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WENRUI HAO, KING-YEUNG LAM, AND YUAN LOU

ABSTRACT. To study the evolution of conditional dispersal we extend the
Perthame-Souganidis mutation-selection model and consider an integro-PDE
model for a population structured by the spatial variables and one trait vari-
able. We assume that both the diffusion rate and advection rate are functions
of the trait variable, which lies within a short interval I. Competition for re-
source is local in spatial variables, but nonlocal in the trait variable. Under
proper conditions on the invasion fitness gradient, we show that in the limit of
small mutation rate, the positive steady state solution will concentrate in the
trait variable and forms (i) a Dirac mass supported at one end of I; or (ii) a
Dirac mass supported at the interior of I; or (iii) two Dirac masses supported
at both ends of I, respectively. While Cases (i) and (ii) imply the evolutionary
stability of a single strategy, Case (iii) suggests that when no single strategy
can be evolutionarily stable, it is possible that two peculiar strategies as a pair
can be evolutionarily stable and resist the invasion of any other strategy in
our context.

1. INTRODUCTION

An important question in ecology and evolutionary biology is how the dispersal
of organisms evolves [22, 51, 52]. For the evolution of unconditional dispersal,
there is selection for slow dispersal in spatially varying yet temporally constant
environments [29, 38, 41], while higher rates of dispersal can be favored when the
environments are both spatially and temporally varying [39, 56]. However, the
dispersal of organisms often depend upon local biotic and abiotic factors and thus it
is often conditional, e.g., a combination of random diffusion and directed movement.
Recent studies on the evolution of conditional dispersal suggest that conditional
dispersal strategies can be evolutionarily stable; see [3, 4, 14, 15, 16, 19, 20, 23, 33,
37, 46, 47, 42, 53] and references therein.

A common approach to study the evolution of dispersal is the adaptive dynamics
approach [26, 27, 34], in which it is assumed that the resident species is at the equi-
librium, and a mutant phenotype is introduced to the population. The main ques-
tions are: Can the mutant invade when rare? If it can invade, will it coexist with
the resident or competitively exclude the resident? Most, if not all, of these math-
ematical models thus assume that there are only two phenotypes in competition.
Very recently, Perthame and Souganidis introduced a novel approach to study the
evolution of unconditional dispersal [60]. They considered an integro-PDE model
for a population structured by the spatial variables and a (continuous) trait variable
which is the random diffusion rate. In a sense, the Perthame-Souganidis model is a
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coupled system of infinitely many PDEs and can be viewed as a competition model
for infinitely many phenotypes. By the Hamilton-Jacobi approach, Perthame and
Souganidis showed that in the limit of small mutation rate, the steady state solution
forms a Dirac mass in the trait variable, supported at the lowest possible diffusion
rate. See also [48] for a similar result on the Perthame-Souganidis model.

The goal of this paper is to extend the Perthame-Souganidis model to a case
of conditional dispersal. In contrast to the case of unconditional dispersal, the
dynamics and structure of evolutionarily stable dispersal strategies seem to be much
richer for conditional dispersals. For instance, it was shown in [45] that the steady
state found in [48] is supported at a single dispersal strategy and is unique. In the
presence of a biased movement, we give sufficient condition for the steady state to be
supported at two distinct dispersal strategies, which is connected to the branching
phenomena in evolutionary biology. Our methods will be based upon the Hamilton-
Jacobi approach, while also drawing on the connections with the adaptive dynamics
framework.

The dynamics of a single population with combined random diffusion and di-
rected movement can be described by the following scalar reaction-diffusion equa-
tion (see Belgacem and Cosner [5]):

up = Vg - (uVgu —auVym) +ulr(z) —u]  in D x (0,00),
(1.1) 1wopu — aud,m =0 on 9D x (0,00),
u(z,0) = ug(x) in D.

Here u(x,t) is the population density at location z € D and time ¢ > 0, where D
represents a bounded domain in RY with smooth boundary dD. n is the outward
unit normal vector on 9D, with 0, := n - V,. Parameters u > 0 and a > 0
are diffusion and advection coefficients, respectively, and r(z) is a given function of
the environment. Besides random diffusion, the population is also assumed to move
upward along the gradient of some function m(z). Belgacem and Cosner considered
the case r(x) = m(z) in [5]; see also [24, 43, 44, 49] for further developments.

Throughout this paper, unless otherwise specified, we assume

(M): m € C%(D) and 9,m < 0 on dD; r(z) is Holder continuous in D.

Suppose that p,a are both smooth real-valued functions of some phenotypic
variable &, such that u(£) > 0 and «(¢) > 0 for all £ € Rt := (0,00). Then the
dynamics of the species, consisting of a continuum of phenotypes, as parameterized
by the single real variable &, can be described by

(1.2)
up = Vg - (u(§)Veu — a(§)uVym) + 6285211 +u(r(r) —4) in D xIxR*,
w(§)Onu — a(§ud,m =0 on D x I x RT,
u=0 on D x 0 x RT,
u(z,&,0) = ug(x) inDxI,

where I is a bounded open subinterval of RT, and

i = (o) = /u(x,g,t) s
I

is the total population density at a given location x € D and time ¢.

Remark 1.1. Our choice for Dirichlet condition on the boundary of the trait space
in (1.2), instead of no-flux condition that was considered in [48, 60], is made so that
the boundary condition remains consistent in the corners of our cylindrical domain
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D x I. We also note that due to the vanishing viscosity in the trait variable,
the boundary condition has little effect on the dynamics of (1.2). For instance, if
Opm = 0 on 0D, then the Neumann boundary condition for the trait variable will
satisfy the consistency conditions, and all the results in this paper can be similarly
established.

For each £ € RY, let 0¢(z) be the unique positive solution of the equation

{ Ve - (&) Vel — a(§)0Vam) +0(r(x) —0) =0 in D,
1(€)0n0 — a(£)00,m =0 on 0D.

We note that (1.3) has a positive solution if and only if the trivial solution is
unstable and the positive solution is unique whenever it exists; see, e.g. [13].

The family of phenotypic traits is parameterized by £ > 0, where distinct &
correspond to different phenotypes, as distinguished by their respective diffusion
rates and advection rates. Formally speaking, {do(§ — &)0¢ (x)}er>0 gives a one-
dimensional manifold of steady states of (1.2) when e = 0, where §y(§ — £’) is the
Dirac measure concentrated at &'. More generally, (1.2) with e = 0 contains, as
subsystems, k-species competition systems for any £ € N. To see this, note that
for any 0 < & < & < ... < &, Zle 00(& — &)uy(x) gives a steady state of (1.2)
with € = 0, concentrated at &1, ..., &, if and only if (uq, ..., ug) satisfies the k-species
system

(1.4) { Vi o (&) Vau; — a(&)u;Vaem) + ui(r(z) — 2?21 uj) =0 in D,
’ w(&)Onu; — a(&)uiOpym =0 on 0D.

The goal of this paper is to determine which of these concentrated steady state
solutions of (1.2) with ¢ = 0 will persist for small positive mutation rate e.
For each &1, &, € R, consider the eigenvalue problem

(1.5) { Ve (u(&2)Vah — a(§2)yVem) + (r(x) —0g,) + Ap =0 in D,
' p(€2)Onth — a(§2)10pm =0 on dD.

For each fixed &1, &, it follows from standard variational arguments that eigenvalues
of (1.5) are real and ordered. We denote the least eigenvalue of (1.5) by A(&1, &2),
which in the adaptive dynamics framework is termed the invasion fitness. More
precisely, an invader with phenotype & can (resp. cannot) invade an established
phenotype &; at equilibrium when rare if A(§1,&2) < 0 (resp. A(£1,&2) > 0).

We start the discussion in the most generic case:

(1.3)

Theorem 1.2 (Evolution of extreme strategies). Suppose that for some closed
interval Iy € RT,

(1.6) inf D, \(€,€) > 0.
£ely
Then there exists & > 0 such that for each interval I = (£,,€*) C Iy such that
[I| = &* — & < 8, any positive steady state ue of (1.2) satisfies,
ue(x,&) = do(& — &)be, (x)  in distribution sense

as € — 0, where §o(§ — &4) is the Dirac measure concentrated at &, = inf I. Here
O¢. denotes the unique positive solution of (1.3) with & = ¢&,.

If the inequality sign in (1.6) is reversed, then a similar conclusion holds with
&, being replaced by £* = sup I. This shows that if the selection gradient does not
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vanish, it gives rise to a single Dirac-concentration at one of the two most extreme
phenotypes, determined by the sign of the selection gradient dg, A(&, €).

In adaptive dynamics, the canonical equation is derived to indicate the evolu-
tionary dynamics of monomorphic populations. A consequence of such dynamics is
that the phenotypic trait of monomorphic populations evolves towards convergence
stable strategies [31], which is characterized by the following relations:

S d
(CV): 0 AEH =0 and o

This leads to two generic cases: (i) Continuously Stable Strategies (CSS) and
(ii) Branching Points (BP). Our next two results will show that the first case gives
rise to an interior Dirac-concentration, and the second gives rise to two “balanced”
boundary Dirac-concentrations. In a sense, CSS gives an evolutionary attractor
where a monomorphic population adopting the superior/optimal strategy é is able
to equilibrate while withstanding the onset of all small and rare mutations. On the
other hand, if a trait é is a branching point, then although it is capable of invading
any resident adopting a different trait & # é, it is prone to invasion by small
mutations, and instead a population consisting of a combination of two distinct
strategies emerges.

