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1. INTRODUCTION

A cline describes a gradual change in genotypic or phenotypic frequency as a function of
spatial location. Clines often occur in species distributed along an environmental gradient, for
instance in temperature, where alternative phenotypes or genotypes are better adapted to the
different extremes of the environment. They are frequently observed in natural populations
and are important objects of research in evolutionary biology and ecology (e.g. [1], [6], [13]).
Measurements of their shape admit inferences about the relative strength of migration and
selection.

The mathematical theory of clines was initiated by Haldane [20], who derived a reaction-
diffusion equation for the equilibrium allele frequencies at a diallelic locus subject to spa-
tially varying selection along a single spatial dimension. He computed the cline, the spa-
tially non-constant solution, for special cases. The mathematical theory of clines became a
very active research area in the 1970s, when the consequences of various assumptions about
spatial variation in fitnesses and about migration patterns were investigated (Slatkin [48],
Nagylaki [34-36]). These authors derived parabolic partial differential equations to describe
and study not only the allele frequencies at equilibrium, but also their evolution. At about
the same time, and motivated by this work, Conley [12], Fleming [17], Fife and Peletier
[15,16], and Henry [21] developed and employed advanced mathematical methods to inves-
tigate existence, uniqueness, and stability of clinal solutions under a variety of assumptions
about fitnesses. We refer to spatially nonuniform stationary solutions of the parabolic PDE
as clines. More recently, Lou, Nagylaki, and their collaborators [26-28, 30, 42—44] extended
previous work in several directions by modeling migration by general elliptic operators on
bounded domains in arbitrary dimensions, by admitting wide classes of fitness functions, by
including dominance, and by studying multiallelic loci. Several of these extensions revealed
qualitatively new features. The theory of one-locus clines has been reviewed in [40] and [29].

In the present work, we study two-locus clines. Understanding their properties is of bio-
logical relevance because many traits are determined by multiple genetic loci which undergo
recombination. The resulting mathematical models are much more complex than one-locus
models, because the interaction of selection and migration generates probabilistic associa-
tions (correlations) among these loci, so called linkage disequilibria, which are eroded in
turn by recombination. We shall focus on the simplest case of two diallelic loci with addi-
tive fitnesses. The first study of a two-locus cline model is due to Slatkin [49], who showed
numerically that the linkage disequilibrium generated between the two loci tends to steepen
the cline. Barton [4, 5] derived some general results about the consequences of linkage on

the linkage disequilibria among multiple loci and provided numerical results that can guide
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intuition. Most recently, Biirger [10] analysed a two-locus model in which, following Hal-
dane [20], simple step functions are used to describe the spatial dependence of fitnesses along
the real line. Using a singular-perturbation approach, an explicit approximation of the two-
locus cline was obtained for the case of strong recombination. The steepening of the cline by
linkage could be proved and quantified.

Our aim here is to develop a rigorous mathematical theory for the existence, uniqueness,
and stability of two-locus clines on bounded domains in R” for fitnesses depending on the
spatial location in a general way. In Section 2, we introduce the basic model, which is formu-
lated as a system of semilinear parabolic PDEs. In Section 3, we collect several preliminaries
that will be used subsequently. Section 4 is devoted to the study of the boundary equilibria.
These can be monomorphic equilibria, i.e., constant stationary solutions such that both loci
are globally fixed for one allele, or clines at one locus with the second locus fixed for one or
the other allele. For the monomorphic equilibria, stability and bifurcations are determined.

In Section 5, we investigate the case of no recombination. The results follow from the
theory of diallelic and multiallelic one-locus models [26-28] and provide the basis for the
investigation of clines maintained under weak recombination, which is the topic of Section
6. There, existence of an asymptotically stable two-locus cline is proved based on a regular
perturbation argument. Finally, in Section 7, we treat strong recombination. This may be
the biologically most frequently realized case because it applies when the loci are located
on different chromosomes or on the same chromosome, but not close together. We prove
existence, uniqueness, and global stability of a two-locus cline. In addition to standard ellip-
tic and parabolic PDE methods, our proofs invoke perturbation techniques, persistence, and
dynamical systems theory. The article closes by a brief discussion and by mentioning some

open problems.

2. MobEL

We consider a monoecious, diploid population that occupies a bounded, open domain
Q c R" with C? boundary dQ. Fitness of individuals depends on location, but is independent
of time, population density, or genotype frequencies. It is determined by two diallelic loci,
A and B, which recombine at rate r > 0. We model migration by diffusion and assume it
is homogeneous, isotropic, and genotype-independent. If the migration variance is o, the
diffusion constant is d = 30 [34,37].

If the alleles at locus (A are denoted by A and a, and those at 8 by B and b, then there
are the four possible gametes AB, Ab, aB, and ab, which we label as i = 1, 2, 3, and 4,
respectively. We write I = {1, 2, 3,4} for the set of gametes. Let the frequency of gamete
i at position x € Q and time ¢ be p; = pi(x,1), where p; > 0 and Y}, p; = 1, and let
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p = (p1, p2, p3. 4)". We denote the usual measure of linkage disequilibrium by

D = D(p) = pips — p2p3 - (2.1)

If w;j(x) is the fitness of the diploid genotype i; at location x € €, then

4 4
wi=winp) = > wi(9p; and w=w(x,p) = > wip; (2.2)
=1 i=1
are the marginal fitness of gamete i and the population mean fitness, respectively. As is
biologically reasonable and common, throughout we posit w;; = wj and w4y = wos, i.e.,
absence of position effects, and assume that every w;; is real valued and Holder continuous,

e, w; € C?(Q) for some y € (0, 1).

