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a b s t r a c t 

A recently developed ‘phenotype-centric’ modeling strategy combines four innovations with the potential 

to advance our understanding of complex biological systems: (1) a rigorous mathematical definition of 

biochemical phenotypes, (2) a method for enumerating the phenotypic repertoire based on the biomolec- 

ular network architecture, (3) an integrated suite of computational algorithms for the efficient prediction 

of parameter values and analysis of the phenotypic repertoire, and (4) a user-focused environment for 

navigating the resulting space of phenotypes and identifying biologically relevant features and system 

design principles. These innovations will facilitate deterministic and stochastic simulations that require 

parameter values, will accelerate both hypothesis discrimination in systems biology and the design cycle 

in synthetic biology. Here we first review the fundamental definition of biochemical phenotype that en- 

ables this new modeling strategy and give an overview of the strategy using a simple system from phage 

λ to provide an example of a global design principle. Second, we illustrate this approach in more detail 

with an application to a common network architecture involving positive and negative feedback. We re- 

port system design principles related to the global tolerances of this system’s phenotypes. Finally, we ap- 

ply the phenotype-centric strategy to a logic network and compare the results with those obtained from 

a Boolean approach. Mechanistic and Boolean models have well-documented complementary advantages 

and disadvantages. Mechanistic models have the advantage of being biologically realistic; however, they 

also are limited by the large number of kinetic parameters whose values are largely unknown. Boolean 

models have the advantage of being parameter free; however, they also are limited by the absence of 

well-known physical and chemical constraints. We show that the phenotype-centric modeling strategy 

combines advantages of both. 

© 2018 Elsevier Ltd. All rights reserved. 
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Personal preface 

I first met Rene back in the 1970s. We were often participants

at the same conferences, and engaged in a number of stimu-

lating discussions. We shared an interest in phage λ, Rene be-
ginning with his experimental work in the field, and me as a

result of my interactions with the λ community through my

colleagues David Friedman at the University of Michigan and

John Little at the University of Arizona. We also shared a more

abstract interest in the underlying design principles not only

of phage λ but of biological systems in general. We pursued

these interests with complementary approaches, Rene favoring

Boolean models whereas I favored mechanistic models. Because

of both these shared interests, in this paper my colleagues and I
� This article is further included in a special issue of JTB dedicated to the memory 

f Prof. René THOMAS . 
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have selected a simple system from phage λ to introduce some

of the basic concepts in our phenotype-centric approach and to

provide an example of a global design principle. There has been

a long history of comparisons involving Boolean and mechanis-

tic models; our new phenotype-centric approach, and the de-

sign principles that it has elucidated, provide a new perspective

on the advantages and disadvantages of these complementary

approaches. I wish Rene were here today; I am sure we would

have a wonderful lively discussion. 

Michael Savageau 

. Introduction 

Relating the genotype and environment to the phenotype ex-

ibited by a biological system is one of the ‘Grand Challenges’

n Biology ( Brenner, 20 0 0 ). Advances in high-throughput DNA se-

uencing has given us the complete genome sequence for numer-

us organisms. As a result, we have a well-defined generic con-

ept of genotype as the repertoire of genes encoded in the digital

https://doi.org/10.1016/j.jtbi.2018.07.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.07.009&domain=pdf
https://www.sciencedirect.com/journal/journal-of-theoretical-biology/special-issue/100J1T9ZH1F
mailto:masavageau@ucdavis.edu
https://doi.org/10.1016/j.jtbi.2018.07.009
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sequence. However, there has been no corresponding concept of

phenotype . These tend to be ad hoc and descriptive – size, shape,

color, etc. Without a comparable generic definition of phenotype

there can be no deep understanding of the relationship between

genotype and phenotype; one cannot “predict” a phenotype that

has not already been seen! To address this problem, we have pro-

posed a rigorous definition of phenotype in terms of the biochem-

istry that mechanistically links genotype and environment to the

phenotype ( Savageau et al., 2009 ). 

Before we consider this definition, it will be helpful first to

provide some context. We start with the premise that organisms

are biochemical systems: There is a common chemical basis for

all forms of life as we know it; organisms deal with many forms

of energy, but the basic unit of exchange is chemical; cellular

functions are typically catalyzed by enzymes. There are a num-

ber of fundamental constraints on these systems, including micro-

scopic reversibility of chemical kinetics, Haldane relations of bio-

chemical kinetics, conserved moieties, stoichiometry of reactions,

precursor-product relationships, molecular crowding and solubil-

ity limits. The most quantitative and scalable descriptions of these

biochemical systems involve rate law functions – stochastic, deter-

ministic or Boolean – each with their advantages and disadvan-

tages. Our focus, although not exclusive, is on deterministic rate

laws. These include the power-law functions of chemical kinet-

ics and the rational functions of biochemical kinetics. They have

advantages of naturally incorporating fundamental constraints and

analytically determining design principles, but the disadvantage of

requiring numerous, typically unknown, parameter values. Thus,

the foundation that provides our modeling context is fundamental

biochemical kinetics , which has broad general applicability as indi-

cated by the vast majority of biochemical models that are of this

type ( Chelliah et al., 2013 ). 

Given this context, we consider the scope of biochemical sys-

tems theory to include mechanistic models governed by rate laws.

These rate laws are the power functions of chemical kinetics and

the rational functions of biochemical kinetics. Functions of these

rate laws are integrated into a network by means of Kirchhoff’s

Node Law. The result is a system of differential-algebraic equa-

tions. Without loss of generality , the differential-algebraic equa-

tions consisting of power-laws and rational functions can be recast

trivially into Generalized Mass Action (GMA) equations consisting

only of sums and products of power-law functions ( Savageau and

Voit, 1987 ): 

dX i 
dt 

= 

P i ∑ 

k =1 

αik 

n + m ∏ 

j=1 

X 
g ijk 
j 

−
Q i ∑ 

k =1 

βik 

n + m ∏ 

j=1 

X 
h ijk 
j 

, i = 1 , . . . , n c 

0 = 

P i ∑ 

k =1 

αik 

n + m ∏ 

j=1 

X 
g ijk 
j 

−
Q i ∑ 

k =1 

βik 

n + m ∏ 

j=1 

X 
h ijk 
j 

, i = ( n c + 1 ) , . . . , n 

(1)

The m independent, n dependent, n c chemical and ( n − n c ) aux-

iliary variables X i are all non-negative real. The rate constants αik 

and β ik are non-negative real, and the kinetic orders g ijk and h ijk 
are integer. P i and Q i are the number of positive and negative

terms in each equation. 

