
CONCENTRATION PHENOMENA IN AN INTEGRO-PDE

MODEL FOR EVOLUTION OF CONDITIONAL DISPERSAL

WENRUI HAO, KING-YEUNG LAM, AND YUAN LOU

Abstract. To study the evolution of conditional dispersal we extend the

Perthame-Souganidis mutation-selection model and consider an integro-PDE
model for a population structured by the spatial variables and one trait vari-

able. We assume that both the diffusion rate and advection rate are functions

of the trait variable, which lies within a short interval I. Competition for re-
source is local in spatial variables, but nonlocal in the trait variable. Under

proper conditions on the invasion fitness gradient, we show that in the limit of

small mutation rate, the positive steady state solution will concentrate in the
trait variable and forms (i) a Dirac mass supported at one end of I; or (ii) a

Dirac mass supported at the interior of I; or (iii) two Dirac masses supported

at both ends of I, respectively. While Cases (i) and (ii) imply the evolutionary
stability of a single strategy, Case (iii) suggests that when no single strategy

can be evolutionarily stable, it is possible that two peculiar strategies as a pair
can be evolutionarily stable and resist the invasion of any other strategy in

our context.

1. Introduction

An important question in ecology and evolutionary biology is how the dispersal
of organisms evolves [22, 51, 52]. For the evolution of unconditional dispersal,
there is selection for slow dispersal in spatially varying yet temporally constant
environments [29, 38, 41], while higher rates of dispersal can be favored when the
environments are both spatially and temporally varying [39, 56]. However, the
dispersal of organisms often depend upon local biotic and abiotic factors and thus it
is often conditional, e.g., a combination of random diffusion and directed movement.
Recent studies on the evolution of conditional dispersal suggest that conditional
dispersal strategies can be evolutionarily stable; see [3, 4, 14, 15, 16, 19, 20, 23, 33,
37, 46, 47, 42, 53] and references therein.

A common approach to study the evolution of dispersal is the adaptive dynamics
approach [26, 27, 34], in which it is assumed that the resident species is at the equi-
librium, and a mutant phenotype is introduced to the population. The main ques-
tions are: Can the mutant invade when rare? If it can invade, will it coexist with
the resident or competitively exclude the resident? Most, if not all, of these math-
ematical models thus assume that there are only two phenotypes in competition.
Very recently, Perthame and Souganidis introduced a novel approach to study the
evolution of unconditional dispersal [60]. They considered an integro-PDE model
for a population structured by the spatial variables and a (continuous) trait variable
which is the random diffusion rate. In a sense, the Perthame-Souganidis model is a
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coupled system of infinitely many PDEs and can be viewed as a competition model
for infinitely many phenotypes. By the Hamilton-Jacobi approach, Perthame and
Souganidis showed that in the limit of small mutation rate, the steady state solution
forms a Dirac mass in the trait variable, supported at the lowest possible diffusion
rate. See also [48] for a similar result on the Perthame-Souganidis model.

The goal of this paper is to extend the Perthame-Souganidis model to a case
of conditional dispersal. In contrast to the case of unconditional dispersal, the
dynamics and structure of evolutionarily stable dispersal strategies seem to be much
richer for conditional dispersals. For instance, it was shown in [45] that the steady
state found in [48] is supported at a single dispersal strategy and is unique. In the
presence of a biased movement, we give sufficient condition for the steady state to be
supported at two distinct dispersal strategies, which is connected to the branching
phenomena in evolutionary biology. Our methods will be based upon the Hamilton-
Jacobi approach, while also drawing on the connections with the adaptive dynamics
framework.

The dynamics of a single population with combined random diffusion and di-
rected movement can be described by the following scalar reaction-diffusion equa-
tion (see Belgacem and Cosner [5]):

(1.1)

 ut = ∇x · (µ∇xu− αu∇xm) + u[r(x)− u] in D × (0,∞),
µ∂nu− αu∂nm = 0 on ∂D × (0,∞),
u(x, 0) = u0(x) in D.

Here u(x, t) is the population density at location x ∈ D and time t > 0, where D
represents a bounded domain in RN with smooth boundary ∂D. n is the outward
unit normal vector on ∂D, with ∂n := n · ∇x. Parameters µ > 0 and α ≥ 0
are diffusion and advection coefficients, respectively, and r(x) is a given function of
the environment. Besides random diffusion, the population is also assumed to move
upward along the gradient of some function m(x). Belgacem and Cosner considered
the case r(x) = m(x) in [5]; see also [24, 43, 44, 49] for further developments.

Throughout this paper, unless otherwise specified, we assume

(M): m ∈ C2(D) and ∂nm ≤ 0 on ∂D; r(x) is Hölder continuous in D.

Suppose that µ, α are both smooth real-valued functions of some phenotypic
variable ξ, such that µ(ξ) > 0 and α(ξ) ≥ 0 for all ξ ∈ R+ := (0,∞). Then the
dynamics of the species, consisting of a continuum of phenotypes, as parameterized
by the single real variable ξ, can be described by
(1.2)

ut = ∇x · (µ(ξ)∇xu− α(ξ)u∇xm) + ε2∂2
ξu+ u(r(x)− û) in D × I × R+,

µ(ξ)∂nu− α(ξ)u∂nm = 0 on ∂D × I × R+,
u = 0 on D × ∂I × R+,
u(x, ξ, 0) = u0(x) in D × I,

where I is a bounded open subinterval of R+, and

û = û(x, t) =

∫
I

u(x, ξ, t) dξ

is the total population density at a given location x ∈ D and time t.

Remark 1.1. Our choice for Dirichlet condition on the boundary of the trait space
in (1.2), instead of no-flux condition that was considered in [48, 60], is made so that
the boundary condition remains consistent in the corners of our cylindrical domain
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D × I. We also note that due to the vanishing viscosity in the trait variable,
the boundary condition has little effect on the dynamics of (1.2). For instance, if
∂nm = 0 on ∂D, then the Neumann boundary condition for the trait variable will
satisfy the consistency conditions, and all the results in this paper can be similarly
established.

For each ξ ∈ R+, let θξ(x) be the unique positive solution of the equation

(1.3)

{
∇x · (µ(ξ)∇xθ − α(ξ)θ∇xm) + θ(r(x)− θ) = 0 in D,
µ(ξ)∂nθ − α(ξ)θ∂nm = 0 on ∂D.

We note that (1.3) has a positive solution if and only if the trivial solution is
unstable and the positive solution is unique whenever it exists; see, e.g. [13].

The family of phenotypic traits is parameterized by ξ > 0, where distinct ξ
correspond to different phenotypes, as distinguished by their respective diffusion
rates and advection rates. Formally speaking, {δ0(ξ − ξ′)θξ′(x)}ξ′>0 gives a one-
dimensional manifold of steady states of (1.2) when ε = 0, where δ0(ξ − ξ′) is the
Dirac measure concentrated at ξ′. More generally, (1.2) with ε = 0 contains, as
subsystems, k-species competition systems for any k ∈ N. To see this, note that

for any 0 < ξ1 < ξ2 < ... < ξk,
∑k
i=1 δ0(ξ − ξi)ui(x) gives a steady state of (1.2)

with ε = 0, concentrated at ξ1, ..., ξk, if and only if (u1, ..., uk) satisfies the k-species
system

(1.4)

{
∇x · (µ(ξi)∇xui − α(ξi)ui∇xm) + ui(r(x)−

∑k
j=1 uj) = 0 in D,

µ(ξi)∂nui − α(ξi)ui∂nm = 0 on ∂D.

The goal of this paper is to determine which of these concentrated steady state
solutions of (1.2) with ε = 0 will persist for small positive mutation rate ε.

For each ξ1, ξ2 ∈ R+, consider the eigenvalue problem

(1.5)

{
∇x · (µ(ξ2)∇xψ − α(ξ2)ψ∇xm) + ψ(r(x)− θξ1) + λψ = 0 in D,
µ(ξ2)∂nψ − α(ξ2)ψ∂nm = 0 on ∂D.

For each fixed ξ1, ξ2, it follows from standard variational arguments that eigenvalues
of (1.5) are real and ordered. We denote the least eigenvalue of (1.5) by λ(ξ1, ξ2),
which in the adaptive dynamics framework is termed the invasion fitness. More
precisely, an invader with phenotype ξ2 can (resp. cannot) invade an established
phenotype ξ1 at equilibrium when rare if λ(ξ1, ξ2) < 0 (resp. λ(ξ1, ξ2) > 0).

We start the discussion in the most generic case:

Theorem 1.2 (Evolution of extreme strategies). Suppose that for some closed
interval Ī0 ∈ R+,

(1.6) inf
ξ∈Ī0

∂ξ2λ(ξ, ξ) > 0.

Then there exists δ > 0 such that for each interval I = (ξ∗, ξ
∗) ⊂ Ī0 such that

|I| = ξ∗ − ξ∗ < δ, any positive steady state uε of (1.2) satisfies,

uε(x, ξ)→ δ0(ξ − ξ∗)θξ∗(x) in distribution sense

as ε → 0, where δ0(ξ − ξ∗) is the Dirac measure concentrated at ξ∗ = inf I. Here
θξ∗ denotes the unique positive solution of (1.3) with ξ = ξ∗.

If the inequality sign in (1.6) is reversed, then a similar conclusion holds with
ξ∗ being replaced by ξ∗ = sup I. This shows that if the selection gradient does not
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vanish, it gives rise to a single Dirac-concentration at one of the two most extreme
phenotypes, determined by the sign of the selection gradient ∂ξ2λ(ξ, ξ).

In adaptive dynamics, the canonical equation is derived to indicate the evolu-
tionary dynamics of monomorphic populations. A consequence of such dynamics is
that the phenotypic trait of monomorphic populations evolves towards convergence
stable strategies [31], which is characterized by the following relations:

(Cv): ∂ξ2λ(ξ̂, ξ̂) = 0 and
d

dt
[∂ξ2λ(t, t)]t=ξ̂ > 0.

This leads to two generic cases: (i) Continuously Stable Strategies (CSS) and
(ii) Branching Points (BP). Our next two results will show that the first case gives
rise to an interior Dirac-concentration, and the second gives rise to two “balanced”
boundary Dirac-concentrations. In a sense, CSS gives an evolutionary attractor

where a monomorphic population adopting the superior/optimal strategy ξ̂ is able
to equilibrate while withstanding the onset of all small and rare mutations. On the

other hand, if a trait ξ̂ is a branching point, then although it is capable of invading

any resident adopting a different trait ξ 6= ξ̂, it is prone to invasion by small
mutations, and instead a population consisting of a combination of two distinct
strategies emerges.

Our next result says that if there is a CSS ξ̂, then the phenotype in I that is

closest to ξ̂ dominates the competition.

Theorem 1.3 (Evolution of intermediate strategy). Suppose that (Cv) holds and

∂2
ξ2
λ(ξ̂, ξ̂) > 0 for some ξ̂ ∈ R+, then there exists δ > 0 such that for each fixed

interval I = (ξ∗, ξ
∗) ⊂ (ξ̂ − δ, ξ̂ + δ), any positive steady state uε of (1.2) satisfies,

as ε→ 0,

ûε(x)→ θξ′(x) in C(D̄) and uε(x, ξ)→ δ0(ξ − ξ′)θξ′(x) in distribution sense,

where the point of concentration ξ′ is the point in [ξ∗, ξ
∗] closest to ξ̂; i.e.

ξ′ =


ξ̂ if ξ̂ ∈ [ξ∗, ξ

∗],

ξ∗ if ξ̂ < ξ∗ = inf I,

ξ∗ if ξ̂ > ξ∗ = sup I.

The next theorem says that in the neighborhood of a branching point, no single
phenotype can dominate. Instead, the two extreme phenotypes form a coalition
that together dominates the competition.

