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Widespread drought-induced forest mortality (DIM) is expected to increase with climate change and drought, and is
expected to have major impacts on carbon and water cycles. For large-scale assessment and management, it is critical
to identify variables that integrate the physiological mechanisms of DIM and signal risk of DIM. We tested whether plant
water content, a variable that can be remotely sensed at large scales, is a useful indicator of DIM risk at the population
level. We subjected Pinus ponderosa Douglas ex C. Lawson seedlings to experimental drought using a point of no
return experimental design. Periodically during the drought, independent sets of seedlings were sampled to measure
physiological state (volumetric water content (VWC), percent loss of conductivity (PLC) and non-structural carbohydrates)
and to estimate population-level probability of mortality through re-watering. We show that plant VWC is a good predictor
of population-level DIM risk and exhibits a threshold-type response that distinguishes plants at no risk from those at
increasing risk of mortality. We also show that plant VWC integrates the mechanisms involved in individual tree death:
hydraulic failure (PLC), carbon depletion across organs and their interaction. Our results are promising for landscape-level
monitoring of DIM risk.
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Introduction

Climate change is expected to increase the frequency and
intensity of drought (Stocker etal. 2015), which in turn will lead
to increases of drought-induced forest mortality (DIM) (Lewis et
al. 2011, Williams et al. 2013, Allen et al. 2015, Rowland et al.
2015, Stocker et al. 2015). In addition to social and economic
consequences, DIM can also have profound consequences
for global water and carbon cycles and vegetation—climate
feedbacks. Thus, to accurately monitor and manage DIM,
we must identify reliable plant variables that provide early
warning signals of DIM risk, integrate physiological mechanisms
driving DIM and that can be measured at large spatial scales
(Hartmann et al. 2018). During the past decade, research has

identified hydraulic failure (i.e., loss of water transport in the
xylem) as a dominant physiological mechanism of DIM, with
non-structural carbohydrate (NSC) depletion often playing a
significant interacting role (Adams et al. 2017). Hydraulic failure
kills plants when they lose hydraulic conductivity, measured as
percent loss of conductivity (PLC), and can no longer supply
enough water to living tissues. However, monitoring PLC at the
population or stand level is methodologically challenging, which
hinders our ability to monitor mortality risk at larger scales.
Here, we test whether plant water content, a variable that can
be measured remotely (Ceccato et al. 2001, Ullah et al. 2012,
Konings et al. 2016), integrates hydraulic failure and carbon
depletion mechanisms and is a useful indicator of DIM risk at the
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population level (defined as the proportion of dead individuals
in a given population or stand at a given point in time).

Regardless of the mechanisms involved, drought kills plants
due to progressive dehydration leading to irreversible loss of tur-
gor (Tyree et al. 2003), when living cells lose function. How liv-
ing plant cells sense dehydration is still under debate (Sack et al.
2018), but it involves changes in cell volume, cell turgor and
osmolyte concentration (Zhu 2016, Sack et al. 2018). In
most plants, dehydration eventually leads to membrane dys-
function (Wang et al. 2008, Chaturvedi et al. 2014) and death
(Guadagno et al. 2017). To avoid death, therefore, plants must
retain a minimum pool of water necessary to prevent permanent
turgor loss. Under drought, when stomata close and water is
lost through cuticles, plant water pools depend on both (i) the
ability of the xylem to maintain the supply of water and (ii)
the ability of living cells to retain such water by preventing
water loss to the xylem and the atmosphere. Under drought and
limited soil water availability, emboli form in the xylem and can
increase PLC to values leading to hydraulic failure (Tyree and
Sperry 1989). Water retention in living cells depends on their
ability to decrease cell water potential (WP) to match that of the
adjacent xylem, which occurs by concentrating solutes. As NSCs
are a source of organic solutes and energy for active transport,
NSC depletion could lead to loss of cell water retention and
permanent turgor loss via reductions of organic solutes and their
osmotic or energetic roles (Brodersen et al. 2010, Sevanto et al.
2014). We propose that reductions in plant water content reflect
mortality risk under drought (progressive dehydration) due to
the combined effect of hydraulic failure and carbon depletion
(Figure 1; Martinez-Vilalta et al. 2019).

Several things support the use of water content as an early
warning indicator of drought mortality risk. First, while hydraulic
failure appears to be the dominant mechanism of drought
mortality, NSC depletion is also thought to play a role (Adams
etal. 2017), and the two mechanisms often interact (McDowell
2011, Sala et al. 2012, Meir et al. 2015). However, the nature
of this interaction is not well understood and is difficult to model
(Mencuccini et al. 2015). A water supply retention approach
(Figure 1) under drought mechanistically captures this inter-
action and integrates it into a single variable: water content.
Second, and critical for an indicator variable, just as irreversible
turgor loss shows a threshold response, water content is also
likely to mirror such a threshold response. Although plants can
recover from temporary turgor loss, continued decreases of
water content below turgor loss eventually reach a critical value
at which irreversible turgor loss, plasmolysis and loss of cell
function occur (Trueba et al. 2019). Thus, water content is
likely to distinguish plants at no risk of DIM from those at risk
as drought proceeds (i.e., to detect incipient risk of mortality).
Third, and particularly relevant for the purposes of large-scale
monitoring, water content can be measured remotely (Ceccato
et al. 2001, Ullah et al. 2012, Konings et al. 2016, Rao et al.
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Figure 1. A framework of DIM focused on plant water content.
Plants experience dehydration when water supply is insufficient to
replace water loss leading to water deficit. Consequently, xylem tension
increases leading to embolism formation (hydraulic failure). Likewise,
stomatal closure eventually leads to carbon depletion during long
periods of drought. Loss of hydraulic function and carbon depletion
further limit water supply and retention of tissues leading to inability
to maintain water balance, loss of turgor/desiccation and death. Black
text indicates variables of interest. Gray text indicates DIM mechanisms.
Solid arrows link variables within a given mechanism. Dashed arrows
indicate potential (but still controversial) interactions between NSCs and
hydraulic conductivity (e.g., embolism repair processes).