2.1. Evolutionary equations. We assume that (i) the three evolutionary forces selection,
migration, and recombination are of the same order of magnitude and sufficiently weak, (ii)
migration is genotype independent, spatially uniform, and isotropic, and (iii) individuals mate
locally at random so that Hardy-Weinberg proportions are obtained locally. By approximating
the exact discrete-space discrete-time model ([8], [39]) by a continuous-space continuous-
time model as in [37], the evolution of the gamete frequencies p;, i € I, is described by the

following system of partial differential equations:

o0,p; = dAp; + 58S i(x, p) — n;rD for (x,1) € Q x (0, 00), (2.3a)

o,pi =0 for (x,t) € 0Q % (0, ), (2.3b)
4

pi(x,0) > 0 and Z pi(x,00=1 forxeQ (2.3¢)

i=1
(cf. [10,29,49]). Here, A is the Laplace operator in R", d > 0 the diffusion constant, s > 0 a
measure of the strength of selection, » > 0 the recombination rate,

m=m=-m=-n=1, (2.4)

and v is the unit outer normal vector to the boundary 0€2. The terms n;7D describe the effects

of recombination (see Section 2.3). The functions

Si(x, p) = pi(wi —w) (2.5)

arise from selection (see Section 2.4).
In many situations, it will be more convenient to scale away d because we focus on the

role of recombination. Therefore, if we fix d > 0 and set A = s/d, p = r/d, rescale time
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according to T = td, and return to ¢ instead of 7, we can rewrite (2.3) as

0ipi = Api + AS i(x, p) — nipD for (x,7) € QX (0, ), (2.62)

o,pi =0 for (x,1) € 9Q x (0, ), (2.6b)
4

pi(x,0)> 0 and » pi(x,0)=1 forxeQ. (2.6¢)

i=1

2.2. Basic properties of the dynamics. If the initial data p;(x, 0) are continuous on Q, then

(2.6) has a unique classical solution p(x, t) for every p > 0 that exists for all # > 0. It satisfies

4
pi(x, 1) > 0 and Z pi(x,5)=1 on Qx (0, 0). 2.7)

i=1

In addition, if for some i € I,
pi(x,0) £ 00on Q, then pi(x,1) > 0 on Q x (0, 00). (2.8)

The first assertion in (2.7) and (2.8) follow from the strong maximum principle for parabolic
equations [45]. For the second assertion in (2.7), we observe from (2.2), (2.4), (2.5), and
(2.6a) that
4 4 4
8, [Z pi] =A (Z p,-) + /lw(l - Z pi] : (2.9)
i=1 i=1 i=1
Therefore, uniqueness of solutions of (2.9) yields Z?zl pi(x,t) =1 (see [29]).
We define

4
X = {(ul,ug, usou) € CQ10.11) 0 ) u; = 1}1 (2.10)

i=1

and
Xo ={(ur,up,uz,us) € X: uy+uy=00ruz+us =0o0ru; +us =0oru, +uy =0}, (2.11)

where X is the subset of X that corresponds to fixation (across the whole population) of at
least one of the alleles at one of the loci. We define ¥ to be the semiflow generated by (2.6)
in X, i.e., for initial data U, € X and every t > 0 we set ¥,(Uy) = p(-, 1), where p(-, 1) is the
solution of (2.6) corresponding to p(:,0) = Uy(-). The above considerations show that X is
positively invariant under the flow W. It is easily seen that each of the four ‘edges’ in X is

invariant. In addition, we have the following property.

Lemma 2.1. If p > 0, then Y maps X \ X into the interior of X.

'We write C(Q; $) for the space of S -valued uniformly continuous functions on Q equipped with the supre-
mum norm, and C(Q) = C(Q; R).
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Proof. It is sufficient to consider the flow on the boundary of X. By (2.8), it is sufficient to
assume p;(x, 0) = 0 for some i. By symmetry, we need to consider only the case p;(x,0) = 0.
Because p(-,0) ¢ Xo, pi1(x,0) = 0 implies the existence of x,, x3 € Q such that p,(x,,0) >
0 and p3(x3,0) > 0. Then, again by the maximum principle for parabolic equations (and
because of Neumann boundary conditions), p»(x, ) > 0 and p3(x, ) > 0 on Q X (0, o). Now,
we argue by contradiction to show that p;(x, ) > 0 on Q x (0, o). Suppose that p;(x;,#,) = 0
for some x; € Qand t; > 0. Then S, (x;, p(x1,#,)) = 0. If x; € Q, then d,p1(x;,#,) < 0 and
Api(x1,t;) = 0, which contradicts

Op1(x1, 1) = Api(x1, 1) = p po(x1, t)p3(x1, 1) > 0. (2.12)

This leaves us with the case x; € dQ and p(x, ;) > 0 for all (x,7) € Q X (0, ), for which
the Hopf lemma shows that 0, p;(x;,#;) < 0. This contradicts (2.6b). Therefore, p;(x,1) is

positive on Q whenever ¢ > 0. O

2.3. Properties of recombination and linkage disequilibrium. The measure D of linkage
disequilibrium can be interpreted as the covariance of the random variables indicating pres-
ence or absence of allele A (B) at locus (A (B). Indeed, from (2.7) we deduce

D = pips— pap3 = pi(p1 + p2 + p3 + ps) — (p1 + p2)(p1 + p3) = pap — paps,  (2.13)
where pap = p1, and
pa =p1+prand pg = p; + p3 (2.14)

denote the frequencies of alleles A and B, respectively. In particular, recombination erodes
linkage disequilibrium because, in the absence of diffusion and selection, 0,D = n;0,p; = —pD
for every i € I, as we easily derive from (2.13) and (2.6a). Recombination also generates
missing gametes. For instance, if p;(x,0) = 0, but p,(x,0) > 0 and p;(x,0) > 0, then
recombination will generate gamete AB immediately, i.e., pi(x,f) > 0 for ¢ > 0 (see also
Lemma 2.1). Consult [18] and [23] for important early treatments of linkage disequilibrium,
and to [50] for its applications in modern genetics.

If recombination is absent, i.e., o = 0, then alleles on the same gamete are never separated
and therefore each gamete i € I may be regarded as an allele at a single locus. Thus, the
system (2.6) reduces to a one-locus system with four alleles. This case is treated in Section 5.

