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- - biochemical phenotypes, (2) a method for enumerating the phenotypic repertoire based on the biomolec-
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ular network architecture, (3) an integrated suite of computational algorithms for the efficient prediction

Keywords: of parameter values and analysis of the phenotypic repertoire, and (4) a user-focused environment for
Gene circuit architecture navigating the resulting space of phenotypes and identifying biologically relevant features and system
Dynamic phenotypes design principles. These innovations will facilitate deterministic and stochastic simulations that require
System design space parameter values, will accelerate both hypothesis discrimination in systems biology and the design cycle
Global robustness and evolvability in synthetic biology. Here we first review the fundamental definition of biochemical phenotype that en-

ables this new modeling strategy and give an overview of the strategy using a simple system from phage
A to provide an example of a global design principle. Second, we illustrate this approach in more detail
with an application to a common network architecture involving positive and negative feedback. We re-
port system design principles related to the global tolerances of this system’s phenotypes. Finally, we ap-
ply the phenotype-centric strategy to a logic network and compare the results with those obtained from
a Boolean approach. Mechanistic and Boolean models have well-documented complementary advantages
and disadvantages. Mechanistic models have the advantage of being biologically realistic; however, they
also are limited by the large number of kinetic parameters whose values are largely unknown. Boolean
models have the advantage of being parameter free; however, they also are limited by the absence of
well-known physical and chemical constraints. We show that the phenotype-centric modeling strategy
combines advantages of both.

© 2018 Elsevier Ltd. All rights reserved.

Personal preface have selected a simple system from phage A to introduce some
of the basic concepts in our phenotype-centric approach and to
provide an example of a global design principle. There has been
a long history of comparisons involving Boolean and mechanis-
tic models; our new phenotype-centric approach, and the de-
sign principles that it has elucidated, provide a new perspective
on the advantages and disadvantages of these complementary
approaches. I wish Rene were here today; I am sure we would
have a wonderful lively discussion.

[ first met Rene back in the 1970s. We were often participants
at the same conferences, and engaged in a number of stimu-
lating discussions. We shared an interest in phage A, Rene be-
ginning with his experimental work in the field, and me as a
result of my interactions with the A community through my
colleagues David Friedman at the University of Michigan and
John Little at the University of Arizona. We also shared a more
abstract interest in the underlying design principles not only
of phage A but of biological systems in general. We pursued
these interests with complementary approaches, Rene favoring 1. Introduction

Boolean models whereas I favored mechanistic models. Because

of both these shared interests, in this paper my colleagues and I Relating the genotype and environment to the phenotype ex-
hibited by a biological system is one of the ‘Grand Challenges’
in Biology (Brenner, 2000). Advances in high-throughput DNA se-
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sequence. However, there has been no corresponding concept of
phenotype. These tend to be ad hoc and descriptive - size, shape,
color, etc. Without a comparable generic definition of phenotype
there can be no deep understanding of the relationship between
genotype and phenotype; one cannot “predict” a phenotype that
has not already been seen! To address this problem, we have pro-
posed a rigorous definition of phenotype in terms of the biochem-
istry that mechanistically links genotype and environment to the
phenotype (Savageau et al., 2009).

Before we consider this definition, it will be helpful first to
provide some context. We start with the premise that organisms
are biochemical systems: There is a common chemical basis for
all forms of life as we know it; organisms deal with many forms
of energy, but the basic unit of exchange is chemical; cellular
functions are typically catalyzed by enzymes. There are a num-
ber of fundamental constraints on these systems, including micro-
scopic reversibility of chemical kinetics, Haldane relations of bio-
chemical kinetics, conserved moieties, stoichiometry of reactions,
precursor-product relationships, molecular crowding and solubil-
ity limits. The most quantitative and scalable descriptions of these
biochemical systems involve rate law functions - stochastic, deter-
ministic or Boolean - each with their advantages and disadvan-
tages. Our focus, although not exclusive, is on deterministic rate
laws. These include the power-law functions of chemical kinet-
ics and the rational functions of biochemical kinetics. They have
advantages of naturally incorporating fundamental constraints and
analytically determining design principles, but the disadvantage of
requiring numerous, typically unknown, parameter values. Thus,
the foundation that provides our modeling context is fundamental
biochemical kinetics, which has broad general applicability as indi-
cated by the vast majority of biochemical models that are of this
type (Chelliah et al., 2013).

Given this context, we consider the scope of biochemical sys-
tems theory to include mechanistic models governed by rate laws.
These rate laws are the power functions of chemical kinetics and
the rational functions of biochemical kinetics. Functions of these
rate laws are integrated into a network by means of Kirchhoff's
Node Law. The result is a system of differential-algebraic equa-
tions. Without loss of generality, the differential-algebraic equa-
tions consisting of power-laws and rational functions can be recast
trivially into Generalized Mass Action (GMA) equations consisting
only of sums and products of power-law functions (Savageau and
Voit, 1987):
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The m independent, n dependent, n. chemical and (n — n¢) aux-
iliary variables X; are all non-negative real. The rate constants o
and By, are non-negative real, and the kinetic orders g, and hyj
are integer. P; and Q; are the number of positive and negative
terms in each equation.

2. Definition of phenotypes

We start by defining phenotypes in terms of the fixed points
of the system. Each constituent of the system will in general
have several processes described by the positive terms in the
GMA equations and several described by the negative terms. Imag-
ine a snapshot of a system in steady state. For each constituent,
one of its positive terms will be larger than the others; simi-
larly, one of its negative terms will be larger than the others. Call
these the dominant input process and dominant output process for

the constituent pool. Construct a dominant sub-system (S-system)
consisting only of the dominant processes for each constituent:
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where p is the dominant input process among the P; terms in
Eq. (1), and g is the dominant output process among the Q; terms.
If this S-system has a solution, then test to see that it is self-
consistent by substituting the solution into all of the other terms
in the original equations and demonstrate that the dominant terms
are indeed the largest. If it satisfies this test, then it defines an el-
emental phenotype of the system. There is a finite number of such
combinations that define a dominant S-system, and these define
the repertoire of qualitatively distinct phenotypes.

