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Abstract— The focus of this paper is on the design of state
constrained controllers which are robust to time invariant
uncertain variables. Polynomial Chaos spectral expansion is
used to parameterize the uncertain variables, which permits
evaluation of the evolution of the uncertain states. The co-
efficients of the truncated polynomial chaos expansion are
determined using the Galerkin projection resulting in a set of
deterministic equations. A mapping into Bernstein polynomial
space permits determination of bounds on the evolving states.
Linear programming is used on the deterministic set of equation
with constraints as the predetermined bounds to determine
controllers which are robust to the epistemic uncertainties.
Numerical examples are used to illustrate the benefit of the pro-
posed technique for the design of rest-to-rest controllers subject
to deformation constraints; which are robust to uncertainties in
the stiffness coefficient for the benchmark spring-mass system.

I. INTRODUCTION

The problem of precision motion control of structures
in the presence of model parameter uncertainties has been
addressed by numerous researchers [1], [2], [3], [4]. The
technique can be broadly classified into two categories: (1)
sensitivity based robust control design which considers the
nominal model in the design and (2) an uncertain domain
based design which often is a worst case design.
Most of the controllers have considered minimizing the
residual energy, i.e., the undesired energy in the system at the
end of the maneuver. This is important in rest-to-rest class
of problems. This paper considers applications where con-
straints have to be imposed on states over the duration of the
maneuver, in the presence of model parameter uncertainties.
Building on the rich literature of the use of polynomial chaos
in control [5], this paper presents an approach which rewrites
the polynomials associated with the specified distributions
of the uncertain variables using Bernstein polynomials. The
mapping permits determination of time evolutions of the
bounds on the uncertain states. An optimization problem
can now be posed to ensure that the state constraints are
not violated for all possible realizations of the uncertain
variables. The proposed approach is attractive since it does
not require Monte Carlo simulations to estimate the bounds
on the states. A linear programming problem can be posed
to determine a controller which is robust to the uncertain
variables.
The structure of the paper is as follows: first, a review of
polynomial chaos is provided to characterize uncertainties
and propagate them through the dynamical model. This is
followed in Section III by the polynomial chaos mapping
using Bernstein polynomial basis function which illustrate
how the bounds on the states are determined. Section IV

elaborates the improvement on these bounds by splitting
the Bernstein coefficients. The final section illustrates the
robust controller design using linear programming and the
final results.

II. POLYNOMIAL CHAOS (PC) EXPANSION

Polynomial Chaos, introduced by Norbert Wiener in [6],
first approximated a stochastic state following a Gaussian
process by an infinite series expansion of orthogonal Hermite
polynomials. Xiu and Karniadakis in [7] proved that the
convergence of this series was exponential only for Gaussian
processes. Furthermore, they showed that stochastic pro-
cesses with other distributions could also be expressed as se-
ries expansions with exponential convergence if appropriate
orthogonal polynomials were chosen. This development was
termed as the generalised Polynomial Chaos (gPC) theory.

A. Methodology

Let a stochastic dynamical system be expressed in the form

ẋ(t, ξ) = f(x(t),p(ξ),u(t)) and x(t0, ξ) = x0 (1)

where, x ∈ Rn is the state vector, ξ ∈ Rm, the vector of
random variables, and u(t) the control input.
From gPC, the states can be expressed as

x(t, ξ) =

∞∑
i=0

xi(t)Ψi(ξ) (2)

where, Ψi(ξ) is a complete set of multivariate orthogonal
(w.r.t the pdf of ξ) polynomials and xi ∈ Rn is the time
varying coefficient vector of Ψi(ξ). The selection of the set
of orthogonal polynomials for popular distributions is given
by the Wiener-Askey scheme [7].

The expansion is typically truncated to a finite number of
terms (depending on the desired accuracy) as an approxima-
tion [7]. Hence, equation (2) is rewritten as

x(t, ξ) ≈
N∑
i=0

xi(t)Ψi(ξ) (3)

The objective is to evaluate the unknown vectors xi(t) over
time. Equation (3) is substituted in equation (1) to get

N∑
i=0

ẋi(t)Ψi(ξ) = f(
N∑
i=0

xi(t)Ψi(ξ),p(ξ),u(t)) (4)

The essence of PC expansion is to form a set of deterministic
differential equations from the stochastic equation (4); whose
solution allows us to approximate the states over time. This
can be done by performing the Galerkin Projection on it



over each of the orthogonal basis functions (i.e. Ψk, where
k = 0, 1, . . . , N ). The solution to these equations yield the
desired elements of xi(t).