If recombination is strong relative to selection and diffusion, then rapid decay of linkage
disequilibrium D to values close to zero will occur. In the limiting case of D = 0, i.e.,
vanishing covariance, the loci become independent. In Section 7, we treat the case p > 1 as

a perturbation of that of two independent loci.
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2.4. Assumptions on selection. Concerning selection, which arises as a consequence of
a spatially heterogeneous environment, we assume that both loci are subject to so called
additive selection, i.e., we ignore dominance and epistasis. Therefore, we can assign the
Malthusian parameters %a(x) and —%a(x) to the alleles A and a, and %,B(X) and —%,B(x) to
B and b, where a(x) and SB(x) are real-valued functions on Q. They reflect the influence of
environmental heterogeneity on the fitnesses of the alleles. Then the fitness coefficients of
the gametes AB, Ab, aB, ab are

5100 = 3la(0) + )], s2(x) = 3[a(x) -],
53(0) = 3[=a(x) + B)],  s4(x) = —3[a(x) +BX)], (2.15)

respectively, and the genotypic fitnesses are w;;(x) = s;(x) + s;(x). Using >}; pi(x,t) = 1,
straightforward calculations yield

S1(x, p) = pila(x)(ps + pa) + B(X)(p2 + pa)l, (2.16a)
Sa2(x, p) = p2la(x)(ps + pa) = BX)(p1 + p3)], (2.16b)
S3(x, p) = ps[—a(X)(p1 + p2) + BX)(p2 + po)l, (2.16¢)
S4(x, p) = pal—a(X)(p1 + p2) = B(X)(p1 + p3)l. (2.16d)

Throughout this paper, we will study (2.6), or the equivalent (2.3), by assuming (2.16). In
addition, the following assumption will play an important role:
(A) The functions a(x) and B(x) change sign in Q and are of class C?(Q) for some y € (0, 1).

3. PRELIMINARIES

3.1. Eigenvalue problems with indefinite weight. The linearized problem of (2.6) at an
equilibrium p = (py, P, P3, Pa)7, pi = pi(x), reads

AD + J|;® +ud =0 inQ, (3.1a)
4,0=0 on Q) (3.1b)
where @ = ((bl, ¢2’ ¢3’ ¢4)T7 ¢i = ¢i(x)7 2?=1 ¢i = O’ and
0 Bpi ap (a+B)pi
71| AP 0 (@=P)p2  ap,
—ap;3 B - a)ps 0 Bp3
—(@+pB)ps  —ap, —Bp4 0

o Z O % P2 —Di
+p P+ —P3 —PpP2 D1
P+ —Pp3 —P2 D1

22 % P2 —Di
+ A diag{a(ps + ps) + B(p2 + pa), a(ps + ps) — B(p1 + p3),
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—a(py + p2) + B(p2 + ps), —a(p1 + p2) — B(p1 + p3)}. (3.2)

Sometimes it is more convenient to study (3.1) with three linearly independent equations
using the relation Z?zl ¢; =0.
For any function u(x) € C(Q), we define its spatial average

: f
u=— | ulx)dx. 3.3)
19 Jo
The following eigenvalue problem will be helpful:

Ap+ Ah(x)p =0 inQ, (3.4a)
60 inQ, (3.4b)
0,0=0 on 0Q2, (3.4¢)

where Q and v are as in (2.6) and h(x) € C(Q). Brown and Lin [7] showed that (3.4) has
a positive eigenvalue A if and only if 4(x) changes sign and & < 0. In addition, the positive
eigenvalue (if it exists) is unique, and we denote it by A*(h).

For each fixed A > 0, we consider the eigenvalue problem

Ay + (W + iy =0 inQ, (3.52)
Ay =0 on 09, (3.5b)

where Q and v are as in (2.6) and h(x) € C(Q).
The following results are well known ([47], [29]).

Lemma 3.1. Suppose that h(x) € C(Q) is a nonconstant function and positive somewhere.

Then the smallest eigenvalue 11;(1) of (3.5) is strictly concave down in A,

lim () = —oco, (3.6)
A—00
and has the following properties.
@) Ifh > 0, then (1) < 0 and p1(Q) is strictly decreasing for A > 0.
(b) Assume that h < 0. Then
<0 if 1> A%(h),
m@D=0 if 1=, (3.7)
>0 if 0<A<Ah),

and p1(Q) is strictly decreasing for 1 > 1*(h).
Remark 3.2. Because the eigenfunction corresponding to z; () can be chosen to be positive

on Q, integration of (3.5a) over Q shows that if 4(x) < 0 and h(x) # 0, then g, (1) > 0 for
every A > 0.
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For a nonconstant function A(x) € C(Q), it is convenient to define
A*(h)  if h(x) changes sign and 7 < 0,
Ao(h) =40 ifh>0, (3.8)
00 if h(x) <0in Q.
Then Lemma 3.1 and Remark 3.2 yield

Lemma 3.3. Suppose that h(x) is a nonconstant continuous function on Q. If 1 > Ay(h), then
w1i(A) < 0 and p,(A) is strictly decreasing in A. If 0 < A < Ay(h), then (1) > 0.

3.2. One-locus theory. The diallelic one-locus equation with isotropic, homogeneous mi-

gration, and selection without dominance reads

0,0 = A8 + Ah(x)0(1 — 6) for (x,1) € Q % (0, ), (3.92)
0,6 =0 for (x, 1) € 0Q x (0, ), (3.9b)
0(x,0) = 6p(x) for x € Q and 6, € C°(Q;[0,1])\ {0, 1}. (3.9¢)

Recalling that A*(h) designates the unique positive eigenvalue of (3.4), for a sign-changing
h(x) we introduce

A*th) if h<O0,

Ap =140 if h=0, (3.10)

A*(=h) if h>0.
Theorem 3.4 ([21, Lemma 10.1.5], [26, Theorem 2.1]). Let h(x) be a sign-changing function
of class C?(Q) for some 0 <y < 1. Then for every A > 0, the problem (3.9a) has a unique
stable equilibrium solution 6, and every solution 6(x, t) converges to 0,(x) uniformly in x as
t — oo. More precisely:
(a) Suppose thath < 0. If0 < A < Ay, then 6, = 0in Q; if A > A, then 0 < 6, < 1 in Q.
(b) Suppose that h > 0. If0 < A < A, then 0, = 1 in Q; if 1 > A, then 0 < 6, < 1 in Q.
(c) Suppose that h = 0. Then for every 1> 0,0 < 6, < 1 in Q.
In each case, 0y, is linearly stable whenever A # A;,. The proof of Theorem 2.1 in [26] shows

that convergence occurs in C*(Q).

