
Adjoint Based Hessians for Optimization Problems in System
Identification

Souransu Nandi and Tarunraj Singh

Abstract— An adjoint sensitivity based approach to deter-
mine the gradient and Hessian of cost functions for system
identification is presented. The motivation is the development
of a computationally efficient approach relative to the direct
differentiation technique and which overcomes the challenges
of the step size selection in finite difference approaches. The
discrete time measurements result in discontinuities in the
Lagrange multipliers. The proposed approach is illustrated on
the Lorenz 63 model where part of the initial conditions and
model parameters are estimated.

I. INTRODUCTION
In data assimilation and system identification of dynamic

systems (among other fields), it is often required to solve
optimization problems where cost functions are functions
of the state variables at specific time instants (most often
when measurements are available). When derivative based
optimization techniques are used to solve these problems,
gradients of the cost with respect to the optimization vari-
ables are needed. In addition, for faster convergence, Hes-
sians of the cost with respect to the optimization variables
are also desired [1].

However, for dynamic systems, calculating the Hessian of
a cost function which is state dependent is computationally
very expensive since it requires solving matrix and tensor
differential equations. As a result, methods to efficiently
evaluate these derivatives become paramount. Raffard et
al. [2] propose an adjoint based approach to determine the
gradients of a cost function for parameter identification of
protein regulatory networks. The Hessian is approximated by
the finite difference of the gradients. Numerous papers [3],
[4], [5] deal with the use of adjoint based algorithms for
optimal control or sensitivity analysis where the cost metric
is an integral function. This paper (largely inspired by
Tortorelli et al [6] where an adjoint based method is used
to determine gradients and Hessians for static optimization
problems) focuses on cost functions which are summations of
a scalar function, reflecting the availability of measurements
at discrete time instants. This results in discontinuities in the
evolution of the Lagrange multipliers. The efficiency of the
adjoint based approach is compared to existing approaches
of Finite Difference and Direct Differentiation to illustrate
the computational benefits.

The document has been structured as follows: Section
I introduces the problem statement. Section II talks about
the existing method of direct differentiation. Section III
presents the adjoint method emphasizing the novel way to
evaluate Hessians. Finally, the document ends with an system
identification example problem for a chaotic dynamic system
in section V and concluding remarks in section VI.

Dynamic models considered in this work are of the form:

ẋ = f(x,p, t) with x0 = x(t0) (1)

where x ∈ Rn is the state vector of the system, x(t0) is the
initial condition of the states and p ∈ Rp is the parameter
vector on which the system model depends.
The generic scalar cost function is considered of the form

J(x,p) =
N∑
i=0

g(x(ti),p) (2)

where g(x(ti),p) represents the value of a scalar function
g(x(t),p) at the ith time step (ti). In the context of system
identification problems (where the initial conditions and the
parameters of the system are being estimated), g(x(ti),p)
could be regarded as the squared residual between the output
model and the observations of the true plant. However, one
is not restricted to a squared residual: any desired cost with
C2 continuity may be used.
For simplicity, in all subsequent equations, J(x,p) is written
as J . Similarly, g(x(ti),p) and f(x,p, t) have also been
simplified to just gi and f respectively.
From an optimization point of view, it is required to find
a p and an x0 which minimizes J . The objective of this
work is to facilitate use of all derivative based optimization
techniques to solve the problem, by developing efficient ways
to determine the gradients and Hessians of the cost function
with respect to the optimization variables (i.e. p and x0). If
the optimization variables are grouped as q = [p,x0]T where
p = [p1, . . . , pp]T and x0 = [x01, . . . , x0n], then the goal is
to evaluate dJ

dq (∈ R(p+n)×1) and d2J
dq2 (∈ R(p+n)×(p+n)).