B. Numerical Example
An implementation of PC on a simple 2 mass spring

damper system (Fig. 1) has been shown and compared
with Monte Carlo (MC) simulations. It is assumed that the

Fig. 1. 2 mass spring damper system

spring constant (k) is uncertain with a uniform distribution:
k ∈ U(0.7, 1.3). The orthogonal basis functions Ψi(ξ) for
a uniform distribution are Legendre polynomials. Since the
domain of orthogonality is [-1,1], k is rewritten in terms of
another random variable ξ (∈ U(−1, 1)) as: k = 1 + 0.3ξ.
The non-uncertain parameters were chosen as: c = 1; m1 =
5; m2 = 5; y(0) = (1, 0, 0, 0)T and u(t) = 0. Using
the Galerkin approach and truncating the PC expansion to
N = 5, ((N +1)n = 24) deterministic equations are formed
which are used to evaluate the PC coefficients. Fig. 2(a)
shows the mean of the position of m1 evaluated using PC. It
is seen to overlap with the mean derived from 10000 Monte
Carlo (MC) simulations proving convergence in the given
interval of time.

III. DETERMINATION OF BERNSTEIN BOUNDS

In numerous fields of engineering, it is often desired to
determine the bounds on the range of a particular state or
function. If the particular function of interest is, or can be
well approximated by a multivariate polynomial, Bernstein
polynomials can be exploited to determine these bounds [8].
In fact, algorithms have also been proposed to determine
the exact range of multivariate polynomials [9]. The work
presented here, however, makes use of a basis transformation
from the existing one (of PC expansion) to the Bernstein
one to use the bounding properties. As bounds only exist for
compact support, the procedure only works when variables
have a finite distribution.

A. Methodology
A polynomial function expressed in the othogonal bases

(like Legendre, Jacobi, etc.) can also be expressed in power
(i.e. Pi : 1, ξ, ξ2, ξ3, . . .) or Bernstein bases. Since, such
polynomials with finite orthogonality domain are used as
bases in PC expansion of stochastic states with compact
support, the first objective is a basis transformation from the
orthogonal bases to the Bernstein one.
A stochastic state expressed as a PC Expansion (equation
(3)) now needs to be expressed as

xj(t, ξ) =
N∑
i=0

bji(t)Bi(ξ) (5)

where xj is the jth state of the model, Bi are the multivariate
Bernstein polynomials with domain ξ = [0, 1]m and bji(t)
are their coefficients.
The linear transformation of the coefficients involves 3
stages. The first stage requires the bases Ψi (which has
domain of orthogonality [a, b]) to be transformed to or-
thogonal bases Ψ′i with orthogonality domain [0, 1] (as the
property of Bernstein polynomials to be utilized is satisfied
only within that domain). The second stage requires the
transformation from Ψ′i to the power bases Pi followed by
the final transformation from Pi to Bi.
Without loss of generality, the subscript j is dropped (to
indicate any state member) for convenience from equation
(5) and the equation is rewritten as

x(t, ξ) =

d,d,...d∑
ξ1,ξ2,...ξm=0

bξ1,ξ2,...ξm(t)Bdξ1,ξ2,...ξm(ξ) (6)

where Bdξ1,ξ2,...ξm(ξ) =
m∏
i=0

Bdξi(ξi) are the m-dimensional

Bernstein polynomials, bξ1,ξ2,...ξm are the Bernstein coeffi-
cients, and d is the degree of the univariate polynomials.
Now, the range enclosing property of Bernstein polynomials
over the box ξ = [0, 1]m

x(t, ξ) ⊆
[ d,d,...d

min
ξ1,ξ2,...ξm=0

bξ1,ξ2,...ξm ,
d,d,...d
max

ξ1,ξ2,...ξm=0
bξ1,ξ2,...ξm

]
(7)

can be used to immediately obtain bounds on the states.
Equation (7) can also be expressed as a convex hull property
by defining control points.{(

ξ
x(t, ξ)

)
: ξ ∈ [0, 1]m

}
⊆

conv

{(
(b− a) ∗ ( ξ1d ,

ξ2
d , ...