For convenience, we call the constant equilibria (x) = 0 and 6(x) = 1 in Q the trivial
equilibria, and we call ), the global attractor of (3.9a). If 0 < 6, < 1, then we call it a

(one-locus) cline.

4. BOUNDARY EQUILIBRIA

4.1. Existence. The four monomorphic equilibria M;, defined by p; = 1, exist always. We
also call them the vertices or vertex equilibria.
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In addition, (2.6) may have up to six equilibria on the edges connecting any pair of vertices.
We define

hij(x) = si(x) — s5;(x). “4.1)
Let p) = pU(x), i < j, be the edge equilibrium with gametes i and j present, i.e.,
0,  if k=i,
Pl =21-6; if k=], (4.2)
0 if k#i,j,
where 6;; = 6,;(x) satisfies
AG; + A (00,1 - 6;) =0 inQ, (4.3a)
0<6;<1 inQ, (4.3b)
0,0;; =0 on 0Q). (4.3¢)

Theorem 3.4 and the above-cited result of Brown and Lin [7] for (3.4) inform us that (4.3)
has a solution if and only if

h;;j(x) changes sign in Q (4.4a)
and
A> /l,'j = /1},1.]. , (4.4b)

where A, 18 given by (3.10) with & = h;;. Moreover, if a solution of (4.3) exists, it is unique
and linearly stable.

If p = 0, then all six edge equilibria may exist. If p > 0, then only p"?, p13 p3¥ and
P can exist (Lemma 2.1). These four edge equilibria are independent of p because D = 0
at each of them; see also Section 4.3. The biological reason for the non-existence of p'* and

(23
p( )

2.3).

if p > 0 is that recombination generates the two other gametes immediately (cf. Section

4.2. Stability of the monomorphic equilibria. Here we show that generically at most one
monomorphic equilibrium can be linearly stable. In Theorem 4.4, we determine the range of
parameters for which it is stable. For sufficiently strong migration (relative to selection and
recombination), we establish global asymptotic stability in Theorem 4.6.

We write
I =1\{i}, 4.5)
and define, for each fixed j € I,
j=5-j. Li=I\{j}}, (4.6)

ie, [, =0, ={23}and , = I = {1,4}.
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From (2.15) we observe that
$1(x) = —s4(x) and  s55(x) = —s3(x) 4.7)
for every x € Q. Therefore, there are only two possibilities:
there exists i € I such that §; < §; < 5; for each k € I; (4.8a)
there existi € [ and j € [; such that §; = §; = —5; = —5;. (4.8b)
We note that (4.8a) is the generic case, which is equivalent to

there exists an i € I such that §; > max e, {5;}. 4.9)

To study the stability of the vertex equilibrium M ;, we have to investigate the eigenvalue

problem
A(bl' + /lh,](X)(ﬁ, + p(b} + /l(bl =0 in Q s (4103)
Ags; + Ah;)(X)p; — pd; + ud; = in Q, (4.10b)
0,9 = 0,5 =0 on 0Q2, (4.10¢)

where i € fj (cf. [28, (2.23)] and (3.2)). For each k € I, we let E; be the set of all eigenvalues
of the single-equation eigenvalue problem
Ap® + A ()™ + uPe® =0 in Q, (4.11a)
d,0® =0 on 0Q. (4.11b)

Before formulating and proving our main results, we establish two lemmas.

Lemma 4.1. For every p > 0 and every j € I fixed, the set of eigenvalues of system (4.10)
consists of Uer, Ei U {,u(j) +p: ,u(i) € E3}.

Proof. First, we observe that for every i € I, every u € E; with an eigenfunction ¢ is also
an eigenvalue of (4.10) and the corresponding eigenfunction has components ¢; = ¢'? and
¢r = 0 for k # i. Second, for every ,u(j) € E; with an eigenfunction ¢(7), there are two cases.
If u? + p € E; for some i € [ ;» then we already know it is an eigenvalue of (4.10) from the

above discussion. If u? + p ¢ E; for every i € I;, then the operator
L= {A + Ahi(x) + " + p} (4.12)

is invertible for every i € I;, whence ,u(j) + p is an eigenvalue of (4.10) whose eigenfunction

has components
¢ = L' [-pp"] foriel,, (4.13a)
;=90 (4.13b)
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Next, we show that if u is an eigenvalue of (4.10), then either u € E; for some i € T jor
u = pu9 + p for some u € E 5. We denote the components of the eigenfunction of 1 by ¢
for i € I;. There are two possibilities. If ¢; = 0, then there exists at least one ¢; # 0, i € I s
whence in view of (4.10a) we conclude that ¢ € E; and the corresponding eigenfunction can
be taken as ¢ = ¢;. If ¢5 # 0, then from (4.10b) we see that u = u? + p for some u € E;
and the corresponding eigenfunction can be chosen as ¢G) = ¢;. This completes the proof of
Lemma4.1. O

For a fixed j € I, let p(lj) (1) be the smallest eigenvalue of (4.11) with k = j. From Lemma
3.3 and (3.8), we see that if 0 < Ay(h;;) < oo, then for 2 > Ay(h;) we have (1) < 0
and ﬂ<17>(,1) is strictly decreasing. Thus, for each p > 0, there exists a unique A, denoted by
Ao(hs;, p), such that A > Ag(hs;) and () + p = 0. If Ag(h3;) = oo, we define Ag(hs;, p) = oo,
If p = 0, we set (3, 0) = Ag(h3). Then, for p > 0, we have u(2) + p < 0if 1 > (3, p)

and V(1) +p > 0if 0 < A < A(hy, p).
Now, for every j € [ and p > 0, we define

Ai(p) = min{Ao(h;j), Ao(hs;, p)} (4.14a)

lE[j

15 = min{u (1), 1 (1) + p} . (4.14b)

lE[j
The above discussion and Lemma 3.3 inform us that u; > 0if 0 < A < 23(p) and ; < 0 if
A > X(p). Since Lemma 4.1 reveals that M is stable if x; > 0 and unstable if x4 < 0, we

have proved the following.

Lemma 4.2. Letp > 0.

(@) If Xi(p) = 0, then M, is linearly unstable for every A > 0.