Our next result says that if there is a CSS é , then the phenotype in I that is
closest to é dominates the competition.

8§2>\(t, t”t:é > 0.

Theorem 1.3 (Evolution of intermediate strategy). Suppose that (Cv) holds and
6522)\(5,5) > 0 for some & € RT, then there exists 6 > 0 such that for each fized

interval I = (&,,£*) C (é — 5+ d), any positive steady state u. of (1.2) satisfies,
as € = 0,
Ge(x) — e (x) in C(D) and ue(x, &) — do(€ — & )0e (x) in distribution sense,
where the point of concentration € is the point in [€,,€*] closest to &; i.e.
£ el
¢=1 & ifé<é& =infl,
& ifE> & =supl.
The next theorem says that in the neighborhood of a branching point, no single

phenotype can dominate. Instead, the two extreme phenotypes form a coalition
that together dominates the competition.

Theorem 1.4 (Evolutionary Branching Point). Suppose that (Cv) holds and
8522)\(5,5) < 0 for some € € RT. Then there exists § > 0 such that for each

interval I = (&,,6%) C (€ — 0,€ + 0) such that &, < & < £*, there is a sequence
ex — 0, such that any positive steady state u., of (1.2) satisfies
Ue, (,€) = 00(€ — &)t (x) + 00(€ — £ )ha(x)  in distribution sense

as k — oo. Furthermore, (i1, 1s2) is a positive steady state of

Vx . (Mlvz’fbl — alﬁlvzm) + ﬁl(r(x) — ﬁl — ?:LQ) =0 mn .D,
(17) VI . (Mgvzﬁg — Oézﬁgvmm) + ’IALQ(T(.Z') — ’&1 — ’&2) =0 mn D7

/.Llanﬁl - a1a18nm =0= Mganﬂg — agﬁganm on 8D,
such that 4;(x) £ 0 fori=1,2, and that oy = (&), ag = a(§*), p1 = u(é) and
pz = p(&").



We briefly sketch the key ideas in the proofs. Consider the WKB-Ansatz,
we(x, &) = elogue(x,£). We first establish, in Sects. 2 and 3, appropriate a priori
Lipschitz estimates on w,. Our first contribution is to drop the convexity assump-
tion on D, which was needed in [60] to apply Bernstein’s method. Our proof relies
on blow-up methods and Liouville theorems of elliptic equations in cylindrical do-
mains. See Appendix A.

The a priori estimates allows the passage to (subsequential) limits of

(x) = l% te(x), and w(&) = li_r)r(l)we(:c,f).

An important fact is that the limit function w(§) satisfies, in the viscosity sense,
the following constrained Hamilton-Jacobi equation:

(L8) { —|Ogw* = —H(&a)  in T =(&.&),

supyw = 0.
Here the Hamiltonion H(&; @) is defined as the principal eigenvalue of

(1.9) Vo (W Vath — a(§)PVem) + (r(z) —a)p + HYp =0 in D,
: w(E)ont — a(§)Ydpym =0 ondD, and [ ¢*dx=1.

The main difficulty to solve (1.8) is to yield information (and possibly uniqueness)
concerning the subsequential limit functions @(z) and w(&). In [60] the correspond-
ing Hamiltonian H (&, @) is the principal eigenvalue of

(1.10) &AL + (r(x) — @)+ HYy =0 in D,
. Ontp=0 ondD, and [ ¢?de=1.

It is a classical fact in PDE that, provided r(x) — @i(z) is non-constant in z, i.e. the
monotonicity properties of H in £ is exactly the same as that of w(€) in . This
shows that w(€) attains its maximum at the minimum point of p(-), at which the
concentration of u.(z,&) occurs. i.e. 4 =6¢,.

In contrast, the dependence of the principal eigenvalue H of (1.9) on parameters
1 and « may not possess monotonicity [17, 18]. In this work, we infer the behavior of
H(&; @) based on the assumptions regarding the invasion fitness function A(&1, &2) =
H (&2;6¢,), which arises in the study of two-species competition models [46, 47]. For
this purpose, we only consider fixed, narrow intervals I in the trait variable, for
which we can quantify how close an arbitrary subsequential limit @ is from 95. This
approach partially decouples (1.8) and (1.9), and is done in Appendix B.

In Sects. 4 to 6, we impose three most generic assumptions on the invasion fitness
function, namely non-vanishing selection gradient, Continuously Stable Strategies
(CSS), and Evolutionary Branching Points (BP). We show that the resulting so-
lutions to the mutation-selection model exhibit one or two Dirac-concentrations
at those strategy or strategies that are evolutionarily stable. This establishes the
connection of (1.2) to the framework of adaptive dynamics. In Sects. 7 and 8 we
provide some concrete examples in which those generic assumptions on the invasion
fitness function can be verified. To complement Sects. 7 and 8, we present some
numerical computations concerning the dynamics of (1.2) in Sect. 9.

This paper serves as an initial exploration of the class of mutation-selection mod-
els arising from evolution of conditional dispersal. Our results suggest that, as a
consequence of the interplay between ecology and evolution, the dynamics of (1.2)
is indeed quite rich. Biologically, our results give a classification of the equilibria
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of evolutionary dynamics in generic situations, when the possible mutations is re-
stricted to a small interval I. We believe, however, that the restriction of the size
of the interval I in our main results is technical.

Finally, we provide some references to background and related works. One of
the first works to connect mutation-selection dynamics with adaptive dynamics
is [12]. For earlier mathematical works on mutation-selection models, we refer to
[11, 55]. For the pioneering Hamilton-Jacobi approach we refer to [28, 59]. For pure
selection dynamics, see [1, 25]. The involvement of spatial structure is more recent,
see [40, 57] for works on models related to cancer therapy; and [2, 6, 8, 7, 9, 10, 61]
for works on unbounded domains concerning spreading front solutions.

2. A PRIORI ESTIMATES OF i
For the rest of this paper, we set

Iy = (é,g)’ I:= (5*’§*)7

where &, £, ¢, £ are positive numbers. Furthermore, we always assume that I C Ij.
For each bounded open interval I C R* and each € > 0, let ue = ue(z,€) be a
positive steady state of (1.2), then it satisfies

(2.1)
Vo - (&) Vatie — a(§)ucVem) + €0Fuc + uc(r(z) — i) =0 in D x I,
(&) Opue — a(§)ucdpym =0 on 0D x I,
u. =0 on D x 01,
where

(2.2) le(x) := /ue(z,f) dg.

I

The following result is the only place where the assumption (M) is needed.

Lemma 2.1. Let u. be any positive solution of (2.1). Then there exists some
positive constant C, which depends on Iy but is independent of I and e € (0,1],
such that

sup e < C.
D
Proof. Let uc(x,&) be a positive solution of (2.1). Define

(2.3) ve(,€) = =™ PRy (2,6), () = / vel, €) de.

Then there exist positive constants c1,co depending on Iy, but independent of I
and e, such that
(2.4) 1l () < Oc(x) < cotic(x) forall z € D.

Moreover, v, satisfies

(2.5) +u. (—%Aﬁm — 2 |V,mf - u) —0in D xI,
OpVe = %veanm <0 ondDxI,
ve=0 on D x3dI,
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where we used (M) to ensure d,m < 0 on dD. Dividing the equation of v, by
u = p(€), and integrating in the variable £ € I = (&,,£*), and using the facts that

()i =gl ()] v ()L,
=~ J0c[20c ()] ve de.
(since ve(+,&*) = ve(+, &) =0) and
J; Lozv.de = |, ag(i) ve d + [56511{;5* < [, 02 (%) ve de,
(since Deve(-,€*) > 0> Gevc(+, &) in D) we have

. () ) -
g+ b (ho(@) + i — 2} >0 i D,
Opte <0  on oD,

where hg can be expressed in terms of u, m,« and their derivatives, and is inde-
pendent of the interval I and € € (0,1]:

2
ho() = Supger, {ag () — m(@)oc [ 20c (2)] + 12202 (2) + L [220(2)] } :
Suppose that supp, 9. = (o) for some xo € D. Then apply the maximum princi-

ple (see [54, Proposition 2.2]) to (2.6), there exists C; > 0 independent of € € (0, 1]
such that

(2.6)

supp 7'>

7 < = h
iule) < C1 = (sup) (sup o + 202"

Io

Combine this with (2.4), we have
c1sup Ge(+) < supde(-) = (o) < catic(o) < e2Ch.
D D
Hence supp, e < Cf, where the positive constant C depends on Iy but is indepen-
dent of the open interval I C Iy and € € (0,1]. O
Lemma 2.2. Let I = (&,,£*) and 61 := |I| = & — &..
(i) There exists C > 0 independent of §1, € such that if € < §1/2, then

sup  |Ogu.| < 0672|\ﬂ6||L1(D) < Ce 2.
zeD,£€OI

(ii) For each fized open interval I = (&4, &%) C Iy, there exists 6o > 0 indepen-
dent of € such that

(2.7) inf Ocue >0 and sup Ocue < 0.
Dx(&x,€x+02€) Dx(&*—02€,6*)