ξm
d )

bξ1,ξ2,...ξm(t)

)
:

ξ1, ξ2, ...ξm = 0, 0, ...0 to d, d, ...d

}
(8)

where conv{M} denotes the convex hull of set M.

B. Illustrative Example (contd.)

The numerical example from section II-B is continued
to elaborate the method. Bounds determination is, however,
shown only for one of the states (Mass 1 position). Bounds
on the other states can be determined in the same way. In
Legendre bases, we have

y1(t) = y10(t)Ψ0 + y11(t)Ψ1 + ...+ y15(t)Ψ5. (9)

After a basis transformation described in [10], the state is
expressed as

y1(t) = b10(t)B5
0(ξ) + ...+ b15(t)B5

5(ξ) (10)

Using the property mentioned in equation (7), at every instant
in time, the maximum and minimum values of the state are
obtained directly by observing the coefficients [b10, ..., b15]T .
The maximum value of the coefficients provide the upper
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Fig. 2. (a) MC Simulations (10000), MC Mean and PC Mean for Mass 1 Position - One uncertain variable, (b) Definite Bounds obtained from Bernstein
coefficients, (c) Unsplit and Split coefficients at time = 29

bound while the minimum values provide the lower bound.
Fig. 2(b) shows that the state trajectories from MC simula-
tions of the model all lie within the envelope determined by
the bounds.

A slice taken from Fig. 2(b) at time t = 29 is shown in
Fig. 2(c). The red stars denote the control points derived
from equation (8).

IV. SPLITTING BERNSTEIN COEFFICIENTS

Fig. 2(c) makes a visual point towards stating that the
bounds are conservative and have room for improvement.
Garloff in [11] shows that these bounds can be improved if
the domain of the Bernstein polynomials is subdivided. This
subdivision can be done using De Casteljau’s algorithm [12].

A. Methodology

Splitting of Bezier curves was first presented by French
engineer Paul de Casteljau [13]. His algorithm is used to
split the convex hull into segments. In our case, that reduces
the conservative nature of the bounds.
The lower and upper bounds for the curve in Fig. 2(c) after
splitting are given by: min(b1i) = 0.4979 and max(b1i) =
0.5021 respectively. The lower bound increases and the upper
bound decreases, thus improving the definitive bound. In this
particular case, the range on the bounds see a substantial
improvement of 54.13 % when the coefficients are split.
Throughout the procedure, the splitting has been done once
and for all cases at ξ = 0.5. Splitting the coefficients more
than once is possible and does improve bounds. However,
splitting the coefficients more than once greatly increases
computational requirements considering that the computa-
tions have to be performed at all times. Splitting can also be
done at values other than ξ = 0.5 and would yield different
results. It would be ideal if the splitting could be done at
an optimal point, however determining the optimal point at
every stage is once again expensive and a computational
compromise is made.

V. CONTROLLER DESIGN

Determination of definite bounds on the states of a stochas-
tic process leads to an obvious application in controller
design. The information from the Bernstein coefficients can

now be used to implement a robust controller for the states,
in spite of the uncertainties in the model.
The controller is designed in a discrete setting of the system.
A Linear Programming (LP) formulation is used (as the con-
straints can be reduced to linear equalities and inequalities)
to solve for the desired control input. The LP problem formu-
lation for linear dynamical systems as elaborated by Singh
in [14] is first discussed before elaborating the incorporation
of the Bernstein bounds.