2. Definition of phenotypes 

We start by defining phenotypes in terms of the fixed points

of the system. Each constituent of the system will in general

have several processes described by the positive terms in the

GMA equations and several described by the negative terms. Imag-

ine a snapshot of a system in steady state. For each constituent,

one of its positive terms will be larger than the others; simi-

larly, one of its negative terms will be larger than the others. Call

these the dominant input process and dominant output process for
he constituent pool. Construct a dominant sub-system (S-system)

onsisting only of the dominant processes for each constituent: 

 = αip 

n + m ∏ 

j=1 

X 
g i jp 
j 

− βiq 

n + m ∏ 

j=1 

X 
h i jq 
j 

, i = 1 , . . . , n (2)

here p is the dominant input process among the P i terms in

q. (1) , and q is the dominant output process among the Q i terms.

f this S-system has a solution, then test to see that it is self-

onsistent by substituting the solution into all of the other terms

n the original equations and demonstrate that the dominant terms

re indeed the largest. If it satisfies this test, then it defines an el-

mental phenotype of the system. There is a finite number of such

ombinations that define a dominant S-system, and these define

he repertoire of qualitatively distinct phenotypes. 

Note that Eq. (2) is a linear system of equations in logarithmic

oordinates, that the test for validity involves a system of linear

nequalities in logarithmic coordinates, and that the boundaries of

he phenotype in the parameter space of the original system are

igorously defined by linear hyper-planes. Thus, all of this involves

ell-known linear mathematics. It should be clearly understood

hat this approach involves approximations to the actual system.

xperience to date shows that overall the accuracy is very good,

ith errors concentrated in the neighborhood of the boundaries,

here by definition there is no dominance. The important point

ere is not the inaccuracies near the boundaries but that the

oundaries separating qualitatively distinct phenotypes are rig-

rously defined. Although this approach has a strong foundation

ased on well-known linear mathematics (in log space), there are

till challenges in the software implementation that automates

ubsequent analysis. An obvious issue that arises in all modeling

pproaches is how it scales with problem size. For some ap-

roaches the scaling is straightforward and the relevant metric is

he number of system variables whereas for others it is the num-

er of parameters. This is not the case for the phenotype-centric

pproach for which the number of combinations of terms is key.

here is a bound given by the total number of combinations, but

his is a very poor bound because many of the combinations lead

o mathematical impossibilities and these can be ignored (see the

oncrete example in Section 4 ). The other most important, but

ifficult to specify, issue with regard to scaling is problem struc-

ure. In the phenotype-centric approach each phenotype involves

 tractable linear analysis that is independent of that for all the

ther phenotypes. This represents what computer scientists call an

mbarrassingly parallelizable problem, and suggests that this will

reatly improve the scaling to larger problems. Portability across

latforms and version updates are currently being addressed,

nd some of the other challenges have been discussed elsewhere

 Lomnitz and Savageau, 2016a; Savageau, 2013 ) and are of no

oncern for the material presented here. 

To summarize, we have the following definitions: an elemental

henotype is the set of concentrations and fluxes corresponding to

 valid combination of dominant processes functioning within an

ntact system, a qualitatively distinct phenotype is the characteris-

ic phenotype that exists throughout a region of validity (polytope)

n parameter space, and a phenotypic repertoire is the collection

f qualitatively distinct phenotypes integrated into a space-filling

tructure in parameter space. These rigorously defined biochemical

henotypes can be combined in various ways to generate complex

omposite phenotypes. We will illustrate some simple examples of

verlapping and clustered composites. 

Although the application to complex developmental, physiolog-

cal and behavioral traits exhibited by higher organisms is well be-

ond current capabilities and our purposes here, we have a basis

or addressing these challenges based on comparable concepts for

elating genotype to phenotype. Namely, the genotypic repertoire is
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Fig. 1. Simulation- and Phenotype-centric Modeling Strategies. While parameter values have a central role in the traditional simulation-centric modeling strategy, experi- 

mentally observable phenotypes are the focus of our novel modeling approach. Instead of using parameter values as input, the phenotype-centric approach predicts a region 

in the parameter space for the realization of a phenotype of interest. By exhaustively enumerating the phenotypic repertoire of the model at an early stage, our modeling 

strategy allows for the rapid elimination of wrong hypotheses (models) that are not able to describe the experimental phenotype of interest. 
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Table 1 

Biochemical Systems Have Relatively Fixed Parts and Variable Parts. Our novel 

phenotype-centric modeling approach exploits architectural features of the sys- 

tem to determine its phenotypic repertoire. The parametric component of the sys- 

tem, which is rarely known, can be predicted for a system’s phenotype of interest. 

Fixed architecture Variable parameters 

Topology of interconnections Rate constants 

- Relatively easy to determine - Difficult to determine in situ 

- High throughput methods available - No high throughput methods 

Signs of interactions Binding Constants 

- Relatively easy to determine - Difficult to determine in situ 

- High throughput methods available - No high throughput methods 

Numbers of Binding sites for the interactions Environmental inputs 

- Small number of possibilities - Many and difficult to know 

- Sampling is feasible - No high throughput methods 

- High throughput methods available 
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he collection of genes for a system and the phenotypic repertoire is

he collection of qualitatively distinct phenotypes for a system. 

In exploring the implications of our phenotype definitions,

e initially focused on well-characterized systems for which a

ominal set of parameter values was available (Reviewed in

avageau, 2013 ). This allowed us to characterize the phenotypic

epertoire in a highly structured ‘system design space’, which con-

ists of a finite number of space-filling ‘chunks’ (irregular poly-

opes) corresponding to the qualitatively distinct phenotypes of the

ystem. Given the nominal set of parameter values and its location

n this design space, we suggested a new definition of robustness

hat we call global tolerance ; namely, the fold change in a param-

ter value that the system can tolerate before there is a change in

henotype ( Coelho et al., 2009 ). Until recently ( Lomnitz and Sav-

geau, 2016a ), we were still thinking in terms of the conventional

odeling strategy in which one first had to start with values for

he parameters; since then, we have discovered deeper implica-

ions that enable a very different modeling strategy. 

. A phenotype-centric modeling strategy 

The experimental and computational challenges in modeling

omplex biological systems are hard to over-estimate. These are

omplex, nonlinear, stochastic systems with rough fitness land-

capes. They involve large numbers of variables, parameters, in-

uts, and initial conditions. This gives rise to a combinatorial

xplosion involving experiments and simulations. Time, cost and

echnical limitations lead to noisy data and to sparse sampling of

xperiments and simulations, and many of these challenges exist

ven for modest-sized systems. 