Theorem 1.4 (Evolutionary Branching Point). Suppose that (Cv) holds and

∂2
ξ2
λ(ξ̂, ξ̂) < 0 for some ξ̂ ∈ R+. Then there exists δ > 0 such that for each

interval I = (ξ∗, ξ
∗) ⊂ (ξ̂ − δ, ξ̂ + δ) such that ξ∗ ≤ ξ̂ ≤ ξ∗, there is a sequence

εk → 0, such that any positive steady state uεk of (1.2) satisfies

uεk(x, ξ)→ δ0(ξ − ξ∗)û1(x) + δ0(ξ − ξ∗)û2(x) in distribution sense

as k →∞. Furthermore, (û1, û2) is a positive steady state of

(1.7)

 ∇x · (µ1∇xû1 − α1û1∇xm) + û1(r(x)− û1 − û2) = 0 in D,
∇x · (µ2∇xû2 − α2û2∇xm) + û2(r(x)− û1 − û2) = 0 in D,
µ1∂nû1 − α1û1∂nm = 0 = µ2∂nû2 − α2û2∂nm on ∂D,

such that ûi(x) 6≡ 0 for i = 1, 2, and that α1 = α(ξ∗), α2 = α(ξ∗), µ1 = µ(ξ∗) and
µ2 = µ(ξ∗).
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We briefly sketch the key ideas in the proofs. Consider the WKB-Ansatz,
wε(x, ξ) = ε log uε(x, ξ). We first establish, in Sects. 2 and 3, appropriate a priori
Lipschitz estimates on wε. Our first contribution is to drop the convexity assump-
tion on D, which was needed in [60] to apply Bernstein’s method. Our proof relies
on blow-up methods and Liouville theorems of elliptic equations in cylindrical do-
mains. See Appendix A.

The a priori estimates allows the passage to (subsequential) limits of

û(x) = lim
ε→0

ûε(x), and w(ξ) = lim
ε→0

wε(x, ξ).

An important fact is that the limit function w(ξ) satisfies, in the viscosity sense,
the following constrained Hamilton-Jacobi equation:

(1.8)

{
−|∂ξw|2 = −H(ξ; û) in I = (ξ∗, ξ

∗),
supI w = 0.

Here the Hamiltonion H(ξ; û) is defined as the principal eigenvalue of

(1.9)

{
∇x · (µ(ξ)∇xψ − α(ξ)ψ∇xm) + (r(x)− û)ψ +Hψ = 0 in D,
µ(ξ)∂nψ − α(ξ)ψ∂nm = 0 on ∂D, and

∫
D
ψ2 dx = 1.

The main difficulty to solve (1.8) is to yield information (and possibly uniqueness)
concerning the subsequential limit functions û(x) and w(ξ). In [60] the correspond-

ing Hamiltonian H̃(ξ, û) is the principal eigenvalue of

(1.10)

{
µ(ξ)∆xψ + (r(x)− û)ψ +Hψ = 0 in D,
∂nψ = 0 on ∂D, and

∫
D
ψ2 dx = 1.

It is a classical fact in PDE that, provided r(x)− û(x) is non-constant in x, i.e. the

monotonicity properties of H̃ in ξ is exactly the same as that of µ(ξ) in ξ. This
shows that w(ξ) attains its maximum at the minimum point of µ(·), at which the
concentration of uε(x, ξ) occurs. i.e. û = θξ∗ .

In contrast, the dependence of the principal eigenvalue H of (1.9) on parameters
µ and α may not possess monotonicity [17, 18]. In this work, we infer the behavior of
H(ξ; û) based on the assumptions regarding the invasion fitness function λ(ξ1, ξ2) =
H(ξ2; θξ1), which arises in the study of two-species competition models [46, 47]. For
this purpose, we only consider fixed, narrow intervals I in the trait variable, for
which we can quantify how close an arbitrary subsequential limit û is from θξ̂. This

approach partially decouples (1.8) and (1.9), and is done in Appendix B.
In Sects. 4 to 6, we impose three most generic assumptions on the invasion fitness

function, namely non-vanishing selection gradient, Continuously Stable Strategies
(CSS), and Evolutionary Branching Points (BP). We show that the resulting so-
lutions to the mutation-selection model exhibit one or two Dirac-concentrations
at those strategy or strategies that are evolutionarily stable. This establishes the
connection of (1.2) to the framework of adaptive dynamics. In Sects. 7 and 8 we
provide some concrete examples in which those generic assumptions on the invasion
fitness function can be verified. To complement Sects. 7 and 8, we present some
numerical computations concerning the dynamics of (1.2) in Sect. 9.

This paper serves as an initial exploration of the class of mutation-selection mod-
els arising from evolution of conditional dispersal. Our results suggest that, as a
consequence of the interplay between ecology and evolution, the dynamics of (1.2)
is indeed quite rich. Biologically, our results give a classification of the equilibria



6 WENRUI HAO, KING-YEUNG LAM, AND YUAN LOU

of evolutionary dynamics in generic situations, when the possible mutations is re-
stricted to a small interval I. We believe, however, that the restriction of the size
of the interval I in our main results is technical.

Finally, we provide some references to background and related works. One of
the first works to connect mutation-selection dynamics with adaptive dynamics
is [12]. For earlier mathematical works on mutation-selection models, we refer to
[11, 55]. For the pioneering Hamilton-Jacobi approach we refer to [28, 59]. For pure
selection dynamics, see [1, 25]. The involvement of spatial structure is more recent,
see [40, 57] for works on models related to cancer therapy; and [2, 6, 8, 7, 9, 10, 61]
for works on unbounded domains concerning spreading front solutions.

2. A priori estimates of ûε

For the rest of this paper, we set

I0 := (ξ, ξ), I := (ξ∗, ξ
∗),

where ξ∗, ξ
∗, ξ, ξ are positive numbers. Furthermore, we always assume that I ⊂ Ī0.

For each bounded open interval I ⊂ R+ and each ε > 0, let uε = uε(x, ξ) be a
positive steady state of (1.2), then it satisfies
(2.1)

∇x · (µ(ξ)∇xuε − α(ξ)uε∇xm) + ε2∂2
ξuε + uε(r(x)− ûε) = 0 in D × I,

µ(ξ)∂nuε − α(ξ)uε∂nm = 0 on ∂D × I,
uε = 0 on D × ∂I,

where

(2.2) ûε(x) :=

∫
I

uε(x, ξ) dξ.

The following result is the only place where the assumption (M) is needed.

Lemma 2.1. Let uε be any positive solution of (2.1). Then there exists some
positive constant C, which depends on I0 but is independent of I and ε ∈ (0, 1],
such that

sup
D
ûε ≤ C.

Proof. Let uε(x, ξ) be a positive solution of (2.1). Define

(2.3) vε(x, ξ) = e−αm/(2µ)uε(x, ξ), v̂ε(x) =

∫
I

vε(x, ξ) dξ.

Then there exist positive constants c1, c2 depending on I0, but independent of I
and ε, such that

(2.4) c1ûε(x) ≤ v̂ε(x) ≤ c2ûε(x) for all x ∈ D.

Moreover, vε satisfies

(2.5)


µ∆xvε + ε2

{
∂2
ξvε +m∂ξ

(
α
µ

)
∂ξvε + m

2 ∂
2
ξ

(
α
µ

)
vε +

[
m
2 ∂ξ

(
α
µ

)]2
vε

}
+vε

(
−α2 ∆xm− α2

4µ |∇xm|
2 + r − ûε

)
= 0 in D × I,

∂nvε = α
2µvε∂nm ≤ 0 on ∂D × I,

vε = 0 on D × ∂I,
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where we used (M) to ensure ∂nm ≤ 0 on ∂D. Dividing the equation of vε by
µ = µ(ξ), and integrating in the variable ξ ∈ I = (ξ∗, ξ

∗), and using the facts that∫
I

1
µ∂ξ

(
α
µ

)
∂ξvε dξ = −

∫
I
∂ξ

[
1
µ∂ξ

(
α
µ

)]
vε dξ +

[
1
µ∂ξ

(
α
µ

)
vε

]ξ∗
ξ=ξ∗

= −
∫
I
∂ξ

[
1
µ∂ξ

(
α
µ

)]
vε dξ,

(since vε(·, ξ∗) ≡ vε(·, ξ∗) ≡ 0) and∫
I

1
µ∂

2
ξvε dξ =

∫
I
∂2
ξ

(
1
µ

)
vε dξ +

[
1
µ∂ξvε

]ξ∗
ξ=ξ∗

≤
∫
I
∂2
ξ

(
1
µ

)
vε dξ,

(since ∂ξvε(·, ξ∗) ≥ 0 ≥ ∂ξvε(·, ξ∗) in D) we have

(2.6)

{
∆xv̂ε + v̂ε

(
ε2h0(x) + r(x)

infI0 µ
− ûε(x)

supI0 µ

)
≥ 0 in D,

∂nv̂ε ≤ 0 on ∂D,

where h0 can be expressed in terms of µ,m,α and their derivatives, and is inde-
pendent of the interval I and ε ∈ (0, 1]:

h0(x) = supξ∈I0

{
∂2
ξ

(
1
µ

)
−m(x)∂ξ

[
1
µ∂ξ

(
α
µ

)]
+ 1

µ
m(x)

2 ∂2
ξ

(
α
µ

)
+ 1

µ

[
m(x)

2 ∂ξ

(
α
µ

)]2}
.

Suppose that supD v̂ε = v̂ε(x0) for some x0 ∈ D̄. Then apply the maximum princi-
ple (see [54, Proposition 2.2]) to (2.6), there exists C1 > 0 independent of ε ∈ (0, 1]
such that

ûε(x0) ≤ C1 := (sup
I0

µ)

(
sup
D
h0 +

supD r

infI0 µ

)
.

Combine this with (2.4), we have

c1 sup
D
ûε(·) ≤ sup

D
v̂ε(·) = v̂ε(x0) ≤ c2ûε(x0) ≤ c2C1.

Hence supD ûε ≤ C ′1, where the positive constant C ′1 depends on I0 but is indepen-
dent of the open interval I ⊂ I0 and ε ∈ (0, 1]. �

Lemma 2.2. Let I = (ξ∗, ξ
∗) and δ1 := |I| = ξ∗ − ξ∗.

(i) There exists C > 0 independent of δ1, ε such that if ε ≤ δ1/2, then

sup
x∈D,ξ∈∂I

|∂ξuε| ≤ Cε−2‖ûε‖L1(D) ≤ Cε−2.

(ii) For each fixed open interval I = (ξ∗, ξ
∗) ⊂ I0, there exists δ2 > 0 indepen-

dent of ε such that

(2.7) inf
D×(ξ∗,ξ∗+δ2ε)

∂ξuε > 0 and sup
D×(ξ∗−δ2ε,ξ∗)

∂ξuε < 0.

In particular,

(2.8) sup
D×(ξ∗,ξ∗)

uε = sup
D×(ξ∗+δ2ε,ξ∗−δ2ε)

uε.

Proof. We first show (i). Set ṽε(x, ξ) := e−αm/µuε(x, ξ) and Qε(x, τ) := ṽε(x, ξ∗ +
ετ). Then Qε satisfies
(2.9)

µ∆xQε + α∇xm · ∇xQε + ∂2
τQε + 2εm∂ξ

(
α
µ

)
∂τQε + ε2

[
m∂2

ξ

(
α
µ

)
+m2

(
∂ξ

α
µ

)2
]
Qε

+Qε(r − ûε) = 0 in D × (0, ε−1(ξ∗ − ξ∗)),
∂nQε = 0 on ∂D × (0, ε−1(ξ∗ − ξ∗)), and Qε = 0 on D × {0, ε−1(ξ∗ − ξ∗)},
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where µ = µ(ξ∗+ετ) and α = α(ξ∗+ετ) are uniformly bounded for τ ∈ (0, ε−1(ξ∗−
ξ∗)). Then we extend Qε in the direction of x by reflecting along the boundary
∂D × (0, 2), and apply the boundary elliptic estimate on D̄ × {0} to get

(2.10) ε sup
x∈D
|∂ξuε(x, ξ∗)| ≤ ‖Qε‖C1(D̄×[0,1]) ≤ C ′‖Qε‖L∞(D×[0,2]).