A. LP Problem for Linear Dynamical Systems

Consider the linear discrete system

x(k + 1) = Ax(k) +Bu(k) (11)

The recursive relation of (11) can be expressed as a linear
expression of the initial conditions and the control input u
as

x(k + 1) = Akx(1) +

k∑
i=1

Ak−iBu(i) (12)

where x(1) is the initial condition of the states.
The objective of the problem is to determine a control input
u which drives the dynamical system from an initial state
x(1) to a final state x(Nt + 1), where k = Nt is the final
iterative step of equation (11) in a given finite interval of
time. Thus, the known quantities of the problem are initial
time (T0), final time (Tf ), initial conditions (x(1)) and final
conditions (x(Nt + 1)).
The LP problem is posed as a feasibility problem in this
case with linear constraints. From equation (12), the final
condition constraint is given by

[
ANt−1B ANt−2B . . . AB B

]

u(1)
u(2)

...
u(Nt)

 =

x(Nt + 1)−ANtx(1) (13)

The constraints on the control can be easily implemented as

ulb 6 u(k) 6 uub ∀ k ∈ [1 : Nt] (14)



where ulb and uub are lower and upper bounds on the
control input respectively. The constraints on the states can
be implemented using equation (12) and an output matrix.
The solution to the problem stated above yields the desired
control input over all time instants (k = [1, ..., Nt]).

B. LP Problem for Stochastic Processes

The LP formulation for a stochastic process has a similar
framework as that of the deterministic problem. However,
the primary difference lies in the fact that even though the
desired final states are known, the final state values for a
stochastic process remains uncertain.
To formulate the problem considering uncertainty, the resid-
ual energy of the final states is chosen to be the cost to be
minimized. The residual potential energy is a function of
the position states and the residual kinetic energy is only
a function of the velocity states. Hence, constraining the
residual energy constrains the final state residues.
However, the residual energy is a quadratic term and does
not fit the requirements of a LP problem. Hence, the residual
energy constraint is equivalently rewritten to conform to LP
rules. This framework to realize a control input is also known
as the Minimax Control as the scheme seeks to minimize
the maximum magnitude of residual energy of the final
states over the domain of uncertainty [4].
The final problem can be posed as

minimizeu,f f

subject to − f 6 yi1(Nt + 1) 6 f

− f 6 yi2(Nt + 1) 6 f

...

− f 6 yir(Nt + 1) 6 f ∀i = 0, 1, . . . p

− f 6 ẏi1(Nt + 1) 6 f

...

− f 6 ẏir(Nt + 1) 6 f

ulb(k) 6 u(k) 6 uub(k) ∀k = 1, 2, . . . Nt

State Constraints ∀k = 1, 2, . . . Nt

where p is the number of uncertain models selected over
the space of uncertainty on which the residue is to be
minimized and ulb & uub are the iterative bounds on the
control. yi represents the states transformed using the mass
and stiffness matrices of the system and the state constraints
are the desired state restrictions during the control operation.
A similar approach can be used to formulate a LP problem
with a L1 cost function [14].

C. LP problem with Bernstein coefficients

In the previous section it was stated that the number of
models used to form the constraints was p. Accurate repre-
sentations of multivariate stochastic systems with sampling
require a large number of such samples. The magnitude of
this number exponentially increases with the dimensionality
of the uncertainty [15]. Hence, the robustness of the con-
troller is limited by the number of samples of the model

chosen.
However, when the stochastic process has a Bernstein formu-
lation, the control points of the Bernstein expansion provide
absolute deterministic bounds on the truncated PC expansion
of the states. Hence, a smart sampling method which requires
the model samples to be the control points (which make the
convex hull) always makes the control design valid.
The case for using the unsplit control points is first presented
before the split control points case. Once again, the same
example is used to show the theory discussed.

D. Illustrative Example

In this section, the method to formulate the LP problem
and solve it has been shown. Considering the model from
Fig. 1, the dynamics are given by the chosen matrices

M =

[
4 0
0 2

]
, C =

[
0.3 −0.3
−0.3 0.3

]
, K =

[
k −k
−k k

]
(15)

For this example, it is once again assumed that the uncer-
tainty in the model is one dimensional and the uncertainty
lies in the spring constant value

k ∈ U(0.8, 1.2) (16)

Hence, To calculate the L1 or L∞ form of the residual
energy, the square root of K matrix is desired. Thus, a pseudo
spring (with spring constant kp) is attached to the first mass
to make the stiffness matrix positive definite. Therefore,

Kh =

[
k + kp −k
−k k

]
(17)