Our definition of phenotypes helps to address some of these

ssues by enabling a novel phenotype-centric modeling strategy

hat largely inverts the conventional strategy, which we might call

imulation-centric. An overview of the differences is given in 

ig. 1 . In either case the starting point is a conceptual model (hy-

othesis). This leads to a mathematical model, which as noted

bove, is typically a complex nonlinear system with many un-

nown parameters that is analytically intractable. 
In the conventional approach the focus is first on measuring,

stimating or sampling parameter values and fitting known ex-

erimental data. Only when a set of parameter values is in hand

an one proceed to simulate the nonlinear system. This provides

alidation of the parameter set by demonstrating agreement with

xperimental data and, when there is disagreement, refinement

f the model in an iterative fashion as part of the usual scien-

ific method. Having a validated set of nominal parameter val-

es, a parameterized model then allows one to explore parame-

er space and predict new phenotypes that were not used in the

nitial parameterization. Success is obtained if the predictions are

ubsequently confirmed by experimental tests. In this conventional

trategy, simulating a system with a given set of parameter val-

es is easy; obtaining the parameter values in the first place is

ard. 

In the phenotype-centric strategy the focus is first on analyti-

ally enumerating the phenotypic repertoire of the model and later

redicting parameter values for phenotypes of interest. This is pos-

ible because biochemical kinetic models consist of both fixed and

ariable features ( Lomnitz and Savageau, 2015 ) ( Table 1 ). The fixed,

r architectural, features include connectivity (e.g., protein-DNA
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Fig. 2. Parameter-Independent Phenotypes of a System’s Fixed Points. R represents an output variable (response) of an arbitrary system, while S represents a parameter or 

an input variable (signal) of that system. (A) Fixed steady-state logarithmic gains resulting from a (quasi-)steady state titration of the signal. (B) Exponential instability with 

one positive real eigenvalue, which typically leads to hysteretic bistability. (C) Oscillatory instability with a pair of complex conjugate eigenvalues having a positive real part, 

which typically leads to sustained limit-cycle oscillations. 
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binding), signs (e.g., activation/repression) and numbers (e.g., ki-

netic orders) of interactions for a given class of models. The vari-

able, or parametric, features include kinetic and thermodynamic

parameters and environmental variables that quantitatively distin-

guish the members of this class. 

The architectural features give rise to important ‘parameter-

independent’ phenotypes associated with the system’s fixed points

( Fig. 2 ). These characteristics, which are analytically determined

using linear algebra, exist throughout a polytope region in param-

eter space that defines the phenotype. They can be matched to

phenotypes of biological interest. Moreover, a linear program can

then be used to predict a nominal set of parameter values. Thus, in

this novel phenotypic-centric strategy, the initial effort is focused

on analytically enumerating the phenotypic repertoire and then on

predicting parameter values. This inverts the conventional strat-

egy in which the initial focus is on estimating parameter values

and then enumerating the phenotypic repertoire using simulation

( Fig. 1 ). The differences between the two strategies for a model of

phage λ induction are illustrated in Fig. 3 by the workflow and re-

sults obtained. 

In the conventional simulation-centric strategy, as noted above,

effort is focused initially on measuring, estimating or sampling val-

ues and fitting experimental data ( Fig. 3 C) and the result is a set of

nominal values for the parameters ( Fig. 3 D). Once a parameterized

model has been obtained, the effort then turns to an exploration

of parameter space by dense sampling and simulation to predict

new phenotypes ( Fig. 3 E) that were not used in the initial param-

eterization ( Fig. 3 F). Success is obtained if the predictions are sub-

sequently confirmed by experimental tests. 

In the phenotype-centric strategy, effort is focused initially on

enumerating the phenotypic repertoire, without specifying param-

eter values, and the phenotypic repertoire that results is filtered for

the phenotype(s) of experimental interest ( Fig. 3 G). A major advan-

tage at this point is rapid model discrimination; if the phenotypic

repertoire does not include the phenotypes of interest, then the

model (hypothesis) can be rejected ( Lomnitz and Savageau, 2016b ).

Alternatively, if the phenotypic repertoire does include the phe-

notypes exhibited by the system, then a representative set of pa-

rameter values can be predicted for the realization of each phe-

notype within an appropriately localized region of parameter space

( Fig. 3 H). The relationships among phenotypes for this set of pa-

rameters can then be visualized in 2-D slices through the system

design space ( Fig. 3 I). A predicted progression of phenotypes re-

sulting from the steady-state titration of a given parameter can

generate a variety of composite phenotypes, such as activation fol-

lowed by repression ( Fig. 3 J). 
r  
As this example shows, starting only with the architectural fea-

ures and no parameter values, within minutes the phenotype-

entric strategy obtained the results shown in Fig. 3 G–J for a model

f phage λ induction. Not only do these results qualitatively match

hose from the ‘simulation-centric’ strategy based on decades of

xperimental work to estimate model parameters ( Savageau and

asani, 2009 ), but the same repertoire of phenotypes is found with

oth strategies ( Fig. 3 E & I ) . The quasi-steady state concentration

f CI mRNA ( Fig. 3 A) in response to increasing levels of RecA ac-

ivity (a proxy for DNA damage) also is qualitatively similar for the

wo strategies ( Fig. 3 F & J ) . 

These results suggest that a phased combination of the two

trategies offers distinct advantages. The first phase, provided by

he phenotype-centric strategy, is the most efficient when param-

ter values are unknown; it quickly yields qualitatively appropriate

henotypes and a full set of analytically predicted parameter val-

es. The second phase, consisting of focused experiments and de-

erministic and stochastic numerical simulations (e.g., Fasani and

avageau, 2013 ), can then be used to verify and refine parame-

er values; it yields quantitative as well as qualitative results. Any-

ime definitive values are available for any of the parameters, these

hould be incorporated into the model before starting, as this will

mprove the efficiency of either strategy. 

An important result of the previous analysis was the prediction

f a system design principle for phage λ to maintain its biphasic

ife style ( Savageau and Fasani, 2009 ); it consists of two inequal-

ties that involve constellations of values for all the parameter of

he model ( Fig. 3 B): 

γ 2 
M max γ

2 c γD 

δ2 
M 
δ2 
C max 

δD 

δD 
( βD + δD ) 

< K D < 

√ 

γM max γM min 

δM 

γC 

2 δD 
(3)

Moreover, when the experimentally determined ( Savageau and

asani, 2009 ) and predicted parameter values are substituted into

he inequalities one finds that the design principle is satisfied in

oth cases. 