In particular,

(2.8) SuUp  Ue = sup Ue.
DX (€x,6%) DX (£ +63¢,6* —bs¢)
Proof. We first show (i). Set 9(z,€) := e~ ™/ Fuy (x,€) and Q. (z,7) := e (x,&x +
eT). Then Q. satisfies
(2.9)

Qe + aVm - T, Qe + 02Q + 2emDe (2) 0,Qc + €2 {m@? (2) +m* (2:2) 1 Q-

+Qc(r — i) =0 in D x (0,6 1(&* — &),
0,Qc=0 ondDx (0,e1(¢*—¢&)), and Q.=0 on D x{0,e (& —¢&)},
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where 1 = p(&,+€e7) and o = (€, +e7) are uniformly bounded for 7 € (0,1 (¢* —
€*)). Then we extend Q. in the direction of = by reflecting along the boundary
0D x (0,2), and apply the boundary elliptic estimate on D x {0} to get

(2.10) €sup |Ogue (2, 6)] < [|Qcller(pxjo,1)) < C'llQcll L (Dx[0.2))-

On the other hand, by the local maximum principle at the boundary for strong
(sub)solutions [36, Theorem 9.26], we have

(2.11) 1Qellz=(px10,2) < CllQcllLr(Dx(0.3) < Ce M |tell L1 (Dx (e £ 436))-
It follows from (2.10) and (2.11) that

sup |0cue(m, &) < Ce?[|uell L (px . .43 < Ce ?[|aell Lo ()
x€E

By repeating the same proof for & = £*, we obtain

sup  [O¢ue| < Ce ?||iic| Lo (D).
zeD €]

Assertion (i) thus follows from Lemma 2.1.

For the first inequality of (ii), we consider
(212) Q (SC 7_) Q (I T) UE(’I g* +€T)
1Qcllz=(Dx02))  N10e(, & + €)= (Dx (0,2))

on Dx(0,2), where Q. is defined in the beginning of the proof. Then Q. is a positive
solution to the uniformly elliptic equation (2.9) such that ||Qc|lL~(px(0,2)) = 1.
Moreover, the second inequality of (2.10) and Hopf boundary lemma imply

(2.13) ||Q~€||CI(BX[O,1]) S C and l%f aTQG("E,O) > 0.
This shows that for some ¢’ > 0, independent of ¢, such that

inf 1) O Ve (T,
Moo 60 08 _ g6 () > 8
[0e(@, & + €7)|| Lo (Dx(0,2))  Dx(0.67)
and thus the first inequality of assertion (ii) is proved. The proof for the second
inequality of (ii) is analogous and is omitted. O

(2.14)

Lemma 2.3. Fiz a bounded interval Iy. Then there exist constants v € (0,1) and
C > 0 independent of I C Iy and 0 < ¢ < 1, such that

Hue”cw < C.

Remark 2.4. Lemma 2.3 asserts the precompactness of i(-) in C(D) as € — 0.
One can therefore pass to a sequence €, — 0 so that 4., converges in C(D).

Proof of Lemma 2.3. Dividing the equation (2.1) by p = u(€) and integrating in
& € I, while treating the terms involving derivatives in £ in a similar fashion as in
the proof of Lemma 2.1, we obtain

(2 15) —Axﬂe = _vx . (Q1Vzm) + (r — ﬁe)q2 + 62(]3 4 62q4 in D,
) anﬁle - (J15nm on 8D,

where
(2.16)

qi(x) = [Fucds,  ge) = dS, g ffaf( )UCdf’ au(x) = {%L:A



By Lemmas 2.1 and 2.2, it is easy to see that
(2.17) lgillepy < C for 1 <i<3, €[laallepy <C, aqu(z) <0in D
for some constant C' independent of e.

Fix p > N. By Proposition C.3, there exists a linear (extension) operator 7' :
C>*(0D) — C*°(D) such that

On(T9)|yp =9, and  [Tgllwrspy < Cllgllrron)-

Take G = T [q10,m], then
(2.18) IGllw1e(p) < Cllgi0nml| o ap)
and U := 1. — G satisfies

(2.19) AU ==V, - (1Vem — ViG) + (r — )2 + €2g3 + €’qs in D,
. OnU =0 on 0D.

Extending U by reflection method so that U satisfies a similar equation in an
open set containing D, we may apply De Giorgi-Nash-Moser interior estimates [21,
Theorem 2.3] so that for some 0 <y < 1 and C' > 0,

(2.20) 1Ullcv(py < CllIUI Ly + | = @1 Vam + VGl o)
. +(r — @) g2 + €5 + Eqall Lveosavin ()]

Since U = 1 — G, we can apply Sobolev embedding to get

(2.21) Ul (D) < |ltellzoe 0y + GllLe (D) < |ltellze ) + ClIGllwre (D).

Hence, we deduce by (2.20) and (2.21) and also Morrey’s inequality [32, Sect. 5.6.2]
that

ltellcrpy < NNUllevpy + I1Gllc

2

<C <||ﬂe|L°°(D)alH_1?§ 193l L= () € max [gsl| L= (), ||G||W11P(D)> :

Combining with (2.18), we have (for € € (0,1])

. B . 2 _
Jidler ) < (el m ol € s o) -

The right hand side of the last line is bounded independently of €, by Lemma 2.1
and (2.17). O

Lemma 2.5. Let I = (£.,£") be given. Suppose for each compact set K CC
D x (&,&%), there exists 0 > 0 such that

(2.22) luellc(x)y < exp(—dk /€).

In such event, fix an arbitrary é € I, and define

£ &
Gen(z) = / ucdé, and Ueo(x) = / ue d€.
* 13

Then there exist v € (0,1) and C > 0, both independent of €, such that
e 1llov ) + ezl cr ) < C-

In particular, passing to a subsequence if necessary, te; — U; in C(D) fori=1,2,
and ue(x,&) — 6(& — &)Uy (x) + (€ — £)ta(z) in the distribution sense.
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N

Proof. We first prove the estimate for ;. First, integrate (1.2) over £ € (&,,&). We
may repeat the proof of Lemma 2.3, provided the following estimate is proved:

€2 sup (’(%UC + ‘85 (1> Ue >
©€D = H H

By (2.22), it therefore suffices to show
(2.23) 213(1) |:Slll)p|85u6(x,§)|:| =0.

<C.

To show (2.23), let Qc(x,7) = be(x, & + er), where #(z, &) = e~ /Py (x,), then
Q. satisfies a uniformly elliptic equation in D x (—1, 1) with L® bounded coefficients
similar to (2.9), hence we may apply the interior LP estimate to obtain

€supp |85u6(x,£)| < Csupp [0;Qe(w,0)]
< C”QGHLC’C(DX(—LI)) < OHueHLoc(DX(é,e’éJrE))-

(2.23) thus follows from (2.22). This enables us to repeat the proof of Lemma
2.3 to show that [|dccn ) < €. Since de2 = e — de,1, the other inequality
l[te,2]| o () < C follows automatically. O

For later purposes, we will also need the following result.

Lemma 2.6. Let I = (&,.,£%) CRT be a bounded open interval. Suppose (along a
sequence (e,I) = (e, Ix)) that (i) €/|I| — 0 and (ii) for some £ > 0, I — {£} in
the Hausdorff sense. Then any positive solution ue of (2.1) satisfies

te(z) = O (2)
weakly in H'(D) and strongly in C(D).
Proof. See Lemma B.1 in Appendix B. |

3. WKB Ansatz and a constrained Hamilton-Jacobi Equation

Definition 3.1. Denote, for each ¢ > 0 and h(-) € C(D), by H(&; h) the principal
eigenvalue of

(3.1) { Vo (&) Vath — a(§)YVem) + (r(z) — h(z))Y + Hp =0 in D,
’ (&)t — a(§)Ydym =0 ondD, and [,¢*dr=1.

Next, set h = 4, and denote the eigenfunction corresponding to H (&; @) by ¥ (-, ).

Recall the Holder estimate of Lemma 2.3, and the normalization of (-, &).
One can deduce from standard elliptic estimates that for each bounded interval
Iy C R, there exists constant C = C'(Iy) > 1 independent of € such that (see, e.g.
[48, Lemma 4.1])

(3.2) % < the(2,€) <C in D x Iy, sup [[0ete (2, &)| + g (x,)]] < C.

By Remark 2.4, we may pass to a sequence € — 0 so that 4., (z) — 4(x) for
some non-negative function @ € C'(D). We suppress the subscript k for convenience.
Define

(33) wé(x,ﬁ) ::61Ogu€($,§)7610g¢5($,£).
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Then a direct computation shows that

2 Vatbe el
—5|Vowe]? = 2EV . - Tebe — EAzwe + 2Vom - Vaw,

3.4 2

(3:4) —|Ocwe|* — 2€dew, prfe — eagwe — €2 85;56 = —H(& )
in D x I, with boundary conditions

(3.5) Opywe=0 ondDxI, and w.=-o0o onD xadl.

We will show that w,(x, £) converges locally uniformly in D x (£,,£*) to a viscosity
solution w(§) of a certain constrained Hamilton-Jacobi equation in the variable &
only.