On the other hand, by the local maximum principle at the boundary for strong
(sub)solutions [36, Theorem 9.26], we have

(2.11) ‖Qε‖L∞(D×[0,2]) ≤ C‖Qε‖L1(D×(0,3)) ≤ Cε−1‖uε‖L1(D×(ξ∗,ξ∗+3ε)).

It follows from (2.10) and (2.11) that

sup
x∈D
|∂ξuε(x, ξ∗)| ≤ Cε−2‖uε‖L1(D×(ξ∗,ξ∗+3ε)) ≤ Cε−2‖ûε‖L∞(D).

By repeating the same proof for ξ = ξ∗, we obtain

sup
x∈D,ξ∈∂I

|∂ξuε| ≤ Cε−2‖ûε‖L∞(D).

Assertion (i) thus follows from Lemma 2.1.
For the first inequality of (ii), we consider

(2.12) Q̃ε(x, τ) :=
Qε(x, τ)

‖Qε‖L∞(D×(0,2))
=

ṽε(x, ξ∗ + ετ)

‖ṽε(x, ξ∗ + ετ)‖L∞(D×(0,2))

on D×(0, 2), where Qε is defined in the beginning of the proof. Then Q̃ε is a positive

solution to the uniformly elliptic equation (2.9) such that ‖Q̃ε‖L∞(D×(0,2)) = 1.
Moreover, the second inequality of (2.10) and Hopf boundary lemma imply

(2.13) ‖Q̃ε‖C1(D×[0,1]) ≤ C and inf
D
∂τ Q̃ε(x, 0) > 0.

This shows that for some δ′ > 0, independent of ε, such that

(2.14) ε
infD×(ξ∗,ξ∗+δ′ε) ∂ξ ṽε(x, ξ)

‖ṽε(x, ξ∗ + ετ)‖L∞(D×(0,2))
= inf
D×(0,δ′)

∂τ Q̃ε(x, τ) ≥ δ′

and thus the first inequality of assertion (ii) is proved. The proof for the second
inequality of (ii) is analogous and is omitted. �

Lemma 2.3. Fix a bounded interval I0. Then there exist constants γ ∈ (0, 1) and
C > 0 independent of I ⊂ I0 and 0 < ε� 1, such that

‖ûε‖Cγ(D) ≤ C.

Remark 2.4. Lemma 2.3 asserts the precompactness of ûε(·) in C(D) as ε → 0.
One can therefore pass to a sequence εk → 0 so that ûεk converges in C(D̄).

Proof of Lemma 2.3. Dividing the equation (2.1) by µ = µ(ξ) and integrating in
ξ ∈ I, while treating the terms involving derivatives in ξ in a similar fashion as in
the proof of Lemma 2.1, we obtain

(2.15)

{
−∆xûε = −∇x · (q1∇xm) + (r − ûε)q2 + ε2q3 + ε2q4 in D,
∂nûε = q1∂nm on ∂D,

where
(2.16)

q1(x) =
∫
I
α
µuε dξ, q2(x) =

∫
I
uε
µ dξ, q3(x) =

∫
I
∂2
ξ

(
1
µ

)
uε dξ, q4(x) =

[
∂ξuε
µ

]ξ∗
ξ=ξ∗

.
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By Lemmas 2.1 and 2.2, it is easy to see that

(2.17) ‖qi‖C(D̄) ≤ C for 1 ≤ i ≤ 3, ε2‖q4‖C(D̄) ≤ C, q4(x) ≤ 0 in D

for some constant C independent of ε.
Fix p > N . By Proposition C.3, there exists a linear (extension) operator T :

C∞(∂D)→ C∞(D̄) such that

∂n(Tg)
∣∣
∂D

= g, and ‖Tg‖W 1,p(D) ≤ C‖g‖Lp(∂D).

Take G = T [q1∂nm], then

(2.18) ‖G‖W 1,p(D) ≤ C ‖q1∂nm‖L∞(∂D)

and U := ûε −G satisfies

(2.19)

{
−∆xU = −∇x · (q1∇xm−∇xG) + (r − ûε)q2 + ε2q3 + ε2q4 in D,
∂nU = 0 on ∂D.

Extending U by reflection method so that U satisfies a similar equation in an
open set containing D̄, we may apply De Giorgi-Nash-Moser interior estimates [21,
Theorem 2.3] so that for some 0 < γ < 1 and C > 0,

‖U‖Cγ(D̄) ≤ C
[
‖U‖L∞(D) + ‖ − q1∇xm+∇xG‖Lp(D)

+ ‖(r − ûε)q2 + ε2q3 + ε2q4‖LNp/(N+p)(D)

]
.

(2.20)

Since U = ûε −G, we can apply Sobolev embedding to get

(2.21) ‖U‖L∞(D) ≤ ‖ûε‖L∞(D) + ‖G‖L∞(D) ≤ ‖ûε‖L∞(D) + C‖G‖W 1,p(D).

Hence, we deduce by (2.20) and (2.21) and also Morrey’s inequality [32, Sect. 5.6.2]
that

‖ûε‖Cγ(D̄) ≤ ‖U‖Cγ(D̄) + ‖G‖Cγ(D̄)

≤ C
(
‖ûε‖L∞(D),max

i=1,2
‖qi‖L∞(D), ε

2 max
i=3,4

‖qi‖L∞(D), ‖G‖W 1,p(D)

)
.

Combining with (2.18), we have (for ε ∈ (0, 1])

‖ûε‖Cγ(D̄) ≤ C
(
‖ûε‖L∞(D),max

i=1,2
‖qi‖C(D̄), ε

2 max
i=3,4

‖qi‖C(D̄)

)
.

The right hand side of the last line is bounded independently of ε, by Lemma 2.1
and (2.17). �

Lemma 2.5. Let I = (ξ∗, ξ
∗) be given. Suppose for each compact set K ⊂⊂

D̄ × (ξ∗, ξ
∗), there exists δK > 0 such that

(2.22) ‖uε‖C(K) ≤ exp(−δK/ε).

In such event, fix an arbitrary ξ̂ ∈ I, and define

ûε,1(x) =

∫ ξ̂

ξ∗

uε dξ, and ûε,2(x) =

∫ ξ∗

ξ̂

uε dξ.

Then there exist γ ∈ (0, 1) and C > 0, both independent of ε, such that

‖ûε,1‖Cγ(D) + ‖ûε,2‖Cγ(D) ≤ C.

In particular, passing to a subsequence if necessary, ûε,i → ûi in C(D̄) for i = 1, 2,
and uε(x, ξ)→ δ(ξ − ξ∗)û1(x) + δ(ξ − ξ∗)û2(x) in the distribution sense.
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Proof. We first prove the estimate for û1. First, integrate (1.2) over ξ ∈ (ξ∗, ξ̂). We
may repeat the proof of Lemma 2.3, provided the following estimate is proved:

ε2

[
sup

x∈D,ξ=ξ̂

(∣∣∣∣∂ξuεµ
∣∣∣∣+

∣∣∣∣∂ξ ( 1

µ

)
uε

∣∣∣∣)
]
≤ C.

By (2.22), it therefore suffices to show

(2.23) lim
ε→0

[
sup
D
|∂ξuε(x, ξ̂)|

]
= 0.

To show (2.23), let Qε(x, τ) = ṽε(x, ξ̂ + ετ), where ṽε(x, ξ) = e−αm/µuε(x, ξ), then
Qε satisfies a uniformly elliptic equation in D×(−1, 1) with L∞ bounded coefficients
similar to (2.9), hence we may apply the interior Lp estimate to obtain

ε supD |∂ξuε(x, ξ̂)| ≤ C supD |∂τQε(x, 0)|
≤ C‖Qε‖L∞(D×(−1,1)) ≤ C‖uε‖L∞(D×(ξ̂−ε,ξ̂+ε)).

(2.23) thus follows from (2.22). This enables us to repeat the proof of Lemma
2.3 to show that ‖ûε,1‖Cγ(D) ≤ C. Since ûε,2 = ûε − ûε,1, the other inequality

‖ûε,2‖Cγ(D) ≤ C follows automatically. �

For later purposes, we will also need the following result.

Lemma 2.6. Let I = (ξ∗, ξ
∗) ⊂ R+ be a bounded open interval. Suppose (along a

sequence (ε, I) = (εk, Ik)) that (i) ε/|I| → 0 and (ii) for some ξ̂ > 0, I → {ξ̂} in
the Hausdorff sense. Then any positive solution uε of (2.1) satisfies

ûε(x)→ θξ̂(x)

weakly in H1(D) and strongly in C(D̄).

Proof. See Lemma B.1 in Appendix B. �

3. WKB Ansatz and a constrained Hamilton-Jacobi Equation

Definition 3.1. Denote, for each ξ > 0 and h(·) ∈ C(D̄), by H(ξ;h) the principal
eigenvalue of

(3.1)

{
∇x · (µ(ξ)∇xψ − α(ξ)ψ∇xm) + (r(x)− h(x))ψ +Hψ = 0 in D,
µ(ξ)∂nψ − α(ξ)ψ∂nm = 0 on ∂D, and

∫
D
ψ2 dx = 1.

Next, set h = ûε and denote the eigenfunction corresponding to H(ξ; ûε) by ψε(·, ξ).

Recall the Hölder estimate of Lemma 2.3, and the normalization of ψε(·, ξ).
One can deduce from standard elliptic estimates that for each bounded interval
I0 ⊂ R+, there exists constant C = C(I0) > 1 independent of ε such that (see, e.g.
[48, Lemma 4.1])

(3.2)
1

C
≤ ψε(x, ξ) ≤ C in D × I0, sup

D×I0

[
|∂ξψε(x, ξ)|+ ∂2

ξψε(x, ξ)|
]
≤ C.

By Remark 2.4, we may pass to a sequence εk → 0 so that ûεk(x) → û(x) for
some non-negative function û ∈ C(D). We suppress the subscript k for convenience.
Define

(3.3) wε(x, ξ) := ε log uε(x, ξ)− ε logψε(x, ξ).
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Then a direct computation shows that

(3.4)
− µ
ε2 |∇xwε|

2 − 2µε∇xwε ·
∇xψε
ψε
− µ

ε∆xwε + α
ε∇xm · ∇xwε

−|∂ξwε|2 − 2ε∂ξwε
∂ξψε
ψε
− ε∂2

ξwε − ε2
∂2
ξψε
ψε

= −H(ξ; ûε)

in D × I, with boundary conditions

(3.5) ∂nwε = 0 on ∂D × I, and wε = −∞ on D × ∂I.

We will show that wε(x, ξ) converges locally uniformly in D× (ξ∗, ξ
∗) to a viscosity

solution w(ξ) of a certain constrained Hamilton-Jacobi equation in the variable ξ
only.

Proposition 3.2. Given any fixed interval I ⊂ R+. Suppose that
∫
D
ûε dx ≥ c0

for some c0 > 0 independent of ε. Then passing to a sequence εk → 0, it holds that

ûεk(x)→ û(x) in C(D̄) and wεk(x, ξ)→ w(ξ) in Cloc(D̄ × I)

where w(ξ) is a viscosity solution of the constrained Hamilton-Jacobi equation

(3.6)

{
−|∂ξw|2 = −H(ξ; û) in I = (ξ∗, ξ

∗),
supI w = 0.

We prepare for the proof of Proposition 3.2 with a series of lemmas.

Lemma 3.3. For each δ > 0, there exists C > 0 independent of ε such that

sup
D×(ξ∗+δε,ξ∗−δε)

[
|∂ξwε(x, ξ)|+

1

ε
|∇xwε(x, ξ)|

]
≤ C.

