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Abstract— The focus of this paper is on the design of input
shapers for systems with uncertainties in the parameters of the
vibratory modes which need to be attenuated. A probabilistic
framework is proposed for the design of the robust input
shaper, when the uncertain modal parameters are characterized
by probability density functions. A convex chance constrained
optimization problem is posed to determine the parameters of
input shapers (time-delay filter) which can accommodate the
users acceptable risk levels for a prescribed residual energy
threshold. Robust input shapers are developed for various
compact support distributions to illustrate the ability of the
proposed formulation to synthesize input shapers which can
satisfy a residual energy threshold with a given risk level. This
problem formulation can conceivably reduce the conservative
nature of worst case controllers which have to ensure that all
realizations of the uncertain system have to satisfy a prescribed
performance index. The chance constrained input shaper is
designed for a spring-mass-dashpot system with three different
distributions for the uncertain spring stiffness. Results provide
encouragement for the extension of the proposed approach to
multi-dimensional and multi-model uncertainties.

I. INTRODUCTION

Precise regulation of a lightly damped system has been
a topic of interest to the control community for over five
decades. Increasing the damping characteristic via feedback
control comes at the cost of increasing the settling time of
the system response for any rest-to-rest maneuver. A finite-
time rest-to-rest (also called a dead-beat) response has appeal
and was addressed by Tallman and Smith [1]. Their approach
exploited the linear superposition principle in suggesting a
two step inputs where the second step is delayed to generate
a system response which is 180 degrees out of phase with the
response generated by the first step. If the amplitudes of the
two steps are appropriately designed such that the amplitudes
of the responses of the first and second (delayed) step are out
of phase and of the same magnitude, then one can generate a
dead-beat response. They remark that the uncertainty in the
estimated location of the second-order under-damped poles,
characterized by the s-plane distance between the estimated
and true location of the poles is proportional to the residual
oscillations.

There have been numerous subsequent publications which
addressed the control problem assuming a nominal model.
The issue of developing control profiles which are insensitive
to uncertainties in estimated location of the under-damped
poles, was brought to the fore by Singer and Seering [2]
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in their article on Input Shaping, where the local sensitivity
of system response to variation in damping ratio or natural
frequency of the under-damped poles was forced to zero. The
tradeoff between the settling time and the degree of local
robustness was characterized by the number of impulses in
the Input Shaper design. The idea of using local sensitivity
was extended to multi-mode systems, for time-optimal, fuel-
time optimal and for controllers which optimized other cost
functions [3], [4], [5].

The concept of using the variation of the cost function over
a compact support of the uncertain variables was another
approach used to develop controllers which are insensitive
to uncertainties in the model parameters. This resulted in
the minimax time-delay filter [6] design. A slightly different
approach where the acceptable level of residual vibration
was prescribed and the domain over which the cost function
was below the specified threshold was identified; resulting
in the Extra-Insensitive Input Shaper [7]. Using knowledge
of the probability density functions (pdf), Chang et al. [8]
formulated a cost function which is the expected value of
the residual energy to determine the impulse sequence of
the input shaper. They considered a uniform and Gaussian
distribution to illustrate their technique. Since minimizing
the expected value alone does not correspond to reducing
the variance, the resulting input shaper can lead to a residual
energy distribution with a large variance. This implies that
many realization of the uncertain system can have large
residual vibrations. A polynomial chaos based approach was
proposed by Singh et al. [9], which permits selection of any
number of moments in the design of the input shaper. As the
number of moments included in the cost functions increased,
the solution tended to a minimax solution. Since the minimax
problem formulation requires raster scan sampling over the
uncertain space, it is afflicted by the curse of dimensionality.
The polynomial chaos approach on the other hand provides
an approach to alleviate the computational cost in the design
of input shapers.