() If 0 < Aj(p) < oo, then M is linearly stable for 0 < A < A(p) and linearly unstable for
> 25(p).

(¢) If Xi(p) = oo, then M is linearly stable for every A > 0.

Notice that if p = 0, then the conclusions in Lemma 4.2 are established in [28, p. 637].

Remark 4.3. If h;;(x) = 0 and p > 0, then from (4.11a) with k = } we see that 4{() = 0 for

@)
1

we set Ag(hj;, p) = co and the conclusions in Lemma 4.2 still hold.

every 4 > 0 and thus u;"(1) + p > 0 for every A4 > 0. Therefore, when £;,(x) = 0 and p > 0,

Theorem 4.4. Suppose (A) and that (4.9) holds for some i € I. Then we have for every p > 0O:
(a) Every M other than M; is linearly unstable.

(b) Let A:(p) be given by (4.14a). Then 0 < Ai(p) < oo and M; is linearly stable if 0 < A <
A:(p); M; is linearly unstable if A > A:(p).
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If p = 0, Theorem 4.4 follows directly from Theorem 1.5 in [28]. Its proof inspired the
following proof.

Proof. (a) For each j # i, there are two cases. If j # i, i.e, i # J, by (4.9) we have §; > §,,
whence we obtain Ao(h;;) = 0 from (3.8) and (4.1). Therefore, (4.14a) yields /l’;(p) =0. If
J = i, by (4.8a) we have §; > §; and hence Ay(h;) = O for k € I; = I;. Therefore, (4.14a)
implies again that 43(0) = 0. Now we deduce from Lemma 4.2(a) that M; is unstable for
every A > 0, which proves part (a).

(b) In view of (4.9) and (3.8), we have Ay(h;;) > O for every k € I. From (2.15) we observe
that

Sm(x) — 51(x) € {za(x), £B(x)} forevery !l € [ and every m € I. (4.15)

Since both a(x) and B(x) change sign and k € I, it follows from (4.15) and (3.8) that Ay(hy) <
o0. On account of the definition of Ay(h;;, o) we have Ay(h;;, p) > 0. Then (4.14a) implies that
0 < A%(p) < oo and part (b) follows immediately from Lemma 4.2(b). |

0
1

ical value Ao(h3;, p) is strictly increasing in p by its definition. Therefore, (4.14a) implies that

Remark 4.5. Because u;" () is strictly decreasing for 4 > Ay(h;;) by Lemma 3.1(b), the crit-

/lj.(p) is nondecreasing in p. Thus, Theorem 4.4(b) shows that increasing the recombination
rate facilitates stability of the monomorphic equilibrium with the highest spatially averaged

fitness.

Theorem 4.6. Suppose (A) and that (4.9) holds for some i € 1. Then, for every fixed r > 0
and s > 0, there exists dy = dy(r, s) > 1 such that M; is globally asymptotically stable for
(2.3)ifd > d,.

Proof. The proof is based on Theorem 2.1 in [28]. We set
Ti(x,p) =sS{x,p)—nirD(p), i€el. (4.16)

Then the spatially averaged system (2.3) of [28] becomes

dqj c * *
P sSiq") —nirD(q"), (4.17a)

q"(0) € int Ay, (4.17b)
where

4
Ay ::{peR“:pizOforeveryiEI,ij=1}, (4.18)

=
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S1(g) = gilalgs + i) + B(g5 + gl (4.192)
S2(q") = glalg; + i) = Blg) + 43)], (4.19b)
S$3(q") = gi[-alq} + 43) + B(g5 + 4))] (4.19¢)
Sa(q) = qil-a(q; + ¢5) = Blg; + g1 (4.19d)

The system of ODEs (4.17) describes the dynamics in a simple two-locus model without
migration, epistasis, or dominance. Therefore, mean fitness is a global Lyapunov function
[14]. Hence, every solution of (4.17) converges to an equilibrium. In addition, every equilib-
rium ¢* of (4.17) is in linkage equilibrium, i.e., it satisfies D(g*) = 0 ([32], [41]).

We are informed by (2.15), (4.7), and (4.9) that & # 0 and 8 # 0, whence it is clear
from (4.19) that the only solutions to S ;(g*) = O for every j € I are the monomorphic
equilibria M;. Simple analysis of the linearized problem of (4.17) at each M; shows that
if (4.9) holds for some i € I, then M, is the only linearly stable monomorphic equilibrium.
The other monomorphic equilibria are all unstable; they may have stable manifolds, but the
stable manifolds are either invariant edges corresponding to a marginal one-locus system or
connect to the vertices from the exterior of the state space A;. Therefore, every solution of
(4.17) converges to M;.

Thus, we have shown that (A4) in [28] holds with §* = M,. Therefore, Theorem 2.1 in
[28] applies and, together with statement (b), yields the global asymptotic stability of M; with
respect to the full system (2.3) provided d > 1. O

Remark 4.7. Because the critical value d originating from Theorem 2.1 in [28] may depend
on r and s, we cannot conclude that for every fixed p > 0, there exists a 4y < 1 such that M;

is globally asymptotically stable for (2.6) if 4 < Ay. However, we conjecture that it is true.
In the nongeneric case (4.8b), we obtain the following result.

Proposition 4.8. Suppose that (A) and (4.8b) hold. Then, for every p > 0, all monomorphic

equilibria are linearly unstable.

Proof. In view of (4.8b), (4.15), and (3.8), for the i, j in (4.8b), we have
Ao(hji) = Ao(hij) = Ao(hy) = Ao(hz;) = 0. (4.20)

We conclude from (4.14a) that 2;(0) = O for every p > 0 and every k € I. From Lemma
4.2(a), we infer that for every p > 0 each M, is unstable for every 4 > 0. O
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4.3. Equilibria with one polymorphic locus. From (4.7) we obtain &, = hs4 and h3 = hog.
Therefore, the edge equilibria p\'* and p© as well as p{1® and p©*? exist only pairwise, i.e.,
if one member of a pair exists then also the other. We call them single-locus polymorphisms,
or single-locus clines, because at each of these equilibria one locus maintains both alleles
at positive frequency, whereas at the other locus one allele is fixed. For instance, p'?(x)
describes a cline at locus 8 with allele A fixed at locus A. It is well known that a one-locus
cline is globally asymptotically stable within its edge (Theorem 3.4). However, determining
stability of these equilibria with respect to the full system (2.6) is a challenging task and has
been resolved only for special cases (see below).