Proof. Let ṽε(x, ξ) = e−αm/µuε(x, ξ), it suffices to show that for each fixed δ > 0,
there is some C > 0 independent of ε > 0 such that
(3.7)
|∇xṽε(x, ξ0)|+ ε|∂ξ ṽε(x, ξ0)| ≤ Cṽε(x, ξ0) for all (x, ξ0) ∈ D × (ξ∗ + δε, ξ∗ − δε).

Fix δ > 0 and ξ0 ∈ [ξ∗ + δε, ξ∗ − δε] and define Qε(x, τ) = ṽε(x, ξ0 + ετ). Then
Qε is a positive solution of the homogeneous linear elliptic equation (2.9) (with
µ(ξ) = µ(ξ0 + ετ) and α(ξ) = α(ξ0 + ετ)) in the domain D × (−δ, δ), and satisfies
the Neumann boundary conditions on ∂D × (−δ, δ). By Harnack inequality, we
have

(3.8) sup
D×(−δ/2,δ/2)

Qε ≤ C inf
D×(−δ/2,δ/2)

Qε.

Also, elliptic Lp estimates with p > N + 1 (N being dimension of D) implies
(3.9)

sup
x∈D

[|∇xQε(x, 0)|+ |∂τQε(x, 0)|] ≤ C‖Qε‖Lp(D×(−δ/2,δ/2)) ≤ C sup
D×(−δ/2,δ/2)

Qε.

Combining equations (3.8) and (3.9), we conclude that for some positive constant
C = C(δ) independent of ε, x ∈ D and ξ0 ∈ [ξ∗ + δε, ξ∗ − δε],

(3.10) |∇xQε(x, 0)|+ |∂τQε(x, 0)| ≤ C inf
D×(−δ/2,δ/2)

Qε ≤ CQε(x, 0).

i.e. (3.7) holds. This proves the lemma. �

We develop a property of w similar to Lemma 2.2(ii).
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Lemma 3.4. Fix an open interval I = (ξ∗, ξ
∗) ⊂ R+. There exists δ2 > 0 inde-

pendent of ε such that, in addition to the conclusion of Lemma 2.2, we have

(3.11) inf
D×(ξ∗,ξ∗+δ2ε)

∂ξwε > 0 and sup
D×(ξ∗−δ2ε,ξ∗)

∂ξwε < 0.

In particular

(3.12) sup
D×(ξ∗,ξ∗)

wε = sup
D×(ξ∗+δ2ε,ξ∗−δ2ε)

wε.

Proof. Recall the definition of wε in (3.3), where ψε is the principal eigenfunction
of (3.1). Also recall ṽε = e−αm/µuε. Then

wε(x, ξ) = ε log ṽε(x, ξ) + εm(x)
α(ξ)

µ(ξ)
− ε logψε(x, ξ∗ + ετ).

Differentiating with respect to ξ, we have

∂ξwε(x, ξ) =
ε

ṽε(x, ξ)

{
∂ξ ṽε + ṽε

[
m∂ξ

(
α

µ

)
− ∂ξψε

ψε

]}
.

Recall the definition of Q̃ε(x, τ) in (2.12), we have (setting ξ = ξ∗ + ετ)

∂ξwε(x, ξ∗ + ετ) =
ε

Q̃ε(x, ξ)

{
ε−1∂τ Q̃ε + Q̃ε

[
m∂ξ

(
α

µ

)
− ∂ξψε

ψε

]}
=

ε

Q̃(x, τ)

{
ε−1δ′ +O(1)

}
> 0,

for τ ∈ (0, δ′) and for 0 < ε� 1, where we used (2.12), (2.14) and (3.2). Hence we
can deduce that, by taking δ2 smaller, ∂ξwε(x, ξ) > 0 in D×(ξ∗, ξ∗+δ2ε). Similarly,
∂ξwε(x, ξ) < 0 in D × (ξ∗ − δ2ε, ξ∗). Therefore, there exists δ2 > 0 such that for
ε > 0 small, (3.11) holds and the maximum point of wε(x, ξ) is attained within
D̄ × [ξ∗ + δ2ε, ξ

∗ − δ2ε], i.e. (3.12) holds. �

Lemma 3.5. For each constant A > 1,

sup
D×(ξ∗,ξ∗)

wε ≤ Aε| log ε| for all sufficiently small ε.

Proof. Let A > 1 be a given constant. Set I(ε) = (ξ∗ + δ2ε, ξ
∗ − δ2ε), where δ2 is

given in Lemma 3.4. Again by Lemma 3.4, it suffices to show

(3.13) sup
D×I(ε)

wε ≤ Aε| log ε|.

Fix x ∈ D and let Mε(x) := supI(ε) wε(x, ξ). If Mε(x) ≤ 0, there is nothing to prove.

Suppose Mε(x) > 0 and choose some ξε(x) ∈ I(ε) such that Mε(x) = wε(x, ξε(x)).
By Lemma 3.3, wε is Lipschitz continuous in D×I(ε), hence there exists an interval
I ′(x, ε) ⊂ I(ε) such that for some c1 > 0,

ξε(x) ∈ I ′(x, ε), inf
ξ∈I′(x,ε)

wε(x, ξ) ≥
Mε(x)

A
, |I ′(x, ε)| ≥ c1Mε(x).

where c1 depends only on the Lipschitz constant of wε and is independent of x and
ε (Lemma 3.3). Hence, using Lemma 2.1 and (3.2),

c1Mε(x) exp

(
Mε(x)

Aε

)
≤
∫
I′(x,ε)

exp

(
wε(x, ξ)

ε

)
dξ ≤ ûε(x) ≤ sup

D
ûε.
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This implies that for some c1 and C1 independent of ε (but depend on supD ûε
(Lemma 2.1) and the Lipschitz constant of wε in D × (ξ∗ + δ2ε, ξ

∗ − δ2ε) (Lemma
3.3)),

c1
Mε(x)

Aε
exp

(
Mε(x)

Aε

)
≤ C1

ε
,

where c1 and C1 are independent of ε and x ∈ D. This proves

Mε(x) ≤ Aε| log ε| for all x ∈ D

and all sufficiently small ε > 0, i.e. (3.13) holds. �

Lemma 3.6. If
∫
D
ûε dx ≥ c0 for some c0 > 0, which is independent of ε, then

there exists C > 0 independent of ε such that

sup
D×I

wε ≥ −Cε,

where I = (ξ∗, ξ
∗).

Proof. By the hypotheses of the lemma,

c0 ≤
∫
D

ûε dx =

∫
D×I

ψε exp
(wε
ε

)
dxdξ ≤ C exp

( supD×I wε

ε

)
,

and the assertion follows. �

Proof of Proposition 3.2. In this proof, we omit for the sake of clarity the subscript
k in εk. By Lemmas 3.5 and 3.6, and (2.8), we have

(3.14) −Cε ≤ sup
D×(ξ∗,ξ∗)

wε = sup
D×(ξ∗+δ2ε,ξ∗−δ2ε)

wε ≤ Cε| log ε|,

where δ2 is given in Lemma 3.4. This and the uniform Lipschitz estimate in Lemma
3.3 imply that, up to a sequence, wε converges uniformly to some (Lipchitz) function
w ∈ C(D× [ξ∗, ξ

∗]) in compact subsets of D×(ξ∗, ξ
∗), such that supD×(ξ∗,ξ∗) w = 0.

Furthermore, Lemma 3.3 implies that ‖∇xwε‖L∞(D×(ξ∗+δ2ε,ξ∗−δ2ε)) ≤ Cε. Hence,
w = w(ξ) is a function of ξ but is independent of x, and such that

(3.15) sup
(ξ∗,ξ∗)

w(ξ) = 0.

It remains to show that w satisfies equation (3.6) in the viscosity sense. Let
ρ(ξ) be a C2 function of ξ such that ξ0 is a local maximum of w − ρ. Then
w − ρ − (ξ − ξ0)4 has a strict local maximum at some interior point ξ0 ∈ (ξ∗, ξ

∗).
We can then deduce that for all ε > 0 small, wε(x, ξ)− ρ(ξ)− (ξ − ξ0)4 has a local
maximum (xε, ξε) ∈ D̄ × I such that ξε → ξ0 as ε→ 0. Hence,

(3.16)

∇xwε(xε, ξε) = 0, ∆xwε(xε, ξε) ≤ 0;

∂ξwε(xε, ξε) = ∂ξρ(ξε) + 4(ξε − ξ0)3;

∂2
ξwε(xε, ξε) ≤ ∂2

ξρ(ξε) + 12(ξε − ξ0)2.

Now, we can deduce, by evaluating (3.4) at the point (xε, ξε), that

−
∣∣∂ξρ(ξε) + 4(ξε − ξ0)3

∣∣2 − 2ε[∂ξρ(ξε) + 4(ξε − ξ0)3]∂ξ(logψε)(xε, ξε)

− ε∂2
ξρ(ξε)− 12ε(ξε − ξ0)2 − ε2

∂2
ξψε

ψε
(xε, ξε) ≤ −H(ξε; ûε).
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Letting ε→ 0, we have ξε → ξ0 and ûε → û in C(D), so that

−|∂ξρ(ξ0)|2 ≤ −H(ξ0; û).

Next, if w − ρ has a local minimum at a point ρ0, we can show with a similar
argument that

−|∂ξρ(ξ0)|2 ≥ −H(ξ0; û).

Hence, w is a viscosity solution of (3.6). �

In general, viscosity solution of the nonstandard, constrained (3.6) may not
be unique. The following lemma enumerates two additional properties of those
solutions of (3.6) that are realized as the limits of wεk .

Lemma 3.7. Suppose that along a sequence εk → 0, ûεk → û uniformly in D, and
wεk → w locally uniformly in D × (ξ∗, ξ

∗). Then

(i) H(ξ, û) ≥ 0 for all ξ ∈ [ξ∗, ξ
∗] and min[ξ∗,ξ∗]H(·, û) = 0.

(ii) If (xk, ξk) is a local maximum of wεk , then dist(ξk, {ξ : H(ξ, û) = 0})→ 0.

Proof. First, it follows from equation (3.6) that H(ξ, û) ≥ 0 for all ξ. Second, notice
that at any local maximum point (xε, ξε) of wε, (3.4) implies

H(ξε; ûε) ≤ ε2
∂2
ξψε

ψε

∣∣∣∣∣
(x,ξ)=(xε,ξε)

= O(ε2).

Hence any limit point ξ0 of {ξε} satisfies H(ξ0; û) ≤ 0, and thus H(ξ0; û) = 0. This
proves (ii). Furthermore, it follows that the set {ξ : H(ξ; û) = 0} is non-empty, this
proves (i). �

In some cases, we can determine the limit w = limk→∞ wεk uniquely, as the
following result shows.

Proposition 3.8. Given a sequence εk → 0, let uεk be a positive steady state of
(1.2), and wεk be defined by (3.3). Suppose that

ûεk → û in C(D̄), and wεk → w in Cloc(D × (ξ∗, ξ
∗)).

If

(3.17) ∃ξ′ ∈ [ξ∗, ξ
∗] : H(ξ, û) =

{
0 when ξ = ξ′;
> 0 when ξ ∈ [ξ∗, ξ

∗] \ {ξ′},

i.e. H(·, û) has a unique minimum point ξ′ ∈ [ξ∗, ξ
∗], then

û(x) = θξ′(x) and uεk(x, ξ)→ δ0(ξ − ξ′)θξ′(x)

in distribution sense. In particular, λ(ξ, ξ′) = H(ξ; û) ≥ 0 for all ξ ∈ I.

Proof. First, we claim that w(ξ′) = 0. Let the maximum of wεk in D × (ξ∗, ξ
∗) be

attained at some (xk, ξk) ∈ D × (ξ∗, ξ
∗), then by Lemmas 3.5 and 3.6,

−Cεk ≤ wεk(xk, ξk) ≤ Cεk| log εk|.