. System design principles for a common regulatory 

rchitecture 

In this section we examine a very common molecular archi-

ecture involving positive and negative feedback ( Fig. 4 ). Bistable-

ysteretic switches are generated by positive feedback. They are

ommon features of commitment in cell-fate determination in

iruses including prophage induction ( Dodd et al., 2001 ) and

estriction-modification systems ( Williams et al., 2013 ), in bacte-

ia including toxin-antitoxin systems of Escherichia coli ( Fasani and
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Fig. 3. Workflow from Conceptual Model to Predicted Induction Characteristic. (A) Model architecture includes the interaction network, signs of interactions, and number of 

binding events in the interactions. Blue characters in parenthesis are used to construct the mathematical model shown in the neighboring panel. (B) Mathematical model 

consisting of chemical and biochemical kinetic equations. Simulation-centric strategy: (C) Decades of work experimentally measuring and computationally estimating values 

for the parameters of the model in (A). (D) The resulting nominal set of parameter values. (E) The phenotypic repertoire can be obtained by dense sampling the parameter 

space and simulation; however, for our purposes here, we use the DST2 software with the experimentally determined values for the parameters to visualize the distinct 

phenotypic regions (See also Fig. 5 ). (F) The steady-state induction characteristic is predicted for various values of the input variable, RecA activity in the case of phage λ

induction. Phenotype-centric strategy: (G) The phenotypic repertoire is enumerated without specifying values for the kinetic and thermodynamic parameters, and the list can 

be filtered to obtain only the phenotypes of interest (blue). (H) Parameter values are predicted automatically for each qualitatively-distinct phenotype of interest to localize 

estimates within a ‘chunk’ of parameter space. (I) The phenotypic repertoire can be visualized without sampling by taking slices through the high-dimensional object in the 

system design space (See also Fig. 5 ). (J) The steady-state induction characteristic is predicted for various values of the input variable, which is RecA activity. 

Fig. 4. Genetic Network Involving an Activator and a Repressor. The synthesis of 

the activator molecule A undergoes an autocatalytic activation and a repression by 

the repressor molecule R, whose synthesis is in turn activated by A. 
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avageau, 2013 ) and induction preferences in catabolically diverse

seudomonas putida ( Nichols and Harwood, 1995; Rojo, 2010 ),

n plants including asymmetric stem cell division of Arabidopsis

haliana ( Cruz-Ramírez et al., 2012 ), and in animals including tra-

heal cell specification from a field of progenitor cells of Drosophila

elanogaster ( Metzger and Krasnow, 1999; Zelzer and Shilo, 20 0 0 )

nd neural progenitor cells switching to oligodendroglia in the

rains of Rattus norvegicus ( Lai et al., 2004 ). Homeostatic regula-

ion is generated by negative feedba ck , and under certain condi-

ions it also can generate oscillations ( Elowitz and Leibler, 20 0 0 );
owever, more robust oscillations are obtained with a combination

f positive and negative feedback ( Lomnitz and Savageau, 2014;

ovák and Tyson, 2008; Purcell et al., 2010; Tsai et al., 2008 ). This

rchitecture is at the core of circadian clocks found in organisms

ncluding cyanobacteria ( Tomita et al., 2005 ), flies ( Hardin, 2011 ),

lants ( Nohales and Kay, 2016 ), and mammals ( Papazyan et al.,

016 ). Additionally, it is at the core of many synthetic gene oscilla-

ors ( Atkinson et al., 2003; Stricker et al., 2008; Tigges et al., 2009 )

hat provide a simplified and experimentally tractable context for

tudy. 

The examination of the network illustrated in Fig. 4 will provide

 more detailed treatment of the various steps in a design space

nalysis and demonstrate how this type of analysis can be used

o elucidate underlying design principles that would otherwise be

ifficult if not impossible to discover by intuition or tractable ex-

eriments. 

A typical model with the equations for mRNA dynamics as-

umed to be fast and their quasi-steady state values incorporated

nto the slower equations for protein dynamics involves rational

unctions for the synthesis of the repressor ( R ) and activator ( A ) in

he following equations: 

1 

βR 

dR 

dt 
= γR 

1 
ρR 

+ 

(
A 
K A 

)n 
1 + 

(
A 
K A 

)n − R ρR > 1 (4) 
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Table 2 

Phenotypic Repertoire. The DST2 allows for the automatic enumeration of all po- 

tential S-systems of a given network. In the case of the genetic network shown in 

Fig. 4 , there are a total of 36 potential S-systems, of which 15 are valid. Each S- 

system has a case number and a uniquely defined case signature that identifies the 

dominant terms in each equation ( Fasani and Savageau, 2010 ). As indicated by the 

number of eigenvalues with positive real part, the S-systems with Case numbers 

9 and 30 have the potential to exhibit bistability, whereas the S-system with Case 

number 27 has the potential to exhibit oscillatory behavior. 

Case number Case signature 

Number of eigenvalues with positive 

real part 

1 1111111 0 

… … …

9 11211131 1 

… … …

27 21211131 2 

29 21212121 0 

30 21212131 1 

… … …
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βA 

dA 

dt 
= γA 

1 + 

(
A 
K AA 

)n + 
1 
ρA 

(
R 
K R 

)n 
1 + 

(
A 
K AA 

)n + 

(
R 
K R 

)n − A ρA > 1 (5)

Note that the synthesis of R is modeled as an activator-primary

process ( Lomnitz and Savageau, 2014 ), meaning that in the ab-

sence of A, R is constitutively synthetized and exhibits a mini-

mum steady state concentration of γ R / ρR . In the presence of the

activator molecule A , the steady state concentration of R can be

increased to reach a maximum value of γ R , as shown in Eq. (4 ).

On the other hand, the synthesis of A is modeled as a repressor-

primary process ( Lomnitz and Savageau, 2014 ), meaning that in

the absence of both A and R, A is constitutively synthetized and

exhibits a maximum steady state concentration of γ A . At a suffi-

ciently high concentration of R , the synthesis of A is repressed, and

its steady state concentration reaches a minimum value of γ A / ρA .

The autocatalytic activation of A reduces the repression by R , as

shown in Eq. (5 ). 

Recasting Eqs. (4) and (5) into the GMA form yields: 

1 

βR 

dR 

dt 
= γR ρ

−1 
R D 

−1 
R + γR A 

n K −n 
A 

D 
−1 
R − R (6)

1 

βA 

dA 

dt 
= γA D 

−1 
A 

+ γA A 
n K −n 

AA 
D 

−1 
A 

+ γA ρ
−1 
A 

R n K −n 
R D 

−1 
A 

− A (7)

0 = 1 + A n K −n 
A 

− D R (8)

0 = 1 + A n K −n 
AA 

+ R n K −n 
R − D A (9)

Note that Eqs. (8) and (9) are algebraic constraints introduced

during the recasting process and define auxiliary variables D A and

D R , respectively. 

Eqs. (6) –(9) can be automatically analyzed within the design

space formalism. To that end, we use the Design Space Toolbox

V2 (DST2), software that allows for the automatic enumeration of

the phenotypic repertoire, the prediction of phenotype-specific pa-

rameter values and the characterization of model phenotypes using

analytical and numerical methods ( Lomnitz and Savageau, 2016a ).

Depending on the focus of the analysis being performed, a num-

ber of analytical workflows are possible. Here, we will show how

the DST2 can be used to identify parameter values corresponding

to a phenotype with a desired dynamic behavior and elucidate its

design principles. 