5. NO RECOMBINATION

In this section, we treat the case r = 0, i.e., p = 0. Therefore, the results depend only on
s/d = A, and we use (2.6) throughout. Because p = 0, we may regard each gamete i € [ as
an allele at one locus. Therefore, the system (2.6) simplifies to a one-locus four-allele model,
and the results of Lou and Nagylaki [26-28] on multiallelic one-locus models apply. We
consider various assumptions on the functions a(x) and S(x) and start with the most specific

and simplest scenario that is of biological interest.

5.1. The functions a(x) and S8(x) have the same spatial dependence. We assume that
a(x) = ag(x), B(x) = bg(x), (5.1a)
where
the constants a and b are positive and the function g(x) changes sign. (5.1b)
Then (2.15) reduces to
six) = 3@+ b)g(x),  5(x) = 5(a—b)g(x),
s3(0) = 3(b—@g(x),  s4(x) = —3(a+b)g(x). (5.2)
By (5.1), the conditions (A2) and (A3) in [26] hold with
o(x) = hiu(x) = (a + b)g(x), (5.32)
ya=ala+b)y™", ys=bla+b)". (5.3b)

Therefore, we obtain the following results directly from Theorems 3.2 and 3.3 in [26].

Proposition 5.1. If p = 0 and (5.1) holds, system (2.6) has always a globally attracting
equilibrium.

(a) Suppose that g < 0. Then (0,0,0, 1)T is globally asymptotically stable if 0 < 1 < A*(0),
and p"? is globally asymptotically stable if A > 1*(o).
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(b) Suppose that g > 0. Then (1,0,0,0)" is globally asymptotically stable if 0 < A < 1*(-0),
and p'* is globally asymptotically stable if 1 > A*(—0).
(c) Suppose that g = 0. Then p''? is globally asymptotically stable for every A > 0.
5.2. The functions a(x) and S(x) have the same sign. We assume that
B(x) = a(x)y(x), where y(x) > 0 for every x € Q. (5.4)
Then (2.15) reduces to
510 = 3L +y)ax),  5(x) = 5(1 = y())a(x), (5.5)
s3(x) = 3(y(0) = Dax),  s4(x) = =5(1 + y(x)a(x).
The following result follows directly from Remark 3.3 in [28]. We present a proof here

using the idea mentioned there.

Proposition 5.2. Assume that p = 0, that the function a(x) changes sign, and that (5.4) holds.
Then pY is globally asymptotically stable for A > 1.

Proof. By (5.4) and (5.5), we have

s2(x) < mazx si(x) and s3(x) < ma3x sj(x) forevery x € Q, (5.6a)
#* J#*
s1(x) > malx si(x) whena(x) >0 and s4(x) > maax si(x) when a(x) <O0. (5.6b)
J#* J#*

Let p = (p1, P2, p3, p4)’ be any solution of (2.6). Therefore, for A sufficiently large, (5.6a)
and [27, Corollary 4.7] imply that

pi(x,t) = 0 uniformly in x as t — oo fori = 2,3. (5.7)

By (5.6b) and [27, Corollary 4.9], for i = 1,4, there exists 67 = ¢:(1) > 0 such that for all
initial data that satisfy (2.6¢), there exists 7, which may depend on A and the initial data, such
that

pi(x,1) > 6; forevery x € Q and every t > £ (5.8)

Now pick any sequence {#};2, such that zy — oo as k — co. The estimate [26, (3.19)]
shows that, passing to a subsequence if necessary, p(x,t;) — p(x) as k — oo in CX(Q),
where p is an equilibrium of system (2.6). Then from (5.7) and (5.8) we conclude that
pi(x) = 0 fori = 2,3 and p;(x) > 67 for i = 1,4, respectively. Since the only equilibrium
with the gametes 1 and 4 present, and 2 and 3 absent, is p!'¥) (see (4.2) — (4.4)), we must have
p = p'¥. Therefore, the w-limit set of any initial data that satisfies (2.6¢) is {p'*'}, and hence
p(x, 1) = p19(x) as t — oo.
Finally, from (5.4) and (5.5) we observe that

max[s,(x), s3(x)] < max[s;(x), s4(x)] forevery x € Q, (5.9
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whence Theorem 1.6 in [28] informs us that ¥ is asymptotically stable for A sufficiently

large. This completes the proof. O

5.3. Arbitrary functions a(x) and S(x). We recall the definition of /; from (4.5) and make
the generic assumption that (4.9) holds for some i € I. Then [28, Theorem 1.1] yields

Proposition 5.3. Assume that p = 0. Let p = (p1, p2, p3, ps)’ denote an arbitrary solution of
(2.6) with pi(x,0) £ 0. Then for 0 < A < 1, as t — oo, p;(x,t) — 1 uniformly in x.

Remark 5.4. From (2.15) we see that (4.9) holds with

1 if @>0,3>0,
2 if @>0,3<0,
iz Ta>0.p< (5.10)
3 if @<0,3>0,
4 if G<0,f<0.

Remark 5.5. We observe that if neither @ nor  is zero (as in the four cases in (5.10)), then
5; # 5 for every j # k. Therefore, if p = 0, then according to [28, Remark 1.3], for
sufficiently small A, the vertices are the only equilibria of (2.6).

As A increases, the edge equilibria will appear if (A) holds. The next result determines the
stability of each of them immediately after its appearance [28, Theorem 1.7]; the notation A;;
is as in (4.4b).

Proposition 5.6. Suppose that p = 0, that each of the functions a(x), B(x), a(x) + B(x), and
a(x) — B(x) changes sign, and that assumption (4.9) holds for some i € I.

(a) There exists 6; > 0 such that pY® is linearly unstable if jk € I, j < k, and Ay < A <
Aji +01.