By Lemma 3.4, ξk ∈ [ξ∗ + δ2εk, ξ
∗ − δ2εk], we can then use the equicontinuity of

wεk (Lemma 3.3) and the fact that ξk → ξ′ (Lemma 3.7(ii)) to pass to the limit to
obtain w(ξ′) = 0.

Claim 3.9. w(ξ) is strictly increasing (resp. decreasing) for ξ < ξ′ (resp. ξ > ξ′).
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Suppose not, then w(ξ) has another local maximum point ξ′′ 6= ξ′. We claim
that ξ′′ ∈ {ξ∗, ξ∗}. For if ξ′′ is an interior local maximum point of w, then by
property of w being a viscosity solution of (3.6), we must have H(ξ′′, û) ≤ 0, i.e.
H(ξ′′, û) = 0 and thus ξ′′ = ξ′, by the hypotheses of the proposition. Hence w has
at least two (and at most three) distinct, strict local maximum points. This implies
that for k large, wεk has another sequence of local maximum points (x′′k , ξ

′′
k ) such

that ξ′′k 6→ ξ′. This contradiction to Lemma 3.7(ii) establishes Claim 3.9.
As a consequence of Claim 3.9, w(ξ′) = 0 and w < 0 for ξ 6= ξ′. Hence

(3.18) uε(x, ξ)→ δ0(ξ − ξ′)û(x) in distribution sense.

It remains to show that û = θξ′ in D. First we note that for the qi’s defined in
(2.16),

(3.19) q1(x)→ α(ξ′)

µ(ξ′)
û(x), q2(x)→ 1

µ(ξ′)
û(x), q3(x)→ ∂2

ξ

(
1

µ

)∣∣∣∣
ξ=ξ′

û(x)

uniformly in D as ε→ 0.

Claim 3.10. If (3.18) holds, then û(x) ≤ θξ′(x) in D.

Multiply (2.15) by a non-negative test function ρ(x), integrate by parts, we have∫
D

{
∇xρ · (∇xûε − q1∇xm) + ρ

[
−(r − ûε)q2 − ε2q3

]}
dx = ε2

∫
D

ρq4 dx ≤ 0

where we used q4 ≤ 0 (from (2.17)). Passing to the limit and using (3.19), we
deduce that û is a weak subsolution of (1.3) with ξ = ξ′. Hence û ≤ θξ′ , the latter
being the unique positive solution of (1.3). This proves the claim.

On the other hand,

0 ≤ H(ξ′, û) ≤ H(ξ′, θξ′) = 0,

where the first inequality follow from Lemma 3.7(i), the second from the eigenvalue
comparison principle such that the equality holds if and only if û ≡ θξ′ , and the
third equality by definition of the principal eigenvalue H(ξ′; θξ′) (as θξ′ clearly gives
the positive eigenfunction). In particular the equality holds, and hence û ≡ θξ′ . By
(3.18), we deduce

uε(x, ξ)→ δ0(ξ − ξ′)θξ′(x) in distribution as ε→ 0.

Although we have passed to a sequence ε = εk in the above procedure, the fact that
the limit û = θξ′ is uniquely determined implies that the convergence limε→0 ûε =
θξ′ is independent of sequences. �

4. Non-vanishing selection gradient

In this section, we consider the case when the selection gradient do not vanish
in a closed bounded interval Ī0 = [ξ, ξ] ⊂ R+. For definiteness, we discuss the case
when

(4.1) ∂ξ2λ(ξ, ξ) > 0 for all ξ ≤ ξ ≤ ξ.

Theorem 4.1. Suppose that (4.1) holds for some closed bounded interval Ī0 = [ξ, ξ].

Then there is δ1 > 0 such that for any subinterval I = (ξ∗, ξ
∗) ⊂ Ī0 such that

|I| ≤ δ1, any positive steady state uε of (1.2) satisfies ûε → θξ∗ uniformly in D and

uε(x, ξ)→ δ0(ξ − ξ∗)θξ∗(x) in distribution sense, as ε→ 0.
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Lemma 4.2. Suppose that (4.1) holds for some closed bounded interval Ī0 = [ξ, ξ].

Then there is δ1 > 0 such that for each subinterval I = (ξ∗, ξ
∗) ⊂ Ī0 with |I| ≤ δ1,

there exists c0 > 0 independent of 0 < ε� 1 and steady state uε of (1.2) so that

(4.2) inf
ξ∈I

∂ξH(ξ, ûε(·)) ≥ c0 and

∫
D

ûε dx ≥ c0,

where ûε(x) =
∫
I
uε(x, ξ) dξ.

Proof. Suppose to the contrary that there is a sequence of open intervals Ik ⊂ Ī0
such that δk = |Ik| → 0 but the associated solution {ûk,ε}ε>0 of (2.1) does not
satisfy (4.2). Passing to a further subsequence, we may assume that Ik → {ξ0}
in the Hausdorff sense for some ξ0 ∈ Ī0. Now by (4.1) and the smoothness of
H(ξ, θξ0) = λ(ξ0, ξ) in ξ, there exists δ2 > 0 such that

min
ξ∈[ξ0−δ2,ξ0+δ2]

∂ξH(ξ, θξ0(·)) > 0 and

∫
D

θξ0 dx > 0.

Now, by Lemma 2.6 we may choose δ1 ∈ (0, δ2] so that for each open interval
I ⊂ (ξ0 − δ1, ξ0 + δ1), then ûε is close enough to θξ0 in C(D̄) for all small ε.
This implies that for k large enough, (4.2) holds for the solution {ûk,ε}ε>0 of (2.1)
associated with Ik. This is a contradiction. �

Proof of Theorem 4.1. Fix δ1 small enough as in Lemma 4.2 and choose any open
interval I ⊂ Ī0 such that |I| ≤ δ1. Then for ε small, (4.2) holds. Pass to a sequence
so that ûε converges uniformly to some û in D. By Lemma 4.2, H(·; û) has a unique
minimum point at ξ∗ in the closure [ξ∗, ξ

∗] of I. By Proposition 3.8, û = θξ∗ and

uε(x, ξ)→ δ0(ξ − ξ∗)θξ∗(x)

in distribution sense as ε→ 0. This proves the theorem. �

5. Interior CSS ξ̂

In this section, we consider the case when the adaptive dynamics has an interior

continuously stable strategy (CSS), denoted as ξ̂.

Definition 5.1. We say that ξ̂ ∈ I0 is a local CSS if (Cv) holds and

(5.1) ∂2
ξ2λ(ξ̂, ξ̂) > 0.

Theorem 5.2. Suppose that ξ̂ ∈ I0 is a local CSS in the sense of Definition 5.1.

Then there is δ1 > 0 such that for each fixed I = (ξ∗, ξ
∗) ⊂ (ξ̂ − δ1, ξ̂ + δ1), any

positive steady state uε of (1.2) satisfies, as ε→ 0, ûε(x)→ θξ′(x) in C(D̄) and

uε(x, ξ)→ δ0(ξ − ξ′)θξ′(x) in distribution sense,

where the point of concentration ξ′ is the point in [ξ∗, ξ
∗] closest to ξ̂; i.e.

ξ′ =


ξ̂ if ξ̂ ∈ [ξ∗, ξ

∗],

ξ∗ if ξ̂ < ξ∗ = inf I,

ξ∗ if ξ̂ > ξ∗ = sup I.

Lemma 5.3. Suppose that ξ̂ ∈ I0 is a local CSS in the sense of Definition 5.1.
There exists δ1 > 0 such that

(5.2) ∂ξ2λ(ξ′, ξ′)

{
> 0 for all ξ′ ∈ (ξ̂, ξ̂ + δ1),

< 0 for all ξ′ ∈ (ξ̂ − δ1, ξ̂).
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Moreover, for each fixed interval I ⊂ (ξ̂−δ1, ξ̂+δ1), there exists c0 > 0 independent
of ε� 1 and steady state uε of (1.2), such that

(5.3) inf
ξ∈I

∂2
ξH(ξ, ûε(·)) ≥ c0 and

∫
D

ûε dx ≥ c0,

where ûε(x) =
∫ ξ∗
ξ∗
uε(x, ξ) dξ.

Proof. First, (5.2) follows from (Cv), by choosing δ1 > 0 small. Since H(ξ, θξ̂(·)) =

λ(ξ̂, ξ) is C2 in ξ, (5.1) implies that for some δ2 > 0,

inf
ξ∈[ξ̂−δ2,ξ̂+δ2]

∂2
ξH(ξ, θξ̂(·)) > 0 and

∫
D

θξ̂ dx > 0.

Now, by Lemma 2.6 we may choose δ1 ∈ (0, δ2] smaller if necessary so that for each

fixed open interval I ⊂ (ξ̂ − δ1, ξ̂ + δ1), and for all ε small, ûε is close enough to θξ̂
in C(D̄) so that (5.3) holds. �

Proof of Theorem 5.2. Fix δ1 small enough as in Lemma 5.3 and choose any open

interval I ⊂ (ξ̂− δ1, ξ̂+ δ1). Then for ε small, (5.3) holds. Next, use Remark 2.4 to
pass to a sequence so that ûε → û in C(D̄).

By Lemma 5.3, H(·; û) has a unique minimum point ξ′ ∈ [ξ∗, ξ
∗]. By Proposition

3.8, uε(x, ξ)→ δ0(ξ − ξ′)θξ′(x) in distribution sense, and û = θξ′ .

Claim 5.4. (a) If ξ′ > ξ̂, then ξ′ = ξ∗; (b) If ξ′ < ξ̂, then ξ′ = ξ∗.

Suppose that ξ′ > ξ̂, then by (5.2),

∂ξ2λ(ξ′, ξ′) > 0 and λ(ξ′, ξ′) = 0

so that λ(ξ′, ξ) < 0 for all ξ less than but close to ξ′. As λ(ξ′, ξ) = H(ξ, θξ′) ≥ 0

in I (by Lemma 3.7(i)), this shows (ξ̂, ξ′) ∩ I = ∅. Since ξ′ ∈ [ξ∗, ξ
∗], we deduce

that ξ′ = ξ∗ and thus ξ̂ < ξ∗. This proves part (a) of the claim. Part (b) can be
similarly handled and we omit the details.

To finish the proof of the theorem, suppose first ξ′ 6= ξ̂, then by the above claim,

we deduce that ξ̂ 6∈ [ξ∗, ξ
∗]. This says that if ξ̂ ∈ [ξ∗, ξ

∗], then ξ′ = ξ̂.

Next, let ξ̂ < ξ∗, then ξ′ > ξ̂ (as ξ′ ∈ [ξ∗, ξ
∗]). Then Claim 5.4(a) implies that

ξ′ = ξ∗. Similarly, ξ̂ > ξ∗ implies ξ′ = ξ∗. This completes the proof. �

6. Evolutionary Branching

In this section, we consider the case when the adaptive dynamics has a branching

point, denoted as ξ̂.

Definition 6.1. We say that ξ̂ ∈ I0 is a branching point if (Cv) holds and

(6.1) ∂2
ξ2λ(ξ̂, ξ̂) < 0.

The following theorem is the main result of this section.

Theorem 6.2. Suppose that ξ̂ is a branching point in the sense of Definition 6.1,
and there is some δ1 > 0 such that if the endpoints of I = (ξ∗, ξ

∗) are chosen such
that

(6.2) I ⊂ (ξ̂ − δ1, ξ̂ + δ1), λ(ξ∗, ξ
∗) < 0 and λ(ξ∗, ξ∗) < 0.
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Then there is εk → 0 such that any positive steady state uεk of (1.2) satisfies

(6.3) uεk(x, ξ)→ δ0(ξ − ξ∗)û1(x) + δ0(ξ − ξ∗)û2(x)

in distribution sense. Furthermore, (û1, û2) is a positive solution of (1.7).