Note that Eq. (2) is a linear system of equations in logarithmic
coordinates, that the test for validity involves a system of linear
inequalities in logarithmic coordinates, and that the boundaries of
the phenotype in the parameter space of the original system are
rigorously defined by linear hyper-planes. Thus, all of this involves
well-known linear mathematics. It should be clearly understood
that this approach involves approximations to the actual system.
Experience to date shows that overall the accuracy is very good,
with errors concentrated in the neighborhood of the boundaries,
where by definition there is no dominance. The important point
here is not the inaccuracies near the boundaries but that the
boundaries separating qualitatively distinct phenotypes are rig-
orously defined. Although this approach has a strong foundation
based on well-known linear mathematics (in log space), there are
still challenges in the software implementation that automates
subsequent analysis. An obvious issue that arises in all modeling
approaches is how it scales with problem size. For some ap-
proaches the scaling is straightforward and the relevant metric is
the number of system variables whereas for others it is the num-
ber of parameters. This is not the case for the phenotype-centric
approach for which the number of combinations of terms is key.
There is a bound given by the total number of combinations, but
this is a very poor bound because many of the combinations lead
to mathematical impossibilities and these can be ignored (see the
concrete example in Section 4). The other most important, but
difficult to specify, issue with regard to scaling is problem struc-
ture. In the phenotype-centric approach each phenotype involves
a tractable linear analysis that is independent of that for all the
other phenotypes. This represents what computer scientists call an
embarrassingly parallelizable problem, and suggests that this will
greatly improve the scaling to larger problems. Portability across
platforms and version updates are currently being addressed,
and some of the other challenges have been discussed elsewhere
(Lomnitz and Savageau, 2016a; Savageau, 2013) and are of no
concern for the material presented here.

To summarize, we have the following definitions: an elemental
phenotype is the set of concentrations and fluxes corresponding to
a valid combination of dominant processes functioning within an
intact system, a qualitatively distinct phenotype is the characteris-
tic phenotype that exists throughout a region of validity (polytope)
in parameter space, and a phenotypic repertoire is the collection
of qualitatively distinct phenotypes integrated into a space-filling
structure in parameter space. These rigorously defined biochemical
phenotypes can be combined in various ways to generate complex
composite phenotypes. We will illustrate some simple examples of
overlapping and clustered composites.

Although the application to complex developmental, physiolog-
ical and behavioral traits exhibited by higher organisms is well be-
yond current capabilities and our purposes here, we have a basis
for addressing these challenges based on comparable concepts for
relating genotype to phenotype. Namely, the genotypic repertoire is
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Fig. 1. Simulation- and Phenotype-centric Modeling Strategies. While parameter values have a central role in the traditional simulation-centric modeling strategy, experi-
mentally observable phenotypes are the focus of our novel modeling approach. Instead of using parameter values as input, the phenotype-centric approach predicts a region
in the parameter space for the realization of a phenotype of interest. By exhaustively enumerating the phenotypic repertoire of the model at an early stage, our modeling
strategy allows for the rapid elimination of wrong hypotheses (models) that are not able to describe the experimental phenotype of interest.

the collection of genes for a system and the phenotypic repertoire is
the collection of qualitatively distinct phenotypes for a system.

In exploring the implications of our phenotype definitions,
we initially focused on well-characterized systems for which a
nominal set of parameter values was available (Reviewed in
Savageau, 2013). This allowed us to characterize the phenotypic
repertoire in a highly structured ‘system design space’, which con-
sists of a finite number of space-filling ‘chunks’ (irregular poly-
topes) corresponding to the qualitatively distinct phenotypes of the
system. Given the nominal set of parameter values and its location
in this design space, we suggested a new definition of robustness
that we call global tolerance; namely, the fold change in a param-
eter value that the system can tolerate before there is a change in
phenotype (Coelho et al., 2009). Until recently (Lomnitz and Sav-
ageau, 2016a), we were still thinking in terms of the conventional
modeling strategy in which one first had to start with values for
the parameters; since then, we have discovered deeper implica-
tions that enable a very different modeling strategy.

3. A phenotype-centric modeling strategy

The experimental and computational challenges in modeling
complex biological systems are hard to over-estimate. These are
complex, nonlinear, stochastic systems with rough fitness land-
scapes. They involve large numbers of variables, parameters, in-
puts, and initial conditions. This gives rise to a combinatorial
explosion involving experiments and simulations. Time, cost and
technical limitations lead to noisy data and to sparse sampling of
experiments and simulations, and many of these challenges exist
even for modest-sized systems.

Our definition of phenotypes helps to address some of these
issues by enabling a novel phenotype-centric modeling strategy
that largely inverts the conventional strategy, which we might call
simulation-centric. An overview of the differences is given in
Fig. 1. In either case the starting point is a conceptual model (hy-
pothesis). This leads to a mathematical model, which as noted
above, is typically a complex nonlinear system with many un-
known parameters that is analytically intractable.

Table 1

Biochemical Systems Have Relatively Fixed Parts and Variable Parts. Our novel
phenotype-centric modeling approach exploits architectural features of the sys-
tem to determine its phenotypic repertoire. The parametric component of the sys-
tem, which is rarely known, can be predicted for a system’s phenotype of interest.

Fixed architecture Variable parameters

Rate constants

- Difficult to determine in situ
- No high throughput methods
Binding Constants

- Difficult to determine in situ
- No high throughput methods
Environmental inputs

- Many and difficult to know

- No high throughput methods

Topology of interconnections

- Relatively easy to determine

- High throughput methods available
Signs of interactions

- Relatively easy to determine

- High throughput methods available
Numbers of Binding sites for the interactions
- Small number of possibilities

- Sampling is feasible

- High throughput methods available

In the conventional approach the focus is first on measuring,
estimating or sampling parameter values and fitting known ex-
perimental data. Only when a set of parameter values is in hand
can one proceed to simulate the nonlinear system. This provides
validation of the parameter set by demonstrating agreement with
experimental data and, when there is disagreement, refinement
of the model in an iterative fashion as part of the usual scien-
tific method. Having a validated set of nominal parameter val-
ues, a parameterized model then allows one to explore parame-
ter space and predict new phenotypes that were not used in the
initial parameterization. Success is obtained if the predictions are
subsequently confirmed by experimental tests. In this conventional
strategy, simulating a system with a given set of parameter val-
ues is easy; obtaining the parameter values in the first place is
hard.