2019). In summary, water content may prove a useful indicator
of drought mortality risk because it is likely to integrate the
mechanisms of drought mortality at the individual level and to
show a threshold response that signals incipient risk of mortality
that is measurable at multiple scales.

Most studies of individual DIM physiological thresholds have
focused on measurements of dead or nearly dead plants based
on visual cues, including browning, defoliation and branch die-
off (Hoffmann et al. 2011, Anderegg et al. 2012a, Anderegg
and Anderegg 2013, O'Brien et al. 2014, Pratt et al. 2014,
Anderegg et al. 2015, Dickman et al. 2015, Rowland et al.
2015, Garcia-Forner et al. 2016, Adams et al. 2017). This
approach can be problematic because visual symptoms of plant
death generally occur well after plants have crossed the point of
no return (the point beyond which plants can no longer survive;
Anderegg et al. 2012b), potentially missing early warning phys-
iological signals. Furthermore, for some species, measurements
at the leaf or branch level may not be representative of the
whole-plant level mortality processes. Thus, fully understanding
the processes driving DIM and identifying physiological states
that are indicative of DIM risk requires experimental designs
based on the point of no return and measurements across
all organs. That is, it requires concurrent multi-organ/whole-
plant level measurements of potential physiological indicators
(PLC, NSC, water content or others such as photosynthesis,
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gas exchange and transpiration) at different stages of drought
regardless of symptoms and probability of mortality (e.g., by
re-watering and subsequent assessment of mortality). As
whole-plant measurements are usually destructive, physiological
measurements must be independent of mortality assessments.
Such an approach entails pairing independent measurements
of physiology and probability of mortality to identify the physi-
ological states at which population-level mortality risk increases
as drought progresses. These experimental designs are rare
(but see Barigah et al. 2013 and Kursar et al. 2009). However,
they are highly informative because they can detect incipient
mortality thresholds, a critical feature for a monitoring indicator.

We performed a greenhouse drought experiment with 2-year-
old ponderosa pine (Pinus ponderosa Douglas ex C. Lawson)
seedlings to test whether plant water content is a good predictor
of DIM risk at the population level. Our experimental design
was implemented to detect the point of no return and to focus
on potential threshold responses signaling incipient DIM risk.
We sampled independent sets of seedlings periodically during
the experimental drought to (i) measure their physiological
state (e.g., volumetric water content (VWC), PLC and NSC)
and (ii) estimate the probability of mortality once re-watered
based on their physiological state. We hypothesized that (i)
plant water content is related to loss of hydraulic conductivity
and NSC availability at both organ and whole-plant levels;
(ii) water content is negatively correlated and PLC positively
correlated with DIM; and (iii) water content shows a threshold-
like response distinguishing healthy plants from those at risk
of DIM. We stress that our goal is not to compare the relative
performance of water content, PLC or NSC as predictors of DIM,
but simply to test whether water content is a useful integrative
predictor.

Materials and methods

Study design

The experiment took place at the University of Montana green-
house facilities. On 2 August 2015 we obtained 250 2-year-
old P ponderosa seedlings in soil plugs from the Coeur D'Alene
Nursery (USDA Forest Service). Ponderosa pine is one of the
most widely distributed species in North America and has been
extensively used as a representative of the gymnosperm lineage
within ecological, physiological and forestry studies. Seedlings
were planted in 7.6 cm diameter x 43 cm tall pots using
a homogeneous soil mixture consisting of 3:1:1 sand, peat
moss and top soil, respectively. Seedlings ranged from 12.7
to 27.0 cm tall from the base to the tip of the stem with
an average height of 20.7 £ 3.1 cm, and soil plugs were
ca 20 cm in length. Pots were randomized on a bench at
regular distances from each other and left to acclimate for a
month under well-watered conditions (i.e., field capacity, when
the soil is saturated). Soil field capacity corresponded to soil
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Figure 2. Experimental drought design based on changes in soil VWCs.
All seedlings used for the experiment were drought pre-conditioned in
four consecutive dry down cycles. The first three lowered the VWCg
to 50% of field capacity, while the last one to 25% of field capacity.
After the last pre-conditioning dry down, five seedlings were kept at
field capacity (dark blue) and the rest received no watering (orange).
Dark blue represent controls subjected to drought pre-conditioning but
kept well-watered through the final dry-down. Orange arrows represent
when drought-treated seedlings were measured and the corresponding
mortality assessment was conducted (by re-watering a random, inde-
pendent sample of seedlings). Blue arrows indicate when measurements
in control seedlings were done.

VWCs of ca 20%. Based on preliminary experiments in seven
seedlings and for the purpose of timing consecutive samplings,
we monitored changes in VWCs using Decagon 5TE sensors
(Decagon Devices, Inc., Pullman, Washington, USA) placed in
five representative seedlings 10 cm above the bottom of the
pots. Sensors were inserted through a hole drilled on the side
of the pots to minimize disturbance and root damage. Roots had
reached 40 cm in depth by the end of the experiment.