The aforementioned approaches for the design of input
shapers have either considered the nominal model alone and
used local sensitivity for the design, or have considered
the support of the uncertainty which in conjunction with
their probability distribution functions resulted in a worst
case design. One can imagine many scenarios where the
worst case design caters to model realizations which have
very small probability. This would then result in a very
conservative design. There is clearly a need for a problem
formulation where the user can specify a level of risk, that is
a bound on the probability of violating a prescribed threshold
for residual energy. This paper presents such a problem



formulation which results in providing the user with a suite
of solutions as a function of the acceptable risk.
The paper has been organised as follows. Section I introduces
the problem statement, provides a background on the existing
literature and motivates the need for chance constraint based
input shaping. Section II explains the concept of probabilistic
constraints and introduces the robust version of it. This
is followed by a review of Polynomial Chaos in Section
III. Section IV then formulates the input shaper (using
developments from previous sections) by posing it as an
optimization problem. Section V is finally used to present
the results from a numerical simulation before finishing with
concluding remarks in Section VI.

II. CHANCE CONSTRAINT

This section first introduces the generic nature of a chance
constraint and its exact representation as an inequality. It
then focuses on linear probabilistic constraints emphasizing
its exact as well as its robust implementation.
Chance constraints are probabilistic constraints of the form:

P (h(x, ξ) ≤ 0) ≥ η (1)

where η ∈ [0, 1] is the probability level, x corresponds to the
decision variable(s) and ξ represents the random variable(s).
Equation (1) can also be written as:

P (h(x, ξ) ≤ 0) ≥ 1− ε (2)

where ε ∈ [0, 1] represents the acceptable risk level [10].
For a linear chance constraints of the form:

P
(
ξTx ≤ b

)
≥ η (3)

where ξ ∼ N
(
ξ,Σ

)
, ξ and Σ are the mean and the

covariance of the Gaussian random variable ξ respectively,
we can represent:

P
(
ξTx− b ≤ 0

)
= Φ

(
b− ξTx
xTΣx

)
(4)

where Φ represents the cumulative distribution function (cdf)
of a normal distribution wth 0 mean and unit variance. This
permits rewriting the linear chance constraint as:

P
(
ξTx− b ≤ 0

)
≥ η ⇐⇒ b− ξTx ≥ Φ−1 (η) ‖Σ1/2x‖.

(5)
Equation (5) is a cone constraint and is convex for η >
0.5 [11]. For an illustrative example, consider the linear
constraint:

ξ1x1 + ξ2x2 ≥ 400 (6)

where the random variables ξ1 and ξ2 are given by the
distributionsN

(
40, 102

)
andN

(
200, 402

)
respectively. The

corresponding chance constraint is given by

P (ξ1x1 + ξ2x2 − 400 > 0) ≥ 0.9. (7)

for a risk level of ε = 0.1. The analytical expression
given by Equation 7 is the exact form for a linear chance
constraint with Gaussian random coefficients. However, for
linear chance constraints where the pdf of the random

coefficients are time varying and might not be characterized
by a well known pdf, then the problem of imposing the
exact chance constraint is challenging. This is the scenario
we encounter when we study imposing chance constraints on
states of a dynamic system with uncertain model parameters.
The issue, however, can be dealt with a robust version of the
chance constraint as detailed below.
Calafiore and El Ghaoui in [10] provides an approach to
rewrite the linear probabilistic inequality:

P
(
ξTx+ b ≤ 0

)
≥ 1− ε (8)

where ξ and x are the vectors of random variables and
decision variables respectively, as a convex non-probabilistic
constraint. In their work, they prove that if ξ and b are
random variables with known means and variances, then
the constraint in equation (8) is equivalent to the convex
constraint√

1− ε
ε
{var[ξTx+ b]}1/2 + E[ξTx+ b] ≤ 0 (9)

where ε represents the risk level i.e. the probability with
which the constraint is permitted to be violated. It should be
noted that the constraint is conservative since it subsumes all
distributions with the same mean and variance. Therefore,
if only the first 2 moments of the random variables (ξ, b)
are known, equation (9) allows one to enforce equation (8)
no matter what the true distribution of (ξ, b) is. However,
since this constraint is robust to all distributions, it yields
conservative solutions.
Figure 1 visually illustrates the exact as well as the robust
versions of the constraints. The solid red line is the determin-
istic constraint with the random variables ξ1 and ξ2 taking
their mean values. The robust chance constraint is shown as
the darker region bounded by a dashed black line (given by
Equation (9)). The permissible region with the exact chance
constraint (given by Equation (7)) is bounded by the solid
blue line and denoted by the lighter area. We can see that
the exact constraint shows a larger feasibile region; which
means it is less conservative relative to the constraint defined
by Equation (9) (the darker region).
Therefore, although the robust constraint is more conserva-