Remark 6.3. In fact, one can show that for δ1 small and ξ∗ < ξ∗ chosen as above,
(1.7) has a unique positive steady state. In that case, the conclusion of Theorem
6.2 can be strengthened to be independent of sequences εk → 0. We leave this issue
for future studies.

Lemma 6.4. Suppose that ξ̂ is a branching point in the sense of Definition 6.1.

Then there is some δ1 > 0 such that for each subinterval I = (ξ∗, ξ
∗) ⊂ (ξ̂ − δ1, ξ̂ +

δ1), for all ε sufficiently small,

sup
ξ∈(ξ∗,ξ∗)

∂2
ξH(ξ, ûε) ≤ −c0 and

∫
D

ûε dx ≥ c0,

for some c0 > 0 independent of ε.

Proof. The proof is analogous to that of Lemma 5.3 and is omitted. �

Proof of Theorem 6.2. Let δ1 be chosen as in Lemma 6.4 and the interval I chosen
satisfying (6.2).

Claim 6.5. There is a sequence εk → 0 such that wεk → w locally uniformly in
D× (ξ∗, ξ

∗) and (6.3) holds in distribution sense, for some non-trivial non-negative
functions ûi ∈ C(D̄), i = 1, 2.

Recall that, as shown in the proof of Lemma 3.7, if a viscosity solution w of (3.6)
has an interior maximum point ξ0, then necessarily H(ξ0; û) ≤ 0. Since H(·; û) is
nonnegative (Lemma 3.7(i)) and strictly concave (Lemma 6.4), we deduce that
H(ξ; û) > 0 in (ξ∗, ξ

∗) and thus w cannot have any interior local maximum point.
Therefore, we conclude that exactly one of the following alternatives holds:

(i) w(ξ∗) = 0 and w(ξ) < 0 in (ξ∗, ξ
∗];

(ii) w(ξ∗) = 0 and w(ξ) < 0 in [ξ∗, ξ
∗);

(iii) w(ξ∗) = w(ξ∗) = 0 and w(ξ) < 0 in (ξ∗, ξ
∗).

In each case, w(ξ) < 0 in (ξ∗, ξ
∗) and hence for each K1 ⊂⊂ (ξ∗, ξ

∗),

uε(x, ξ) = ψε(x, ξ) exp

(
w(ξ) + o(1)

ε

)
= O

(
exp

(
−δK
ε

))
holds for (x, ξ) ∈ D×K1, where we have used (3.2). Thus Lemma 2.5 is applicable
and implies that (6.3) holds in distribution sense, for some non-negative functions
ûi (i = 1, 2). It remains to show that neither of the ûi’s is identically zero. Suppose
û2 ≡ 0, then, by arguing as in the proof of Proposition 3.8, one deduces that
û1 = θξ∗ and hence by Lemma 3.7(i)

λ(ξ∗, ξ) = H(ξ; θξ∗) = H(ξ; û) ≥ 0 for all ξ∗ ≤ ξ ≤ ξ∗,

but then we have λ(ξ∗, ξ
∗) ≥ 0, contradicting (6.2). Similarly, û1 cannot be identi-

cally zero. This proves Claim 6.5.

Claim 6.6. (û1, û2) is a positive steady state of (1.7).
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Let ûε,1(x) =
∫ ξ̂
ξ∗
uε dξ and ûε,2(x) =

∫ ξ∗
ξ̂
uε dξ, we have by Lemma 2.5 ûε,i → ûi

uniformly in D for i = 1, 2. By arguments similar to Claim 3.10 we have

(6.4)

{
∇x · (µi∇xûi − αiûi∇xm) + ûi(r(x)− û) ≥ 0 in D,
µi∂nûi − αiûi∂nm = 0 on ∂D,

where i = 1, 2, µ1 = µ(ξ∗), α1 = α(ξ∗), µ2 = µ(ξ∗), α2 = α(ξ∗). Also, obviously
û = û1 + û2. This implies, by properties of the principal eigenvalue, that

H(ξ∗; û) ≤ 0 and H(ξ∗; û) ≤ 0.

By Lemma 3.7(i), H(ξ∗; û) ≥ 0 and H(ξ∗; û) ≥ 0. Hence, H(ξ∗; û) = H(ξ∗; û) = 0.
Therefore, by arguments similar to Claim 3.10, the equalities in (6.4) hold. This
completes the proof. �

Next, we derive Theorem 1.4 as a special case of Theorem 6.2.

Proof of Theorem 1.4. Suppose that ξ̂ is a branching point in the sense of Definition
6.1. It remains to show that for ξ∗, ξ

∗ such that

(6.5) ξ∗ ≤ ξ̂ ≤ ξ∗ and |ξ∗ − ξ̂|+ |ξ∗ − ξ̂| � 1,

then λ(ξ∗, ξ
∗) < 0 and λ(ξ∗, ξ∗) < 0.

Denote for i, j = 1, 2,

λij :=
∂2λ

∂ξi∂ξj
(ξ̂, ξ̂).

From the fact that λ(ξ, ξ) ≡ 0 for all ξ, we differentiate once at ξ̂ and deduce

∂ξ1λ + ∂ξ2λ = 0 at (ξ1, ξ2) = (ξ̂, ξ̂). By (Cv), (ξ̂, ξ̂) is a critical point of λ.
Differentiate again, we have λ11 + 2λ12 + λ22 = 0. Based on these facts, we may

Taylor expand λ near (ξ̂, ξ̂) as

(6.6) λ(ξ1, ξ2) =
ξ1 − ξ2

2
[λ11(ξ1 − ξ̂)− λ22(ξ2 − ξ̂) + o(|ξ1 − ξ̂|+ |ξ2 − ξ̂|)].

Also, the second condition in (Cv) says that λ12+λ22 > 0. Together with Definition
6.1, we deduce that

(6.7) λ22 < 0 and λ11 = −2(λ12 + λ22) + λ22 < λ22 < 0.

So that for ξ∗, ξ
∗ satisfying (6.5), we have

λ(ξ∗, ξ∗) =
ξ∗ − ξ∗

2
[λ11(ξ∗ − ξ̂)− λ22(ξ∗ − ξ̂) + o(|ξ∗ − ξ̂|+ |ξ∗ − ξ̂|)]

= −|ξ
∗ − ξ∗|

2
[|λ11||ξ∗ − ξ̂|+ |λ22||ξ∗ − ξ̂|+ o(|ξ∗ − ξ̂|+ |ξ∗ − ξ̂|)] < 0.

Similarly, one can show that λ(ξ∗, ξ
∗) < 0 as well. Thus one can apply Theorem

6.2 to obtain the desired conclusion. �

Next, we prove that evolutionarily stable dimorphism can occur even if the

branching point ξ̂ is not contained in the interval I.

Corollary 6.7. Under the assumptions of Theorem 6.2, there exist ξ∗ > ξ∗ > ξ̂,
so that if we choose I = (ξ∗, ξ

∗), then the conclusion of Theorem 6.2 holds.
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Proof. It remains to choose ξ∗ > ξ∗ > ξ̂ so that (6.2) holds. Note that by (6.7),

λ11

λ22
=

2(λ12 + λ22)− λ22

−λ22
> 1 =⇒ arctan

λ11

λ22
∈ (π/4, π/2).

So we may choose τ ∈
(

arctan λ11

λ22
, π2

)
, and choose

(ξ∗, ξ∗) :=
(
ξ̂ + r cos τ, ξ̂ + r sin τ

)
.

Then ξ∗ > ξ∗ > ξ̂, and by (6.6),

λ(ξ∗, ξ∗) =
r(cos τ − sin τ)

2
· (λ11r cos τ − λ22r sin τ + o(r))

=
−λ22r

2(sin τ − cos τ) cos τ

2

(
λ11

λ22
− tan τ + o(1)

)
< 0

and

λ(ξ∗, ξ
∗) =

r(sin τ − cos τ)

2
· (λ11r sin τ − λ22r cos τ + o(r))

<
r(sin τ − cos τ)

2
· (λ11r cos τ − λ22r cos τ + o(r))

=
r2 cos τ(sin τ − cos τ)

2
(λ11 − λ22 + o(1))

=
r2 cos τ(sin τ − cos τ)

2
[−2(λ12 + λ22) + o(1)] < 0

for r � 1, where we have used λ11 + 2λ12 + λ22 = 0 for the last equality, and
λ12 + λ22 > 0 (from (Cv)) for the last inequality. �

7. Example 1: Evolution of Advection

In this section, we apply our results to the case µ ≡ µ0 for some positive constant
µ0, α(ξ) = ξ and I0 = R+.

(7.1)

 ∇x · (µ0∇xu− ξu∇xm) + ε2uξξ + u(r(x)− û) = 0 in D × I,
µ0∂nu− ξu∂nm = 0 on ∂D × I,
u = 0 on D × ∂I.

Then the invasion exponent λ(ξ1, ξ2) is the principal eigenvalue of

(7.2)

{
∇x · (µ0∇xφ− ξ2φ∇xm) + (r(x)− θµ0,ξ1) + λφ = 0 in D,
µ0∂nφ− ξ2 φ∂nm = 0 on ∂D.

Theorem 7.1 ([46]). Suppose that r(x) = m(x), and D ⊂ RN is convex with
diameter d and d‖∇x logm‖L∞(D) ≤ Λ1, where Λ1 ≈ 0.814 is the unique positive

root of the function t 7→ 4t + e−t + 2 log t − 1 − 2 log π. Then for each µ0 > 0

sufficiently small, there exists a local CSS ξ̂ > 0 with respect to the selection gradient
λ given by the principal eigenvalue of (7.2).

Proof. From [46, Theorem 2.2] we verify (Cv). Also, (5.1) follows from [46, Theo-
rem 2.5]. �
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8. Example 2: Evolution of diffusion rate

In this section, we apply our results to the case µ(ξ) = ξ, α(ξ) = α0 for some
positive constant α0, and I0 = R+.

(8.1)

 ∇x · (ξ∇xu− α0u∇xm) + ε2uξξ + u(r(x)− û) = 0 in D × I,
ξ∂nu− α0u∂nm = 0 on ∂D × I,
u = 0 on D × ∂I.

The invasion exponent λ(ξ1, ξ2) is the principal eigenvalue of

(8.2)

{
∇x · (ξ2∇xφ− α0φ∇xm) + (r(x)− θξ1,α0

) + λφ = 0 in D,
ξ2∂nφ− α0 φ∂nm = 0 on ∂D.

Theorem 8.1 ([47]). Let r(x) = m(x), D ⊂ RN be convex with diameter d and
d‖∇x logm‖L∞(D) ≤ Λ2, where Λ2 ≈ 0.615 is the unique positive root of the func-

tion t 7→ t2

π2 − e−4t
(

2t
2t−1 − 1

)
. Then for each positive small α0, there exists a local

CSS ξ̂ > 0 with respect to the selection gradient λ given by the principal eigenvalue
of (8.2).

Theorem 8.2 ([42]). Suppose that Ω = (0, L), m(x) = x, r, rx > 0 in [0, L], and

(log r)x(x) < 2(log r)x(y) for all x, y ∈ [0, L].

(i) If (log r)x is decreasing and non-constant, then for each small α0 > 0, there

exists a local ESS ξ̂ > 0 with respect to the selection gradient λ given by the
principal eigenvalue of (8.2).

(ii) If (log r)x is increasing and non-constant, then for all small α0 > 0, there

exists a branching point ξ̂ > 0 with respect to the selection gradient λ given
by the principal eigenvalue of (8.2).

Proof. Assertion (i) follows from [42, Corollary 6.6(i)]. Assertion (ii) follows from
the proof of Theorem 6.5: specifically, equation (57) and the sentence that follows.