In the phenotype-centric strategy the focus is first on analyti-
cally enumerating the phenotypic repertoire of the model and later
predicting parameter values for phenotypes of interest. This is pos-
sible because biochemical kinetic models consist of both fixed and
variable features (Lomnitz and Savageau, 2015) (Table 1). The fixed,
or architectural, features include connectivity (e.g., protein-DNA
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Fig. 2. Parameter-Independent Phenotypes of a System’s Fixed Points. R represents an output variable (response) of an arbitrary system, while S represents a parameter or
an input variable (signal) of that system. (A) Fixed steady-state logarithmic gains resulting from a (quasi-)steady state titration of the signal. (B) Exponential instability with
one positive real eigenvalue, which typically leads to hysteretic bistability. (C) Oscillatory instability with a pair of complex conjugate eigenvalues having a positive real part,

which typically leads to sustained limit-cycle oscillations.

binding), signs (e.g., activation/repression) and numbers (e.g., ki-
netic orders) of interactions for a given class of models. The vari-
able, or parametric, features include kinetic and thermodynamic
parameters and environmental variables that quantitatively distin-
guish the members of this class.

The architectural features give rise to important ‘parameter-
independent’ phenotypes associated with the system’s fixed points
(Fig. 2). These characteristics, which are analytically determined
using linear algebra, exist throughout a polytope region in param-
eter space that defines the phenotype. They can be matched to
phenotypes of biological interest. Moreover, a linear program can
then be used to predict a nominal set of parameter values. Thus, in
this novel phenotypic-centric strategy, the initial effort is focused
on analytically enumerating the phenotypic repertoire and then on
predicting parameter values. This inverts the conventional strat-
egy in which the initial focus is on estimating parameter values
and then enumerating the phenotypic repertoire using simulation
(Fig. 1). The differences between the two strategies for a model of
phage A induction are illustrated in Fig. 3 by the workflow and re-
sults obtained.

In the conventional simulation-centric strategy, as noted above,
effort is focused initially on measuring, estimating or sampling val-
ues and fitting experimental data (Fig. 3C) and the result is a set of
nominal values for the parameters (Fig. 3D). Once a parameterized
model has been obtained, the effort then turns to an exploration
of parameter space by dense sampling and simulation to predict
new phenotypes (Fig. 3E) that were not used in the initial param-
eterization (Fig. 3F). Success is obtained if the predictions are sub-
sequently confirmed by experimental tests.

In the phenotype-centric strategy, effort is focused initially on
enumerating the phenotypic repertoire, without specifying param-
eter values, and the phenotypic repertoire that results is filtered for
the phenotype(s) of experimental interest (Fig. 3G). A major advan-
tage at this point is rapid model discrimination; if the phenotypic
repertoire does not include the phenotypes of interest, then the
model (hypothesis) can be rejected (Lomnitz and Savageau, 2016b).
Alternatively, if the phenotypic repertoire does include the phe-
notypes exhibited by the system, then a representative set of pa-
rameter values can be predicted for the realization of each phe-
notype within an appropriately localized region of parameter space
(Fig. 3H). The relationships among phenotypes for this set of pa-
rameters can then be visualized in 2-D slices through the system
design space (Fig. 3I). A predicted progression of phenotypes re-
sulting from the steady-state titration of a given parameter can
generate a variety of composite phenotypes, such as activation fol-
lowed by repression (Fig. 3]).

As this example shows, starting only with the architectural fea-
tures and no parameter values, within minutes the phenotype-
centric strategy obtained the results shown in Fig. 3G-] for a model
of phage A induction. Not only do these results qualitatively match
those from the ‘simulation-centric’ strategy based on decades of
experimental work to estimate model parameters (Savageau and
Fasani, 2009), but the same repertoire of phenotypes is found with
both strategies (Fig. 3E & I). The quasi-steady state concentration
of CI mRNA (Fig. 3A) in response to increasing levels of RecA ac-
tivity (a proxy for DNA damage) also is qualitatively similar for the
two strategies (Fig. 3F & ]).

These results suggest that a phased combination of the two
strategies offers distinct advantages. The first phase, provided by
the phenotype-centric strategy, is the most efficient when param-
eter values are unknown; it quickly yields qualitatively appropriate
phenotypes and a full set of analytically predicted parameter val-
ues. The second phase, consisting of focused experiments and de-
terministic and stochastic numerical simulations (e.g., Fasani and
Savageau, 2013), can then be used to verify and refine parame-
ter values; it yields quantitative as well as qualitative results. Any-
time definitive values are available for any of the parameters, these
should be incorporated into the model before starting, as this will
improve the efficiency of either strategy.

An important result of the previous analysis was the prediction
of a system design principle for phage A to maintain its biphasic
life style (Savageau and Fasani, 2009); it consists of two inequal-
ities that involve constellations of values for all the parameter of
the model (Fig. 3B):

)/,5, max)/ZCVD dp ~/YMmax}Mmin YC
5,%/,83111“8,3 (ﬂD + 8[)) Sm 28p

Moreover, when the experimentally determined (Savageau and
Fasani, 2009) and predicted parameter values are substituted into
the inequalities one finds that the design principle is satisfied in
both cases.