Fig. 1. Comparison of Linear Chance Constraints



tive, its use is still warranted as it poses convex inequalities
for distributions of any nature. The only requirement for its
implementation is the knowledge of mean and variance of
the random variables. The next section now presents a tool
which can be used to determine these desired means and
variances.

III. POLYNOMIAL CHAOS

Polynomial Chaos (PC) is a popular approach for char-
acterizing the uncertainty of evolving states of dynamical
systems, which are functions of probabilistically represented
uncertain system parameters. Polynomial chaos is build on
the pioneering Homogeneous Chaos approach of Wiener [12]
which deals with Gaussian random variables. In contrast to
the Monte Carlo approach for estimating the evolving pdf of
the stochastic states of a dynamical system, the intrusive form
of PC implementation is a non-sampling based approach.
The non-intrusive implementation of PC (on the other hand)
uses samples that are quadrature based [13]. Kim et al. [13]
illustrate via a simple example, the precise estimate of the
mean and variance of a low-order PC expansion, providing
encouragement for its use in uncertainty quantification. Since
the chance constraint problem formulation posed in this
paper for the design of robust input shapers only require
information of the mean and variance of the uncertain states,
polynomial chaos is a germane approach to pose a convex
optimization problem.
Homogeneous chaos, which is specific to Gaussian random
variables has been generalized by Xiu and Karniadakis [14]
where they showed that any stochastic process can be ap-
proximated by an infinite series expansion where the basis
functions are given by the Wiener-Askley scheme. This
generalized Polynomial Chaos (gPC) approach is used in this
paper to develop the robust input shapers.
The simplest implementation of the input shaper is one which
targets one mode. If a system has multiple modes which
contribute to the output, the input shapers for each mode
are convolved together to generate an input shaper which
targets all the modes of interest. A concurrent design of input
shapers which accounts for all the modes of interest can
result in shorter maneuver time input shaper. In this paper,
we present the design of input shapers which target one mode
at a time.
To illustrate the proposed technique of using PC for the
determination of a robust input shaper, we consider the
second order system:

ẍ+ cẋ+ kx = ku (10)

where k is an uncertain parameter of the system which
is known to lie in the interval [a b]. We assume it to be
a function of random variable ξ with known probability
density function f(ξ). Thus, the uncertain parameter k can
be represented as:

k(ξ) =
N∑
i=0

kiφi(ξ). (11)

Furthermore, if ξ ∈ [−1 1], only two terms are necessary to
represent k(ξ), i.e.

k(ξ) = k0 + k1ξ, k0 =
a+ b

2
, k1 =

b− a
2

. (12)

which results from the fact that φ0 = 1 and φ0 = ξ. This
does not preclude Normal distributions, since k0 and k1 can
represent the mean and standard deviation of k(ξ) when ξ ∈
(−∞ ∞).
Now, the displacement x can be approximated by the finite
series as:

x =
N∑
i=0

xi(t)φi(ξ) (13)

where φi(ξ) represents the orthogonal polynomial set which
is orthogonal with respect to the pdf f(ξ), i.e.

〈φi(ξ), φj(ξ)〉 =

∫
Ω

φi(ξ)φj(ξ)f(ξ)dξ = c2i δij . (14)

c2i are positive numbers which depend on the orthogonal
polynomials and δij is Kronecker delta product.
For example, the Legendre and Hermite polynomials consti-
tute the orthogonal polynomial sets for uniform and normal
distributions, respectively. In general, these polynomials can
be constructed by making use of Gram-Schmidt Orthogonal-
ization process. Now, substituting for x and k from Eqs. (13)
and (11) in Eq. (10) leads to