4.1. Parameter-independent characteristics of the phenotypic 

repertoire can guide the identification of regions in the parameter 

space with desired dynamic behavior 

The first operation typically is to enumerate the full repertoire

of phenotypes along with some of their phenotypic characteris-

tic of interest by using the ‘create cases table’ command. Table 2

lists the phenotypic repertoire corresponding to the genetic net-

work depicted in Fig. 4 along with the number of eigenvalues with

positive real part for each S-system. There is a total of 36 potential

S-systems, from which only 15 are valid. As an example of a poten-

tial S-system that is invalid consider cases involving the four com-

binations of terms in Eqs. (6) and (8) . Combinations in which the

first term in Eq. (6) and the second term in Eq. (8) are the dom-

inant positive terms would require 1 < A n K −n 
A 

< ρ−1 
R 

< 1 , which is

mathematically impossible. 

A closer inspection of Table 2 reveals the existence of two sys-

tems with the potential to exhibit bistability (Cases 9 and 30) and

one system with the potential to exhibit an oscillatory behavior

(Case 27). When the repertoire is very large, it is useful to filter

the list with various criteria that are part of the enumeration com-

mand. For example, in this case we could have filtered the list for
nly those phenotypes that have 2 eigenvalues with positive real

art; the list that is returned would then contain only Case 27. 

Note that each case (S-system) is associated with a specific high

imensional polytope in parameter space, whose boundaries can

e readily calculated by means of linear programming. These poly-

opes are then fit together to fill the parameter space for visual-

zation as two-dimensional slices ( Fig. 5 A). Various characteristics

f the phenotypes can then be plotted as a heat-map in the third

imension ( Fig. 5 C). 

Since DST2 allows for the prediction of a complete parameter

et representative of each S-system, the dynamical behavior of the

hole system parameterized with this parameter set can be com-

ared with the dynamic behavior of the corresponding S-system.

his procedure is shown in Fig. 5 for S-system 27 ( Fig. 5 B), which

hould exhibit oscillatory behavior, and for S-system 30 ( Fig. 5 D),

hich should exhibit bistability. Phenotypes having two complex

onjugate eigenvalues with positive real part need not exhibit sus-

ained oscillations throughout the associated polytope region, as

he conditions are partly dependent on parameter values; how-

ver, with the architecture of the model in Fig. 4 the oscillations

re particularly robust. Necessary conditions for sustained oscilla-

ions have been described in detail elsewhere ( Lomnitz and Sav-

geau, 2014 ). In contrast, phenotypes having one eigenvalue with

ositive real part exhibit exponential instability throughout the as-

ociated polytope region, regardless of parameter values. 

Thus, a useful initial strategy for design space analysis, as we

ave seen, involves using the ‘create cases table’ command to enu-

erate the phenotypic repertoire, identify phenotypes with desired

teady-state and/or dynamic properties, and predict parameter val-

es for their realization. 

.2. Visual inspection of the parameter space reveals qualitative 

esign principles 

Visualization of a high-dimensional design space remains a

hallenge, but it offers opportunities to identify system design

rinciples that would be difficult if not impossible to achieve by

ther means. These issues are currently addressed by using the

create plot’ command to visualize 2D slices of the space with the

arameters on the axes selected for their particular biological in-

erest. The dimensions of the design space (number of parameters)

an be reduced by introducing dimensionless parameters, which

roup the system parameters into a lower number of different

erms ( Savageau et al., 2009 ). In the specific case of the network

hown in Fig. 4 , and mathematically described by Eqs. (4) and (5) ,

he numerical values for three parameters, namely K A , K AA and

 are required to fully characterize the strength of interactions
R 
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Fig. 5. Design Space and Dynamic Behavior of the System. Panel A is the system design space showing the arrangement and shape of phenotypic regions identified by color 

and case number when K R = 10 −2 . Note that instances with three case numbers represent overlapping phenotypic regions that typically signify hysteretic bistable regions. 

Panel C is a stability plot represented in three dimensions with the values of K AA and K A on the x- and y-axis, and the number of eigenvalues with positive real part as a 

color map on the z-axis. The polytopes for Cases 27 and 30 in Panel A have their stability represented in Panel C. The oscillatory behavior in Panel B is generated by the 

whole system having the parameter set shown as the black dot. The hysteretic bistable response in Panel D, when K A = 10 −2.5 , is generated by the whole system in response 

to changes in K AA . Blue lines represent the system response with K AA increasing from low to high values, while orange lines represent the response for decreasing K AA from 

high to low values. The qualitative behavior is determined by the three binding constants K R , K A , and K AA . The other parameters do not affect the qualitative behavior: the 

constants γ R and γ A determine the concentration scales for R and A and are arbitrarily set to one; the capacities for regulation ρR and ρA are required to be greater than 

one and are arbitrarily set to 100, which is typical for the best studied transcription factors of E. coli , and the kinetic order n was set to a value of 3 to allow the system 

to exhibit sustained oscillations. Necessary conditions for sustained oscillations involve a trade-off between cooperativity and delay and are described in detail elsewhere 

( Lomnitz and Savageau, 2014 ). For the network under study, cooperativity values greater than 2 are necessary for sustained oscillations. 
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Table 3 

Three Different Regions of Design Space for Each of the Three Dynamic Pheno- 

types. Each region is defined by the effect of decreasing values of K R on the 

area of each of the phenotypes in a two-dimensional plane defined by logK A and 

logK AA on the y- and x-axis respectively (see Fig. 6 ). 

Dynamic phenotypes Region 

Maximum Expanding Non-existent 

Lower Hysteresis (Case 30) logK R ≤−1 −1 < logK R < 0 logK R ≥0 

Upper Hysteresis (Case 9) logK R ≤−3 −3 < logK R < −2 logK R ≥−2 

Oscillation (Case 27) logK R ≤−3 −3 < logK R < 0 logK R ≥0 

q  

i  

t  

t  

B  

p  

e  

3

[

etween the repressor R and activator A . In terms of the design

pace, this means that the phenotypic repertoire of the network

an be assembled into a space-filling, three-dimensional structure.

y setting K R to different constant values, the shape of the pheno-

ypic regions in this three-dimensional structure can be visualized

n a plane, as shown in Fig. 6 A. Note that the use of K R to “cut”

he design space is arbitrary and either K A or K AA would represent

qually valid alternatives. 