For all simulations, Kh is used as the effective stiffness
matrix with the value of kp being 0.05.
As seen previously, in order to formulate the LP problem,
a discrete setting is necessary. The whole procedure for
PC expansion is followed to obtain the Legendre states in
discrete format.
Using the same notation as in section II, the state space
model equation can be written as

ż1
ż2
ż3
ż4

 =


0 0 1 0
0 0 0 1
−a
m1

a
m1

−c
m1

c
m1

a
m2

−a
m2

c
m2

−c
m2



z1
z2
z3
z4

 +


0
0
1
m1

0

u (18)

where a = (1 + 0.2ξ). Following a PC expansion and
a Galerkin projection, a set of deterministic equations are
obtained.

ż10〈Ψ0,Ψ0〉 = f10(z10, . . . , z45, u) (19)

...

ż45〈Ψ5,Ψ5〉 = f45(z10, . . . , z45, u) (20)

Equations (19) through (20) are discretized to yield

Z(k + 1) = AZ(k) +Bu(k) = AkZ(1) +

k∑
i=1

Ak−iBu(i)

(21)



where Z = [z10, . . . , z45]T are the Legendre coefficients and
k is the iteration number. The Legendre states at final time
is given by

Z(Tf ) = Z(Nt + 1) = ANtZ(1) +

Nt∑
i=1

ANt−iBu(i) (22)

The transformation from Legendre states to Bernstein states
is linear and the transformation matrix is said to be repre-
sented by MN . Therefore, the terminal states in Bernstein
form are

ZB(Tf ) = MNZ(Nt + 1) =

MNA
NtZ(1) +

Nt∑
i=1

MNA
Nt−iBu(i) (23)

where ZB is a vector of dimension (n(N + 1) = 24)
containing all the Bernstein coefficients of the Bernstein
basis functions obtained under the influence of the input
u(k). The objective of the example is to find a control input
which can drive the system from its initial states ([0, 0, 0, 0]T )
to its final states ([1, 1, 0, 0]T ) while constraining the input to
remain within the domain [−1 1] and constraining the rela-
tive displacement of the masses to remain within 0.1. From
the desired final states, the desired Bernstein coefficients at
the final time can be easily determined as

ZBd(Tf ) =
[
1, . . . (12) . . . , 1, 0, . . . (12) . . . , 0

]T
(24)

Thus, the residual states are

X(Tf ) =
[
x1 x2 ẋ1 ẋ2

]T |Tf
= ZB(Tf )−ZBd(Tf)

(25)
where x1 and x2 are vectors of dimension 6 having the
Bernstein coefficients of the final residual positions of mass 1
and 2 respectively. Similarly, ẋ1 and ẋ2 hold the coefficients
for their residual velocities.
Now depending on the way in which the residual energy
constraint is implemented (L1 or L∞), separate formulations
of the LP problem can be made.
Defining new states

y
(i)
1 =

√
Kh

(i)

(1,1)x
(i)
1 +

√
Kh

(i)

(1,2)x
(i)
2 (26)

y
(i)
2 =

√
Kh

(i)

(2,1)x
(i)
1 +

√
Kh

(i)

(2,2)x
(i)
2 (27)

y
(i)
3 =

√
M (1,1)ẋ1

(i) +
√
M (1,2)ẋ2

(i) (28)

y
(i)
4 =

√
M (2,1)ẋ1

(i) +
√
M (2,2)ẋ2

(i) (29)

where i = 0, 1, . . . , p are the sample models and x(i)
a is the

ith member of xa. In this framework, as stated earlier, the
samples are selected to be the control points of the convex
hull enveloping the uncertain region. Therefore, p = N = 5.√
Kh

i
(r,c) refers to the rth row and cth column of the matrix√

Kh defined for k(i) where k(i) is defined as

k(i) = 0.8 + (1.2− 0.8)
i

N
(30)

For a L∞ formulation, the nature of constraints is provided
in the optimization problem in section (V-B). Since there are
4 states in the model, the constraint equations are

−f 6 y
(i)
j 6 f for j = 1, 2, 3, 4 (31)

These constraints can be exercised with the help of an output
matrix Cl∞ The constraints can therefore be written in a
matrix format as

