low. But all in all, the integrated
mean of the time-varying variable MS, (¢) over the complete time
interval [0, 7| satisfies SI > 0.5.

Eventually, the computational load index (CI) of the MPC con-
troller is defined as [19]

Cl=T./Ts (30)
where T is the total CPU execution time to find the optimal solu-
tion of the constrained optimization problem in Eqgs. (15)-(17).
Intuitively, a higher CI implies a higher CPU load entailed from
the MPC controller and the upper threshold of CI is one. To at
least partially overcome the execution time fluctuation issue due
to the time-sharing nature of Windows® operating system, execu-
tion times T, were measured fifty times and the minimal one was
used to calculate the final computational load index in Eq. (30).

4.2 Performance Map Generation. After defining all three
fundamental performance indices, extensive simulations with var-
ious combinations of H,, H., and T, were effected to generate
three performance maps with respect to the three performance
indices: the tracking index TI, the stability index SI, and the com-
putational load index CI. Precisely speaking, for a given triplet
{H,,H., T}, a DLC scenario identical to the one in Sec. 3.5 was
used to generate the three fundamental performance indices. The
range of H. used for simulations expanded from one to nine with
an increment as one, and the range of H), satisfied H. < H,, < 45

= =
<
2 &
E 3
w =
S 3 08 £
EE k]
g H
g £
S =3
@] ]

30

ooa %
10 < U

0 0.0

H, R O

H =4
<

Computational load
index
Computational load
inde:
=3
o0

10

Computational load
Computational load
inde:
=3
>0

with an identical increment as one. Finally, the range of T for a
given combination of H, and H, started from 0.01 s and ended at
0.05 s with an increment of 0.005s. A total number of 3321 simu-
lations were executed on a standard desktop with an Intel i7-4790
processor whose clock rate was 3.60 GHz. The optimization
solver was the default MaTLAB Quadratic Programming solver with
an “active-set” method.

Remark. As indicted in Eq. (16), the proposed MPC controller
did not explicitly impose constraints on Y,i. The reason to
remove these two state constraints can be summarized into two
points: First, as mentioned in the introduction, instead of design-
ing new MPC controllers, this paper emphasizes on a look-up
table-based MPC parameter-tuning approach, which explicitly
taking the CPU load constraint into account. Thus, the widely rec-
ognized LTV-MPC controller in Ref. [4] was directly used here
with minor improvements. In fact, the original controller in
Ref. [4] did not impose constraints on the tracked outputs Y,y
neither, since the tracking errors with respect to the CG’s ordinate
Y and the yaw angle / were contained in the cost function (17).
Second, the proposed MPC parameter-tuning method, which will
be shown in Sec. 5, is able to negotiate the intricate conflicts
among optimizing the path-tracking performance, maintaining the
vehicle stability and obeying the computational burden constraint.
To do so, three performance maps were generated with respect to
the path-tracking result, the vehicle stability, and the computa-
tional burden. If both ¥ and  were explicitly constrained during
MPC formulation, the performance map of the path-tracking
result will become trivial. As a consequence, the influence of
different combinations of the three significant parameters
{H,,H.,T,} on the tracking performance as well as the vehicle
stability would not be fully demonstrated anymore, which will not
only hide the inherent tradeoff between pursuing a higher path-
tracking performance and maintaining a better vehicle stability,
but also undermine the value of the proposed parameter-tuning
approach. Nonetheless, without direct constraints on i or ¥, under
some specific combinations of H,, H,, and Ty, collision between
vehicle and road boundaries may occur during simulations. In
order to maintain the completeness of the tracking index map,
instead of directly disregarding these parameter settings, the mini-
mum margin between vehicle body and path boundaries MT(r)
was truncated to lie within [0, W/2 —[;] before applying the
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Fig.7 Computational load index
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hyperbolic tangent function in Fig. 6 to produce the normalized
minimum margin between vehicle body and path boundaries
MT,(r). Likewise, the stability margin MS(r) in Eq. (28) was also
truncated to lie within [0, 1] before the normalization.

Figures 7, 8, and 9 sequentially demonstrate the computational
load index CI, the stability index SI, and the tracking index TI
under various combinations of the three significant parameters
{H777HL'7 T\}

To begin with, Fig. 7 shows the simulation result of the compu-
tational load index, with the dashed gray plane corresponding to
the upper threshold of the computational load index, as one.