<Kp <

3)

4. System design principles for a common regulatory
architecture

In this section we examine a very common molecular archi-
tecture involving positive and negative feedback (Fig. 4). Bistable-
hysteretic switches are generated by positive feedback. They are
common features of commitment in cell-fate determination in
viruses including prophage induction (Dodd et al., 2001) and
restriction-modification systems (Williams et al., 2013), in bacte-
ria including toxin-antitoxin systems of Escherichia coli (Fasani and



M.A. Valderrama-Gémez et al./Journal of Theoretical Biology 455 (2018) 281-292 285
A B
P P —nyn
B dM | YuKp+ D" Ve + ¥uKi"D" | s
< 8 NA Y5 mRNA —» dt KL +D’(1+K;"D") ”
™~ ™)
TS l ac Ser R +6:Ky
= =YM+2p,D-2y,C* —| M _—C_k |C
—> C;- /4 Y
§ 8- /(\A/’\ —_ 1%1 ” C1(D(’31 —_— ar c D D R +K¢
Rec* ap _ 2
> R) = 70C - ﬁDD - 50D
I ® dt
\_ J
Simulation-Centric Phenotype-Centric
(" N ™
logP, D G log P, H . .
. o
Phenotypeof  Hysteric developmental switch in .
z Interest: response to DNA damage
s log P, Exponentially Unstable Model Phenotypes lA\ 1
’ i og P,
s e part .
g % S o0 oo oo i ‘ '
] Zuzii 0000 000 0000 1
o s 13 03 06er i
2321 0000 0000 i
103 I R Y i
104 gz 5000 5000 ' eos
%0 oz o4 06 o5 1 12
CI-CI (uM
1 (uM) log log P,
0y = 83 =
228 o 2 2 B
Rt=T Pl HeT OBm
gy aog 2% 248
208 a2 g R ~
E 78inarin3, 8s88e% F | 78dasd a3 228508 J
B Stability plot ] . 5 Stability plot
10 o x
s 08 5 15¢ /:
0.0 g :
5 05 ~ 06 = < Lo i
k4 =04 - 05
: 02 0.0
=3.0-25-2.0-15-1.0-0.5 0.0 0.5 1.0 005 =25 2.0 —15 —1.0 = 243 2 -1 0 1 2 3 4 S R R B S 2 3
i 0 —2.5 —2.0 -15 mt(t;’) 05 00 05 1.0 - Yot
. /L J

Fig. 3. Workflow from Conceptual Model to Predicted Induction Characteristic. (A) Model architecture includes the interaction network, signs of interactions, and number of
binding events in the interactions. Blue characters in parenthesis are used to construct the mathematical model shown in the neighboring panel. (B) Mathematical model
consisting of chemical and biochemical kinetic equations. Simulation-centric strategy: (C) Decades of work experimentally measuring and computationally estimating values
for the parameters of the model in (A). (D) The resulting nominal set of parameter values. (E) The phenotypic repertoire can be obtained by dense sampling the parameter
space and simulation; however, for our purposes here, we use the DST2 software with the experimentally determined values for the parameters to visualize the distinct
phenotypic regions (See also Fig. 5). (F) The steady-state induction characteristic is predicted for various values of the input variable, RecA activity in the case of phage A
induction. Phenotype-centric strategy: (G) The phenotypic repertoire is enumerated without specifying values for the kinetic and thermodynamic parameters, and the list can
be filtered to obtain only the phenotypes of interest (blue). (H) Parameter values are predicted automatically for each qualitatively-distinct phenotype of interest to localize
estimates within a ‘chunk’ of parameter space. (I) The phenotypic repertoire can be visualized without sampling by taking slices through the high-dimensional object in the
system design space (See also Fig. 5). (J) The steady-state induction characteristic is predicted for various values of the input variable, which is RecA activity.
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Fig. 4. Genetic Network Involving an Activator and a Repressor. The synthesis of
the activator molecule A undergoes an autocatalytic activation and a repression by
the repressor molecule R, whose synthesis is in turn activated by A.

Savageau, 2013) and induction preferences in catabolically diverse
Pseudomonas putida (Nichols and Harwood, 1995; Rojo, 2010),
in plants including asymmetric stem cell division of Arabidopsis
thaliana (Cruz-Ramirez et al., 2012), and in animals including tra-
cheal cell specification from a field of progenitor cells of Drosophila
melanogaster (Metzger and Krasnow, 1999; Zelzer and Shilo, 2000)
and neural progenitor cells switching to oligodendroglia in the
brains of Rattus norvegicus (Lai et al., 2004). Homeostatic regula-
tion is generated by negative feedback, and under certain condi-
tions it also can generate oscillations (Elowitz and Leibler, 2000);

however, more robust oscillations are obtained with a combination
of positive and negative feedback (Lomnitz and Savageau, 2014;
Novak and Tyson, 2008; Purcell et al., 2010; Tsai et al., 2008). This
architecture is at the core of circadian clocks found in organisms
including cyanobacteria (Tomita et al., 2005), flies (Hardin, 2011),
plants (Nohales and Kay, 2016), and mammals (Papazyan et al.,
2016). Additionally, it is at the core of many synthetic gene oscilla-
tors (Atkinson et al., 2003; Stricker et al., 2008; Tigges et al., 2009)
that provide a simplified and experimentally tractable context for
study.

The examination of the network illustrated in Fig. 4 will provide
a more detailed treatment of the various steps in a design space
analysis and demonstrate how this type of analysis can be used
to elucidate underlying design principles that would otherwise be
difficult if not impossible to discover by intuition or tractable ex-
periments.

A typical model with the equations for mRNA dynamics as-
sumed to be fast and their quasi-steady state values incorporated
into the slower equations for protein dynamics involves rational
functions for the synthesis of the repressor (R) and activator (A) in
the following equations:

1dR 2+ (&)

Bt = gy ?

—R pR>l
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Note that the synthesis of R is modeled as an activator-primary
process (Lomnitz and Savageau, 2014), meaning that in the ab-
sence of A, R is constitutively synthetized and exhibits a mini-
mum steady state concentration of yg/pg. In the presence of the
activator molecule A, the steady state concentration of R can be
increased to reach a maximum value of yg, as shown in Eq. (4).
On the other hand, the synthesis of A is modeled as a repressor-
primary process (Lomnitz and Savageau, 2014), meaning that in
the absence of both A and R, A is constitutively synthetized and
exhibits a maximum steady state concentration of y4. At a suffi-
ciently high concentration of R, the synthesis of A is repressed, and
its steady state concentration reaches a minimum value of y4/pa.
The autocatalytic activation of A reduces the repression by R, as
shown in Eq. (5).