It should be noted that, since x is a function of x0 and p,
J can be expressed as J(q).
In this work, comparison of the adjoint method to other
existing approaches have been done on the basis of the
number of scalar integrations required in each algorithm. As
more integrations require a higher computational effort, this
number (referred to as N (method)

s in the document) has been
used to provide an indirect comparison of computational
efficiency of each method. N (method)

s is derived in terms of
2 variables: namely the number of states (n) and the number
of parameters (p) in the model equation (equation (1)).

II. DIRECT DIFFERENTIATION (DD)

As the name suggests, Direct Differentiation is basically
directly taking the derivative of the cost function J with
respect to the optimization variables (q). The method is
expounded on in the following subsections.

A. Gradient

The cost function of interest is J(q) =
∑N

i=0 gi.
After defining the following notations:

da

db︸︷︷︸
(p×n)

=


da1

db1
. . . dan

dbp
...

. . .
...

da1

dbp
. . . dan

dbp

 ;
∂a

∂b︸︷︷︸
(p×n)

=


∂a1

∂b1
. . . ∂an

∂b1
...

. . .
...

∂a1

∂bp
. . . ∂an

∂bp

 ;

∂(.)

∂a︸︷︷︸
n×1

=
[
∂(.)
∂a1

. . . ∂(.)
∂an

]T
(3)

where a = [a1, . . . , an]T , b = [b1, . . . , bp]T and (.) is a
scalar quantity, the derivative of the cost function can be
shown to be

dJ

dq
=

[
dJ
dp
dJ
dx0

]
=

[∑N
i=0(∂g

∂p + dx
dp

∂g
∂x)i∑N

i=0(dx
dx0

∂g
∂x)i

]
. (4)

(.)i represents (.) evaluated at time ti. Except the sensitivity
of the states to the parameters and initial conditions (i.e. dx

dp

and dx
dx0

), all other terms are known since g is known. dx
dp and

dx
dx0

can be found from the derivatives of the dynamic model
equation (Equation 1) with respect to p and x0 respectively.
These equations are

dẋ

dq
=

[
dẋ
dp
dẋ
dx0

]
=

[
dx
dp

∂f
∂x + ∂f

∂p
dx
dx0

∂f
∂x

]
. (5)

Integrating equation (5) allows one to determine dx
dp and

dx
dx0

over time. Once they are known in time, they can be
substituted in equation (4) to evaluate the desired gradient.
It should be noted that equation (5) is a matrix differential
equation which needs (p + n) × n simultaneous scalar
integrations.

B. Tensor-Matrix Operators

Before the derivation of the Hessian via DD is presented,
3 operators are defined which operate on 2nd order tensors
(or 3-D matrices) and 2-D matrices. These operators can then
be used to express the Hessian in a concise manner.

1) Operator 1: If T is a 3D matrix of dimensions (a ×
b× c) and M is 2-D matrix of dimension (c× d), then

(T→M)i,j,l =
c∑

k=1

Ti,j,kMk,l (6)

where T→M ∈ R(a×b×d). Operator 1 is developed to write
the following derivative in short hand.

d

d b︸︷︷︸
b×1

(
A(b)︸︷︷︸
a×c

M︸︷︷︸
c×d

)
= (

dA(b)

db︸ ︷︷ ︸
T

)→M (7)

2) Operator 2: If T is a 3D matrix of dimensions (b ×
c× d) and M is 2-D matrix of dimension (a× b), then

(M→T)i,l,k =
b∑

j=1

Tj,l,kMi,j (8)

where M→T ∈ R(a×c×d). Operator 2 is developed to write
the following derivative in short hand.

d

d c︸︷︷︸
c×1

(
M︸︷︷︸
a×b

A(c)︸︷︷︸
b×d

)
= M→ dA(c)

dc︸ ︷︷ ︸
T

(9)

3) Operator 3: If T is a 3D matrix of dimensions (a ×
b× c) and M is 2-D matrix of dimension (b× d), then

(T →M)i,l,k =
b∑

j=1

Ti,j,kMj,l (10)

where T →M ∈ R(a×d×c). Operator 3 is developed to write
the following derivative in short hand.

d

d d︸︷︷︸
d×1

(
A(x(d))︸ ︷︷ ︸

a×c

)
=
dA(x)

dx︸ ︷︷ ︸
T

→ dx

dd︸︷︷︸
b×d

(11)

Operators 1 through 3 have been used in the subsequent
sections to represent tensor-matrix products.