N∑
i=0

φi(ξ) (ẍi + cẋi)+(k0φ0(ξ) + k1φ1(ξ))
N∑
i=0

φi(ξ)xi =

(k0φ0(ξ) + k1φ1(ξ))u. (15)

Using the Galerkin projection method, the dynamics of xi
can be determined. Making use of the fact that system equa-
tion error due to polynomial chaos approximation (Eq. (15))
should be orthogonal to basis function set φj(ξ), we arrive
at the equation:

M


ẍ0

ẍ1

...
ẍN


︸ ︷︷ ︸

Ẍ

+cM


ẋ0

ẋ1

...
ẋN


︸ ︷︷ ︸

Ẋ

+K


x0

x1

...
xN


︸ ︷︷ ︸

Ẋ

= Du. (16)

The elements of the M matrix are given by

Mij = 〈φi(ξ), φj(ξ)〉 =

∫
Ω

φi(ξ)φj(ξ)f(ξ)dξ = c2i δij

(17)
where i, j varies from 0 to N . The elements of the K matrix
are given by

Kij = k0〈φi(ξ), φj(ξ)〉+ k1〈ξφi(ξ), φj(ξ)〉 (18)

It is already know that every orthogonal polynomial set
satisfies a three-term recurrence relation[15]:

ξφn(ξ) =
an
an+1

φn+1(ξ) +
c2n
c2n−1

an−1

an
φn−1(ξ) (19)



where an and an−1 are the leading coefficients of φn(ξ)
and φn−1(ξ), respectively. Exploiting this recurrence rela-
tionship, the elements of the K matrix can be written as

Kii = k0〈φi(ξ), φj(ξ)〉 = k0c
2
i (20)

Ki,i+1 = k1〈φi+1(ξ), φj(ξ)〉 = k1c
2
i+1

ai
ai+1

(21)

Ki,i−1 = k1
c2i
c2i−1

〈φi−1(ξ), φj(ξ)〉 = k1c
2
i

ai−1

ai
(22)

and the D matrix as

D =
[
c20k0 c21k1 0 0 . . .

]T
. (23)

A state space representation of the system is given by{
Ẋ

Ẍ

}
︸ ︷︷ ︸

Ż

=

[
0 I

−M−1K −M−1cM

]
︸ ︷︷ ︸

A′

{
X

Ẋ

}
︸ ︷︷ ︸

Z

+

[
0

M−1D

]
︸ ︷︷ ︸

B′

u.

(24)
Assuming X ∈ RN+1 (i.e. X = [x0, . . . , xN ]T ), Z ∈
R2N+2. The system in equation (24) can be discretized to
obtain

Z(k̃ + 1) = AZ(k̃) +Bu(k̃) (25)

where k̃ represents the k̃th time step under a zero order hold
assumption. This final development where the coefficients of
PC are now described by a discrete linear system (equation
(25)) concludes the section on PC; as the mean and the
variance of the x and ẋ can be easily derived from these
coefficients.

IV. INPUT SHAPER DESIGN

This section presents the terminal development allowing
the input shaper to be posed as a convex optimization
problem.
The control objective is to determine u(k̃) which can be
used to drive the system from an initial state (Z(0) at time
t = 0) to a final desired state (Zd(Tf ) at time t = Tf ).
Parameterizing the input-shaper/time-delay filter as:

G(s) =

P∑
i=0

Aie
−siTs (26)

where Ts is the sampling interval and P are the total number
of delays in the time-delay filter, results in a total of P + 1
parameters to be solved for.

Equation (25) can be easily solved for a parameterized
shaped input u which is the output of Equation (26) subject
to a unit step. Since the residual energy at the final time TP
can be represented as:

V (TP , ξ) =
1

2

(
P∑
i=0

ẋiφi(ξ)

)T ( P∑
i=0

ẋiφi(ξ)

)
+

1

2

(
P∑
i=0

xiφi(ξ)− xf

)T
k(ξ)