Proposition 3.2. Given any fized interval I C RT. Suppose that fD Ue dx > co
for some ¢y > 0 independent of €. Then passing to a sequence €, — 0, it holds that

fe, (z) = a(z)  im C(D) and we, (z,€) = w(€) in Cie(D x I)
where w(§) is a viscosity solution of the constrained Hamilton-Jacobi equation

(3.6) { —|Ogw|? = —H(&a) in I = (&,€),

supyw = 0.
We prepare for the proof of Proposition 3.2 with a series of lemmas.

Lemma 3.3. For each § > 0, there exists C > 0 independent of € such that

1
sup [Iagwe(x,ﬁ)I vl <c
DX (£.+8e,6* —5e) €

Proof. Let 0c(x, &) = e~/ Py (x,€), it suffices to show that for each fixed § > 0,
there is some C > 0 independent of € > 0 such that

(3.7)

|vzﬁe(x7§0)| + 6|8§7~)€((E,§O)| S 066(‘7‘"50) for all ($7§0) €D x (5* + 5675* - 66)

Fix 6 > 0 and & € [, + d¢,&* — d¢] and define Qc(z,7) = c(z,& + €7). Then
Q. is a positive solution of the homogeneous linear elliptic equation (2.9) (with
w(&) = u(éo +er) and a(§) = a(&y + e7)) in the domain D x (-4, ), and satisfies
the Neumann boundary conditions on 9D x (—§,6). By Harnack inequality, we
have

3.8 su c<C inf
( ) DX(*[S/I)Q,(S/Q)Q Dx(—6/2,6/2)

Qe

Also, elliptic L? estimates with p > N + 1 (N being dimension of D) implies
(3.9)

sup [|[V2Qc(w,0)| +0-Qc(7,0)|] < CllQcllLr(Dx(=5/2,5/2) <C  sup Q.
zeD Dx(—5/2,5/2)

Combining equations (3.8) and (3.9), we conclude that for some positive constant
C = C(0) independent of €, x € D and & € [§, + d¢,&F — de],

(3.10) |V2Qe(z,0)] + [0-Qc(2,0)| < C Qe < CQ(x,0).

i.e. (3.7) holds. This proves the lemma. O

inf
Dx(—38/2,8/2)

We develop a property of w similar to Lemma 2.2(ii).
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Lemma 3.4. Fiz an open interval I = (&,,6*) C RT. There exists o > 0 inde-
pendent of € such that, in addition to the conclusion of Lemma 2.2, we have

(3.11) )6511)6 >0 and sup Jewe < 0.

inf
DX (&x,€x+02€ DX (£ —3g¢,6%)

In particular

(3.12) sup  we = sup We.
Dx(&«,€*) D x(§«+02¢,6* —d2¢)
Proof. Recall the definition of w, in (3.3), where 9. is the principal eigenfunction
of (3.1). Also recall o = e=*"/#y,. Then
a(§)

we(xaé-) = 610g’l~)€(fb,§) + em(w)@ - EIngﬁ(‘T7€* + 67—)'

Differentiating with respect to &, we have

et
Oewe(w, &) = ﬁ {85176 ) [mag <Z) B zw H

Recall the definition of Q.(z,7) in (2.12), we have (setting £ = &, + e7)

Ocue(z &+ er) = 5 (; 5 {6_1&@6 Lo [m8§ (Z) - a;we]}

— {1 +0(1)} >0,
Qe 1T TOW)
for 7 € (0,4") and for 0 < € < 1, where we used (2.12), (2.14) and (3.2). Hence we
can deduce that, by taking d, smaller, swe(x, &) > 01in D X (&, &« +02¢). Similarly,
Ocwe(x,€) < 01in D X (§* — d2¢,&*). Therefore, there exists d; > 0 such that for
e > 0 small, (3.11) holds and the maximum point of w.(z,§) is attained within
D x [&, + 026, &% — o], i.e. (3.12) holds. O

Lemma 3.5. For each constant A > 1,

sup  w. < Ae|loge|  for all sufficiently small e.
Dx(&:.6*)

Proof. Let A > 1 be a given constant. Set I(€) = (i + da¢€,&* — da¢), where 0o is
given in Lemma 3.4. Again by Lemma 3.4, it suffices to show

(3.13) sup w, < Ae|loge|.
Dx1I(e)

Fix z € D and let Mc(z) := sup;(o we(, §). If Mc(x) <0, there is nothing to prove.

Suppose M,(z) > 0 and choose some & (x) € I(€) such that M (z) = we(x,&(x)).
By Lemma 3.3, w, is Lipschitz continuous in D x I(€), hence there exists an interval
I'(z,€) C I(e) such that for some ¢; > 0,

M.
E@ el wieg) >0,

[I'(z,€)| > c1 M ().

where ¢; depends only on the Lipschitz constant of w. and is independent of x and
¢ (Lemma 3.3). Hence, using Lemma 2.1 and (3.2),

1M (x) exp (ij)) < /p( )exp (we(f’f)) d¢ < G (z) < sup ..

€ D




13

This implies that for some ¢; and C; independent of € (but depend on supp, e
(Lemma 2.1) and the Lipschitz constant of w, in D x (&, + d2€,£* — da€) (Lemma

) Mz)  (Md@)) _ Ci
exp< )<,

C1

Ae Ae €
where ¢; and C are independent of € and z € D. This proves
M (z) < Ae|loge|] for all z € D
and all sufficiently small € > 0, i.e. (3.13) holds. O

Lemma 3.6. If fD Uedx > ¢ for some cg > 0, which is independent of €, then
there exists C' > 0 independent of € such that

sup we > —Cle,
DxI

where I = (&,,£%).
Proof. By the hypotheses of the lemma,

€ su We
Co < / Uedy = Ve exp (w*) drd¢ < Cexp (pDiXI) 7
D DxI € €

and the assertion follows. O

Proof of Proposition 3.2. In this proof, we omit for the sake of clarity the subscript
k in €. By Lemmas 3.5 and 3.6, and (2.8), we have

(3.14) —Ce< sup we= sup we < Ce|logel,
DX(g*,g*) DX(§*+52€,§*7§26)

where d5 is given in Lemma 3.4. This and the uniform Lipschitz estimate in Lemma
3.3 imply that, up to a sequence, w, converges uniformly to some (Lipchitz) function
w € C(D x &, £*]) in compact subsets of D x (&, &), such that SUPpx (¢, ,¢+) W = 0.
Furthermore, Lemma 3.3 implies that ||Viwe| poe(Dx (e.+65e,6*—5,¢)) < Ce. Hence,
w = w(§) is a function of & but is independent of z, and such that

(3.15) sup w(§) =0.
(&:67)

It remains to show that w satisfies equation (3.6) in the viscosity sense. Let
p(€) be a C? function of ¢ such that & is a local maximum of w — p. Then
w—p— (£ —&)* has a strict local maximum at some interior point &, € (&, &*).
We can then deduce that for all € > 0 small, w,(x,&) — p(&) — (€ — &)* has a local
maximum (z.,&) € D x I such that & — & as € — 0. Hence,

Vowe(ze, &) =0,  Agwe(ze, &) < 0;

(3.16) Ogwe(xe, &) = Oep(8e) +4(8 — &)
Bfwe(xe, &) < Ozp(€) +12(& — &o)*.

Now, we can deduce, by evaluating (3.4) at the point (z, &), that

- ‘85p(§6) + 4(56 - 60)3|2 - 26[85p(§€) + 4(56 - gO)B]aﬁ(logwe)(ajeage)

021,
— cO20lE.) — 126(6. — o) — € ff

(x€7 66) < _H(fé ae)'
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Letting € — 0, we have & — & and @ — @ in C(D), so that
—[0ep(&0)|* < —H (03 01).

Next, if w — p has a local minimum at a point py, we can show with a similar
argument that

—|0ep(&0)1* > —H (&o; 0).
Hence, w is a viscosity solution of (3.6). O

In general, viscosity solution of the nonstandard, constrained (3.6) may not
be unique. The following lemma enumerates two additional properties of those
solutions of (3.6) that are realized as the limits of w,, .

Lemma 3.7. Suppose that along a sequence €, — 0, 4, — @ uniformly in D, and
we,, — w locally uniformly in D x (&,£%). Then

(i) H(&, 1) >0 for all § € [€.,£*] and minge, ) H(-,4) = 0.

(i) If (x,&k) is a local mazimum of we, , then dist(&, {€: H(E, 4) = 0}) — 0.

Proof. First, it follows from equation (3.6) that H (&, @) > 0 for all £. Second, notice
that at any local maximum point (z, &) of we, (3.4) implies

2
2 85 1/)5

L T
Hence any limit point & of {&.} satisfies H({p;4) < 0, and thus H(&y; @) = 0. This
proves (ii). Furthermore, it follows that the set {£ : H(&;4) = 0} is non-empty, this
proves (i). O

H(& 1) < e = 0(é?).

In some cases, we can determine the limit w = limj_,., we, uniquely, as the
following result shows.

Proposition 3.8. Given a sequence ¢ — 0, let ue, be a positive steady state of
(1.2), and we, be defined by (3.3). Suppose that

tie, = 0 in C(D), and we, — w  in Cloe(D x (&, E%)).
If

(317) 35/ c [E*’g*] . H(f,ﬁ) _ { 0 when g — 5/;

>0 when € € [§, ]\ {¢'}
i.e. H(-, @) has a unique minimum point & € [£., £*], then

u(z) = Og(x)  and  ue,(2,8) = do(§ — &) (2)
in distribution sense. In particular, AN(§,£") = H(&;a) > 0 for all £ € 1.