�

Remark 8.3. Although m(x) = x does not satisfy the requirement (M) that ∂nm ≤
0 on ∂D, we may approximate m(x) by m̃(x) ∈ C∞(D) in the C(D) topology, and
notice that λ(ξ1, ξ2) is defined by the variational formula

λ(ξ1, ξ2) = inf
φ∈H1(D)\{0}

∫
D
eα0m/ξ2 [ξ2|∇xφ|2 + (θξ1,α0

− r(x))φ2] dx∫
D
eα0m/ξ2φ2 dx

,

which implies that the mapping T : C(D) → C∞(Ī0 × Ī0) given by m(·) 7→ λ(·, ·)
is smooth. Hence, if for some α0, m(x) = x and r(x), we have a branching point

ξ̂, then we may find a smooth m̃(x) ≈ x in the topology C(D) so that ∂m̃
∂n ≤ 0 on

∂D for which there is a branching point ξ̂′ ≈ ξ̂.

9. Numerical Results

In order to illustrate Theorem 8.2, we present some numerical results of the
corresponding time-dependent system of (8.1) in one dimensional case with m(x) =
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x and α0 = 1 on D × I = (0, 1) × (0.5, 1.5), namely, the case related to Theorem
8.2.
(9.1) ut = (ξux − u)x + ε2uξξ + u(r(x)− û) for x ∈ (0, 1), ξ ∈ (0.5, 1.5), t > 0,

ξux − u = 0 on x = 0, 1, t > 0,
u = 0 on ξ = 0.5, 1.5, t > 0.

Here we choose r(x) = e(1−a)x+ax2

and ε = 10−3. First, we take initial conditions in
the form of one Dirac mass on the phenotypic space, and investigate their evolution
for a = ± 1

4 . We use the second order finite difference schemes to discretize [ξ, x]
domain and use the adaptive backward Euler method to solve the time-dependent
system (9.1) numerically. We take 50×50 uniform grids on both x and ξ directions,
and the final time is 105.

By Theorem 8.2, there is an ESS ξ̂ when a ∈ (−1/3, 0), so that Theorem 1.3

predicts the existence of a positive steady state concentrating at ξ = ξ̂. See the
right picture of Fig. 1.

On the other hand, there is a branching point when a ∈ (0, 1/3), so that The-
orem 1.4 applies to predict the existence of steady states with two Dirac masses
respectively. This is illustrated by the left picture of Fig. 1. Note that the interval
I = (0.5, 1.5) may not need to be small, as seen from the numerical results.
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Figure 1. Contour plot of
∫
u(x, ξ, t)dx as a function of ξ and

time (log(time) for vertical axis) for a = 1
4 (left) and a = − 1

4

(right), with ε = 10−3.

Next, we take initial conditions in the form of two Dirac masses on the phenotypic
space, and investigate their evolution for a = ± 1

4 . The simulation results are
illustrated by Fig. 2.

In addition, we also explore the steady state solution of (9.1) with different values
of a. Fig. 3 shows that the one Dirac mass becomes two Dirac masses, as a varies
from − 1

4 to 1
4 .

Appendix A. A Liouville-Type Result

In this chapter we prove a Liouville-Type result in cylinder domains. Our proof
is inspired by arguments in [58].

Proposition A.1. Let ϕ ∈ C2(D̄) be strictly positive on D̄ and h ∈ C(D̄), where D
is a bounded smooth domain in RN . Suppose W (x, y) ∈ C2(D̄×R) is a non-trivial,
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u(x, ξ, t)dx as a function of ξ and

time for a = 1
4 (left) and a = − 1

4 (right), with ε = 10−3.
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Figure 3. Left: Profiles of resource distribution ln(r(x)) with
respect to various values of the parameter a; Right: Phenotypic
distributions of the steady state solution

∫
D
uε(x, ξ) dx with respect

to various values of the parameter a.

non-negative solution of

(A.1)

{
−ϕ−2(x)∇x · (ϕ2(x)∇xW )− ∂2

yW + h(x)W = 0 for x ∈ D, y ∈ R,
∂nW = 0 for x ∈ ∂D, y ∈ R.

Let (σ1, φ1) be the principal eigenpair of

(A.2) −ϕ−2(x)∇x · (ϕ2(x)∇xφ) + h(x)φ = σφ in D, ∂nφ = 0 on ∂D.

Then σ1 ≥ 0 and for some C1, C2 ≥ 0,

(A.3) W (x, y) = (C1e
√
σ1y + C2e

−√σ1y)φ1(x).

Remark A.2. For the convenience of the readers, we supply some basic facts con-
cerning the eigenpairs {(σk, φk)}∞k=1 of (A.2): It can be arranged so that

(i) σk ∈ R for all k such that σ1 < σ2 ≤ σ3 ≤ . . . and σk →∞ as k →∞;
(ii)

∫
D
φiφjϕ

2 dx = δij ;
(iii) σ1 is a simple eigenvalue and the corresponding eigenfunction φ1 is strictly

positive in D̄;
(iv) σ1 is the unique eigenvalue with a non-negative eigenfunction, i.e. φk

changes sign on D for all k ≥ 2.

For the proofs of the above facts, see, e.g. [32, Sect. 6.5] or [50, Ch. 28 and 29].

A special case of Proposition A.1 arises when σ1 = 0.
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Corollary A.3. Let ϕ ∈ C2(D̄) be strictly positive on D̄, where D is a bounded
smooth domain in RN . Suppose W (x, y) ∈ C2(D̄ × R) is non-negative solution of

(A.4)

{
ϕ−2(x)∇x · (ϕ2(x)∇xW ) + ∂2

yW = 0 for x ∈ D, y ∈ R,
∂nW = 0 for x ∈ ∂D, y ∈ R.

Then W (x, y) is a constant.

Before we prove Proposition A.1, we establish the following elementary lemma.

Lemma A.4. Let γk (1 ≤ k ≤ k0) be given positive constants, and ak, bk (1 ≤
k ≤ k0) be given real numbers, then the function f : R→ R defined by

f(y) :=

k0∑
k=1

(ak cos(γky) + bk sin(γky))

has at least one real root.

Proof. Let F (y) :=
∑k0
k=1

(
ak
γk

sin(γky)− bk
γk

cos(γky)
)

. If F has at least one critical

point, then we are done, since f = F ′. Suppose not, then F is strictly monotone,
and as t→∞,

t−1

∫ t

0

F (y) dy → F (+∞) and t−1

∫ 0

−t
F (y) dy → F (−∞).

However, by properties of trigonometric polynomials, we also have

t−1

∫ t

0

F (y) dy → 0 and t−1

∫ 0

−t
F (y) dy → 0.

Hence F (−∞) = F (+∞) = 0 and F ≡ 0. This contradicts the assumption that F
has no critical points. �

Proof of Proposition A.1. Since W is non-trivial and non-negative, the strong max-
imum principle implies that W (x, y) > 0 for all x ∈ D, y ∈ R.

Let (σk, φk) be the k-th eigenpair of (A.2) counting multiplicities, so that σ1 <
σ2 ≤ σ3 ≤ . . . . Then by defining

ck(y) :=

∫
D

W (x′, y)φk(x′)ϕ2(x′) dx′,

we have W (x, y) =
∑∞
k=1 ck(y)φk(x) and that ∂2

∂y2 ck = σkck. Hence for each k,

there exist some Ak, Bk such that, for y ∈ R,

ck(y) =

 Ake
√
σky +Bke

−√σky if σk > 0,
Ak +Bky if σk = 0,
Ak cos(

√
−σky) +Bk sin(

√
−σky) if σk < 0.

Now, by applying the Harnack inequality to W (x, y) on D̄× [y0− 2, y0 + 2] for any
y0 ∈ R, there exists some constant C independent of y0 ∈ R such that

sup
x∈D,|y−y0|≤1

W ≤ C inf
x∈D,|y−y0|≤1

W.

Hence there exist c1, c2 > 0 such that 0 ≤ W (x, y) ≤ c1e
c2|y| for all x ∈ D and

y ∈ R. This implies that |ck(y)| = |
∫
D
W (x, y)φk(x)ϕ2(x) dx| ≤ c′1ec2|y| for y ∈ R.

As σk → ∞ when k → ∞, it is necessary the case that Ak = Bk = 0 for all



25

sufficiently large k. We may henceforth choose the largest positive integer k0 such
that at least one of Ak0 , Bk0 is non-zero. i.e.

(A.5) W (x, y) =

k0∑
k=1

ck(y)φk(x).

Claim A.5. If k0 > 1, then σk0 ≤ 0.

Suppose not, let σk0 > 0, then the term with the highest growth in y is multiplied
to φk(x), a function of x that changes sign. This is a contradiction. Hence σk0 ≤ 0.

Claim A.6. If k0 > 1, then σk0 < 0.

Suppose to the contrary that k0 > 1, and there is 1 < k̃ ≤ k0 (k̃ > 1 as the
principal eigenvalue must be simple) such that σk̃ = σk̃+1 = · · · = σk0 = 0 and

σk̃−1 < 0; i.e. W (y) contains the terms
∑k0
k=k̃

Akφk(x) + y
∑k0
k=k̃

Bkφk(x), and at
least one of Ak0 , Bk0 is non-zero.

We claim that Bk̃ = · · · = Bk0 = 0. Now, every term of (A.5) is bounded

from below except possibly the term y
∑k0
k=k̃

Bkφk(x). Suppose not, then by linear

independence of {φk}k0k=k̃
,
∑k0
k=k̃

Bkφk(x) is non-trivial, and changes sign (since

it is orthogonal in L2(D) to the positive function ϕ2φ1). This implies that for
large y, W (x, y) changes sign in x. This is a contradiction, so we conclude that
Bk̃ = · · · = Bk0 = 0 and Ak0 6= 0.

Next, observe that t−1
∫ t
−tW (x, y) dy →

∑k0
k=k̃

Akφk(x) as t → ∞. Again, we

notice that
∑k0
k=k̃

Akφk(x) changes sign, which contradicts the non-negativity of
W . This proves Claim A.6.

Claim A.7. k0 = 1.

Suppose not, then k0 > 1 and for each 1 ≤ k ≤ k0, σk ≤ σk0 < 0. For
x0 ∈ D, W (x0, y) is a linear combination of trigonometric functions, so we can
invoke Lemma A.4 to find some y0 such that W (x0, y0) = 0. This is impossible as
W > 0 for all x ∈ D and y ∈ R. Hence, Claim A.7 holds.

As k0 = 1, we must have σ1 ≥ 0, since otherwise

W (x, y) = (A1 cos(
√
−σ1y) +B1 sin(

√
−σ1y))φ1(x)

changes sign. Hence W (x, y) = (A1e
√
σ1y + B1e

−√σ1y)φ1(x) and we must have
A1, B1 ≥ 0. This completes the proof of Proposition A.1. �

Appendix B. Localization

Lemma B.1. Let I = (ξ∗, ξ
∗) ⊂ R+ be a bounded open interval. Suppose (along a

sequence (ε, I) = (εk, Ik)) that (i) ε/|I| → 0 and (ii) for some ξ̂ > 0, I → {ξ̂} in
the Hausdorff sense. Then any positive solution uε of (2.1) satisfies

ûε(x) ⇀ θξ̂(x)

weakly in H1(D) and strongly in C(D̄).

Proof. Define δ1 := |I|. By the proof of Lemma 2.3, ‖ûε‖Cγ(D̄) is bounded uniformly

for small ε and δ1. It follows that ûε is precompact in C(D̄). Next, we show that
it is also bounded, and hence weakly precompact, in H1(D).
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Claim B.2. There exists some constant C > 0 independent of ε and I such that
‖ûε‖H1(D) ≤ C.

To see the claim, divide (2.1) by µ = µ(ξ) and integrate in ξ ∈ (ξ∗, ξ
∗) to obtain

(2.15). Multiply (2.15) by ûε, and integrate by parts, we have∫
D

|∇xûε|2 dx ≤
∫
D

[
q1∇xm · ∇xûε + (r − ûε)q2ûε + ε2q3ûε

]
dx

≤ 1

2

∫
D

|∇xûε|2 dx+

∫
D

|q1|2|∇xm|2 dx+ C,

where q1, q2, q3 are given in (2.16), such that

‖qi‖L∞(D) ≤ C sup
D
ûε ≤ C ′ for i = 1, 2, 3.