From 2 September to 1 October, seedlings underwent four
drought pre-conditioning cycles to allow plants to acclimate
to drought stress. During the first three cycles, we let pots
dry down to 50% of their field capacity (VWCs = 10%) after
which we watered again to field capacity. On the last cycle, pots
were dried to 25% of their field capacity (VWCs = 5%), which
corresponds to a soil WP of —0.7 MPa based on an empirical soil
characteristic curve (see below) and then watered again to field
capacity. From 1 October to 1 December, we stopped watering
all but 25 seedlings (controls). Drought-treated seedlings were
left un-watered for the rest of the experiment, while control
seedlings were kept at field capacity (Figure 2). Based on a
preliminary drought experiment to assess symptoms of mortality
as a function of soil drought and to optimize sampling times
and sample size, we started measurements 34 days after the
beginning of the drought treatment.

Sampling procedure

We assessed soil WP, seedling physiology and mortality risk on
six weekly samplings at Days O, 34, 41, 48, 55 and 62. At
each sampling, we measured midday VWCs in five randomly
chosen seedlings. VWC; sensors were installed 24 h prior to
measurement to reach equilibrium with soil conditions. VWCs
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was then used to estimate the soil WP at which each seedling
was exposed to at the time of sampling. To do so, we converted
VWCs values to soil WP based on an empirical soil characteristic
curve, describing the relationship between VWCs and soil WP as
a soil dries (Fredlund and Xing 1994). To generate this curve,
we dried a pot with the same soil used in the experiment at
a constant temperature (ca 40 °C). A VWC; sensor (Decagon
5TE) and a soil WP sensor (Decagon MPS-6) were placed at
the same height in the center of the pot. This process was
repeated twice with the same pot to reduce variability due to
measurement error.

We also measured leaf WPs. However, these measurements
were not reliable because needles became dry and brittle as
the drought intensified thus breaking during measurements or
becoming hydraulically disconnected from the rest of the plant.
We note, however, that this did not prevent us from assessing
plant water content, the main goal of this experiment, nor
hydraulic failure and carbon depletion, which were measured to
assess whether water content integrates these two processes.
Also, although plant water status is usually assessed with plant
WP, plant water content and PLC also serve as indicators of
drought stress. At every sampling date, the same five seedlings
in which VWCs was measured were then harvested and kept in
ziplock bags with a moist paper towel in a cooler to prevent
further water loss (Garcia-Forner et al. 2016). Samples were
transported to the laboratory within 2 h for physiological mea-
surements (see below). Because physiological measurements
were destructive, at each sampling event during the drought a
second independent subset of randomly sampled seedlings was
used to assess mortality risk at the population level (probability
of mortality).

Mortality assessment

To estimate the probability of mortality at the population
level over time, at each sampling event, 15% of the total
pool of drought-treated seedlings (see Table S1 available as
Supplementary Data at Tree Physiology Online for full range
of sample sizes) were randomly chosen, re-watered to field
capacity and kept well-watered for at least 39 days (until 8
January) to assess mortality. This method ensures accurate
classification of both live and dead plants at every sampling
event regardless of visual symptoms. We classified seedlings
as dead only if their canopy and phloem were completely
brown and dry (Cregg 1994) and no subsequent buds
appeared (dead seedlings were left in the greenhouse for two
additional months). Notice that early re-watering groups were
re-watered for longer periods of time due to the nature of
the experimental design. However, seedlings removed at the
later stages of the drought were completely dry and brittle
with no subsequent signs of recovery. Because the total pool
of drought-treated seedlings was reduced every time when
mortality probability was assessed, 15% of the total pool of
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drought-treated seedlings represented a different number of
individuals at each sampling event (max: 32; min: 14). To make
estimates of mortality comparable across sampling events in
terms of sample size, we estimated mortality using only 13
plants randomly subsampled from the pool of plants chosen
to estimate mortality at each sampling date. This subsampling
procedure was repeated 1000 times using a bootstrapping
scheme, and the 1000 values of mortality generated per
sampling event were averaged to generate a proxy for
population-level probability of mortality at each sampling
event (see Table S1 available as Supplementary Data at Tree
Physiology Online for estimates of the uncertainty around these
values). Note that in our design, physiological measurements
during drought were done in individual plants and averaged,
while mortality measurements were conducted at the population
level.

Plant VWC

We separated root systems from the rest of the plant, obtained a
stem segment from the base of the stem up to the first needles
and collected needles of each seedling. We used these tissues
to measure organ VWC based on fresh and dry weights as
((fresh weight — dry weight) /fresh volume)100. We measured
volume with the water displacement method in a reservoir of
deionized water (Olesen 1971, Hughes 2005). Dry weights
were measured after hydraulic conductivity measurements (see
below). We focused on VWC because this variable can be
directly related to variables measured through remote sensing
(Yilmaz et al. 2008, Mirzaie et al. 2014, Veysi et al. 2017).
We calculated whole plant VWC weighed by organ fraction
biomass (proportion of each organ dry mass fraction multiplied
by their respective VWC). For consistency, root VWC was
measured before any other organ to avoid changes in VWC or
hydraulic conductivity due to cleaning procedures and exposure
to dry air. After a quick immersion in water to minimize water
absorption, we immediately blotted tissues with paper towels
until no surface water was left. Stem segments and root systems
were returned to ziploc bags and a cooler immediately after
measurements of fresh weight and volume, prior to hydraulic
conductivity measurements.