The DST2 allows for a convenient, interactive visualization of

he design space as the value of a given parameter, in this case K R ,

s changed. By visually inspecting the shape of the design space

refer to Figs. 6 B–D), one can rapidly identify three zones we might

enote L, M and H , each exhibiting a qualitatively different de-

ign space and associated stability pattern. While within zone H

ll phenotypes are stable ( Fig. 6 G), zone M is characterized by the

resence of an oscillatory phenotype (Case 27, parallelogram com-

osed of green and orange regions in Figs. 6 F) and a bistable phe-

otype (Case 30, composed of blue and green regions in Fig. 6 F).

n addition to these two dynamic phenotypes, zone L exhibits a

urther bistable phenotype (Case 9, upper blue and green region

n Fig. 6 E). The effect of K A , K AA and K R on the dynamic behavior

otentially exhibited by the system can be observed in Figs. 6 E–G

nd can be summarized in Table 3 . 

.3. System design principles and global robustness 

One could vary the values of K R by simple bisection to nu-

erically estimate the threshold values that separate the three
ualitative regions in each case. However, this would not necessar-

ly illuminate the underlying design principles governing this sys-

em. Instead, we could use the ‘analyze a case’ command in DST2

o find algebraic expressions for the boundaries of each phenotype.

y following this procedure, we can identify system design princi-

les involving all of the system parameters for each phenotype. For

xample, the result for the lower hysteretic polytope (phenotype

0) is given by 

K R 
γR 

]
max 

{ (
K R 
γR 

)n −1 

, 

(
1 

ρA 

) n −1 
n 

, 

(
K A 
γA 

) n −1 
n 

} 

< 

K AA 
γA 

< 

[
K R 
γR 

]
(10) 
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Fig. 6. Representation of the Design Space in a Series of Two-dimensional Plots. The design space is spanned by three axes, each containing numerical values for one 

parameter. We use K R to generate slices of the three-dimensional structure (A). Panels B to D show the arrangements and shapes of phenotypic regions identified by color 

and case number as the parameter K R takes on values of 10 
−3 , 10 −1.5 and 10 2 , respectively. Panels E to G are stability plots represented in three dimensions with the values 

of K AA and K A on the x- and y-axis, and the number of eigenvalues with positive real part as a heat map on the z-axis. Other parameter values are as stated in Fig. 5 . 
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that for upper hysteretic polytope (phenotype 9) is [
ρR K R 
γR 

]
max 

{ (
ρR K R 
γR 

)n −1 

, 

(
1 

ρA 

) n −1 
n 

} 

< 

K AA 
γA 

< 

[
ρR K R 
γR 

]
min 

{ (
1 

ρ1 /n 
R 

K A 
γA 

) n −1 
n 

, 1 

} 

(11)

and that for the oscillatory polytope (phenotype 27) is 

[(
γR 

K R 

)(
K AA 
γA 

)]
max 

⎧ ⎨ 

⎩ 

(
1 

ρR 

) n 2 −n +1 
n −1 

(
K AA γR 

γA K R 

) n 2 −n +1 
n −1 

, 

(
K AA 
γA 

) n 2 −n +1 
n 

, 

(
1 

ρA 

) n 2 −n +1 
n 

, 

(
K AA 
γA 

) n 2 −n +1 
n −1 

⎫ ⎬ 

⎭ 

< 

(
K A 
γA 

)n 

< 

[(
γR 

K R 

)(
K AA 
γA 

)]
min 

⎧ ⎨ 

⎩ 

(
K AA γR 

γA K R 

) n 2 −n +1 
n −1 

, 1 

⎫ ⎬ 

⎭ 

(12)

Note that the parameters representing the maximum steady-

state concentration of R ( γ R ) and A ( γ A ) determine the concen-

tration scale, the binding constants ( K R , K AA , K A ) have the units

of concentration, and the capacities for regulation ( ρR and ρA )

and the kinetic order n are dimensionless. Necessary conditions

for hysteresis and oscillation can be obtained from Eqs. (10) –(12)

by canceling common terms on both sides of the inequalities. This

approach also provides a means to characterize volume and shape

of the polytope for each phenotype and thereby address the global

robustness and evolvability of each phenotype. 

There have been various attempts to define system robustness.

Local parameter insensitivity is used most often, but this is un-

satisfactory for nonlinear systems in which global behavior is not

captured by the local derivative. It is more important to know how

large a change in system parameters can be tolerated without a

change in the qualitative phenotype of the system. This global ro-

bustness is more important but difficult to characterize. It depends

critically on the underlying structure of the model in parameter
pace; e.g., it can often exhibit long curvilinear shallow valleys that

ake parameter estimation difficult. The “volume” in parameter

pace that is characteristic of a particular behavior has often been

roposed as a measure of global robustness. A given point in such

 volume might exhibit large variations and still remain within the

olume; the larger the volume, the more robust the behavior. How-

ver, there has been no generic method for determining these vol-

mes. Dense sampling of parameter space is a brute force method,

ut it becomes impractical in high-dimensional spaces and visual-

zation is always a problem. 

The system design space strategy provides an analytical ap-

roach to the characterization of global robustness. The boundaries

nd vertices of the polytopes in design space allow for the calcula-

ion of polytope shape and volume. As seen in Table 3 , the pheno-

ypes can have smaller, more variable parts, as well as larger more

xed parts. In questions concerning robustness, the large fixed vol-

mes are of more interest, particularly those that avoid the possi-

ility of bifurcation to qualitatively different phenotypes; whereas

or questions of evolvability, the smaller, more variable parts with

asy access to these bifurcations might be of more interest. Al-

hough all parts of the phenotypic regions can be calculated, here

e will focus on the large fixed parts that avoid bifurcations as a

eans to characterize the volumes most relevant for global robust-

ess. 

The volume of the polytope for phenotype 30 in its maximum

egion ( Table 3 ) is given by 

 olume = 

(
n − 1 

n 

)
( log ρA ) 

(
log 

γA 

ρA K 
min 
A 

)(
log 

γR 

ρ1 /n 
A 

K min 
R 

)
(13)

hat for phenotype 9 in its maximum region is 

 olume = 

(
n − 1 

n 

)
( log ρA ) 

(
log 

ρA K 
max 
A 

ρ1 /n 
R 

γA 

)(
log 

γR 

ρR ρ
1 /n 
A 

K min 
R 

)
(14)

nd that for the oscillatory phenotype 27 in its maximum region,

inus that portion of the volume that has the possibility to un-

ergo a bifurcation and lose oscillation, is 
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Fig. 7. Elucidating Structural Features of the Network and Their Effect on Dynamic Stability. Phenotypes 9 (A), 30 (B), and 27 (C). Mathematical expressions defining a given 

S-system can be interpreted in terms of network structure. By doing so, a desired dynamic behavior can be linked to certain structural properties of the network. For the 

genetic network depicted in Fig. 4 to exhibit bistability, the synthesis of repressor R must be independent of the activator A (Panels A and B). By contrast, this interaction is 

required for the same network to exhibit oscillation (C). 
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 olume = 

(
n 2 − n + 1 

n 2 

)
( log ρA ) 

[ 
( log ρR ) −

(
n − 1 

n 

)
( log ρA ) 

] 
(
log 

γR 

ρR ρ
1 /n 
A 

K min 
R 

)
(15) 

The values for all the parameters that would locate the sys-

em’s operating point furthest from the boundaries whose crossing

ould lead to a change in phenotype, in some sense the “optimal”

arameter set for robustness, can be calculated as well (See Sup-

lemental Material). 