Proof. First, we claim that w(¢’) = 0. Let the maximum of w,, in D x (&,£*) be
attained at some (z,&) € D X (&, &%), then by Lemmas 3.5 and 3.6,

—Cep, < we, (1, &) < Ceg|log ).

By Lemma 3.4, & € [&x + 02€k, &* — da€], we can then use the equicontinuity of
we, (Lemma 3.3) and the fact that & — ¢ (Lemma 3.7(ii)) to pass to the limit to
obtain w(¢') = 0.

Claim 3.9. w(§) is strictly increasing (resp. decreasing) for & < &' (resp. € > ¢').
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Suppose not, then w(§) has another local maximum point £’ # ¢. We claim
that & € {&.,&*}. For if £’ is an interior local maximum point of w, then by
property of w being a viscosity solution of (3.6), we must have H (", @) < 0, i.e.
H(&",4) =0 and thus £’ = &', by the hypotheses of the proposition. Hence w has
at least two (and at most three) distinct, strict local maximum points. This implies
that for k large, w,, has another sequence of local maximum points (z},£}) such
that & /4 &'. This contradiction to Lemma 3.7(ii) establishes Claim 3.9.

As a consequence of Claim 3.9, w(¢') =0 and w < 0 for £ # &’. Hence

(3.18) uc(x, &) = 5o(& — &)a(z) in distribution sense.

It remains to show that @& = 0¢ in D. First we note that for the ¢;’s defined in
(2.16),

ol€') |
(e @ ) =

uniformly in D as € — 0.

Claim 3.10. If (3.18) holds, then (z) < 0¢/(x) in D.

(319) qi(z) —

a(z),  gs(x) - 02 (;) L_e a(z)

Multiply (2.15) by a non-negative test function p(x), integrate by parts, we have

[ ¥ep (Ve = aVam) 4 p [~ ) — ] o = & [ paade <0
D D

where we used g4 < 0 (from (2.17)). Passing to the limit and using (3.19), we
deduce that @ is a weak subsolution of (1.3) with £ = &’. Hence @ < 0/, the latter
being the unique positive solution of (1.3). This proves the claim.

On the other hand,

0< H(glva) < H(glvei') =0,

where the first inequality follow from Lemma 3.7(i), the second from the eigenvalue
comparison principle such that the equality holds if and only if 4 = ¢, and the
third equality by definition of the principal eigenvalue H({'; 0¢/) (as 6¢: clearly gives
the positive eigenfunction). In particular the equality holds, and hence & = 0¢. By
(3.18), we deduce

ue(x,8) = 0o(§ — &')0er(z)  in distribution as e — 0.

Although we have passed to a sequence € = ¢, in the above procedure, the fact that
the limit & = 6 is uniquely determined implies that the convergence lim._,q e =
f¢ is independent of sequences. ([

4. Non-vanishing selection gradient

In this section, we consider the case when the selection gradient do not vanish
in a closed bounded interval Iy = [£,£] C RY. For definiteness, we discuss the case
when

(4.1) e ME,€) >0 forall £ <E<E.
Theorem 4.1. Suppose that (4.1) holds for some closed bounded interval I = €, £.

Then there is 81 > 0 such that for any subinterval I = (&.,6%) C Iy such that
|I| < 01, any positive steady state ue of (1.2) satisfies e — O¢, uniformly in D and

ue(x,&) = do(§ — &4)be. (x) in distribution sense, as € — 0.
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Lemma 4.2. Suppose that (4.1) holds for some closed bounded interval Iy = [€,&].
Then there is 81 > 0 such that for each subinterval I = (&,,&*) C Iy with |I] < &y,
there exists co > 0 independent of 0 < € < 1 and steady state u. of (1.2) so that

(4.2) inf OcH(E, Ue(-)) > co and / Ule dx > g,
¢el I

where Uc(x) = [, uc(z, &) dE.

Proof. Suppose to the contrary that there is a sequence of open intervals I, C I
such that 0, = |Ix] — 0 but the associated solution {ux}eso of (2.1) does not
satisfy (4.2). Passing to a further subsequence, we may assume that I — {&}
in the Hausdorff sense for some & € Iy. Now by (4.1) and the smoothness of
H(,0¢) = Ao, §) in &, there exists d2 > 0 such that

min  OeH(E, 0, (1) >0 and /godx>0_
cetey om0 (€06 () o

Now, by Lemma 2.6 we may choose §; € (0,d2] so that for each open interval
I C (& — 61,8 + 61), then 4. is close enough to ¢, in C(D) for all small e.
This implies that for k large enough, (4.2) holds for the solution {dy ¢}eso of (2.1)
associated with I. This is a contradiction. O

Proof of Theorem 4.1. Fix 6; small enough as in Lemma 4.2 and choose any open
interval I C Iy such that |I| < 6;. Then for e small, (4.2) holds. Pass to a sequence
so that 4 converges uniformly to some @ in D. By Lemma 4.2, H(-; %) has a unique
minimum point at &, in the closure [¢,,£*] of I. By Proposition 3.8, & = ¢, and

ue(w,§) = 00(§ — & )0, (x)

in distribution sense as € — 0. This proves the theorem. (]

5. Interior CSS f

In this section, we consider the case when the adaptive dynamics has an interior
continuously stable strategy (CSS), denoted as &.

Definition 5.1. We say that £ € I is a local CSS if (Cv) holds and
(5.1) OZME,€) > 0.

Theorem 5.2. Suppose that é € Iy is a local CSS in the sense of Deﬁnition 5.1.
Then there is 01 > 0 such that for each fized I = (&,&*) C (§ — 01,§ + 01), any
positive steady state uc of (1.2) satisfies, as € = 0, tc(x) = ¢ (x) in C(D) and
ue(x, &) = 0o(€ — & )¢/ (z)  in distribution sense,

where the point of concentration € is the point in [€,,€*] closest to &; i.e.

£ el

¢=1 & ifé<é& =infl,

& ifE> & =supl.
Lemma 5.3. Suppose that é € Iy is a local CSS in the sense of Definition 5.1.
There exists 51 > 0 such that

(5.2) e, A(€ 5’){ >0 forallf e (f:,é-i-(ﬁ),

<0 forall& € (&§—61,8).
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Moreover, for each fixed interval I C (5—51, £+51), there exists co > 0 independent
of € < 1 and steady state u. of (1.2), such that

inf 07 e (+)) > e dv >
(5.3) éIg@&H(g,ue())_co and /Dugdx_co,

where () = f; ue(w, &) d€.

Proof. First, (5.2) follows from (Cv), by choosing §; > 0 small. Since H (€, 0€(~)) =
ME,€) is €2 in &, (5.1) implies that for some &5 > 0,
inf 8§2H(£,9£(~)) >0 and / 0¢ dz > 0.
£€[E—62,64+62] D
Now, by Lemma 2.6 we may choose d; € (0, d2] smaller if necessary so that for each

fixed open interval I C (é — 51,5—1— 01), and for all € small, 4. is close enough to 95
in C(D) so that (5.3) holds. O

Proof of Theorem 5.2. Fix §; small enough as in Lemma 5.3 and choose any open
interval I C (é— 61,4 d1). Then for € small, (5.3) holds. Next, use Remark 2.4 to
pass to a sequence so that 4, — @ in C(D).

By Lemma 5.3, H(-; %) has a unique minimum point ¢’ € [£,, £*]. By Proposition
3.8, ue(z,&) = 60(€ — &')0¢ (x) in distribution sense, and @ = O¢/.

Claim 5.4. (a) If ¢’ > &, then & = &.; (b) If & <&, then & =¢&*.
Suppose that & > £, then by (5.2),
O, A(€,8) >0 and  A(E,E) =0

so that A(£,€) < 0 for all £ less than but close to £'. As A(¢',§) = H(&,0) > 0
in I (by Lemma 3.7(i)), this shows (£,&’) NI = (). Since & € [£,,£*], we deduce
that £ = &, and thus € < &,. This proves part (a) of the claim. Part (b) can be
similarly handled and we omit the details.

To finish the proof of the theorem, suppose first £ # f, then by the above claim,
we deduce that € & [€,,&*]. This says that if £ € [€,,£*], then & = €.

Next, let € < &,, then & > £ (as £ € [£,,€*]). Then Claim 5.4(a) implies that
& = £,. Similarly, é > &* implies & = £*. This completes the proof. O

6. Evolutionary Branching

In this section, we consider the case when the adaptive dynamics has a branching
point, denoted as &.

Definition 6.1. We say that £ € Iy is a branching point if (Cv) holds and
(6.1) 92N, €) < 0.
The following theorem is the main result of this section.

Theorem 6.2. Suppose that é is a branching point in the sense of Definition 6.1,
and there is some &1 > 0 such that if the endpoints of I = (&4,£*) are chosen such
that

(6.2) TC(E=061,€+6), A&, &) <0 and A& &) <O.
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Then there is e, — 0 such that any positive steady state u., of (1.2) satisfies

(6.3) te, (7, §) = d0(§ — &)t (x) + do(§ — £7) 2 (x)
in distribution sense. Furthermore, (i1, us2) is a positive solution of (1.7).