Stem and root hydraulics

We measured stem hydraulic conductivity and root hydraulic
conductance using the gravimetric method (Sperry et al. 1988)
immediately after fresh volume measurements of organs. We
used a modification of the hydraulic apparatus described in
Sperry et al. (1988) that allowed us to measure hydraulic
conductance of whole root systems in addition to stems by mea-
suring the upstream flow of water entering the sample rather
than the flow or volume on the downstream end. In our system,
a micro-flow sensor (Sensirion SLI-0430, Sensirion, Inc., Staefa
ZH, Switzerland) was placed upstream from the stem segment

Tree Physiology Online at http://www.treephys.oxfordjournals.org

6102 Jequia)das o uo Jasn Aieiqi plasuey - BUBJUO JO AlISIoAluN AQ S91.661S/00S |/8/6EA0BASqe-a)o1e/sAydasi)/woo dno-olwapeoe)/:sdiy Wwol) papeojumod


https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpz062#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpz062#supplementary-data

1304 Sapes et al.

(instead of a scale) to record water flow. This sensor measures
flow every 70 ms with a precision of 1 pL min”, thus allowing
precise measurements in plants with low hydraulic conductivity.
Stem segments previously used for VWC measurements were
immersed in deionized water for 20 min to relax xylem tensions
that could artificially alter conductivity values (Trifilo et al.
2014). After relaxation, stem segments were relocated to the
hydraulic apparatus, and each end was re-cut twice at a distance
of 1 mm from the tips (total of 2 mm per side) to remove any
potential emboli resulting from transport, segment sampling and
relocation (Torres-Ruiz et al. 2015). After re-cutting, segments
had an average length of 7.03 £ 0.89 cm and ranged from
4.80 to 8.90 cm. Given that plants had an average height of
20.7 cm, the average distance of the end cut of a segment to
the top of the stem was 13.67 cm. Stems were then connected
to the hydraulic apparatus while under water, with their terminal
ends facing downstream flow. The stems were then raised out
of the water, and the connections were checked to ensure that
there were no leaks.

First, initial background flow was measured to account for
the flow existing under no pressure, which can vary depending
on the degree of dryness of the measured organ (Hacke et al.
2000, Torres-Ruiz et al. 2012, Blackman et al. 2016). Second,
a pressure gradient of 5-8 kPa was applied to run water
through the stem and pressurized flow was measured. This
small pressure gradient prevented embolism removal from the
samples while ensuring flow. Lastly, final background flow was
measured, initial and final background flows were averaged and
net flow was calculated as the difference between pressurized
flow and average background flow. Native specific hydraulic
conductivity (K) was estimated in stems as the (net) flow
divided by the pressure gradient used and standardized by
xylem area and length. Xylem length was measured using a
caliper and xylem area was calculated from stem diameter
assuming a circular area.

The configuration of the apparatus was then changed to
measure whole root system hydraulic conductance using the
same gravimetric principle. This approach requires the water
to flow backwards through the roots. Such backwards flow has
been demonstrated to have no significant effect on hydraulic
measurements (Kolb and Robberecht 1996; Tyree et al. 2003).
We ensured that both configurations of the apparatus were
comparable by measuring stems using both arrangements,
and we found no significant differences between them
(t = 0.785, P = 0.476). As in stems, roots were also relaxed
in deionized water for 20 min to relax xylem tensions that
could artificially alter conductivity values (Trifilo et al. 2014).
Flow, including initial and final background flow, was measured
as above and whole-root native hydraulic conductance (k)
was estimated as the (net) flow divided by the pressure
gradient used and standardized by xylem area at the root
collar.

Maximum stem hydraulic conductivity (Kmax) and root
hydraulic conductance (kmax) were estimated as the average
stem K and root k of the well-watered seedlings measured
at Day 62 after the onset of the drought and used to
calculate PLC in all measured seedlings. Such a population
approach was chosen because seedlings were too small to
reconnect to the apparatus once cut a second time after
removing emboli to measure maximum hydraulic conductivity.
Percent loss of stem conductivity and percent loss of root
conductance (PLC) were estimated for each measured seedling
as 100x% (Kmax — K)/Kmax and 100x (kmax — k) /kmax, respec-
tively. Note that slightly negative PLC values may occur if K or k
in a given sample is larger than Kmax estimated as the average
K of controls. We evaluate how uncertainty in population-level
Kmax can affect PLC values and potential incipient mortality
thresholds in Methods S1 available as Supplementary Data at
Tree Physiology Online. We calculated whole-plant PLC weighted
by the proportion of each organ fraction. Root and stem PLC can
be averaged together because they are unit-less indexes that
represent the relative loss of water transport of their respective
organs. Because we did not measure PLC in needles, we defined
whole-plant PLC as the overall hydraulic integrity of the stem
and root systems only. A solution of water with 10 mM KCl
degassed at 3 kPa for at least 8 h was used for all hydraulic
measurements (Espino and Schenk 201 1). We developed an R
code (see Methods S2 available as Supplementary Data at Tree
Physiology Online) that automatically calculates pressurized
and background flows once flow stabilizes. We excluded PLC
measurements taken at Days O and 34 since the onset of
drought (see Figure 3B) because a leakage was detected in
our apparatus leading to artificial values. However, this did not
prevent us from obtaining PLC values across the full range of
observed mortality, including values close to O measured at
Day 41.