Recasting Egs. (4) and (5) into the GMA form yields:

1 dR

poa>1 (5)

Bt YePg ‘D" + vRA"K;"Dp' — R (6)
1 dA 1 np—n -1 “1pnp—np-1

Badt VaDy" + VaA'Kyi' Dy” + yapy R'KR"D," — A (7)

0=1+ A'K," — Dg (8)

0=1+A"K'+ R'K;" — D, 9)

Note that Egs. (8) and (9) are algebraic constraints introduced
during the recasting process and define auxiliary variables D, and
Dg, respectively.

Egs. (6)-(9) can be automatically analyzed within the design
space formalism. To that end, we use the Design Space Toolbox
V2 (DST2), software that allows for the automatic enumeration of
the phenotypic repertoire, the prediction of phenotype-specific pa-
rameter values and the characterization of model phenotypes using
analytical and numerical methods (Lomnitz and Savageau, 2016a).
Depending on the focus of the analysis being performed, a num-
ber of analytical workflows are possible. Here, we will show how
the DST2 can be used to identify parameter values corresponding
to a phenotype with a desired dynamic behavior and elucidate its
design principles.

4.1. Parameter-independent characteristics of the phenotypic
repertoire can guide the identification of regions in the parameter
space with desired dynamic behavior

The first operation typically is to enumerate the full repertoire
of phenotypes along with some of their phenotypic characteris-
tic of interest by using the ‘create cases table’ command. Table 2
lists the phenotypic repertoire corresponding to the genetic net-
work depicted in Fig. 4 along with the number of eigenvalues with
positive real part for each S-system. There is a total of 36 potential
S-systems, from which only 15 are valid. As an example of a poten-
tial S-system that is invalid consider cases involving the four com-
binations of terms in Egs. (6) and (8). Combinations in which the
first term in Eq. (6) and the second term in Eq. (8) are the dom-
inant positive terms would require 1 < A"K;" < ,0131 < 1, which is
mathematically impossible.

A closer inspection of Table 2 reveals the existence of two sys-
tems with the potential to exhibit bistability (Cases 9 and 30) and
one system with the potential to exhibit an oscillatory behavior
(Case 27). When the repertoire is very large, it is useful to filter
the list with various criteria that are part of the enumeration com-
mand. For example, in this case we could have filtered the list for

Table 2

Phenotypic Repertoire. The DST2 allows for the automatic enumeration of all po-
tential S-systems of a given network. In the case of the genetic network shown in
Fig. 4, there are a total of 36 potential S-systems, of which 15 are valid. Each S-
system has a case number and a uniquely defined case signature that identifies the
dominant terms in each equation (Fasani and Savageau, 2010). As indicated by the
number of eigenvalues with positive real part, the S-systems with Case numbers
9 and 30 have the potential to exhibit bistability, whereas the S-system with Case
number 27 has the potential to exhibit oscillatory behavior.

Number of eigenvalues with positive

Case number Case signature real part
1 1111111 0
9 11211131 1
27 21211131 2
29 21212121 0
30 21212131 1

only those phenotypes that have 2 eigenvalues with positive real
part; the list that is returned would then contain only Case 27.

Note that each case (S-system) is associated with a specific high
dimensional polytope in parameter space, whose boundaries can
be readily calculated by means of linear programming. These poly-
topes are then fit together to fill the parameter space for visual-
ization as two-dimensional slices (Fig. 5A). Various characteristics
of the phenotypes can then be plotted as a heat-map in the third
dimension (Fig. 5C).

Since DST2 allows for the prediction of a complete parameter
set representative of each S-system, the dynamical behavior of the
whole system parameterized with this parameter set can be com-
pared with the dynamic behavior of the corresponding S-system.
This procedure is shown in Fig. 5 for S-system 27 (Fig. 5B), which
should exhibit oscillatory behavior, and for S-system 30 (Fig. 5D),
which should exhibit bistability. Phenotypes having two complex
conjugate eigenvalues with positive real part need not exhibit sus-
tained oscillations throughout the associated polytope region, as
the conditions are partly dependent on parameter values; how-
ever, with the architecture of the model in Fig. 4 the oscillations
are particularly robust. Necessary conditions for sustained oscilla-
tions have been described in detail elsewhere (Lomnitz and Sav-
ageau, 2014). In contrast, phenotypes having one eigenvalue with
positive real part exhibit exponential instability throughout the as-
sociated polytope region, regardless of parameter values.

Thus, a useful initial strategy for design space analysis, as we
have seen, involves using the ‘create cases table’ command to enu-
merate the phenotypic repertoire, identify phenotypes with desired
steady-state and/or dynamic properties, and predict parameter val-
ues for their realization.

4.2. Visual inspection of the parameter space reveals qualitative
design principles

Visualization of a high-dimensional design space remains a
challenge, but it offers opportunities to identify system design
principles that would be difficult if not impossible to achieve by
other means. These issues are currently addressed by using the
‘create plot’ command to visualize 2D slices of the space with the
parameters on the axes selected for their particular biological in-
terest. The dimensions of the design space (number of parameters)
can be reduced by introducing dimensionless parameters, which
group the system parameters into a lower number of different
terms (Savageau et al., 2009). In the specific case of the network
shown in Fig. 4, and mathematically described by Egs. (4) and (5),
the numerical values for three parameters, namely K, Kasa and
Kg are required to fully characterize the strength of interactions
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Fig. 5. Design Space and Dynamic Behavior of the System. Panel A is the system design space showing the arrangement and shape of phenotypic regions identified by color
and case number when Ky =102, Note that instances with three case numbers represent overlapping phenotypic regions that typically signify hysteretic bistable regions.
Panel C is a stability plot represented in three dimensions with the values of Kya and K, on the x- and y-axis, and the number of eigenvalues with positive real part as a
color map on the z-axis. The polytopes for Cases 27 and 30 in Panel A have their stability represented in Panel C. The oscillatory behavior in Panel B is generated by the
whole system having the parameter set shown as the black dot. The hysteretic bistable response in Panel D, when Ka =10 2, is generated by the whole system in response
to changes in Kaa. Blue lines represent the system response with Kaa increasing from low to high values, while orange lines represent the response for decreasing Kas from
high to low values. The qualitative behavior is determined by the three binding constants Kg, Ka, and Kaa. The other parameters do not affect the qualitative behavior: the
constants Y and y4 determine the concentration scales for R and A and are arbitrarily set to one; the capacities for regulation pg and p, are required to be greater than
one and are arbitrarily set to 100, which is typical for the best studied transcription factors of E. coli, and the kinetic order n was set to a value of 3 to allow the system
to exhibit sustained oscillations. Necessary conditions for sustained oscillations involve a trade-off between cooperativity and delay and are described in detail elsewhere
(Lomnitz and Savageau, 2014). For the network under study, cooperativity values greater than 2 are necessary for sustained oscillations.