C. Hessian

Similar to the method of gradient, the Hessian of the cost
function via DD can be evaluated by directly differentiating
the gradient (dJdq) with respect to the q vector.
Therefore, on differentiating equation (4), we get

d2J

dq2
=

[
d2J
dp2

d2J
dpdx0

d2J
dx0dp

d2J
dx2

0

]
(12)

where

d2J

dp2
=

N∑
i=0

(
∂2g

∂p2
+

∂2g

∂p∂x

dx

dp

T

+
dx

dp

∂2g

∂x∂p
+

dx

dp

∂2g

∂x2

dx

dp

T

+
d2x

dp2

→ ∂g
∂x

)i , (13)

d2J

dx2
0

=
N∑
i=0

(
dx

dx0

∂2g

∂x2

dx

dx0

T

+
d2x

dx2
0

→ ∂g
∂x

)i and (14)

d2J

dx0dp
=

N∑
i=0

(
dx

dx0

∂2g

∂x∂p
+
dx

dx0

∂2g

∂x2

dx

dp

T

+
d2x

dx0dp

→ ∂g
∂x

)i.

(15)
The known quantities (∂2g

∂x2 , ∂2g
∂x∂p , ∂2g

∂p∂x and ∂2g
∂p2) can be

defined in a manner similar to equation (??).
The unknown quantities in equations (13) through (15) are
the tensors d2x

dp2 , d2x
dx0dp

and d2x
dx2

0
. These quantities need to be

calculated dynamically from a tensor differential equations

derived by differentiating equation (5) with respect to p and
x0. On doing so, we get 3 independent equations

d2ẋ

dp2
=
∂2f

∂p2
+

(
∂2f

∂p∂x
→ dx

dp

T
)

+

(
dx
dp→ ∂2f

∂x∂p

)

+

[(
dx
dp→ ∂

2f

∂x2

)
→ dx

dp

T
]

+
d2x

dp2

→ ∂f
∂x

, (16)

d2ẋ

dx0dp
=

(
dx
dx0
→ ∂2f

∂x∂p

)
+[(

dx
dx0
→ ∂

2f

∂x2

)
→ dx

dp

T
]

+
d2x

dx2
0

→ ∂f
∂x

and (17)

d2ẋ

dx2
0

=

[(
dx
dx0
→ ∂

2f

∂x2

)
→ dx

dx0

T
]

+
d2x

dx0dp

→ ∂f
∂x

. (18)

where the tensors can be defined via the notation in Figure 1.
Since equations (16) through (18) are tensor differential

(a) d2a
dbdc

(b) ∂2a
∂b∂c

Fig. 1. Visualization of the second derivative tensors where a ∈ Rn,
b ∈ Rp and c ∈ Rq

equations of d2x
dp2 , d2x

dx0dp
and d2x

dx2
0

, it needs (p2n), (pn2) and

(n3) scalar integrations to compute respectively. Once, d2x
dp2 ,

d2x
dx0dp

and d2x
dx2

0
are known over time, they can be substituted

in equation (12) to evaluate the Hessian.

III. ADJOINT METHOD

The DD approach provides a fairly straight forward
method to obtaining the gradients and the Hessians. However,
in DD, while calculating the gradient (dJdq) the first step was
to determine the sensitivity of the states (dxdq). Similarly,
while calculating the Hessian (d

2J
dq2), the second derivative

of the states to the variables d2x
dq2 was needed, both of which

are relatively expensive.
To avoid those expensive calculations, an alternative method
of computing gradients and Hessians can be devised called
the Adjoint Method. It provides an efficient way to deter-
mine gradients without having to calculate the sensitivity of
the states (dxdq) and a way to determine Hessians without
computing the expensive d2x

dq2 ; thereby improving the com-
putational efficiency. The following sections elaborate the
adjoint method.