(b) Suppose further that Ay < minje;, jz Aij for some k € 1. Then there exists 6, > 0 such
that p™ is linearly stable if Ay < A < Ay + 65, and p™ is linearly unstable if | # k and
Ay <A< Ay + 6,

Remark 5.7. Suppose that i is the gamete with the highest spatially averaged fitness. Under
the assumption in Proposition 5.6(b), we infer from (4.14a) that 27(p) = Ay. Then Theo-
rem 4.4(b) shows that M; is linearly stable if 0 < A < Ay and unstable if 4 > Ay. Proposi-
tion 5.6(b) informs us that as A increases from 0, 5™ is the first one that moves into the state
space among the edge equilibria that bifurcate through M;, and initially it is linearly stable
(by exchange of stability with M;). All other edge equilibria that may move into the state

space will be unstable immediately after their appearance.
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If there exists x; € Q fori = 1,2, 3,4 such that

a(xy), B(x1) > 05 a(xz) >0, B(xz) <05 alx3) <0, B(x3) > 05 a(xs), Blxs) <0, (5.11)

then Corollary 4.10 in [27] guarantees the existence of an internal equilibrium for 4 > 1.

Proposition 5.8. Suppose that p = 0 and that (5.11) holds. Then for A > 1, system (2.6) has
at least one equilibrium p = (P, P2, P3, Pa)! such that p;(x) > 0 in Q for every i.

6. WEAK RECOMBINATION

Here, we study (2.3) for weak recombination, i.e., d and s are fixed and 0 < r < 1. This

is equivalent to studying (2.6) with 4 > 0 fixed and 0 < p < 1, which we use henceforth.

34) A~(13
( )’p( )’

and p®¥, defined by (4.2) and (4.3), exist in pairs and neither their values nor their existence

From Section 4, we already know that the four single-locus polymorphisms p!?, p

depends on p. This is different for the edge equilibria p'¥ and p>®, which can exist only if
o = 0. Suppose that p¥ (or p®¥) exists when p = 0. If we increase p from O slightly, will
PP (p?¥) move into the interior of the state space X and therefore become full polymor-
phisms? The investigation of this problem is the main purpose of this section. Throughout,

we suppose assumption (A). Our main result is the following.

Theorem 6.1. (a) If for p = 0 the edge equilibrium p'¥ (p*>) exists and is linearly stable,
then for every sufficiently small p > 0, problem (2.6) has an internal equilibrium p*) that is
linearly stable, and p©(x) — p'¥(x) (p*(x)) uniformly as p — O+.

(b) Assume that each of a(x), B(x), a(x) + B(x), and a(x) — B(x) changes sign, (4.9) holds for
i =1, and 114 < min{dyy, A13}. Then there exists 6 > 0 such that for every A € (d14, 14 + 0)
and every sufficiently small p > 0, problem (2.6) has an internal equilibrium p*, which
is linearly stable. Moreover, for every fixed 1 € (14, A4 + 0), we have pP(x) — p1¥(x)

uniformly as p — 0+.

Remark 6.2. 1. Note that the assumption (4.9) for i = 1 can be imposed without loss of
generality upon relabeling of gametes.

2. Recall from Proposition 5.6 and Remark 5.7 that for p = 0, A4 is the critical eigenvalue
at which p''* appears by an exchange-of-stability bifurcation with M, as A increases above
A14. Moreover, A;4 < min{A;,, A;3} implies that p{'¥ appears before the two pairs of edge

(34

equilibria (p"'? and pB¥, pU1® and p®¥) as A increases from 0.
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To prove Theorem 6.1, we need some preparations. Recalling (3.1), (3.2), (4.1), (4.2),
(4.3), and using Y | ¢; = 0, the linearized problem of (2.6) with p = 0 at p"¥(x) reads

Ady + Ahia(1 = 20191 — A01alhoads + haads] + iy =0 in Q, (6.1a)
Ads + A — h1401)$s + pich, = 0 inQ, (6.1b)
A3 + Ahsg — h14012)p3 + s = 0 inQ, (6.1c)
0,6, =0, i=1,23, on 6. (6.1d)

There are three single-equation linearized problems related to (6.1):

AV + Ay (1 =201)¢" + P =0 inQ, 8,6" =0 ondQ. (6.2)
AGP + Ahy — h1461)¢> + P> =0 inQ, 9,6% =0 ondQ.  (63)
APY + Alhzs = hab1)p? + 1P¢V =0 inQ, 69 =0 ondQ. (6.4

We denote the set of eigenvalues of (6.1), (6.2), (6.3), and (6.4) by E, EV, E®, and E®,

respectively.

Lemma 6.3. The set of eigenvalues of problem (6.1) consists of the eigenvalues of problems
3

(6.2), (6.3), and (6.4), namely, E = U E®,
i=1

3
Proof. First, we show that E D U E®. Suppose uV € EV with an eigenfunction ¢(”, then

i=1

it is clear that u" solves (6.1) with ¢; = ¢V, ¢, = 0, and ¢3 = 0, and therefore u'" € E. If
u?® e E@ \ EW with an eigenfunction ¢'¥, we see that it is also an eigenvalue of (6.1) by
taking ¢, = ¢®, ¢3 = 0, and solving ¢, from (6.1a). Similarly, if u® € E® \ EV with an
eigenfunction ¢, we see that it is also an eigenvalue of (6.1) by taking ¢, = 0, ¢3 = ¢,

and solving ¢, from (6.1a).
3

Second, we demonstrate the converse E C U EY. If u is an eigenvalue of (6.6) with

i=1
¢> = ¢3 = 0, then ¢; # 0 and therefore u is an eigenvalue of (6.2); otherwise, if ¢, # 0 or
¢3 # 0, then u is an eigenvalue of (6.3) or (6.4), respectively.
Thus, the set of eigenvalues of (6.6) consists the eigenvalues of (6.2), (6.3), and (6.4). O

Proof of Theorem 6.1. (a) We present the proof only for p'¥; for p¥ it is similar.

By the asumption that p{'¥) is linearly stable when p = 0, every u that satisfies (6.1) has
a positive real part unless ¢; = 0 for i = 1, 2, 3. Therefore, by the implicit function theorem,
there exists a family of equilibria p* for p > 0 sufficiently small and p*(x) — pU¥(x)
uniformly as p — 0+. From (3.1) and (3.2) we infer that the linearization of (2.6) at p* is
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a small continuous perturbation of (6.1) for which every eigenvalue also has a positive real
part, whence p* is linearly stable.