between the repressor R and activator A. In terms of the design
space, this means that the phenotypic repertoire of the network
can be assembled into a space-filling, three-dimensional structure.
By setting Ky to different constant values, the shape of the pheno-
typic regions in this three-dimensional structure can be visualized
in a plane, as shown in Fig. GA. Note that the use of K to “cut”
the design space is arbitrary and either K5 or Ky4 would represent
equally valid alternatives.

The DST2 allows for a convenient, interactive visualization of
the design space as the value of a given parameter, in this case Kg,
is changed. By visually inspecting the shape of the design space
(refer to Figs. 6B-D), one can rapidly identify three zones we might
denote L, M and H, each exhibiting a qualitatively different de-
sign space and associated stability pattern. While within zone H
all phenotypes are stable (Fig. 6G), zone M is characterized by the
presence of an oscillatory phenotype (Case 27, parallelogram com-
posed of green and orange regions in Figs. 6F) and a bistable phe-
notype (Case 30, composed of blue and green regions in Fig. 6F).
In addition to these two dynamic phenotypes, zone L exhibits a
further bistable phenotype (Case 9, upper blue and green region
in Fig. 6E). The effect of Ka, Kap and K on the dynamic behavior
potentially exhibited by the system can be observed in Figs. 6E-G
and can be summarized in Table 3.

4.3. System design principles and global robustness

One could vary the values of Kz by simple bisection to nu-
merically estimate the threshold values that separate the three

Table 3

Three Different Regions of Design Space for Each of the Three Dynamic Pheno-
types. Each region is defined by the effect of decreasing values of Kg on the
area of each of the phenotypes in a two-dimensional plane defined by logK, and
logKaa on the y- and x-axis respectively (see Fig. 6).

Dynamic phenotypes Region

Maximum Expanding Non-existent
Lower Hysteresis (Case 30)  logKg <—1 —1<logKg <0 logKg >0
Upper Hysteresis (Case 9) logKgr < -3 —3<logkr<—-2  logKg>-2
Oscillation (Case 27) logkg < -3 -3 <logKg <0 logKg >0

qualitative regions in each case. However, this would not necessar-
ily illuminate the underlying design principles governing this sys-
tem. Instead, we could use the ‘analyze a case’ command in DST2
to find algebraic expressions for the boundaries of each phenotype.
By following this procedure, we can identify system design princi-
ples involving all of the system parameters for each phenotype. For
example, the result for the lower hysteretic polytope (phenotype

30) is given by
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Fig. 6. Representation of the Design Space in a Series of Two-dimensional Plots. The design space is spanned by three axes, each containing numerical values for one
parameter. We use Ky to generate slices of the three-dimensional structure (A). Panels B to D show the arrangements and shapes of phenotypic regions identified by color
and case number as the parameter Ky takes on values of 10 -3, 10 ~> and 102, respectively. Panels E to G are stability plots represented in three dimensions with the values
of Kya and Ku on the x- and y-axis, and the number of eigenvalues with positive real part as a heat map on the z-axis. Other parameter values are as stated in Fig. 5.

that for upper hysteretic polytope (phenotype 9) is
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Note that the parameters representing the maximum steady-
state concentration of R (yg) and A (y4) determine the concen-
tration scale, the binding constants (K, Kas, Ks) have the units
of concentration, and the capacities for regulation (pr and p,)
and the Kkinetic order n are dimensionless. Necessary conditions
for hysteresis and oscillation can be obtained from Eqs. (10)-(12)
by canceling common terms on both sides of the inequalities. This
approach also provides a means to characterize volume and shape
of the polytope for each phenotype and thereby address the global
robustness and evolvability of each phenotype.

There have been various attempts to define system robustness.
Local parameter insensitivity is used most often, but this is un-
satisfactory for nonlinear systems in which global behavior is not
captured by the local derivative. It is more important to know how
large a change in system parameters can be tolerated without a
change in the qualitative phenotype of the system. This global ro-
bustness is more important but difficult to characterize. It depends
critically on the underlying structure of the model in parameter

space; e.g., it can often exhibit long curvilinear shallow valleys that
make parameter estimation difficult. The “volume” in parameter
space that is characteristic of a particular behavior has often been
proposed as a measure of global robustness. A given point in such
a volume might exhibit large variations and still remain within the
volume; the larger the volume, the more robust the behavior. How-
ever, there has been no generic method for determining these vol-
umes. Dense sampling of parameter space is a brute force method,
but it becomes impractical in high-dimensional spaces and visual-
ization is always a problem.

The system design space strategy provides an analytical ap-
proach to the characterization of global robustness. The boundaries
and vertices of the polytopes in design space allow for the calcula-
tion of polytope shape and volume. As seen in Table 3, the pheno-
types can have smaller, more variable parts, as well as larger more
fixed parts. In questions concerning robustness, the large fixed vol-
umes are of more interest, particularly those that avoid the possi-
bility of bifurcation to qualitatively different phenotypes; whereas
for questions of evolvability, the smaller, more variable parts with
easy access to these bifurcations might be of more interest. Al-
though all parts of the phenotypic regions can be calculated, here
we will focus on the large fixed parts that avoid bifurcations as a
means to characterize the volumes most relevant for global robust-
ness.

The volume of the polytope for phenotype 30 in its maximum

region (Table 3) is given by
Ya VR

that for phenotype 9 in its maximum region is

mﬂX
Volume = (n )(log 04) (log pak A ) <log Zﬁ)
e prpy K

(14)

and that for the oscillatory phenotype 27 in its maximum region,
minus that portion of the volume that has the possibility to un-
dergo a bifurcation and lose oscillation, is

Volume = (n ) (log pa) (log
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The values for all the parameters that would locate the sys-
tem’s operating point furthest from the boundaries whose crossing
would lead to a change in phenotype, in some sense the “optimal”
parameter set for robustness, can be calculated as well (See Sup-
plemental Material).