A. Gradient

The derivation starts with an augmented cost function of
interest (L1) (of the form of a Lagrangian) as:

L1(q) =
N∑
i=0

gi +
N−1∑
i=0

(∫ t−
(i+1)

t+i

(ẋ− f(x,p, t))Tλdt

)
(19)

where λ ∈ Rn is a new set of introduced states (also called
the co-states and are analogous to Lagrange multipliers).
λ is assumed to be a discontinuous variable being non-
differentiable at time points ti (i.e. the value of λ jumps at
the edges of the intervals). This is why the total integral over
time has been broken into N integrals over N time intervals.
When the state equations are satisfied, the second summation
term in the L1 (equation (19)) becomes 0, making L1 = J . In
that case, dL1

dq = dJ
dq also holds true. Since, the states (x) are

always determined by solving the state equation, the gradient
of the cost function (dJdq) is always equal to the gradient of
the augmented cost function (dL1

dq). Using this property, the
gradient of the augmented cost is ultimately evaluated.
An expression for the gradient can be determined by dif-
ferentiating equation (19) with respect to q to get dL1

dq =

[dL1

dp
dL1

dx0
]T . The development of only dL1

dp is presented here
since deriving dL1

dx0
is almost identical.

An expression for dL1

dp is obtained from L1 as

dL1

dp
=

N∑
i=0

(
dx

dp

∂g

∂x
+
∂g

∂p

)
i

+

+
N−1∑
i=0

(∫ t−
(i+1)

t+i

(
dẋ

dp
− dx

dp

∂f

∂x
− ∂f

∂p

)
λdt

)
. (20)

Now, using the properties of integration by parts on the term
dẋ
dp , we get∫ t−

(i+1)

t+i

dẋ

dp
λdt =

[
dx

dp
λ

]t−
(i+1)

t+i

−
∫ t−

(i+1)

t+i

(
dx

dp
λ̇

)
dt. (21)

With the substitution of equation (21), equation (20) simpli-
fies to

dL1

dp
=

N∑
i=0

(
∂g

∂p

)
i

+
N−1∑
i=1

(
dx

dp

)
i

[(
∂g

∂x

)
i

+ λi−

−λi+

]
+

(
dx

dp

)
0

[(
∂g

∂x

)
0

− λ0+

]
+

(
dx

dp

)
N

[(
∂g

∂x

)
N

+ λN−

]
+

N−1∑
i=0

(∫ t−
(i+1)

t+i

dx

dp

(
−λ̇− ∂f

∂x
λ

)
dt

)
+

N−1∑
i=0

(∫ t−
(i+1)

t+i

(
−∂f
∂p
λ

)
dt

)
. (22)

It should be noted that dx
dp and ∂g

∂x are continuous functions,
i.e. (dx

dp)i = (dx
dp)i− = (dx

dp)i+ and (∂g
∂x)i = (∂g

∂x)i− =

(∂g
∂x)i+ . Equation (22) is still dependent on dx

dp . However, the
whole purpose of the adjoint method was to avoid calculating

dx
dp . To make this possible, all the terms that are associated
with dx

dp somehow needs to be eliminated. The first step is
to solve the co-state differential equation

−λ̇− ∂f

∂x
λ = 0. (23)

Once equation (23) is solved and λ is known over time,
equation (22) simplifies to

dL1

dp
=

N∑
i=0

(
∂g

∂p

)
i

+
N−1∑
i=1

(
dx

dp

)
i

[(
∂g

∂x

)
i

+ λi−

−λi+

]
+

(
dx

dp

)
0

[(
∂g

∂x

)
0

− λ0+

]
+

(
dx

dp

)
N

[(
∂g

∂x

)
N

+ λN−

]
+

N−1∑
i=0

(∫ t−
(i+1)

t+i

(
−∂f
∂p
λ

)
dt

)
. (24)