[
±Cl∞MNA

Nt−1B . . .± Cl∞MNB −124,1
]︸ ︷︷ ︸

H1±


u(1)

...
u(Nt)
f


︸ ︷︷ ︸

z̃

6 ±h1 (32)

where h1 is the vector of constant terms from equation (31).
Hence, the final problem can be stated as

minimize f = c̃T z̃

subject to Hz̃ 6 h

z̃min 6 z̃ 6 z̃max
|Relative Mass Position|6 0.1

(33)

where

c̃T = [0 . . . 0 1] , z̃ = [u(1) . . . u(Nt) f ]
T (34)

H =

[
H1+

H1−

]
, h =

[
h1

−h1

]
(35)

umin(1)
...

umin(Nt)
0

 6 z̃ 6


umax(1)

...
umax(Nt)
∞

 (36)

On solving the LP problems the desired control inputs are
obtained. Fig. 3(a) shows the variation of residual energy
with stiffness for both norms.

E. LP Problem with split Bernstein coefficients

Using the previously illustrated example, the methodology
to apply the split Bernstein coefficients to the LP problem is
shown in this section.
Initially, the order of PC expansion chosen was (N =
5). Hence, each state was represented by (N + 1 = 6)
coefficients. Since there are 4 states in our chosen problem,
the total number of coefficients were ((N+1)×4 = 24). As
the Bernstein coefficients are split, the Bernstein coefficients
representing each state increases to (2N + 1 = 11) and the
total number of coefficients become (11× 4 = 44).
Following the procedure described previously, the desired set
of Bernstein coefficients at final time (Tf ) is now given by

ZBd(Tf ) =
[
1, . . . (22) . . . , 1, 0, . . . (22) . . . , 0

]T
(37)

where ZBd(Tf ) ∈ R44.
New states are once again defined by equations (26) through
(29). As the number of control points have increased on



(a) (b) (c)

Fig. 3. (a) Residual Energy Sensitivity, (b) Relative Displacement with Bernstein envelope, (c) Residual Energy sensitivity comparison

splitting the Bernstein coefficients, the number of samples
increase to p = 2N + 1 = 11. All the Bezier curves (i.e. the
residual state curves with respect to stiffness) were split at
their midpoints (i.e. at k = 1 or ξ = 0.5). Hence, k(i) for
this scheme of implementation is defined as

k(i) = 0.8 + (1.2− 0.8)
i

2N + 1
∀i = 0, 1, . . . , p = 11

(38)
The rest of the formulation remains identical. Considering
Cl as the output matrix (depending on the L1 or the L∞
formulation), the inequality constraints are given by

[
±ClMBMNA

Nt−1B . . .± ClMBMNB,−1
]︸ ︷︷ ︸

H1±


u(1)

...
u(Nt)
f


︸ ︷︷ ︸

z̃

6 ±h1 (39)

where h1 is the vector of constant terms derived from the
constraint equations. The final problem can be summarized
by equations (33) through (36).
On solving the split LP problem, the control is used to make
MC simulations of the relative displacement of the masses
(Fig. 3(b)) and is shown to lie within the constraints (6
0.1) as well as within the envelope of Bernstein Bounds. A
comparison between the unsplit and split methods based on
residual energy sensitivity is shown in Fig. 3(c). The dotted
curves correspond to the split method while the solid lines
correspond to the unsplit method. The difference in colour
corresponds to results obtained from different orders of PC
expansion.
It is evident that in case of the split method, the residual
energy has lower values at the edges. Also, as expected, with
an increase in the order of the PC expansion, the residual
energy improves.

VI. CONCLUSION

This paper proposes to exploit the Bernstein Polynomials
to determine the bounds of states of uncertain dynamical
systems. A two mass spring system is used to illustrate the
development of a set of deterministic differential equations
after parameterizing the time-invariant model parameter un-
certainties using polynomial chaos series. The coefficient of

the Bernstein polynomials define a convex hull which permits
determination of the upper and lower bounds of the uncertain
evolution of the system states. The splitting of the Bernstein
coefficients allow the development of a tighter convex hull.
Finally, a rest-to-rest maneuver for a system with uncertain
stiffness is used to illustrate the design of a state constrained
controller which is robust to model parameter uncertainties.
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