It also is interesting that the volume of all three phenotypes
have one long major axis involving a linear relationship between
Kap and Ky (refer to Figure S3A in the Supplemental Material),
which hints at some biophysical constraint involving the DNA
binding region and the two transcription factors that must coop-
erate at this locus.

4.4. Linking structural features of the network with dynamical
behavior

The process of phenotype construction by picking one domi-
nant positive and one dominant negative term for each species
(variable) can be interpreted in terms of network structure. This
connection can be exploited by analyzing structural characteristics
of phenotypes exhibiting desired dynamic behaviors, as shown in
Fig. 7. Mathematical expressions defining Cases 9 (bistable pheno-
type, Fig. 7A), 30 (bistable phenotype, Fig. 7B) and 27 (oscillatory
phenotype, Fig. 7C) are interpreted in terms of ‘active’ connections
of the network, which are represented in blue. An interaction is
considered active if the parameter defining the strength of inter-
action is contained in the mathematical expression for a given S-
system. If the expression of a given dominant positive term does
not contain any binding constant (Kg, Ky or Kaa), this is inter-
preted as a constitutive synthesis (refer to Fig. 7A and B). For sim-
plicity and since a single negative term for each species is con-
sidered, only terms contributing to the synthesis of each pool are
analyzed.

A closer examination of the network structure representing
Case 9 and Case 30, both exhibiting bistability, reveals an interest-
ing similarity (compare Fig. 7A and B). In terms of dynamic behav-
ior, this network structure shows that the activation of the repres-
sor molecule R by the activator A is not a necessary feature for the
system to exhibit bistability. This holds for both a low (Case 9) and
a high (Case 30) constitutive synthesis of R. Note that by contrast,
this interaction is needed for the network to exhibit an oscillatory
behavior (Case 27, Fig. 7C).

By unravelling the relationship between structural network fea-
tures and associated dynamical behavior, the DST2 can support the
design of synthetic networks that robustly exhibit a desired be-
havior. For instance, if one is exclusively interested in the hysteric
switching capabilities of the network depicted in Fig. 4, the con-
nectivity of the network should be modified so that the repres-
sor molecule R is constitutively synthetized, independent from the
concentration of the activator molecule A.

5. Logical description of gene regulatory networks

Qualitative logical network modeling has been widely applied
to successfully describe topological properties of complex biologi-
cal networks, including steady-state characterization and network
robustness (Albert and Othmer, 2003; Li et al., 2004; Wang et al.,
2012). While a kinetic description has the potential to fully cap-
ture the behavior of such complex systems in a quantitative way,
its application to the analysis of gene regulatory networks has
been somewhat limited due to lack of knowledge of both the de-
tailed mathematical expressions describing regulatory interactions
between network components and associated numerical values for
their parameters (Wang et al., 2012).

Here, we present a simplified Boolean description of the net-
work depicted in Fig. 4 and compare it with the kinetic repre-
sentation offered by our phenotypic-centric modeling approach,
which, as described throughout this paper, does not require pre-
vious knowledge of parameter values. We start our analysis with
a set of Boolean functions representing the regulatory interactions
within the network. The following assumptions were used to con-
struct the logical rules: when a single input is involved (A influ-
encing R), the Boolean function is a simple ‘if-then’ ; when several
inputs are involved (A, R influencing A), the Boolean function is
typically treated as an ‘if OR-then’, which amounts to an assump-
tion that the inputs act independently (Steinway et al., 2014). The
alternative would be ‘if AND-then” ; e.g., the (Activator AND (NOT
Repressor)) logic of the classical lac operon (Savageau, 2001). This
set of functions was then used to generate a state transition graph,
which represents the system dynamics in Boolean terms. For sim-
plicity, we use a synchronous updating scheme. According to our
naive Boolean representation, the network under study exhibits a
single stable fixed point (Fig. 8A).

According to our phenotype-centric approach and as shown in
Fig. 6, the entire phenotypic repertoire of the network can be
graphically represented by three different slices at constant Kg val-
ues. Instead of focusing on the eigenvalues as the phenotype char-
acteristic of interest plotted on the z-axis (Fig. 6E-G), one can con-
sider the steady-state concentrations of R and A as the phenotype
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characteristics of interest and plot them on the z-axis in the design
space (Fig. 8B).

It is important to stress that no a priori knowledge of parameter
values is needed to generate the phenotypic repertoire of the sys-
tem. Rather, regions in parameter space for which each phenotype
is valid are identified before parameter values are predicted. Since
the design space is a space-filling, high-dimensional structure, each
point in the parameter space can be assigned to a certain pheno-
type, thus an extensive coverage of properties of interest of the
network under study is guaranteed.

As shown in Fig. 8B and depending on the specific values of
the parameters, the network under analysis can potentially exhibit
all possible mono-stable fixed points as well as bi-stable cases. By
contrast, the naive Boolean description of the same network leads
to the identification of a single steady state, missing a variety of
different steady states.

The naive, classical Boolean description presented here can
of course be vastly refined. For instance, the logical formalism
developed by René Thomas and coworkers involved an asyn-
chronous updating scheme and logical variables (Thomas and Kauf-
man, 2001). Further extensions of the classical Boolean formalism
might include the introduction of logical variables with more than
two values and the use of logical parameters (Snoussi, 1989). As
the logical formalism becomes more elaborated, richer dynamic
behaviors can be described. However, as stated by Thomas and
Kaufman, (2001): “Clearly, depending on the values of the logical pa-
rameters, one can have a variety of situations, from a single steady
state without periodicity to a choice between a stable steady state
and a cycle.” In other words, it seems that an increasingly complex
logical formalism partly renounces the promise of parameter-free
modeling in order to realistically describe complex biological phe-
nomena. The authors elegantly solve this issue by identifying a set
of conditions on the logical parameters that are in line with exper-
imental observations for the system being modeled, i.e.,, number
and nature of steady states (Thieffry and Thomas, 1995).