It also is interesting that the volume of all three phenotypes

ave one long major axis involving a linear relationship between

 AA and K R (refer to Figure S3A in the Supplemental Material),

hich hints at some biophysical constraint involving the DNA

inding region and the two transcription factors that must coop-

rate at this locus. 

.4. Linking structural features of the network with dynamical 

ehavior 

The process of phenotype construction by picking one domi-

ant positive and one dominant negative term for each species

variable) can be interpreted in terms of network structure. This

onnection can be exploited by analyzing structural characteristics

f phenotypes exhibiting desired dynamic behaviors, as shown in

ig. 7 . Mathematical expressions defining Cases 9 (bistable pheno-

ype, Fig. 7 A), 30 (bistable phenotype, Fig. 7 B) and 27 (oscillatory

henotype, Fig. 7 C) are interpreted in terms of ‘active’ connections

f the network, which are represented in blue. An interaction is

onsidered active if the parameter defining the strength of inter-

ction is contained in the mathematical expression for a given S-

ystem. If the expression of a given dominant positive term does

ot contain any binding constant (K R , K A or K AA ), this is inter-

reted as a constitutive synthesis (refer to Fig. 7 A and B). For sim-

licity and since a single negative term for each species is con-

idered, only terms contributing to the synthesis of each pool are

nalyzed. 

A closer examination of the network structure representing

ase 9 and Case 30, both exhibiting bistability, reveals an interest-

ng similarity (compare Fig. 7 A and B). In terms of dynamic behav-

or, this network structure shows that the activation of the repres-

or molecule R by the activator A is not a necessary feature for the

ystem to exhibit bistability. This holds for both a low (Case 9) and

 high (Case 30) constitutive synthesis of R . Note that by contrast,

his interaction is needed for the network to exhibit an oscillatory

ehavior (Case 27, Fig. 7 C). 
By unravelling the relationship between structural network fea-

ures and associated dynamical behavior, the DST2 can support the

esign of synthetic networks that robustly exhibit a desired be-

avior. For instance, if one is exclusively interested in the hysteric

witching capabilities of the network depicted in Fig. 4 , the con-

ectivity of the network should be modified so that the repres-

or molecule R is constitutively synthetized, independent from the

oncentration of the activator molecule A . 

. Logical description of gene regulatory networks 

Qualitative logical network modeling has been widely applied

o successfully describe topological properties of complex biologi-

al networks, including steady-state characterization and network

obustness ( Albert and Othmer, 2003; Li et al., 2004; Wang et al.,

012 ). While a kinetic description has the potential to fully cap-

ure the behavior of such complex systems in a quantitative way,

ts application to the analysis of gene regulatory networks has

een somewhat limited due to lack of knowledge of both the de-

ailed mathematical expressions describing regulatory interactions 

etween network components and associated numerical values for

heir parameters ( Wang et al., 2012 ). 

Here, we present a simplified Boolean description of the net-

ork depicted in Fig. 4 and compare it with the kinetic repre-

entation offered by our phenotypic-centric modeling approach,

hich, as described throughout this paper, does not require pre-

ious knowledge of parameter values. We start our analysis with

 set of Boolean functions representing the regulatory interactions

ithin the network. The following assumptions were used to con-

truct the logical rules: when a single input is involved ( A influ-

ncing R ), the Boolean function is a simple ‘if-then’ ; when several

nputs are involved ( A, R influencing A ), the Boolean function is

ypically treated as an ‘if OR-then’, which amounts to an assump-

ion that the inputs act independently ( Steinway et al., 2014 ). The

lternative would be ‘if AND-then” ; e.g., the (Activator AND (NOT

epressor)) logic of the classical lac operon ( Savageau, 2001 ). This

et of functions was then used to generate a state transition graph,

hich represents the system dynamics in Boolean terms. For sim-

licity, we use a synchronous updating scheme. According to our

aïve Boolean representation, the network under study exhibits a

ingle stable fixed point ( Fig. 8 A). 

According to our phenotype-centric approach and as shown in

ig. 6 , the entire phenotypic repertoire of the network can be

raphically represented by three different slices at constant K R val-

es. Instead of focusing on the eigenvalues as the phenotype char-

cteristic of interest plotted on the z-axis ( Fig. 6 E–G), one can con-

ider the steady-state concentrations of R and A as the phenotype
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Fig. 8. Characterization of the Steady State Concentrations of the Genetic Network. (A) naïve Boolean characterization for the network depicted in Fig. 4 , assuming a syn- 

chronous updating scheme. (B) Kinetic characterization offered by our phenotypic-centric approach. All axes are represented in a logarithmic scale, including steady state 

concentrations for the activator A and repressor R. Red regions correspond to steady state concentrations of 1, (which is represented as zero in the heat map, since log(1) = 0 ), 

while blue regions represent steady state concentrations of 0.01 (which is represented as −2.0 in the heat map). Phenotypic regions marked by white dashed lines exhibit 

a single stable steady state ( R A ) = 
1 
1 , coinciding with the Boolean characterization of the network. Note that many of the phenotypic regions remain inaccessible to our naïve 

Boolean characterization. All plots in Figure 8B were generated using the DST2 with the parameter values as stated in Fig. 5 . 
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characteristics of interest and plot them on the z-axis in the design

space ( Fig. 8 B). 

It is important to stress that no a priori knowledge of parameter

values is needed to generate the phenotypic repertoire of the sys-

tem. Rather, regions in parameter space for which each phenotype

is valid are identified before parameter values are predicted . Since

the design space is a space-filling, high-dimensional structure, each

point in the parameter space can be assigned to a certain pheno-

type, thus an extensive coverage of properties of interest of the

network under study is guaranteed. 

As shown in Fig. 8 B and depending on the specific values of

the parameters, the network under analysis can potentially exhibit

all possible mono-stable fixed points as well as bi-stable cases. By

contrast, the naïve Boolean description of the same network leads

to the identification of a single steady state, missing a variety of

different steady states. 