Clearly, as prediction horizon H, enlarges, the computational
load rises accordingly. While as the sampling time 7 increases,
the computational load decreases. If the computational load index
CI is beyond one, real-time control becomes infeasible since the
optimal action cannot be found within the sampling period. For a
given control horizon H,, the percentage of feasible combinations
of H, and T, which ensure the computational load index less
or equal to one, is defined as the computational feasibility rate.
Figure 10 shows the trend of this rate as H, increases.

Figure 10 indeed suggests that the control horizon H, has a fun-
damental impact on the computational load index, because an
obvious drop of computational feasibility rate appears as H,
increases.

Figure 8 shows the simulation result of the stability index (SI).
Instead of using the same three-dimensional waterfall-style figure
as the case in Fig. 7, a contour plot was exploited to show the
influences of the three significant parameters on the stability
index. In Fig. 8, the brighter part of each subplot indicates a

051004-8 / Vol. 141, MAY 2019

higher stability index and a darker part reflects a lower stability
index. Further, the dashed lines added on each subplot represent
the different range of preview time Ty = H,T.

Some general conclusions can be drawn from Fig. 8: As the
preview time T increases, the stability index improves accord-
ingly, regardless of what the control horizon H, is. This phenom-
enon is consistent with the classical MPC theory that a longer
preview time will reduce the oscillation of the closed-loop system.
On the contrary, as H, enlarges, the maximal attainable stability
index drops. This is because a longer control horizon will make
the controller more aggressive, which in turn affects the stability
index.
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Fig. 10 Computational feasibility rate
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Figure 9 demonstrates the simulation result of the tracking
index (TI).

In contrast to Fig. 8, as the preview time Ty increases, the
tracking index first goes through an improved phase, followed by
a degraded phase if the preview time becomes too large. The
improvement at the beginning comes from the fact that the pre-
view time should be larger than the system settling time T in
order to take all the dynamics of the system into consideration
before the controller makes the decision.

To obtain the settling time of a dynamic system, the character-
istic equation of the transfer function needs to be found a priori.
Even though the transfer function from the unique system input
Jf to the tracking index TI in Eq. (26) cannot be obtained, the
transfer function from J; to yaw rate y can act as an alternative
since it demonstrates the inherent handling characteristics of the
vehicle.

A two degrees-of-freedom linear bicycle model [25] shows

o 20,0 = B —1ry/ve) +2C, (=B + 17/

ﬁ - -
mvy G1)
5= 2Cy (51’ —p - lfV/VX)lf - 2Cy(—ﬁ + Ly /vl
I

Based on Eq. (31), the transfer function from front road steering
angle dy to vehicle yaw rate y in the s-domain can be calculated as

(s) ays + ag
S L e 32
5f(S) Sz-|—b1S+b0 ( )
with
ay = 2Cylf/]_77
ag = 4C)2,(lf + 1)/ mv,I.,
(33)

by = 2Cy(ljz~ + 1) /vid. + 4Cy mvy,
bo = 4C2(ly + 1,)* — 2mv2Cy(Iy — 1) /mvL.

As a result, the settling time for which the response remains
within £2% of the final steady-state value can be approximately
calculated as

4 8
Tser = T

— = 34
0.5 bl bl ( )
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Confliction between stability and tracking indices

By substituting the parameter values in Table 1 into the expres-
sion of b; along with a constant v, = 30 m/s, Eq. (34) gives
Tset = 0.63s. From Fig. 9, the lowest threshold of the preview
time, resulting in an overall tracking index TI > 0.8, can roughly
be observed as 0.6s. Thus, the simulation result corresponded
well with the theoretical deduction.

On the contrary, if the preview time T, continues to
extend, then two factors will negatively affect the tracking
index. First, for a very long prediction horizon, the lineariza-
tion error caused by the mismatch between the real plant and
the inherent model of MPC controller will accumulate consid-
erably. Second, as indicated in Fig. 8, a long preview time
will reduce the swiftness of the closed-loop system, leading to
a sluggish behavior, which impairs the capacity of the vehicle
to follow the fast-changing reference path precisely. However,
this negative side effect of a long preview time can be moder-
ately neutralized by a longer control horizon H,., which can be
witnessed by comparing the first (H, = 1) and the last subplot
(H. =9) in Fig. 9.