Note that we have used in the first inequality ∂nûε = q1∂nm (by (M)) together with

the fact that [∂ξuε/µ]ξ
∗

ξ=ξ∗
≤ 0; and the uniform boundedness of supD ûε (Lemma

2.1) throughout. This proves Claim B.2.
Hence, by passing to a sequence, there exists û0 ∈ H1(D) ∩ Cγ(D̄) such that

ûε → û0 weakly in H1(D) and strongly in C(D̄).

Claim B.3. û0 is a weak lower solution to (1.3) with ξ = ξ̂. In particular, û0 ≤ θξ̂,
where θξ̂ is the unique positive solution to (1.3) when ξ = ξ̂.

We pass to the limit by using the weak formulation. Multiply (2.15) by a non-
negative test function ρ(x) ∈ C∞(D̄), and integrate by parts, we have
(B.1)∫

D
∇xρ · (∇xûε − q1∇xm) dx−

∫
D
ρ[(r − û)q2 + ε2q3] dx = ε2

∫
D
ρq4 dx ≤ 0.

Let δ1, ε/δ1 → 0 and use the boundedness of supD ûε, we have (recall the definition
of qi in (2.16))

q1(x)→ α0

µ0
û0, q2 → û0/µ0, q3 → ∂2

ξ

(
1

µ

)∣∣∣∣
ξ=ξ̂

û0,

where α0 = α(ξ̂), µ0 = µ(ξ̂). Thus (B.1) becomes∫
D

[
∇xρ ·

(
∇xû0 −

α0

µ0
û0∇xm

)
− ρû0(r − û0)

]
dx ≤ 0.

Since ρ is an arbitrary non-negative test function, this implies that û is a weak
lower solution of (1.3) (see, e.g. [30]). This proves the claim.

Next, define σ1 to be the principal eigenvalue of

(B.2) −µ0∆xφ− α0∇xm · ∇xφ+ (û0 − r)φ = σφ in D, ∂nφ = 0 on ∂D.

Claim B.4. Let σ1 be the principal eigenvalue of (B.2), then σ1 ≤ 0 and σ1 = 0
if and only if û0 = θξ̂ a.e., where θξ̂ is the unique positive solution of (1.3) with

(µ(ξ), α(ξ)) = (µ0, α0).

To establish the assertion, we observe that the principal eigenvalue of

(B.3) −µ0∆xφ− α0∇xm · ∇xφ+ (θξ̂ − r)φ = σφ in D, ∂nφ = 0 on ∂D



27

is zero, as a positive eigenfunction is given by e−α0m/µ0θξ̂. Recall that û0 ≤ θξ̂. It

follows by the variational characterization

σ1 = inf
φ∈H1(D)\{0}

∫
D
eα0m/µ0 [µ0|∇xφ|2 + (û0 − r)φ2] dx∫

D
eα0m/µ0φ2 dx

that σ1 ≤ 0 and equality holds if and only if û0 = θξ̂ a.e. The claim is proved.

Next, denote the midpoint of I by ξ′, and define

ṽε(x, ξ) := e−αm/µuε(x, ξ), Wε(x, τ) :=
ṽε(x, ξ

′ + ετ)

supx∈D ṽε(x, ξ
′)
,

then Wε(x, τ) is a positive solution of
µ∆xWε + α∇xm · ∇xWε + ∂2

τWε + 2ε∂ξ

(
α
µ

)
m∂τWε

+ε2
[
∂2
ξ

(
α
µ

)
m+

(
∂ξ

α
µ

)2

m2

]
Wε +Wε(r − ûε) = 0 in D ×

(
− δ12ε ,

δ1
2ε

)
,

∂nWε = 0 on ∂D × (−δ1/(2ε), δ1/(2ε)), supDWε(x, 0) = 1,

where µ = µ(ξ′ + ετ) and α = α(ξ′ + ετ) remain bounded.
By applying the Harnack inequality, for each M > 1, there exists CM (indepen-

dent of small ε) such that supD×[−M,M ]Wε ≤ CM . Hence we may apply Lp esti-

mates to extract a sequence of δ1, ε/δ1 → 0 so that Wε →W weakly in W 2,p
loc (D×R)

and strongly in C1
loc(D × R), where W (x, τ) is a non-negative, non-trivial solution

of {
µ0∆xW + α0∇xm · ∇xW + ∂2

τW + (r − û0)W = 0 in D × R,
∂nW = 0 on ∂D × R, and supDW (x, 0) = 1.

By Proposition A.1 (taking ϕ2 = exp(α0m/µ0) and h = û − r), we deduce that
the principal eigenvalue σ1 of (B.2) is non-negative. Hence, by Claim B.4, we must
have σ1 = 0, and that û0 = θξ̂ a.e. By the uniqueness of the limit û0, we deduce

that the convergence actually holds for the full family of ûε as δ1, ε/δ1 → 0. This
proves Lemma B.1. �

Appendix C. An Extension Lemma

In this section we prove an extension lemma that is used in the proof of Lemma
2.3. Our arguments are adapted from [35].

Proposition C.1. Let R, ε be given positive constants,

B′ := {x′ ∈ Rn−1 : |x′| < R},

and

B+ := {(x′, xn) ∈ Rn : |x′| < R+ 2ε, 0 < xn < 2ε}.

Then there exists a linear operator T : C∞(B′)→ C∞0 (B+), Tg = G such that

G(x′, 0) = 0 and ∂xnG(x′, 0) = g(x′) for x′ ∈ B′.

Moreover, for each r ≥ 1 and 1 ≤ p < nr
n−1 , there exists C > 0 such that

‖G‖W 1,p(B+) ≤ C‖g‖Lr(B′).
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Proof. Fix non-negative test functions ψ : C∞0 ([0,∞)) and ϕ : C∞(Rn−1) such that
ψ(0) = 1, ψ′(0) = 0,

suppϕ ⊂ {x′ ∈ Rn−1 : |x′| < 1},
∫
Rn−1

ϕ(y′) dy′ = 1.

Define for x′ ∈ Rn−1, xn ≥ 0

G(x′, xn) := ψ(xn)xn

∫
Rn−1

g(x′ − xny′)ϕ(y′) dy′.

It is easy to see that G satisfies the desired boundary conditions when xn = 0. By
rewriting G as

G(x′, xn) = ψ(xn)|xn|2−n
∫
Rn−1

g(y′)ϕ

(
x′ − y′

xn

)
dy′,

we may put the derivatives onto ϕ and get

∂xjG(x′, xn) = ψ(xn)

∫
Rn−1

g(x′ − xny′)ϕj(y′) dy′

+ δjnψ
′(xn)xn

∫
Rn−1

g(x′ − xny′)ϕ(y′) dy′,

where

ϕj(y
′) = ∂yjϕ(y′) if j < n, and ϕn(y′) = (2− n)ϕ(y′) +

n−1∑
j=1

∂yjϕ(y′)yj .

The proposition thus follows from the following lemma.

Lemma C.2. Let ϕ̃ ∈ C∞0 (Rn−1) be a test function. For each r ≥ 1, and each
1 ≤ p < rn

n−1 , there exists C > 0 such that

G̃(x′, xn) =

∫
Rn−1

g̃(x′ − xny′)ϕ̃(y′) dy′

then ∫
Rn−1

|G̃(x′, xn)|p dx′ ≤ Cx(1−n)( pr−1)
n ‖g̃‖pLr(B′).

Proof. Write

|G̃(x′, xn)| =
∣∣∣∣x1−n
n

∫
ϕ̃

(
x′ − y′

xn

)
g̃(y′) dy′

∣∣∣∣
≤ x1−n

n

∫
ϕ̃1− 1

r

(
x′ − y′

xn

)
ϕ̃

1
r

(
x′ − y′

xn

)
|g̃(y′)| dy′

≤
(
x1−n
n

∫
ϕ̃

(
x′ − y′

xn

)
dy′
)1− 1

r
(
x1−n
n

∫
ϕ̃

(
x′ − y′

xn

)
|g̃(y′)|r dy′

) 1
r

≤ C
(
x1−n
n

∫
|g̃(y′)|r dy′

) 1
r−

1
p
(
x1−n
n

∫
ϕ̃

(
x′ − y′

xn

)
|g̃(y′)|r dy′

) 1
p

≤ C
(
x1−n
n

∫
|g̃(y′)|r dy′

) 1
r−

1
p
(∫

ϕ̃(y′)|g̃(x′ − xny′)|r dy′
) 1
p

,
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where we used
∫
ϕ̃(y′) dy′ = 1 for the second inequality, and the L∞ boundedness

of ϕ̃ in the third inequality. Note that, by using Fubini’s Theorem,∫∫
ϕ̃(y′)|g̃(x′ − xny′)|rdy′dx′=

∫
ϕ̃(y′)

[∫
|g̃(x′ − xny′)|rdx′

]
dy′≤ C‖g̃‖rLr .

Hence, we may raise to the p-th power, and integrate in x′ to derive the result. �

By Lemma C.2, we see that for each 1 ≤ j ≤ n,∫
Rn−1

∣∣∂xjG(x′, xn)
∣∣p dx′ ≤ C(|ψ′(xn)xn|+ ψ(xn))px

(1−n)( pr−1)
n ‖g‖qLr(B′).

By our choice of p < rn
n−1 , the exponent of xn is greater than −1. Integrating with

respect to xn yields the desired result. �

The next result follows from Proposition C.1 via a partition of unity argument.

Proposition C.3. There exists a linear operator T : C∞(∂Ω)→ C∞(Ω̄), Tg = G
such that G

∣∣
∂Ω

= 0, ∂ν̄G
∣∣
∂Ω

= g (ν̄ is the outward unit normal vector on ∂Ω) and
for each r ≥ 1, 1 ≤ p < nr

n−1 , there exists C > 0 such that

‖G‖W 1,p(Ω) ≤ C‖g‖Lr(∂Ω).

Proof. Now, there exists a locally finite open cover {Uk} of ∂Ω, and corresponding
C2-smooth transformation

Ψk : B = {y ∈ Rn : |y| < 1} → Uk

such that Uk∩∂Ω = Ψk(B′) with B′ = {y ∈ B : yn = 0}, and for each x ∈ ∂Ω∩Uk,
and smooth function ϕ on Ω̄,

∂ν̄ϕ(x) = aijDiϕ(x) = [∂xn(ϕ ◦Ψk)] ◦Ψ−1(x)

i.e. we may straighten the boundary so that the boundary condition becomes zero
Neumann boundary condition. Take a partition of unity {ηk} subordinated to
{Uk}, then apply Proposition C.1 to (ηk ◦Ψk)(g ◦Ψk). By Proposition C.1, there

exists G̃k ∈ C∞0 (Ψ−1
k [Uk ∩ Ω̄]) satisfying G̃k = 0 and ∂ynG̃k = (ηk ◦Ψk)(g ◦Ψk) on

Ψ−1
k [Uk ∩ ∂Ω]. Let Gk(x) := (G̃k ◦Ψ−1)(x), we get

Gk(x) = 0, and ∂ν̄Gk(x) = aij∂xiG(x) = ηk(x)g(x) on Uk ∩ ∂Ω.

Finally, we set G(x) :=
∑
kGk(x). �
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[57] Sepideh Mirrahimi and Benôıt Perthame. Asymptotic analysis of a selection model with space.

J. Math. Pures Appl. (9), 104(6):1108–1118, 2015.

[58] Ikuko Miyamoto and Hidenobu Yoshida. Harmonic functions in a cylinder with normal deriva-

tives vanishing on the boundary. Ann. Polon. Math., 74:229–235, 2000. Dedicated to the
memory of Bogdan Ziemian.



32 WENRUI HAO, KING-YEUNG LAM, AND YUAN LOU
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