(
P∑
i=0

xiφi(ξ)− xf

)
(27)

is a quadratic it does permit posing a convex chance con-
straint problem. Consequently, a l1 norm approximation

of the l2 norm will be used to design the robust input-
shapers. Figure 2 illustrate two polygon approximations of
a two norm, given by a circle. The polygon approximation
permits the use of straight line constraints to approximate the
quadratic constraint. For the second order system considered
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Fig. 2. Approximation of l2 norm with polygons

here, the abscissa corresponds to the displacement state
and the ordinate corresponds to the velocity state. As an
illustrative example, consider a second order constraint of
the form:

x2(TP ) + ẋ2(TP ) ≤ 1 (28)

where x(TP ) and ẋ(TP ) represent the displacement and ve-
locity states at the terminal time TP . It can be approximated
by the linear constraints:

+x(TP ) + ẋ(TP ) < 1 (29)
+x(TP )− ẋ(TP ) < 1 (30)
−x(TP ) + ẋ(TP ) < 1 (31)
−x(TP )− ẋ(TP ) < 1 (32)

as shown in Figure 2(a). A better approximation using linear
constraints as shown in Figure 2(b), will be given by the set
of linear constraints:

±x(TP ) + (
√

2− 1)ẋ(TP ) < 1 (33)
±(
√

2− 1)x(TP ) + ẋ(TP ) < 1 (34)
±(
√

2− 1)x(TP )− ẋ(TP ) < 1 (35)
±x(TP )− (

√
2− 1)ẋ(TP ) < 1. (36)

Since the quadratic cost function has been approximated by
a series of linear constraints, the convex representation of a
linear chance constraint can be used to solve for the robust
input shaper.
We will use the linear constraint given by Equation (29) as an
exemplar to derive the convex probabilistic chance constraint
which is given as:

P (x(TP ) + ẋ(TP )− f ≤ 0) ≥ 1− ε (37)

where f permits changing the point of intersection of the
line with the ordinate. Equation (37) can be rewritten as:

ψ{var[x(TP ) + ẋ(TP )− f ]}1/2+

E[x(TP ) + ẋ(TP )− f ] ≤ 0 (38)



where ψ =
√

1−ε
ε .

The linear chance constraint requires knowledge of the mean
(x) and variance (σ) of the terminal states. It can be shown
that they are given by

x = E[x(TP , ξ)] = x0(TP )φ0(ξ) (39)

σ = E[(x(TP , ξ)− x)2] =
N∑
i=1

x2
i 〈φi(ξ), φi(ξ)〉 (40)

where 〈φi(ξ), φi(ξ)〉 is the inner product. Substituting Equa-
tions (39) and (40) into Equation (38), we arrive at a convex
optimization problem to determine the input shaped profile.
The convex optimization problem can now be stated as:

min f =
P∑
i=0

(i+ 1)λ|Ai| (41a)

subject to

ψ
√

Σ (x(TP ) + ẋ(TP )− f)

+ µ (x(TP ) + ẋ(TP )− f) ≤ 0 (41b)

ψ
√

Σ (x(TP )− ẋ(TP )− f)

+ µ (x(TP )− ẋ(TP )− f) ≤ 0 (41c)

ψ
√

Σ (−x(TP ) + ẋ(TP )− f)

+ µ (−x(TP ) + ẋ(TP )− f) ≤ 0 (41d)

ψ
√

Σ (−x(TP )− ẋ(TP )− f)

+ µ (−x(TP )− ẋ(TP )− f) ≤ 0 (41e)
Ai > 0 ∀i (41f)

where we define Σ (.) as the variance of the argument and
µ (.) as the mean of the argument.

V. NUMERICAL RESULTS

The proposed approach was used to design robust input
shapers for the spring-mass-dashpot system:

ẍ+ cẋ+ kx = ku (42)

where the damping constant c = 0.1 and the stiffness k is an
uncertain variable. A chance constrained based optimization
problem is posed where the maneuver time is selected to be
one period of the damped natural frequency of the system.
The constraint that has to be satisfied is:

P
(
V (TP , k) ≤ 0.022

)
≥ 0.7 (43)

which states that the residual energy (Equation (27)) should
be less than 0.02 for more than 70% of the realizations
of the uncertain stiffness k. The maneuver time of one
period of the damped natural frequency permits comparing
the performance of the proposed robust input shaper to
the three-impulse or Zero-Vibration-Derivative (ZVD) input
shaper [2].