Keen readers may have already found that the global trend of
the stability index (SI) and the tracking index (TI) counteracts
with each other as H, increases. This competing behavior is even
better demonstrated in Fig. 11, where the highest attainable stabil-
ity index/tracking index with respect to the upper threshold of the
computational load index is shown.

Various interesting phenomena can be found in Fig. 11. For
instance, as the exploitable computational load augments, both the
highest tracking index and the highest stability index increase
until saturated. Further, H. has a direct influence on the saturated
extremes. A longer control horizon results in an improved apex of
the tracking index while a degraded highest stability index.
Hence, it is in fact impossible to obtain simultaneously both very
high stability index and tracking index even when the computa-
tional load index reaches one.

The data underlying Figs. 7, 8, and 9 will serve as the basis of
the look-up table for the online significant parameter selection,
which will be presented in Sec. 5.

5 Online Parameter Selections

To help a vehicle achieve the highest attainable tracking per-
formance while considering the minimal requirement of stability
index Sly, under a given upper threshold of computational load
index Clp,y, a straightforward parameter selection algorithm is
proposed.

MAY 2019, Vol. 141 / 051004-9



Algorithm Constrained optimal tracking parameter selection

Input: SIin, Cliax

Output: H., H,, T

1: A= f’lndr“yp_yt (CI S CImax)

2:if A == O then

3: T, «— max(Ts),H, — min(H,),H, < min(H.)
4: end if

5:Q = findT“Hp‘H‘ (Sl > Slmin)

6: if @ == O||Q N A == O then
7.

8

9

1

(Te, H,, H.)— _find (SI==max(SI))

: else (T Hy He)EA
: (Ty, H,, H.)— find  (TI == max(TI))
0: end if (Ts,Hp H ) €ANQ

At the beginning, find all the possible combinations of
H.,H,, T, satisfying the computational load constraint. However,
if the given available computational index is too low, the configu-
ration of H.,H,, T, is designed to reduce as much the computa-
tional load as possible. Instead, find the combinations of
H.,H,,T,, which further satisfy the minimum stability index con-
straint. If such combinations cannot be found due to an unreason-
ably high stability index requirement, then just find the
combination of H.,H,,T,, which renders the stability index as
high as possible under the given computational load constraint.
Nonetheless, in this case, the path-tracking objective will be
totally ignored. Finally, if both the stability index constraint and
the computational load index constraint can be met, then find the
optimal combination of H.,H,,T,, which leads to the highest
tracking index.

To verify the improvement introduced by the algorithm, simu-
lations with a DLC scenario identical to the one in Sec. 3.5 were
conducted. An MPC controller with a dynamic parameter setting,
named the dynamic MPC, along with another constant parameter

cr

max

087

0.6

CPU Load

041

Time (s)

Fig. 12 Computational load index

setting MPC controller, named the static MPC, was equipped indi-
vidually, on two identical simulation vehicles with the same con-
figurations in Table 1. Both the dynamic MPC and the static MPC
selected their significant parameters according to the proposed
constrained optimal-tracking parameter selection algorithm. How-
ever, the difference lies in the fact that the available upper thresh-
old of computational load index Cl,x for the dynamic MPC,
denoted as Clﬁm, changed along the simulation, while the Clj,,
for the static MPC, denoted as CI; , , remained as the minimum
value of Clﬁm. The minimum stability index Sl for both con-
trollers was fixed as 0.4.

Figure 12 demonstrates both CI? and CE, as well as the
actual computational load index of the dynamic MPC (CI¢) and
the static MPC (CI®). Clearly, both the dynamic and the static
MPC controller work under the available upper threshold of com-
putational load.

Figure 13 shows the parameter selection results of the dynamic
MPC as well as the static MPC.

Clearly, the proposed algorithm can synchronously adapt the
three significant parameters according to the available computa-
tional load. For instance, as CI¢__decreased during 24 s, both H,
and H), of the dynamic MPC shrunk to reduce the computational
burden of the constrained optimization problem, while T
extended to ensure that an optimal solution can be found within
the sampling period.