Equation (23) needs to be solved separately over each time
interval (since λ is discontinuous at the edges of the inter-
vals). A set of boundary conditions for each of those intervals
are also necessary. A smart selection of these boundary
conditions can be used to eliminate some of the other terms
containing dx

dp in equation (24). Assuming λN− = −(∂g
∂x)N ,

equation (23) can be solved by integrating it backward in
time from tN− to tN−1+ . This eliminates the need for the
term (dx

dp)N from equation (24) since it now multiplies 0.
The next step is to evaluate λ in the time intervals between
ti+1− and ti+ . This is again done by solving equation (23) by
integrating it back in the respective time intervals. However,
this time, the boundary conditions λi+1− for each interval
is calculated by solving the algebraic equation(

∂g

∂x

)
i

+ λi− − λi+ = 0 (25)

where λi+ is known: as it is the terminal λ from the solution
of equation (23) in the previous time interval. Such selection
of boundary conditions removes the need for evaulating
(dx
dp)i. In summary, λ needs to be solved separately over

each time interval (using equation (23)). At the end of each
integration, the boundary value of λ for the next integration
(or time interval) is determined (using equation (25)).
Solving equation (25) causes the second term in equation
(24) to be 0 and simplifies it to

dJ

dp
=
dL1

dp
=

N∑
i=0

(
∂g

∂p

)
i

+

N−1∑
i=0

(∫ t−
(i+1)

t+i

(
−∂f
∂p
λ

)
dt

)
.

(26)
since the initial value of the states are independent of the
parameters, i.e., (dx

dp)0 = 0.
Equation (23) is also called the adjoint equation (and hence

the name: Adjoint method). Equation (26) represents the final
equation that needs to be evaluated to calculate the gradient.
Similarly, a gradient equation for the initial conditions can
also be obtained. It can be shown that

dJ

dx0
=
dL1

dx0
=

(
∂g

∂x

)
0

− λ0+ (27)

where the co-states λ are solved in an identical fashion.

B. Hessian

A huge drawback of the DD method for calculating the
Hessian was the need to calculate d2x

dp2 , d2x
dx0dp

and d2x
dx2

0
.

To solve for them over time, one needs to solve 3 tensor
differential equations involving (p2n + n2p + n3) scalar
integrations; which is computationally expensive. The adjoint
method once again allows us to bypass those integrations and
evaluate the Hessian in an alternate manner, thus improving
the computational efficiency.
Once again, only the development of d2J

dp2 is presented since
the other parts of the Hessian (d

2J
dx2

0
and d2J

dx0dp
) can be derived

in the same way. Similar to the derivation of the gradient,
first an augmented cost function (L2) is written as

L2 =
dL1

dp
+

N−1∑
i=0

(∫ t−
(i+1)

t+i

η(ẋ− f)dt+

∫ t−
(i+1)

t+i

γ

(
−λ̇− ∂f

∂x
λ

)
dt

)
, (28)

where η ∈ R(p×n) and γ ∈ R(p×n) are Lagrangian multipli-
ers.
With a similar argument as the one used for L1, when the
state and the co-state equations are satisfied, the integral
terms in equation (28) become 0 making L2 = dL1

dp = dJ
dp .

In that case, dL2

dp = d2J
dp2 also holds true. Since, the states

(x) are always determined by solving the state equation,
and the co-states λ are also always determined using the
co-state dynamic equation: the Hessian of the cost function
(d

2J
dp2) is always equal to the first derivative of the augmented

cost function (dL2

dp). Using this property, the derivative of the
augmented cost L2 is ultimately evaluated.
Now, substituting dL1

dp from equation (24), we get

L2 =
N∑
i=0

(
∂g

∂p

)
i

+
N−1∑
i=1

(
dx

dp

)
i

[(
∂g

∂x

)
i

+ λi− − λi+

]
+

(
dx

dp

)
0

[(
∂g

∂x

)
0

− λ0+

]
+

(
dx

dp

)
N

[(
∂g

∂x

)
N

+ λN−

]
+

N−1∑
i=0

(∫ t−
(i+1)

t+i

(
−∂f
∂p
λ

)
dt+

∫ t−
(i+1)

t+i

η(ẋ− f)dt+

∫ t−
(i+1)

t+i

γ

(
−λ̇− ∂f

∂x
λ

)
dt

)
. (29)