We will consider three different probability density func-
tions with the same mean and variance for k which are 1
and 0.018 respectively. The three probability distributions
functions are: The first distribution is a uniform one and is
defined in terms of the r.v. ξ1 ∈ U [−1, 1]. Therefore, we

have k = 1 + 0.2324ξ1.
The second distribution is defined via a beta distributed r.v.
ξ2 ∈ [−1, 1] with parameters a = 1 and b = 1 making
k = 1 + 0.3ξ2.
The final distribution is chosen from the article [9]. The r.v.
ξ3 ∈ [−1, 1] and has a pdf given by

p(ξ3) = 1−W
1∑
i=0

Qi|ξ3|2−i+1 (44)

where W = −(3)! ; Qi = (−1)i1Ri

2−i+1 ; and 1Ri = 1!
i!(1−i)! .

A discrete time model is used to parameterize the terminal
states in terms of the control profile and a cost function
which is the sum of a time weighted control increment is
minimized. A maneuver time of TP = 14.05 and P = 750
is used which results in a sampling interval of Ts = 0.0187.
The chance constraint is imposed to ensure that the control
perfomance ensures that the residual energy is below a
threshold of 0.022 for at least 70% of the realizations.

Figures 3(a), 3(b) and 3(c) present the variation of
residual energy for the chance constrained based robust
input shaper design for a uniform distribution, a beta
distribution and a compact support polynomial distribution
for the uncertain spring stiffness, respectively. It should
be noted that the design requires more than 70% of the
realization of the uncertain system should have a residual
energy below 0.022. The regions of the pdf that violate
the prescribed threshold are shown by the darker regions
of the pdf. It can be seen that the violations for all the
three cases are significantly smaller than the permitted 30%.
The residual energy distribution for the ZVD input shaper
designed with the same maneuver time is shown by the
dashed red lines on all three figure and it is clear from
the figures that a greater fraction of the uncertain system
realization violate the prescribed threshold relative to the
robust chance constrained based design. It should be noted
that the acceptable risk level for a prescribed threshold
of residual energy can result in an infeasible optimization
problem if the risk levels are slected to very small for the
prescribed residual energy threshold or a very small residual
energy threshold is prescribed for a given risk level. A
binary search in one dimensional on the risk level threshold
is carried out for each presrcribed residual energy threshold
to identify the risk level which corresponds to the boundary
between the feasible and infeasible region.

Figure 4 presents the feasibility region in the Energy -
Risk level space when the spring constant is assumed to have
an uniform distribution. The black line marks the boundary
of the feasibility region. A control solution exists for any
desired point in the grey space, i.e. if any point (residual
energy,risk level) is chosen in the grey space, a control
solution can be found such that realizations of the stochastic
system violate the residual energy level y at most x fraction
of times. It is interesting to note that at lower risk levels
the residual energy levels needed for a feasible solution are
higher. This is consistent with the intuition that when the



(a) Uniform (b) Beta (c) Polynomial

Fig. 3. Residual Energy distribution and Violations of Constraint

probability of constraint violation is required to be low, the
residual energy level naturally needs to be higher perfectly
capturing the performance vs robustness trade off. Similar
charts can be use to characterize the tradeoff between the
residual-energy and the acceptable risk-level.

Fig. 4. Feasibility Region when the spring constant is uniformly distributed

VI. CONCLUSIONS

The paper presents a convex optimization problem formu-
lation for the design of input shapers that are robust to model
parameter uncertainties. A chance constraint formulation is
used to prescribe an acceptable risk level for a residual-
energy threshold. Approximating a l2 norm with a set of lin-
ear constraints, a convex optimiation problem is formulated
to determine the parameters of an input shaper. The proposed
approach is illustrated on a second order spring-mass-dashpot
system for three different distributions of the uncertain spring
stiffness. Results illustrate that the % violation if always
smaller than the prescribed risk level. This is attributed to the
fact that the chance constraint which is used in the problem is
conservative. The proposed technique can be easily extended
to system with multiple modes and with multiple uncertain
paramters which are defined probabilistically.
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