Remark 6.3. In fact, one can show that for §; small and £, < £* chosen as above,
(1.7) has a unique positive steady state. In that case, the conclusion of Theorem
6.2 can be strengthened to be independent of sequences €, — 0. We leave this issue
for future studies.

Lemma 6.4. Suppose that é is a branching point in the sense of Deﬁnjtion 6.1.
Then there is some §; > 0 such that for each subinterval I = (&,,&*) C (£ — 61,6+
01), for all € sufficiently small,

sup 6§H(§,a5) < —cy and / lle dx > g,
E€(64,67) D

for some ¢ > 0 independent of €.

Proof. The proof is analogous to that of Lemma 5.3 and is omitted. (]

Proof of Theorem 6.2. Let d; be chosen as in Lemma 6.4 and the interval I chosen
satisfying (6.2).

Claim 6.5. There is a sequence €, — 0 such that we, — w locally uniformly in
D x (&,€%) and (6_.3) holds in distribution sense, for some non-trivial non-negative
functions 4; € C(D), i =1,2.

Recall that, as shown in the proof of Lemma 3.7, if a viscosity solution w of (3.6)
has an interior maximum point &y, then necessarily H(p; %) < 0. Since H(-;4) is
nonnegative (Lemma 3.7(i)) and strictly concave (Lemma 6.4), we deduce that
H(& ) > 0in (&, &*) and thus w cannot have any interior local maximum point.
Therefore, we conclude that exactly one of the following alternatives holds:

(i) w(&) =0 and w(§) <0 in (&, &*;
(ii) w(€") =0 and w(§) < 0 in [§,£");
(iil) w(&) = w(€*) =0 and w(€) < 0 in (&, ).
In each case, w(§) < 0 in (&, £*) and hence for each Ky CC (&, &),

. = bty (M) (g (25

holds for (z,£) € D x K1, where we have used (3.2). Thus Lemma 2.5 is applicable
and implies that (6.3) holds in distribution sense, for some non-negative functions
4; (1 =1,2). It remains to show that neither of the 4;’s is identically zero. Suppose
iy = 0, then, by arguing as in the proof of Proposition 3.8, one deduces that
@1 = ¢, and hence by Lemma 3.7(i)

A&, §) = H(&:0e,) = H(g;0) 20 forall § <& <7,

but then we have A(&.,&*) > 0, contradicting (6.2). Similarly, 41 cannot be identi-
cally zero. This proves Claim 6.5.

Claim 6.6. (1i1,4s2) is a positive steady state of (1.7).
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Let ¢ 1 (z) = fé ue d€ and e o(x) = ff ue d€, we have by Lemma 2.5 e ; — ;
uniformly in D for ¢ = 1,2. By arguments similar to Claim 3.10 we have
(6.4) Ve (@i Vet — a;;Vym) + t;(r(z) —4) >0  in D,

’ i Oty — ;Ui Opm = 0 on 9D,

where i = 1,2, 1 = p(&s), a1 = a(&s), pa = p(€*), az = a(&*). Also, obviously
U = U1 + Ug. This implies, by properties of the principal eigenvalue, that

H(¢;au) <0 and  H(E%4) <O0.

By Lemma 3.7(i), H({4;4) > 0 and H(£*;4) > 0. Hence, H(&,; 1) = H(E";a) = 0.
Therefore, by arguments similar to Claim 3.10, the equalities in (6.4) hold. This
completes the proof. O

Next, we derive Theorem 1.4 as a special case of Theorem 6.2.

Proof of Theorem 1.4. Suppose that f is a branching point in the sense of Definition
6.1. It remains to show that for &,,£* such that

(6.5) § <<€ and |6 &+ €<,
then A(&, &%) < 0 and A(€*, &) < 0.

Denote for 7,5 = 1,2,

2
/\ij = o°A

0&,0¢;
From the fact that A(£,&) = 0 for all £, we differentiate once at f and deduce
O A + 0, A = 0 at (&,6) = (£,§). By (Cv), (£¢) is a critical point of .

Differentiate again, we have A1; + 2A12 + A2 = 0. Based on these facts, we may
Taylor expand A near (&,§) as

66) A€ &) = T ENE )~ daes — ) + ol — € +16 — €],

Also, the second condition in (Cv) says that Aja3+Xa2 > 0. Together with Definition
6.1, we deduce that

€.6).

(67) Ago < 0 and A1 = —2()\12 + )\22) 4 Ao < Aoy < 0.
So that for &, &* satisfying (6.5), we have

ME% ) = ST DaE — )~ daal6e — ) + oll€” ~ € + 16 — &)
= S 4 el — €1+ o€ — €+ le. — €] <.
Similarly, one can show that A(&,,£*) < 0 as well. Thus one can apply Theorem
6.2 to obtain the desired conclusion. O

Next, we prove that evolutionarily stable dimorphism can occur even if the
branching point £ is not contained in the interval I.

Corollary 6.7. Under the assumptions of Theorem 6.2, there exist £ > &, > &,
so that if we choose I = (&,,£%), then the conclusion of Theorem 6.2 holds.
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Proof. Tt remains to choose £* > &, > € so that (6.2) holds. Note that by (6.7),

Al _ 2(M2 + Aa22) — Ao
A22 —A22

A

>1 = arctan = € (n/4,7/2).
A22

So we may choose 7 € (arctan i—;;, g)7 and choose

(&, &) == (f—&—rcosné—i—rsinT) )

Then &* > &, > £, and by (6.6),

AEF, &) = w - (A117cos T — AgarsinT 4 o(r))

B —Ag2r?(sinT — cosT) cos T <)\11

—tanT + 0(1)> <0

2 22

and

r(sinT — cosT)
2

r(sinT — cos )
2

72 cos T(sin T — cos )

= 5 (A11 = A22 +0(1))

r2cosT(sin T — cos T
= ( 5 ) [—2()\12 + )\22) + 0(1)] < 0
for r < 1, where we have used A1 + 212 + A2 = 0 for the last equality, and

A12 + A2z > 0 (from (Cv)) for the last inequality. O

- (ArrrsinT — Agar cos T + o(r))

A&, €7) =

- (A117coST — Agar cos T + o(r))

7. EXAMPLE 1: EVOLUTION OF ADVECTION

In this section, we apply our results to the case u = g for some positive constant
po, (&) = € and Iy = RT.

Vo (poVau — EuVam) + euge +u(r(z) —a) =0 in D x I,
(7.1) o0t — Euldym =0 on 0D x I,
u=20 on D x 0I.

Then the invasion exponent A(£1,&2) is the principal eigenvalue of

(7.2) { Vo (110Ve¢ — £20Vem) + (r(x) — Opge,) + A9 =0 in D,
’ 1oO0n® — &2 ¢ Opym =0 on 0D.

Theorem 7.1 ([46]). Suppose that r(z) = m(z), and D C RY is convex with
diameter d and d||Vlogm| e py < A1, where Ay ~ 0.814 is the unique positive
root of the function t + 4t + e~ 4+ 2logt — 1 — 2logm. Then for each g > 0
sufficiently small, there exists a local C’SSEA > 0 with respect to the selection gradient
A given by the principal eigenvalue of (7.2).

Proof. From [46, Theorem 2.2] we verify (Cv). Also, (5.1) follows from [46, Theo-
rem 2.5]. O
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8. EXAMPLE 2: EVOLUTION OF DIFFUSION RATE

In this section, we apply our results to the case pu(§) = &, a(§) = ap for some
positive constant ag, and Iy = R™.

Vi (€Vu — aguVym) + 2uge +u(r(z) —a) =0 in D x I,
(8.1) EOpu — apud,m =0 on 0D x I,
u=20 on D x OI.

The invasion exponent A(£1,&2) is the principal eigenvalue of

(8.2) Vo (&Ved — agdpVem) + (r(z) — bg,.00) + A0 =0 in D,
’ 528n¢ — ¢8nm =0 on dD.

Theorem 8.1 ([47)). Let r(z) = m(z), D C RY be convex with diameter d and
d||Vglogm||pe(py < Az, where Ay = 0.615 is the unique positive root of the func-

tion t — ;—22 —e 4 (2%1 — 1). Then for each positive small oy, there exists a local

CSSé > 0 with respect to the selection gradient A given by the principal eigenvalue
of (8.2).

Theorem 8.2 ([42]). Suppose that Q = (0, L), m(x) = x, r,r, > 0 in [0, L], and
(logr).(z) < 2(logr).(y)  for all z,y € [0, L].

(i) If (logr), is decreasing and non-constant, then for each small oy > 0, there
ezists a local ESS«&C > 0 with respect to the selection gradient A given by the
principal eigenvalue of (8.2).

(ii) If (logr)s is increasing and non-constant, then for all small ag > 0, there
ezists a branching point é > 0 with respect to the selection gradient A given
by the principal eigenvalue of (8.2).