To evaluate dL2

dp , equation (29) is first differentiated with
respect to p. Then, terms which are inherently 0 (such as
(d2x
dp2)0 and (dx

dp)0) are eliminated. Furthermore, since the
terms multiplying the boundary conditions for λ are satisfied
when evaluating λ, we can also eliminate them. Finally,
using the properties of integration by parts on the resultant,

we get

dL2

dp
=

N−1∑
i=0

[∫ t−
(i+1)

t+i

(
− ∂2f

∂p2

→λ

− γ ∂2f

∂x∂p

→λ

− η ∂f
∂p

T
)
dt+

∫ t−
(i+1)

t+i

(
− ∂2f

∂p∂x

→λ

− γ ∂
2f

∂x2

→λ

− η ∂f
∂x

T

− η̇

)
dx

dp

T

dt+

∫ t−
(i+1)

t+i

(
− ∂f

∂p
− γ ∂f

∂x

+ γ̇

)
dλ

dp

T

dt

]
+

N∑
i=0

(
∂2g

∂p2

)
i

+
N∑
i=1

[(
dx

dp

∂2g

∂x∂p
+

dx

dp

∂2g

∂x2

dx

dp

T

+
∂2g

∂p∂x

dx

dp

T
)

i

+

(
dx

dp

)
i

dλ

dp

T

i−
−

γi
dλ

dp

T

i−

]
+

N−1∑
i=1

[
γi
dλ

dp

T

i+
−
(
dx

dp

)
i

dλ

dp

T

i+

]
+ γ0

dλ

dp

T

0+

N−1∑
i=1

(ηi− − ηi+)

(
dx

dp

T
)

i

+ η
dx

dp

T

N−
− η dx

dp

T

0+
. (30)

Equation (30) is the expression to calculate the Hessian.
However, this expression is still dependent on some terms
which are unknown to us (for example: dλ

dp). To solve
this problem, all terms associated with them need to be
eliminated. An approach similar to the adjoint equation
during gradient calculation is exercised.
The third integral term of equation (30) is eliminated by
solving the differential equation in γ

−∂f
∂p
− γ ∂f

∂x
+ γ̇ = 0, with γ(0) = 0. (31)

The second integral term of equation (30) is eliminated by
solving the differential equation in η

− ∂2f

∂p∂x

→λ

− η ∂f
∂x

T

− η̇ − γ ∂
2f

∂x2

→λ

= 0 (32)

with a terminal boundary condition η(T) = 0 and other
interval boundary conditions derived from ηi− − ηi+ = 0.
The method to solve for η is similar to that of λ (i.e.
requires separate integrations for each interval with boundary
conditions calculated for each of those intervals separately).
Furthermore, recognising that dx

dp (0) = 0, equation (30)
simplifies to

dL2

dp
=

N−1∑
i=0

[∫ t−
(i+1)

t+i

(
− ∂2f

∂p2

→λ

− γ ∂2f

∂x∂p

→λ

− η ∂f
∂p

T
)
dt

]
+

N∑
i=0

(
∂2g

∂p2

)
i

+
N∑
i=1

[(
dx

dp

∂2g

∂x∂p
+

dx

dp

∂2g

∂x2

dx

dp

T

+
∂2g

∂p∂x

dx

dp

T
)

i

+

(
dx

dp

)
i

dλ

dp

T

i−
−

γi
dλ

dp

T

i−

]
+

N−1∑
i=1

[
γi
dλ

dp

T

i+
−
(
dx

dp

)
i

dλ

dp

T

i+

]
. (33)