Non-structural carbohydrates

After hydraulic measurements, needle, stem and root samples
were microwaved for 180 s at 900 Watts in three cycles of 60 s
to stop any metabolic activity. Organs were subsequently oven-
dried at 70 °C until constant mass. Samples were weighed and
ground to a fine powder. Approximately 11 mg of needle tissue
and 13 mg of stem or root tissue were used to analyze NSC dry
mass content following the procedures and enzymatic digestion
method from Hoch et al. (2002) and Galiano et al. (2012).
Briefly, powder was dissolved in 1.6 ml of deionized water and
incubated at 100 °C for 60 min to extract carbohydrates. An
aliquot of the extract was used to determine soluble sugar
concentrations (i.e., glucose, fructose and sucrose) through
enzymatic conversion of sucrose and fructose into glucose
by invertase from Saccharomyces cerevisiae and phosphoglu-
cose isomerase, respectively (14504 and P5381, Sigma-Aldrich,
Inc., Saint Louis, Missouri, USA). Total NSC concentration was
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Figure 3. Dynamics of drought intensity, population-level mortality and
whole-plant physiological state over time. (A) Probability of mortality
(blue) increased after Day 34 of drought. Soil WPs (orange) decreased
over time. (B) Significant increases of PLC (i.e., 50%) occurred several
days after the first cases of mortality. (C) Non-structural carbohydrate
concentrations decreased over time. (D) Volumetric water content
experienced a rapid decline once mortality started. Open circles and
corresponding dashed lines indicate control groups. Solid regression
lines in (A), (B) and (D) are loess functions. The regression line in
(C) is a linear function. These functions were chosen to best represent
the natural behavior of each variable (see Table S2 available as
Supplementary Data at Tree Physiology Online for statistics). Vertical
lines indicate the initial timing of non-zero mortality risk.

obtained from another aliquot incubated in amyloglucosidase
from Aspergillus niger (10115, Sigma-Aldrich) at 50 °C during
16 h to break down all NSC (starch included) into glucose. In
both cases, the concentration of glucose was determined pho-
tometrically in a 96-well microplate reader (BioTek™ EL800,
Winooski, USA) after enzymatic conversion of glucose into
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glucose-6-phosphate by glucose hexokinase (G3293, Sigma-
Aldrich). The dehydrogenation of glucose causes an increase
in optical density at 340 nm. All the NSC and soluble sugar
concentrations were expressed as percentages of dry matter.
Although the quantification of NSC has been proven difficult and
inconsistent among laboratories, the reasonable consistency
within a given laboratory allows comparisons among samples
(Quentin et al. 2015). We calculated the total pool of NSCs,
starch, soluble sugars and glucose or fructose in each organ
by multiplying the corresponding concentration per dry mass by
the dry weight. Concentrations (total NSC and each individual
component) were scaled up to the whole plant by weighting by
organ fraction as above.

Statistical analyses

We developed five models to evaluate trends in drought intensity,
whole plant physiological status and population-level mortality
over time. All models had days since the onset of drought as
their predictor variable and one of the following variables as
the response variable: (i) soil WP, (ii) total NSC concentration,
(iiiy VWC, (iv) PLC or (v) probability of mortality. Linear models
were used for the first three cases given that response variables
could be transformed to meet model assumptions. Generalized
linear models with binomial error distribution (logit link) were
used in the last two instances. Percent loss of conductivity
and probability of mortality were expressed on a decimal
fraction basis following requirements of models with binomial
distributions.

To test whether NSC concentrations, loss of hydraulic conduc-
tivity (PLC) and VWC at each sampling time predicted population
level probability of mortality, we used six linear models at
the whole-plant level with the probability of mortality as the
response variable. Predictor variables for each model were (i)
starch and soluble sugar concentrations as separate variables
within the same model to assess their separate effects, (ii)
total NSC concentrations (sum of starch and soluble sugar
concentrations), (iii) PLC, (iv) VWC, (v) starch and soluble
sugar concentrations and PLC, and (vi) total NSC and PLC
as the explanatory variables. We ran the last two models to
test whether the combined predictive capacity of hydraulic and
carbohydrate variables was similar to the predictive capacity of
VWC alone under the hypothesis that VWC should integrate
both hydraulic failure and carbon depletion (i.e., comparisons
were not done to test which of these variables is the best
predictor of DIM but, rather, to test whether VWC integrates
PLC and NSC). Volumetric water content was log-transformed to
achieve normality. We used differences in the Akaike Information
Criterion (AAIC) and adjusted R-square values (R*34;) to rank
the models in terms of simplicity and predictive power.

We used segmented linear models using the segmented
function from R package segmented (Muggeo 2008) to explore
potential threshold-type relationships between NSC, PLC or
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VWC and population-level probability of mortality. Given a linear
regression model, this function tries to estimate a new model
with a segmented relationship (the linear function is divided
into two segments, each with different slope, starting from an
initial inflection point provided by the user and then identifies
the actual inflection point at which the change of slope occurs).
The model simultaneously optimizes the slopes and inflection
point through several iterations until a local optima is achieved
(Muggeo 2003). Initial inflection points were determined by
visually inspecting the relationship between mortality risk and
the variables of interest. We emphasize that thresholds are not
meant to distinguish dead from living plants but, rather, values
of a given explanatory variable above or below which the risk
of mortality at the population level is no longer zero (incipient
mortality risk). We used AAIC to justify the use of segmented
models instead of simple linear models. Only segmented models
with a AAIC equal or greater than 10 were considered to
provide a better fit for the data (Burnham and Anderson 2004).
In those cases, thresholds among organs and whole plant were
considered significantly different when the confidence intervals
of the threshold values did not overlap.