Proof. Assertion (i) follows from [42, Corollary 6.6(i)]. Assertion (ii) follows from
the proof of Theorem 6.5: specifically, equation (57) and the sentence that follows.
O

Remark 8.3. Although m(x) = x does not satisfy the requirement (M) that 9,m <
0 on 8D, we may approximate m(z) by m(x) € C°°(D) in the C(D) topology, and
notice that A(&1,&2) is defined by the variational formula

[ e0™/%2[&5| V2 ¢|? + (0g, .00 — (7)) 8% d

A —  inf
Cot) = o Jp /g2 de ’

which implies that the mapping T : C'(D) — C°(Iy x Iy) given by m(-) = A(-,-)
is smooth. Hence, if for some ag, m(xz) = x and r(x), we have a branching point
f, then we may find a smooth m(z) ~ z in the topology C(D) so that % <0 on
dD for which there is a branching point & & €.

9. NUMERICAL RESULTS

In order to illustrate Theorem 8.2, we present some numerical results of the
corresponding time-dependent system of (8.1) in one dimensional case with m(z) =
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xzand ag =1 on D x I =(0,1) x (0.5,1.5), namely, the case related to Theorem
8.2.

(9.1)
up = (§uy — u)y + Euge +u(r(z) —a) for x € (0,1),€ € (0.5,1.5), ¢t > 0,
¢uy, —u=20 onz=0,1, t >0,
u =0 on ¢ =0.5,1.5t>0.

Here we choose r(z) = e(1=®#+a2* and e = 1073, First, we take initial conditions in

the form of one Dirac mass on the phenotypic space, and investigate their evolution
for a = :i:i. We use the second order finite difference schemes to discretize [€, z]
domain and use the adaptive backward Euler method to solve the time-dependent
system (9.1) numerically. We take 50 x 50 uniform grids on both z and ¢ directions,
and the final time is 10°.

By Theorem 8.2, there is an ESS € when a € (—1/3,0), so that Theorem 1.3
predicts the existence of a positive steady state concentrating at £ = €. See the
right picture of Fig. 1.

On the other hand, there is a branching point when a € (0,1/3), so that The-
orem 1.4 applies to predict the existence of steady states with two Dirac masses
respectively. This is illustrated by the left picture of Fig. 1. Note that the interval
I =(0.5,1.5) may not need to be small, as seen from the numerical results.

15 i
g€

]
3

FIGURE 1. Contour plot of [wu(z,&,t)dx as a function of ¢ and
time (log(time) for vertical axis) for a = § (left) and a = —1
(right), with e = 1073.

Next, we take initial conditions in the form of two Dirac masses on the phenotypic
space, and investigate their evolution for a = :I:%. The simulation results are
illustrated by Fig. 2.

In addition, we also explore the steady state solution of (9.1) with different values
of a. Fig. 3 shows that the one Dirac mass becomes two Dirac masses, as a varies
1

1 1
from — to g

APPENDIX A. A Liouville-Type Result

In this chapter we prove a Liouville-Type result in cylinder domains. Our proof
is inspired by arguments in [58].

Proposition A.1. Let ¢ € C*(D) be strictly positive on D and h € C(D), where D
is a bounded smooth domain in RN . Suppose W (z,y) € C?(D x R) is a non-trivial,
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15 1
3

g b

FIGURE 2. Contour plot of [wu(z,&,t)dx as a function of ¢ and
time for @ = 1 (left) and a = —1 (right), with € = 1072,

n

T T . 5

—a=0.25 —a=0.25
a=0.1 v Za

0.8F |-%-a=0

a=-0.1

| [+-a=-0.25

0.2 0.4 06 08 1
X

FIGURE 3. Left: Profiles of resource distribution In(r(z)) with
respect to various values of the parameter a; Right: Phenotypic
distributions of the steady state solution || p Ue(, §) do with respect
to various values of the parameter a.

non-negative solution of

(A1) —0 7 (2)Vy - (@ (@) VW) — 2W + h(z)W =0 forz € D,y €R,
oW =0 forzedD,yeR
Let (01, ¢1) be the principal eigenpair of
(A2)  —¢ 2(2)Va- (¢*(2)Ve0) +h(z)p =06 inD, 0,6=0 ondD.
Then o1 > 0 and for some C1,Cy > 0,
(A.3) W(z,y) = (C1eV7Y + Coe™ V7)1 ().
Remark A.2. For the convenience of the readers, we supply some basic facts con-
cerning the eigenpairs {(o, ¢x) 52, of (A.2): It can be arranged so that
(i) ox € R for all k such that o1 < 09 < 03 <.
(i) [, didjp? do = byy;
(iii) oy is a simple eigenvalue and the corresponding eigenfunction ¢, is strictly
positive in D;
(iv) o1 is the unique eigenvalue with a non-negative eigenfunction, i.e. ¢
changes sign on D for all k > 2.

For the proofs of the above facts, see, e.g. [32, Sect. 6.5] or [50, Ch. 28 and 29].

. and o} — 00 as k — o0;

A special case of Proposition A.1 arises when o1 = 0.
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Corollary A.3. Let ¢ € C%(D) be strictly positive on D, where D is a bounded
smooth domain in RN . Suppose W (z,y) € C?(D x R) is non-negative solution of

(A4) @2 (x)Ve - (P (@)V W)+ ;W =0 forzeD,yeR,
' OnW =0 forxedD,yeR.

Then W (x,y) is a constant.
Before we prove Proposition A.1, we establish the following elementary lemma.

Lemma A.4. Let v (1 < k < ko) be given positive constants, and ag, by (1 <
k < ko) be given real numbers, then the function f : R — R defined by

ko
Fy) = (ak cos(1y) + bisin(yxy))
k=1
has at least one real root.
Proof. Let F(y) := Z"Zl (%Z sin(yxy) — % cos(ww)). If F has at least one critical

point, then we are done, since f = F’. Suppose not, then F is strictly monotone,
and as t — 00,

t 0
t_l/o F(y)dy — F(+00) and t_l/ F(y)dy — F(—00).

—t
However, by properties of trigonometric polynomials, we also have

¢ 0
t! / F(y)dy -0 and t* / F(y)dy — 0.
0

—t

Hence F(—o0) = F(400) =0 and F = 0. This contradicts the assumption that F'
has no critical points. O

Proof of Proposition A.1. Since W is non-trivial and non-negative, the strong max-
imum principle implies that W(z,y) > 0 for all x € D, y € R.

Let (ok, ¢r) be the k-th eigenpair of (A.2) counting multiplicities, so that o1 <
09 < 03 < .... Then by defining

exly) = /D W (o', ) e (a)? (o) d',

we have W(z,y) = > o, ck(y)¢r(z) and that aa—;ck = ogc,. Hence for each k,
there exist some Ay, By, such that, for y € R,

ApeVory + Bre VoY if o, > 0,
ce(y) = Ar+ Bry if o, =0,

Ay cos(v/—ory) + B sin(y/—ory) if o < 0.
Now, by applying the Harnack inequality to W (z,y) on D X [yo — 2,yo + 2] for any
9o € R, there exists some constant C' independent of yo € R such that

sup w<cC inf

z€D,|ly—yo|<1 €D, |y—yo|<1
Hence there exist ¢1,c2 > 0 such that 0 < W(z,y) < crel¥l for all € D and
y € R. This implies that |cx(y)| = | [, W (z, y)¢n(x)p*(2) dz| < ezl for y € R.
As o — oo when k — oo, it is necessary the case that Ay = By = 0 for all
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sufficiently large k. We may henceforth choose the largest positive integer kg such
that at least one of Ay, By, is non-zero. i.e.

ko
(A5) Wi y) = culy)on(a)
k=1

Claim A.5. If kg > 1, then oy, <0.

Suppose not, let oy, > 0, then the term with the highest growth in y is multiplied
to ¢ (z), a function of = that changes sign. This is a contradiction. Hence o, < 0.

Claim A.6. If kg > 1, then oy, < 0.

Suppose to the contrary that ky > 1, and there is 1 < k< ko (lNc > 1 as the
principal eigenvalue must be simple) such that oj = Ojyq = =+ = 0k, = 0 and
0j._, < 0;ie. W(y) contains the terms ZZ‘;% Apdr(x) + Z’/Z:(J:;; By dr(x), and at
least one of Ag,, B, is non-zero.

We claim that B; = --- = By, = 0. Now, every term of (A.5) is bounded

from below except possibly the term y Z:‘):,} B¢ (x). Suppose not, then by linear
independence of {¢k}:°:,;, Z:O:E B¢ () is non-trivial, and changes sign (since
it is orthogonal in L?(D) to the positive function ¢2¢;). This implies that for
large y, W (x,y) changes sign in x. This is a contradiction, so we conclude that
B}“€:~“:B]€0 :OandAkO 7&0

Next, observe that ¢! fft W(x,y)dy — ZZO:% Apor(z) as t — co. Again, we
notice that Z:OZ;; Ag¢r(x) changes sign, which contradicts the non-negativity of
W. This proves Claim A.6.

Claim A.7. ky = 1.

Suppose not, then kg > 1 and for each 1 < k < ko, o < o, < 0. For
xg € D, W(xo,y) is a linear combination of trigonometric functions, so we can
invoke Lemma A.4 to find some gy such that W (zg, yo) = 0. This is impossible as
W >0 for all z € D and y € R. Hence, Claim A.7 holds.