At this point, it seems that the intermittent values of dx
dp are

needed to evaluate equation (33). However, on observing the
problem carefully, one can see that the γ equation (equation
(31)) is in fact essentially the same as the dx

dp equation
(equation (5)). Therefore, it turns out that when calculating
the Hessian of the cost function, one has to evaluate the
sensitivity of the states to the parameters over time: whether
directly as in DD or indirectly as in the Adjoint method.
Since dx

dp = γ, it can be substituted in equation (33).
Hence, the final value of the Hessian is given by

d2J

dp2
=
dL2

dp
=

N−1∑
i=0

[∫ t−
(i+1)

t+i

(
− ∂2f

∂p2

→λ

− γ ∂2f

∂x∂p

→λ

− η ∂f
∂p

T
)
dt

]
+

N∑
i=0

(
∂2g

∂p2

)
i

+
N∑
i=1

[(
γ
∂2g

∂x∂p
+

γ
∂2g

∂x2
γT +

∂2g

∂p∂x
γT

)
i

. (34)

Similarly, it can be shown that

d2J

dx2
0

=
N∑
i=0

(
γ2
∂2g

∂x2
γT2

)
i

− (η2)0+ (35)

where −γ2 ∂f
∂x + γ̇2 = 0, with γ2(0) = I and

−η2 ∂f
∂x

T
− η̇2− γ2 ∂2f

∂x2

→λ
= 0, with η2(T) = 0 & (η2)i− −

(η2)i+ = 0. It can also be shown that

d2J

dx0dp
=

N−1∑
i=0

[∫ t−
(i+1)

t+i

(
−γ2

∂2f

∂x∂p

→λ

− η2
∂f

∂p

T
)
dt

]

+

N∑
i=0

(
γ2
∂2g

∂x2
γT + γ2

∂2g

∂x∂p

)
i

. (36)

This concludes the presentation of all the results for the
gradient and the Hessian calculations using the Adjoint
method. The next section presents a brief summary of the
computational efficiencies of each method.

IV. COMPUTATIONAL EFFICIENCY

Considering that the cost function is a function of states
from a dynamic system, a good measure of the expense
is to compare the number of scalar integrations needed
in each method. The comparison has been made for (1)
when only the gradient is calculated and (2) when both
the gradient and Hessian are calculated. Table. I compares
the computation cost of the FD, DD and Adjoint approach
clearly illustrating the benefit of the Adjoint approach. The

TABLE I
COMPARISON OF COMPUTATIONAL EXPENSE

Algorithm Gradient Gradient + Hessian

N
(FD)
s 2np+ 2n2 n3 + 2n2p+ p2n+ n2 + pn+ n

N
(DD)
s n+ pn+ n2 n2 + n+ pn+ p2n+ n3 + n2p

N
(Adjoint)
s 2n+ p p+ p2 + 2n+ 2n2 + 3pn

computational advantage of the Adjoint method is evident
from the table which suggests that the growth of Ns is given
by 3rd order polynomials for FD as well as DD while it is
only a 2nd order polynomial for the Adjoint.

V. SYSTEM IDENTIFICATION PROBLEM

The Lorenz-63 model given by equations:

ẋ1 = −p1(x1 − x2) (37)

ẋ2 = x1(p2 − x3)− x2 (38)

ẋ3 = x1x2 − p3x3. (39)

with unknown parameters and initial conditions, is used as an
example to illustrate the proposed technique. This particular
system is chosen since it is known to be chaotic. It is highly
sensitive to initial conditions and parameters making it an
ideal choice to illustrate the accuracy and the feasibility of
the Adjoint method.
It is assumed that all the parameters p1, p2, p3 and the initial
conditions for x2 & x3 are unknown. For system identifi-
cation, it is also assumed that a time series of observations
x̂1, x̂2, x̂3, (at intervals of ∆t = 0.01 up to t = 1) is available
for x1, x2 and x3. The time series is generated from the
following values: p1 = 10, p2 = 60, p3 = 8/3, x1(0) =
20, x2(0) = 25 and x3(0) = 30. The intention is to estimate
q = [p1, p2, p3, x2(0), x3(0)]′ correctly. A similar structure
for the Lorenz system identification problem can also be
found in [7].
To identify the optimal q, an optimization problem is posed
with a cost function