The naïve, classical Boolean description presented here can

of course be vastly refined. For instance, the logical formalism

developed by René Thomas and coworkers involved an asyn-

chronous updating scheme and logical variables ( Thomas and Kauf-

man, 2001 ). Further extensions of the classical Boolean formalism

might include the introduction of logical variables with more than

two values and the use of logical parameters ( Snoussi, 1989 ). As

the logical formalism becomes more elaborated, richer dynamic

behaviors can be described. However, as stated by Thomas and

Kaufman, (2001) : “Clearly, depending on the values of the logical pa-

rameters, one can have a variety of situations, from a single steady

state without periodicity to a choice between a stable steady state

and a cycle .” In other words, it seems that an increasingly complex

logical formalism partly renounces the promise of parameter-free

modeling in order to realistically describe complex biological phe-

nomena. The authors elegantly solve this issue by identifying a set

of conditions on the logical parameters that are in line with exper-

imental observations for the system being modeled, i.e., number

and nature of steady states ( Thieffry and Thomas, 1995 ). 
. Discussion 

Living organisms can exhibit a variety of highly complex be-

aviors. Processes of central importance to life such as cellular

rowth, division and differentiation are possible thanks to the reg-

lation and coordination provided by gene regulatory networks.

athematical modeling offers a means to quantitatively describe

nd understand these processes, whose complexity cannot be fully

nderstood solely by biological intuition. Once the network has

een elucidated and represented using a certain mathematical for-

alism, one can predict previously unobserved phenotypes, design

xperimental interventions to test these predictions, and gain in-

ights into the underlying biological design principles. Tradition-

lly, regulatory networks have been mathematically represented as

 dynamic system using a kinetic or a logical formalism, where the

teady states or attractors of the system are interpreted as observ-

ble biological states ( Li et al., 2004 ). The decision whether to use

 kinetic or logical (Boolean) formalism has been so far mainly de-

ermined by the availability of parameter values required by the

inetic (differential) formalism. 

Our phenotype-centric modeling strategy offers a mechanis-

ic, kinetic based modeling framework, while rendering the a pri-

ri knowledge of associated kinetic parameters unnecessary. In

he specific case of the induction decision made by phage λ, we

howed that our novel phenotype-centric modeling strategy al-

owed the rapid identification of a region in the system design

pace that represents a hysteretic bistable switch involved in the

ommitment to induction. By using a representative set of param-

ter values within the identified region, we were able to construct

 steady-state induction characteristic (one-parameter bifurcation

iagram, or signal response curve), which was very similar to the

ame diagram obtained with the traditional simulation-centric ap-

roach using experimentally measured parameter values as input. 

We illustrated additional features of our phenotype-centric

odeling strategy by analyzing a common regulatory architecture
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onsisting of positive and negative feedback. First, we showed how

he phenotypic repertoire can be automatically enumerated and fil-

ered using the ‘create cases table’ command to identify pheno-

ypes of specific interest. We filtered for the stability signatures

f hysteretic switches and oscillators. In other contexts, one can

lter for a combination of logic functions; e.g., the signs of loga-

ithmic gains representing increase ( + ) or decrease (-) in various

utput variables in response to a change in specific input variables

r parameters ( Lomnitz and Savageau, 2016b ). Then, we demon-

trated how the ‘create plot’ command can be used to deconstruct

he system design space by a series of 2D slices, three in this spe-

ific case, and the entire repertoire of system phenotypes and their

ssociated characteristics (stability, steady state concentration, etc.)

an be visualized using these two-dimensional plots. For this com-

on architecture, we were able to rapidly characterize its dynamic

ehavior ( Fig. 6 ) and steady state concentrations ( Fig. 8 ) as a func-

ion of phenotypic regions covering the design space. Note that

nstead of just sampling different specific parameter values, our

henotype-centric modeling approach allows an exhaustive charac-

erize of the complete design space. 

In addition to the qualitative design principles that were imme-

iately visualized by means of an ‘interactive plot’ command, more

efined system design principles were uncovered by making use of

he ‘analyze a case’ command to calculate boundaries and vertices

f the polytope characteristic of each phenotype. This information

etermines maximal fixed volumes, which can be used as a cri-

erion of global robustness for each phenotype, as well as smaller

ariable volumes for characterizing evolvability. It is important to

ote that these volumes are analytically determined, not by sam-

ling parameter values, and that they capture very asymmetrical

onlinear shapes in a tractable linear form in logarithmic coordi-

ates (see Supplemental Material). 

We also show that structural features of the network are asso-

iated with particular dynamic responses (see Fig. 7 ). For instance,

e demonstrated that the activation of the synthesis of the repres-

or R by the activator A is not necessary for the network to ex-

ibit bistability. Rather, the repressor should be constitutively syn-

hetized for the network to exclusively exhibit a bistable response.

y contrast, oscillatory behavior is only possible when all regula-

ory interactions contained within the regulatory architecture are

ctive. 

Logical formalisms have been widely used to study gene reg-

latory networks because no parameter values are required. Here,

e assessed the performance of a classical, naïve Boolean descrip-

ion of the network architecture in Fig. 4 by comparing the char-

cterization of the steady state response offered by this formal-

sm with the parameter-free, kinetic characterization provided by

ur phenotypic-centric approach. We could show that the cover-

ge of the naïve Boolean description was rather limited, since it

ailed to describe the rich variety of steady states potentially ex-

ibited by the network ( Fig. 8 ). As identified by René Thomas and

o-workers, the analysis of a more elaborated logical formalism,

hich should allow the description of richer dynamical responses,

ecessarily involves the consideration of parameter values. Inter-

stingly, the strategy developed by these authors to deal with this

ssue involved the consideration of all possible dynamic responses

f the network, along with the determination of associated param-

ter values. By constraining this response ‘repertoire’ with known

iological behaviors, it is possible to identify consistent values for

he logical parameters ( Thieffry and Thomas, 1995 ). In our opinion,

his strategy resembles in many respects our phenotype-centric ap-

roach, in which the phenotypic repertoire of the model is first

numerated and then a nominal set of parameter values for the

ealization of a phenotype of interest can be easily calculated. The

act that similar strategies for the analysis of a complex logical

athematical description were independently developed suggests
hat the idea of phenotypic-centric modeling might be extended

o other mathematical formalisms. 

It should be clear that the phenotype-centric modeling strat-

gy does not supplant the traditional simulation-centric approach,

articularly in the case of stochastic systems, but rather is a com-

lementary strategy. Indeed, the phenotype-centric approach can

e an aid to these other approaches. By making use of the “chun-

ed up” design space to identify relevant regions of parameter

pace and predict parameter values, the phenotype-centric strat-

gy provides initial estimates of parameter values that can be sub-

equently refined by a host of well-known numerical methods. For

xample, Newton’s method for finding fixed points behaves chaoti-

ally unless it has good starting values; however, if these are avail-

ble, then it has nice quadratic convergence properties. 

The development of the phenotype-centric approach is still in

he early stages and there are several issues related to software de-

elopment that need to be addressed. However, it is already clear

hat this approach has a solid theoretical foundation and offers

ew vistas for the analysis of complex gene regulatory networks. 
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