To test whether plant water content was explained by loss of
hydraulic conductivity, we performed organ-level and plant-level
linear models with VWC as the response variable and stem PLC,
root PLC or plant PLC as predictors. We also assessed whether
NSC explained VWC. Because under drought and minimal car-
bon supply consumption of NSC storage for metabolic demands
is expected, a positive relationship between NSC and VWC could
simply reflect that both variables independently responded to
drought. To test whether NSC concentrations directly affected
organ or whole-plant water content, we first performed two sets
of organ- and plant-level linear models with VWC and NSC as
the response variables and soil WP as predictor. Then, we tested
whether the residuals from the relationships of VWC vs soil WP
were related to those from the relationship of NSC vs soil WP,
thus removing the direct effect of drought on each variable.

Results

Soil WP decreased with time in drought-stressed seedlings
(Figure 3A, R?aqj = 0.82, P < 0.001; Table S2 available as
Supplementary Data at Tree Physiology Online). The first signs
of DIM did not appear until Day 34 after the onset of drought
(Figure 3A), after which the probability of mortality increased
over time (P = 0.005; Table S2 available as Supplementary
Data at Tree Physiology Online). Whole-plant PLC was still
low at Day 41 but increased sharply over time in drought-
stressed seedlings (Figure 3B, P = 0.028; Table S2 available
as Supplementary Data at Tree Physiology Online) with plants
reaching 50% loss of conductivity by approximately Day 50.
Both whole-plant total NSC concentrations and VWC decreased
over time (R%ag = 0.09, P = 0.044 and R?.q = 0.74,

P < 0.001, respectively; Table S2 available as Supplementary
Data at Tree Physiology Online). Non-structural carbohydrates
declined linearly over time (Figure 3C), while VWC declined
non-linearly (Figure 3D). The observed decrease in NSC was
driven by a decline in starch (plant: R*3g; = 0.33, P < 0.001;
needles: R*;q = 0.18, P = 0.005; stem: R?3q = 0.47,
P < 0.001; roots: Rzadj = 048, P < 0.001; Figure S1
available as Supplementary Data at Tree Physiology Online),
which offset an increase in soluble sugars (plant: R?5q; = 0.62,
P < 0.001; needles: R?34; = 0.06, P = 0.08; stem: R%54; = 0.51,
P < 0.001; roots: R3¢y = 0.53, P < 0.001; Figure S1 available
as Supplementary Data at Tree Physiology Online).

Volumetric water content at each sampling time was
negatively related to probability of mortality (R*aq; = 0.90,
P < 0.001), both at the whole-plant (Figure 4) and organ level
(Figure S2 and Tables S3 and S4 available as Supplementary
Data at Tree Physiology Online). Percent loss of conductivity
and NSC were positively and negatively related, respectively,
to probability of mortality (R*ag = 0.82, P < 0.001 and
R?adj = 0.14, P < 0.009, respectively). However, only PLC was
highly correlated with mortality based on R*,q; (Figure S3 and
Table S3 available as Supplementary Data at Tree Physiology
Online). Segmented models identified thresholds for incipient
mortality for VWC at VWC = 47.3 £+ 7.61% (VWC value below
which the risk of mortality was no longer zero and started to
increase rapidly), but failed to find such thresholds for PLC
and NSC (Figure S3 and Table S4 available as Supplementary
Data at Tree Physiology Online). Although failure to detect PLC
thresholds could be due to methodological issues (how PLC is
estimated and missing PLC values until Day 41 of drought),
results appeared robust to uncertainty in PLC estimates
generated by using different sets of individuals to measure
native and maximum conductivity/conductance (Methods S1
available as Supplementary Data at Tree Physiology Online).
These results were also robust to differences in sample size and
timing of data collection among explanatory variables due to
missing PLC values from early stages of the drought (Methods
S3 available as Supplementary Data at Tree Physiology Online).
When VWC was assessed at the organ level, needles and
roots also showed a threshold-type response (Figure S2 and
Table S4 available as Supplementary Data at Tree Physiology
Online). Thresholds in needles and roots were not significantly
different despite the observed variability among organs due to
differences in VWC at full turgor.

Percent loss of conductivity increased as soil WPs decreased
(plant: R?4qj = 0.39, P = 0.002; stem: R?54; = 0.39, P = 0.002;
roots: R?;q = 0.33, P = 0.005), and VWC was strongly
related to PLC in all organs and at the whole-plant level (plant:
R?adj = 0.74, P < 0.001; stem: R?,qj = 0.54, P < 0.001;
roots: R?aqj = 0.52, P < 0.001) (Figure 5; Table S5a available
as Supplementary Data at Tree Physiology Online). Volumetric
water content was also correlated with NSC depletion
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Figure 4. Whole-plant VWC predicts mortality risk and shows a threshold
response (i.e., identifies a threshold of incipient DIM risk) based on
segmented linear regression. Probability of mortality increases sharply
after the population reaches whole plant VWC values >47.3 + 7.61.
Shaded areas represent 95% confidence intervals of the regression
lines. Note that data from different time points are included.
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Figure 5. Whole-plant VWC decreases as water supply is lost (measured
as PLC). The response is similar across all measured organs (stems:
orange; roots: brown) and at the whole-plant level (blue). Shaded
areas represent 95% confidence intervals of the regression lines. See
Table S5a available as Supplementary Data at Tree Physiology Online for
statistical details.