As kg = 1, we must have o > 0, since otherwise

W (z,y) = (A1 cos(V—01y) + By sin(v'—01y))d1(z)

changes sign. Hence W (x,y) = (A1eV7Y + Bie V7Y)¢;(x) and we must have
Ay, B; > 0. This completes the proof of Proposition A.1. O

APPENDIX B. LOCALIZATION

Lemma B.1. Let I = (&,,£*) C R be a bounded open interval. Suppose (along a
sequence (e,I) = (e, Ix)) that (i) €/|I| — 0 and (ii) for some £ > 0, I — {£} in
the Hausdorff sense. Then any positive solution ue of (2.1) satisfies

le(x) — Hé(x)

weakly in H'(D) and strongly in C(D).
Proof. Define 1 := |I|. By the proof of Lemma 2.3, [|iic|| ¢ (py is bounded uniformly

for small € and d;. It follows that . is precompact in C'(D). Next, we show that
it is also bounded, and hence weakly precompact, in H*(D).
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Claim B.2. There exists some constant C > 0 independent of € and I such that
el gy < C.

To see the claim, divide (2.1) by u = p(§) and integrate in £ € (€., £*) to obtain
(2.15). Multiply (2.15) by 4., and integrate by parts, we have

/ |V ptie|? da < / [@1Vam - Vyie + (r — de)gatic + €2q3te] da
D D

1
gf/ |Vwﬂ6|2dx+/ lq1|?|Vom|? dx + C,
2 D D

where q1, g2, ¢3 are given in (2.16), such that

il (py < Csupte < C"  fori=1,2,3.
D

Note that we have used in the first inequality 9,4 = q19,m (by (M)) together with
the fact that [Ocue/ ,u]g*:é* < 0; and the uniform boundedness of supp, 4. (Lemma
2.1) throughout. This proves Claim B.2.

Hence, by passing to a sequence, there exists g € H'(D) N C7(D) such that
e — 1ip weakly in H'(D) and strongly in C(D).

Claim B.3. g is a weak lower solution to (1.3) with & = £. In particular, iy < 95,

where 0 is the unique positive solution to (1.3) when § = E.

We pass to the limit by using the weak formulation. Multiply (2.15) by a non-
negative test function p(z) € C*°(D), and integrate by parts, we have
(B.1)
Jp Vap - (Vaie — 1 Vam) da — [} pl(r — @)z + 2q3] dz = €* [, pga dz < 0.

Let d1,€/01 — 0 and use the boundedness of supp @, we have (recall the definition
of ¢; in (2.16))

Qg . " 1 N
@ (x) = —do, g2 — fo/po, g3 — OF ()’ g,
Ho K le=¢

where ag = a(§), po = p(§). Thus (B.1) becomes
/ [pr~ (Vwﬂo — O‘anvzm> — plig(r — ao)} dz < 0.
D Ho

Since p is an arbitrary non-negative test function, this implies that 4 is a weak
lower solution of (1.3) (see, e.g. [30]). This proves the claim.
Next, define o7 to be the principal eigenvalue of

(B.2) —polAgp— agVem -Vyd+ (g —1r)p=0¢ inD, 0,¢=0ondD.

Claim B.4. Let o1 be the principal eigenvalue of (B.2), then o1 <0 and 01 =0
if and only if ug = 9&: a.e., where 95 is the unique positive solution of (1.3) with

(1(€), a(€)) = (ks 0)-

To establish the assertion, we observe that the principal eigenvalue of

(B.3)  —polAzd— agVem - Vo + (05 —r¢=0c¢p inD, 0,0=0 ondD
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is zero, as a positive eigenfunction is given by e~/ “095. Recall that ug < 05. It
follows by the variational characterization

fD ecom/o [HO|V$¢|2 + ({LO - T)¢2} dx

= inf
o ¢€H11(HD)\{0} fD evom/ho h2 dy

that o1 < 0 and equality holds if and only if 49 = 95 a.e. The claim is proved.
Next, denote the midpoint of I by &, and define

- W —am/u V(& - eT)
Ve(x,€) :=e ue(z, &), Welz,7)i= ————,
(z,8) (z,8) (z,7) S )
then We(z, ) is a positive solution of
AW+ Vo VoW, + 02W, + 2e0e (2 ) mo, W,
2
+e2 {652 (%) m + (65%) mQ} We+We(r—i)=0 inDx(-3,5),
OnWe=0 ondD x (—61/(2¢),1/(2¢)), supp We(z,0) =1,
where p = u(¢' + er) and a = (¢’ + er) remain bounded.

By applying the Harnack inequality, for each M > 1, there exists Cps (indepen-

dent of small €) such that suppy_psa We < Cur. Hence we may apply LP esti-
mates to extract a sequence of d1,¢/d; — 0 so that W, — W weakly in Wfo’f (E xR)
and strongly in C} (D x R), where W (z,7) is a non-negative, non-trivial solution

of
UoALW + agVym - VW + O?W + (r —ig)W =0 in D x R,
oW =0 ondD xR, and suppW(z,0)=1.

By Proposition A.1 (taking ¢? = exp(agm/pg) and h = 4 — r), we deduce that
the principal eigenvalue oy of (B.2) is non-negative. Hence, by Claim B.4, we must
have o1 = 0, and that 4y = 05 a.e. By the uniqueness of the limit 4y, we deduce

that the convergence actually holds for the full family of 4. as d1,¢/d; — 0. This
proves Lemma B.1. ([l

APPENDIX C. An Extension Lemma

In this section we prove an extension lemma that is used in the proof of Lemma
2.3. Our arguments are adapted from [35].

Proposition C.1. Let R, e be given positive constants,
B :={2' e R"':|2'| < R},
and
By :={(2',z,) e R" : |2'| < R+ 26,0 < x,, < 2¢}.
Then there exists a linear operator T : C*°(B’) — C3°(By.), Tg = G such that
G(',0)=0 and 09,,G(2',0)=g(z') foraz' € B’

Moreover, for each r > 1 and 1 < p < 2= there exists C' > 0 such that

n—1’

1Gllwress) < CllgllLr )
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Proof. Fix non-negative test functions ¢ : C§°([0,00)) and ¢ : C*°(R"~1) such that
¥(0) =1, 9'(0) = 0,

suppp C {2’ e R" 1 2| <1}, / e(y)dy = 1.
R’nfl
Define for 2/ e R 1 z, >0

G(I/a Ty) = 1/’(5”71)9%/ 9(17/ - xny,)@(y,) dy'.

Rn—1

It is easy to see that G satisfies the desired boundary conditions when z,, = 0. By

rewriting G as
. Tz —
G(',2p) = (xn)|al® / g(y')sc?( - Y ) dy,

Rn—1

we may put the derivatives onto ¢ and get

O, Gl ) = () / o(& — )i (o) A/

Rn—1

+ 8t (xn)n /R 9@ = zay)e(y) dy',

where
n—1
0i(y) =0y, 0(y’) ifj<m, and @ (y) = (2—n)eW) + Y dy,(y)y;-
j=1

The proposition thus follows from the following lemma.

Lemma C.2. Let ¢ € C(R"™1) be a test function. For each r > 1, and each
1<p< %, there exists C > 0 such that

G(2',xn) :/ 9(z" — xny")p(y') dy’
Rnfl
then

- (1—n) %71 -
G ) da’ < ol g,
Rn—1

Proof. Write

G, 2n)| =
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where we used [ ¢(y')dy’ = 1 for the second inequality, and the L> boundedness
of ¢ in the third inequality. Note that, by using Fubini’s Theorem,

J[ st~ st irayas' = [ o) | [ 1ot~ st ' < cal.
Hence, we may raise to the p-th power, and integrate in 2’ to derive the result. [
By Lemma C.2, we see that for each 1 < j < n,

(1-n)(&-1
[ 10n 66 a)l” o’ < O @l + vta)re ™l

By our choice of p < -, the exponent of x,, is greater than —1. Integrating with

respect to x, yields the desired result. O

The next result follows from Proposition C.1 via a partition of unity argument.

Proposition C.3. There erists a linear operator T : C=(92) — C>®(Q), Tg = G
such that G|aQ =0, 8’7G|aQ =g (U is the outward unit normal vector on 0Q2) and
foreachr>1,1<p< 2= there exists C > 0 such that

n—1’

1Gllwr@) < CllgllLraa)-

Proof. Now, there exists a locally finite open cover {Uy} of 99, and corresponding
C?-smooth transformation

U,:B={yeR": |yl <1} = Uy
such that U, N2 = Wi (B') with B’ = {y € B : y, = 0}, and for each € 9QNUj,

and smooth function ¢ on €2,
dpp(x) = aijDip(x) = [0, (9 0 Uk)] 0 U™ (2)
i.e. we may straighten the boundary so that the boundary condition becomes zero
Neumann boundary condition. Take a partition of unity {n;} subordinated to
{Uk}, then apply Proposition C.1 to (MK o Up)(go Uy). By Proposition C.1, there
exists G € C3°(W ' [Ur, N Q)) satisfying Gy, = 0 and 9, G = (1, 0 U)(go ¥y,) on
U UL N 0Q). Let Gi(x) := (G o U~1) (), we get
Gr(z) =0, and 0pGi(x) = a;;0;,G(x) =nk(x)g(x) on Uy N Q.

Finally, we set G(z) := Y, Gi(z). O
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