As for the stability constraint, the integrated mean of the nor-
malized stability margin MS,,(¢) as time goes by can be calculated
as

Shiime (1) = *——— (35)

According to Eq. (29), the stability index (SI) of a complete

double lane change maneuver satisfies
SI= SItime(t)|,:T] (36)
with Ty as the end of simulation time.

Figure 14 exhibits Sljye (7) of both the dynamic MPC controller
and the static MPC controller.

As we can see, Slime () of both MPC controllers remained as
one at the outset, and then underwent a degradation phase and
finally rose again at the end. This behavior corresponded well
with the double lane change maneuver: At the beginning, the vehi-
cle ran straightforwardly on the entry lane, suggesting that both
the sideslip angle f§ and the yaw rate y were negligible. Afterward,
the vehicle entered into the left turn, followed by the side lane and
the ensuing right turn. During this stage, both the sideslip angle
and the yaw rate went through drastic variations, which certainly
reduced the integrated mean of the normalized stability margin.
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Fig. 13 Constant and dynamic parameter setting
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Finally, when the vehicle entered into the straight exit lane, both
the sideslip angle f§ and the yaw rate 7y returned back around zero
and the normalized stability margin MS, (¢) improved accord-
ingly. Moreover, both MPC controllers had Slime(7f) > Slyin =
0.4 at the end of the simulation, indicating that the stability
requirement was satisfied.

Finally, Fig. 15 shows the comparison of the path tracking
result, where the dashed lines correspond to the reference path,
the dotted lines representing the tracking result of the static MPC,
while the solid lines exhibit the tracking result of the dynamic
MPC.

Clearly, dynamic MPC induced an overall better path-tracking
result and this improvement of path tracking is further expressed
in Fig. 16 where the normalized minimum margin between vehi-
cle body and path boundaries (MT,(¢)) is represented.

In Fig. 16, the static MPC led MT,(#) equal to zero during
4-5s, which implies that the vehicle collided with the upper
boundary of the reference path. In contrast, the dynamic MPC
ensured the minimal value of MT,(¢) as high as 0.98.

6 Conclusions

To negotiate the inherent conflict between the controller per-
formance optimization and the striking computational burden, a
systematic online parameter selection approach for a classical
LTV MPC controller for vehicle path tracking was proposed. Var-
ious tuning parameters were divided into two groups, namely the
insignificant parameters and the significant parameters, according
to whether they have a direct influence on both the control per-
formance and the ensued computational load. For insignificant
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and path boundaries

parameters, methodological approaches, including the scaled
input/output weighting matrix, the adaptive upper/lower bound on
soft constraints as well as the dynamic penalty on the slack varia-
bles was proposed and justified. Then, to realize online tuning of
the remaining three significant parameters, namely, the prediction
horizon H),, the control horizon H, as well as the sampling period
Ts, extensive simulations were carried out to generate three per-
formance maps with respect to the tracking index, the stability
index, and the computational load index. Based on the three per-
formance maps, a straightforward constrained optimal path-
tracking parameter selection algorithm was designed. Taking the
concern of vehicle stability into consideration, the proposed
parameter selection algorithm led to the highest attainable track-
ing performance under a given available CPU computational
capacity. MATLAB-CARSIM conjoint simulations demonstrated the
effectiveness of the proposed online parameter selection method.

The future improvements of the current work can be summar-
ized into two directions: First, as indicated in Sec. 4.1, the compu-
tational load of the MPC controller was determined by measuring
the execution time of a default MATLAB solver on a desktop run-
ning a Windows®™ operating system. However, the execution time
can vary intensely between consecutive runs due to the time-
sharing nature of the operating system. Thus, more robust compu-
tational effort indicators, such as the number of floating point
operations in Ref. [26], shall be adopted in future work to make
the computational load index more accurate. Second, the proposed
method needs extensive offline simulations to generate the three
fundamental performance maps. In fact, more agile online
parameter-selection strategies considering the time-changing
geometry of the reference path, such as the road curvature in Ref.
[27], shall be adopted in the future work to further improve the
overall tracking performance while decreasing the computational
load.
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