(Figure S4 available as Supplementary Data at Tree Physiology
Online), as both decreased with drought. The residuals from
the relationship of VWC vs soil WP and those from the
relationship of NSC vs soil WP were positively correlated (plant:
R? = 0.67, P < 0.001; needles: R? = 0.20, P = 0.041; roots:
R* = 0.21, P = 0.024) (Figure 6D-F; Table S5a available
as Supplementary Data at Tree Physiology Online), indicating
that VWC and NSC were related independent of soil WP (see
statistical analyses section for rationale behind this analysis).
Contrary to expectations, however, the effect of NSC on VWC
was driven by starch, not by soluble sugars (Figure 6D-F;
Table S5b available as Supplementary Data at Tree Physiology
Online) as supported by the lack of a significant relationship
between sugar residuals and VWC residuals (Figure 6D-F).

Discussion

Our experimental design based on the point of no return shows
that VWC identifies DIM risk, at both the whole-plant (Figure 4)
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and organ levels (Figure S2, and Tables S3 and S4 available as
Supplementary Data at Tree Physiology Online). As expected,
PLC also reflects mortality risk. However, in this study, PLC
did not detect incipient mortality risk. Regardless of whether
PLC may also be able to detect incipient mortality risk in
other species or studies, the ability of VWC to predict incipient
mortality risk is relevant and useful because VWC integrates both
hydraulic failure and carbon depletion processes and can be
measured at different scales (Martinez-Vilalta et al. 2019).

The threshold-like response of VWC (Figure 4; Figure S2
available as Supplementary Data at Tree Physiology Online)
or other water content-related variables is expected based
on physiological principles: DIM risk is low over ranges of
water content sufficient to maintain turgor, but may increase
substantially as water content in organs decreases below val-
ues leading to turgor loss. Although plants can recover from
temporary turgor loss, continued decreases of water content
below turgor loss may increase the risk of irreversible turgor
loss due to cellular damage (Trueba etal. 2019). As widespread
and permanent loss of turgor in living cells unavoidably leads
to tissue (and eventually whole plant) death, variables related
to water content have the potential to signal incipient DIM
risk thresholds across species (Martinez-Vilalta et al. 2019)
and assess mortality risk across communities (Hartmann et al.
2018).

In our study the relationship between PLC and probability
of mortality was linear rather than showing an inflection point
that distinguishes healthy from at-risk plants (Figure S3 and
Table S4 available as Supplementary Data at Tree Physiology
Online). However, in other studies, PLC has been shown to cause
a threshold-like response in DIM at the individual (Brodribb
and Cochard 2009, Urli et al. 2013) and population levels
(Barigah et al. 2013). Although our sensitivity analyses suggest
that our results are robust to missing PLC values at Days
O and 34 and variation due to estimations of PLC based
on population-level Kmax (Methods S1 and S3 available as
Supplementary Data at Tree Physiology Online), it is important
to note that PLC thresholds may be apparent at other life
stages, populations or species as suggested by the results
in Barigah et al. (2013). The lack of incipient PLC thresholds at
the population level could also be due to greater variability in
PLC thresholds among individuals within our population than
for VWC thresholds. Martinez-Vilalta et al. (2019) showed
that threshold-type relationships between mortality risk and
physiological variables at the population level become shallower
the greater the variation in threshold values among individuals.
These relationships can even become linear if within-population
variation is large enough. While recent evidence suggests
that thresholds based on water content tend to show less
variation (Trueba et al. 2019), many more assessments
of both individual- and population-level mortality are needed
to further test this hypothesis. Therefore, our study does
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Figure 6. Water retention depends on NSC storage. The positive correlation between the residuals of the regression between plant VWC vs soil WP
and those between NSC vs soil WP indicates that for a given soil WP, if NSCs were higher than expected, then VWC was also higher than expected.
Left panels represent relationships between (A) VWC, (B) starch concentrations and (C) total NSC concentrations and soil WP. Colors within (A), (B)
and (C) represent needles (light green), stems (orange), roots (brown) and whole plant (blue). Right panels display residuals of the relationship
between VWC and soil WP as a function of residuals of the relationships between carbohydrates (NSC or starch) and soil WP in each organ. Colors
within (D), (E) and (F) represent NSC (purple) and starch (dark green). Carbohydrate contents are represented as percentage of dry mass. Only
significant regressions are shown and NSC components for which there was no significant relationship (glucose + fructose and sucrose) are not
shown. Shaded areas are 95% confidence intervals of the regression lines. P-values in residual analyses ranged between <0.001 and 0.04 and
adjusted R? values ranged between 0.20 and 0.68 (Tables S5a and S5b available as Supplementary Data at Tree Physiology Online).

not indicate that VWC is better than PLC at predicting DIM.
Rather, in this study we demonstrate that water content, a
variable that has received little focus during the past decade
of DIM research, is also a useful indicator of DIM risk, and can
reliably distinguish populations at no risk from those at risk of
DIM (i.e., incipient mortality risk), a critical feature for monitoring
purposes. Thus, our results in ponderosa pine suggest that water
content variables are worth considering along other classic DIM
predictors such as PLC, WP and NSC.