J =
N∑
i=0

3∑
j=1

(xj(ti)− x̂j(ti))2. (40)

subject to equations (37) through (39).
The problem is solved iteratively. The initial guesses are
chosen to be p̂1 = 20, p̂2 = 75, p̂3 = 10, x̂2(0) = 10 and
x̂3(0) = 15 for all the methods.
The gradients and the Hessians of the cost function J with
respect to q are evaluated at every iteration. These quantities
are then used to employ a gradient based algorithm in
Matlab to converge to a solution. This is done for each
of the methods discussed in the document under identical
optimization environments. Figure 2 shows a comparative
plot of convergence between the different techniques. The
only difference while simulating them was the source of
gradients and Hessians that were fed to the optimizer.
Four distinct simulations were made for the FD method

with each simulation having a distinct step size to calculate
the gradients and Hessians. The step sizes have been listed
in Figure 2. Curves corresponding to step sizes 10−5 and
10−7 show comparatively slow convergences. FD with a
step size of 10−6 performs very well while FD with a step
size of 10−8 fails to converge. These results illustrate the
variability in the accuracy of FD. Since it is impossible to
know the magnitude of the optimal step size beforehand, a
method independent of step size is motivated. The DD and

Fig. 2. Convergence of Different Algorithms

the Adjoint method have comparable performance although
the DD proves to be the best algorithm in this example
having converged the quickest with the lowest terminal cost.
However, it must be noted that the Adjoint approach is far
less expensive as compared to FD as well as DD.

VI. CONCLUSION
Stimulated by the tradeoff between truncation error and

numerical accuracy in finite difference estimates of gradients
and Hessians, this paper presents a detailed development of
the adjoint sensitivity approach for the determination of the
exact Hessian for system identification problems where the
measurements are available at discrete times. The proposed
approach is illustrated on the Lorenz 63 problem.

ACKNOWLEDGMENT
This material is based upon work supported through Na-

tional Science Foundation (NSF) under Award No. CMMI-
1537210. All results and opinions expressed in this article
are those of the authors and do not reflect opinions of NSF.

REFERENCES

[1] J. Nocedal and S. Wright, Numerical optimization. Springer Science
& Business Media, 2006.

[2] R. L. Raffard, K. Amonlirdviman, J. D. Axelrod, and C. J. Tomlin,
“Parameter identification via the adjoint method: Application to protein
regulatory networks,” IFAC Proceedings Volumes, vol. 39, no. 2, pp.
475–482, 2006.

[3] A. Sandu, D. N. Daescu, and G. R. Carmichael, “Direct and adjoint
sensitivity analysis of chemical kinetic systems with kpp: Part itheory
and software tools,” Atmospheric Environment, vol. 37, no. 36, pp.
5083–5096, 2003.

[4] M. Shichitake and M. Kawahara, “Optimal control applied to water
flow using second order adjoint method,” International Journal of
Computational Fluid Dynamics, vol. 22, no. 5, pp. 351–365, 2008.

[5] S. Liu and T. R. Bewley, “Adjoint-based system identification and
feedforward control optimization in automotive powertrain subsystems,”
in American Control Conference, 2003. Proceedings of the 2003, vol. 3.
IEEE, 2003, pp. 2566–2571.

[6] D. A. Tortorelli and P. Michaleris, “Design sensitivity analysis:
overview and review,” Inverse problems in Engineering, vol. 1, no. 1,
pp. 71–105, 1994.

[7] F. Lu, D. Xu, and G. Wen, “Estimation of initial conditions and
parameters of a chaotic evolution process from a short time series,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 14,
no. 4, pp. 1050–1055, 2004.