6. Discussion

Living organisms can exhibit a variety of highly complex be-
haviors. Processes of central importance to life such as cellular
growth, division and differentiation are possible thanks to the reg-
ulation and coordination provided by gene regulatory networks.
Mathematical modeling offers a means to quantitatively describe
and understand these processes, whose complexity cannot be fully
understood solely by biological intuition. Once the network has
been elucidated and represented using a certain mathematical for-
malism, one can predict previously unobserved phenotypes, design
experimental interventions to test these predictions, and gain in-
sights into the underlying biological design principles. Tradition-
ally, regulatory networks have been mathematically represented as
a dynamic system using a kinetic or a logical formalism, where the
steady states or attractors of the system are interpreted as observ-
able biological states (Li et al., 2004). The decision whether to use
a kinetic or logical (Boolean) formalism has been so far mainly de-
termined by the availability of parameter values required by the
kinetic (differential) formalism.

Our phenotype-centric modeling strategy offers a mechanis-
tic, kinetic based modeling framework, while rendering the a pri-
ori knowledge of associated kinetic parameters unnecessary. In
the specific case of the induction decision made by phage A, we
showed that our novel phenotype-centric modeling strategy al-
lowed the rapid identification of a region in the system design
space that represents a hysteretic bistable switch involved in the
commitment to induction. By using a representative set of param-
eter values within the identified region, we were able to construct
a steady-state induction characteristic (one-parameter bifurcation
diagram, or signal response curve), which was very similar to the
same diagram obtained with the traditional simulation-centric ap-
proach using experimentally measured parameter values as input.

We illustrated additional features of our phenotype-centric
modeling strategy by analyzing a common regulatory architecture
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consisting of positive and negative feedback. First, we showed how
the phenotypic repertoire can be automatically enumerated and fil-
tered using the ‘create cases table’ command to identify pheno-
types of specific interest. We filtered for the stability signatures
of hysteretic switches and oscillators. In other contexts, one can
filter for a combination of logic functions; e.g., the signs of loga-
rithmic gains representing increase (+) or decrease (-) in various
output variables in response to a change in specific input variables
or parameters (Lomnitz and Savageau, 2016b). Then, we demon-
strated how the ‘create plot’ command can be used to deconstruct
the system design space by a series of 2D slices, three in this spe-
cific case, and the entire repertoire of system phenotypes and their
associated characteristics (stability, steady state concentration, etc.)
can be visualized using these two-dimensional plots. For this com-
mon architecture, we were able to rapidly characterize its dynamic
behavior (Fig. 6) and steady state concentrations (Fig. 8) as a func-
tion of phenotypic regions covering the design space. Note that
instead of just sampling different specific parameter values, our
phenotype-centric modeling approach allows an exhaustive charac-
terize of the complete design space.

In addition to the qualitative design principles that were imme-
diately visualized by means of an ‘interactive plot’ command, more
refined system design principles were uncovered by making use of
the ‘analyze a case’ command to calculate boundaries and vertices
of the polytope characteristic of each phenotype. This information
determines maximal fixed volumes, which can be used as a cri-
terion of global robustness for each phenotype, as well as smaller
variable volumes for characterizing evolvability. It is important to
note that these volumes are analytically determined, not by sam-
pling parameter values, and that they capture very asymmetrical
nonlinear shapes in a tractable linear form in logarithmic coordi-
nates (see Supplemental Material).

We also show that structural features of the network are asso-
ciated with particular dynamic responses (see Fig. 7). For instance,
we demonstrated that the activation of the synthesis of the repres-
sor R by the activator A is not necessary for the network to ex-
hibit bistability. Rather, the repressor should be constitutively syn-
thetized for the network to exclusively exhibit a bistable response.
By contrast, oscillatory behavior is only possible when all regula-
tory interactions contained within the regulatory architecture are
active.

Logical formalisms have been widely used to study gene reg-
ulatory networks because no parameter values are required. Here,
we assessed the performance of a classical, naive Boolean descrip-
tion of the network architecture in Fig. 4 by comparing the char-
acterization of the steady state response offered by this formal-
ism with the parameter-free, kinetic characterization provided by
our phenotypic-centric approach. We could show that the cover-
age of the naive Boolean description was rather limited, since it
failed to describe the rich variety of steady states potentially ex-
hibited by the network (Fig. 8). As identified by René Thomas and
co-workers, the analysis of a more elaborated logical formalism,
which should allow the description of richer dynamical responses,
necessarily involves the consideration of parameter values. Inter-
estingly, the strategy developed by these authors to deal with this
issue involved the consideration of all possible dynamic responses
of the network, along with the determination of associated param-
eter values. By constraining this response ‘repertoire’ with known
biological behaviors, it is possible to identify consistent values for
the logical parameters (Thieffry and Thomas, 1995). In our opinion,
this strategy resembles in many respects our phenotype-centric ap-
proach, in which the phenotypic repertoire of the model is first
enumerated and then a nominal set of parameter values for the
realization of a phenotype of interest can be easily calculated. The
fact that similar strategies for the analysis of a complex logical
mathematical description were independently developed suggests

that the idea of phenotypic-centric modeling might be extended
to other mathematical formalisms.

It should be clear that the phenotype-centric modeling strat-
egy does not supplant the traditional simulation-centric approach,
particularly in the case of stochastic systems, but rather is a com-
plementary strategy. Indeed, the phenotype-centric approach can
be an aid to these other approaches. By making use of the “chun-
ked up” design space to identify relevant regions of parameter
space and predict parameter values, the phenotype-centric strat-
egy provides initial estimates of parameter values that can be sub-
sequently refined by a host of well-known numerical methods. For
example, Newton’s method for finding fixed points behaves chaoti-
cally unless it has good starting values; however, if these are avail-
able, then it has nice quadratic convergence properties.

The development of the phenotype-centric approach is still in
the early stages and there are several issues related to software de-
velopment that need to be addressed. However, it is already clear
that this approach has a solid theoretical foundation and offers
new vistas for the analysis of complex gene regulatory networks.
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