Our results also support that water content integrates the
diverse mechanisms leading to drought mortality. When stomata
close under drought, plant water content depends on loss
via cuticular conductance and stomatal leakiness, along with
the water supply through the vascular system (Blackman et
al. 2016). Consistently, VWC was strongly related to PLC in
all organs and at the whole-plant level (Figure 5; Table S5a
available as Supplementary Data at Tree Physiology Online).
Volumetric water content also decreased significantly with

NSC depletion (Figure S4 available as Supplementary Data
at Tree Physiology Online), which occurred as the drought
intensified and starch concentration decreased, likely as a result
of decreased supply via photosynthesis (Figure S1 available as
Supplementary Data at Tree Physiology Online). In contrast, solu-
ble sugars, the osmotically active component of NSC, increased
during drought (Figure S1 available as Supplementary Data at
Tree Physiology Online), a common response (Martinez-Vilalta
et al. 2016). Critically, VWC residuals and NSC residuals were
strongly related, indicating that NSC storage is involved directly
and/or indirectly in tissue water retention (independent of direct
drought effects on both variables). Contrary to expectations,
however, the effect of NSC on VWC was driven by starch,
not by soluble sugars (Figure 6D-F; Table S5b available as
Supplementary Data at Tree Physiology Online). Such a
response could represent conversion of starch into osmolytes
other than sucrose, glucose and fructose (e.g., raffinose) that
would not be detected by our methods (Lintunen et al. 2016).
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Alternatively, NSC could serve as an energy source for the
active accumulation of both organic and inorganic solutes
(White and Broadley 2001; Plett and Mgller 2010). Overall,
our results at the whole-plant and organ level show that metrics
of water content accurately capture the progressive dehydration
leading to desiccation that occurs during the process of DIM
(Tyree et al. 2003; Saiki et al. 2017). Plants regulate water
content by preventing loss of hydraulic conductivity or PLC,
enhancing retention (including capacitance) and reducing water
loss (Meinzer et al. 2001) (Figure 1). We find that both water
supply (PLC) and NSC influence VWC and that failure to maintain
water content above certain thresholds increases risk of death
(Figure 1).

Incorporating water content-related variables may advance
our current conceptual framework for predicting DIM based on
hydraulic failure and carbon starvation (Mcdowell et al. 2008):
water content integrates important aspects of the two mecha-
nisms (Figures 5 and 6) and provides a metric to which living
cells respond directly (Zhu 2016; Sack et al. 2018). Consistent
with recent evidence (Adams et al. 2017), our results show
that hydraulic failure (i.e., water supply) has a dominant effect
on DIM relative to NSC storage depletion (i.e., water retention)
(Figure S3 and Table S3 available as Supplementary Data at
Tree Physiology Online). The degree to which hydraulic failure
and NSC depletion contribute to changes in plant water balance
likely varies across populations, species and biomes (Anderegg
2015; Adams et al. 2017) but such variability is potentially
captured by water content. Thus, water content variables
may provide more consistent relationships with mortality risk
across species than PLC or NSC alone because they integrate
the two.

Another potential advantage of adding water content to
current frameworks for assessing DIM is that it can be measured
across scales ranging from organs to ecosystems via remote
sensing (Saatchi and Moghaddam 2000; Ceccato et al. 2001;
Ullah et al. 2014; Ma et al. 2016; Fang et al. 2017; Konings et
al. 2017). In contrast, PLC is more difficult to measure at large
spatial scales, and values leading to mortality are variable across
organs and species (Tyree et al. 2003, Brodribb and Cochard
2009, Choat et al. 2012, Urli et al. 2013). The relationship
between water content and DIM reported here is currently
limited to seedlings, and experimental evidence in mature trees
is still needed. However, declines in remotely sensed water
content have been linked to mortality of mature trees across
diverse forest types (Saatchi et al. 2013, Asner et al. 2015,
Rao et al. 2019). Therefore, water content may offer potential
for improved monitoring of DIM risk across scales. Our results,
along with those of Saatchi et al. 2013, Asner et al. 2015 and
Rao et al. 2019 are promising and warrant future experimental
studies on mature trees.

The expected increase in DIM under climate change has
large ecological, economic and social implications (Stocker et al.
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2015). Despite intense research, our limited understanding of
the interaction between hydraulic failure and carbon depletion,
along with the lack of physiological indicators with incipient
DIM thresholds measurable at large scales have hindered our
ability to accurately model and monitor DIM risk (Hartmann
et al. 2018). We provide experimental evidence that plant
water content is a useful indicator of DIM risk, integrates
the mechanisms of DIM at the individual level and shows an
incipient DIM threshold. While our results may have impor-
tant implications for large-scale monitoring of DIM risk, much
research is still needed. First, we measured VWC as a potential
indicator because it is most similar to the variable used in
remote sensing techniques. However, anatomical differences
among organs and species are likely to cause a certain degree
of variability in the relationship between VWC and mortality
risk for both incipient mortality threshold values and the slope
of the relationship beyond such values. Plant functional-type
estimates of VWC mortality thresholds and slopes may provide
a way to encapsulate such variability and effectively predict
DIM across species. Alternatively, measures of water content
that account for the water-holding capacity of the tissue, such
as the relative water content (Martinez-Vilalta et al. 2019),
or that account for the capacity to recover from turgor loss
(Trueba et al. 2019) may provide more consistent thresh-
olds across species. Other critical research steps include the
following: (i) to corroborate that water content variables are
useful for DIM assessment in other species, (ii) to assess water
content mortality thresholds and slopes in mature trees, (iii)
to examine similar relationships from remotely sensed data
concurrent with drought mortality data and (iv) to integrate
dynamics of vegetation water content in systems with multiple
species and plant growth strategies. Comparative tests of the
relative performance of commonly used DIM predictors such
as WP PLC and NSC against that of water content variables
across populations and species may also shed light on the
physiological mechanisms of DIM and the interaction between
hydraulic failure and carbon depletion. We hope our results will
motivate such work.

Supplementary Data

Supplementary Data for this article are available at Tree Physiol-
ogy online.
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