Next, we show that 5% is in the interior of X. By the fact that p{'"(x) > 0 and p{'?(x) > 0
in Q and the uniform continuity of p*’(x) with respect to p, we obtain that ﬁ(lp)(x) > (0 and
pP(x) > 0in Q for sufficiently small p > 0.

To see that ﬁ(zp)(x) > (0 and ﬁgp)(x) > 0 in Q for sufficiently small p > 0, we consider

aA(P) aA(P) 6*\(;0)
u(x) = (1 (), (1), 13(1) = | 2L (x), 222 (), L2 () 6.5)
dp dp dp p=0

Differentiating the equilibrium problem that %’ satisfies with respect to p and then substitut-

ing p = 0, we obtain

Auy + Ahi4(1 = 2019)u; — A0 14[hoguy + hzgus] — 014(1 — 614) = 0 in Q, (6.6a)
Auy + A(hpg — h146014)up + 014(1 — 614) =0 in Q, (6.6b)
Auz + A(hzg — h14614)us + 014(1 = 014) = 0 inQ, (6.6¢)
ou; =0, i=123, on 0Q). (6.6d)

By our assumption that every eigenvalue p of (6.1) has positive real part, we infer from

Lemma 6.3 that the smallest eigenvalue ,u(lz) of (6.3) is positive. By an inverse positivity

result, from (6.6b) and the facts ,u(12)

Q. (For the inverse positivity result, see e.g. Theorem 7.3 in [22], in which we take

> 0 and 014(1 — 6,14) > 0 we conclude that u>(x) > 0 in

K = [-A = Ahyy — h14614) + ] (6.7)

for some constant ¢ > 0 such that —A(fq — h14614) + ¢ > 0 in Q, and associate it with zero

Neumann boundary condition. Then

spr(K) = 1/(u” +¢), (6.8)
and (6.6b) is equivalent to
1 1
i Ku, = ;K[914(1 —6014)]. (6.9)

By standard elliptic regularity, embedding theory, and the strong maximum principle, K is

@
1

(6.8) imply that 1/c > spr(K), whence the positivity of the right-hand side of (6.9) leads to
ur(x) > 0in Q.)

Similarly, we have :“(13 > 0and uz(x) > 0in Q as above. Hence, we deduce from u;(x) > 0
in Q for i = 2,3 and (6.5) that p¥’(x) > 0 and p¥’(x) > O for sufficiently small p > 0.

compact and strongly positive on C'*?(Q) for some y € (0,1). Moreover, u\” > 0 and

Thus, we have proved that p* is a full polymorphism for sufficiently small p > 0, and this
completes the proof of (a).
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Part (b) follows directly from Proposition 5.6 and part (a). O

Remark 6.4. Theorem 6.1 shows that a linearly stable equilibrium at either the 14-edge or
the 23-edge moves into the interior of the state space if p > 0. The following result shows

that if such an equilibrium is unstable for p = 0, it leaves the state space when p > 0.

Proposition 6.5. Suppose that for p = 0 the edge equilibrium p'¥ (p©*>) exists and is non-
degenerate and linearly unstable. Then there exists a neighbourhood in X of p'¥ (p*) in
which there is no equilibrium of (2.6) for sufficiently small p > 0. However, there is a family
of stationary states p© ¢ X such that p¥(x) — p19(x) (p@(x)) uniformly as p — 0+.

Proof. We prove this proposition for p'¥; the proof for p®* is analogous. Because we

assume that p{'* is nondegenerate, by the implicit function theorem, there exists a unigue
family of equilibria p**’ of (2.6) for p > 0 sufficiently small such that p*’(x) — pU¥(x)
uniformly as p — 0+.

From Section 4.1 we know that p'¥ is always linearly stable with respect to (4.3), and

therefore the smallest eigenvalue ,u(ll) of (6.2) is positive. Then Lemma 6.3 and the instability

(@)
1

If p(12) < 0, then by the same method we used in the proof of Theorem 6.1(a), we would
have 1/c < spr(K) by (6.8), whence the positivity of the right-hand side of (6.9) and [22,

Theorem 7.3] imply that u, cannot be a positive function in Q. Thus, p'¥ leaves the state

of p' with respect to the full system (2.6) with p = 0 imply that either 4 < 0 or u{” < 0.

space when p > 0. Similarly, if ,u(13) < 0, then u3 cannot be a positive function in Q, whence
pUY again leaves the state space when p > 0.

In light of the uniqueness of the family of p*’ which converges to p'* as p — 0+, we
conclude that there exists a neighbourhood in X of p'¥ in which there is no equilibrium of

(2.6) for sufficiently small p > 0. This completes the proof. O

7. STRONG RECOMBINATION

Now we assume that recombination is sufficiently strong relative to diffusion and selection,
ie,r> 1. Wefixd > 0and s > 0, hence A > 0, work with (2.6), and set e = 1/p > 0. We
study existence, uniqueness, and stability of two-locus clines for sufficiently small € under
the assumption (A). It will be convenient to follow the evolution of the allele frequencies
pa = p1 + p2 and pg = p; + ps, and the linkage disequilibrium D = pp4 — p,p3, instead of

the gamete frequencies p;. The corresponding transformation is given by

T : (pa, P, D) = (p1, p2, P3, Pa)
T (pa, P, D) = (paps + D, pa(1 — pg) — D,(1 — pa)pg — D, (1 — pa)(1 —pp)+ D). (7.1)
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It is easily shown that the system of differential equations (2.6a) and (2.6b) with the selec-
tion terms (2.16) is equivalent to

0ipa = Apa + Aa(x)pa(1 — pa) + AB(X)D, (7.2a)
0ip = App + AB(X)pp(1 — pp) + Aa(x)D, (7.2b)
8,D = AD +2Vps - Vi + Alax)(1 = 2ps) + B)(1 = 2p)]D — éD (7.2¢)

in Q X (0, o) and
0ypa=0,pp=0,D=0 onodQx(0,c). (7.2d)
Here, V denotes the vector differential operator with derivatives with respect to x € R". The

constraints (2.7) on the p; are transformed to
0<psa<1,0<pp<1l, (7.3a)

and
—min{papp, (1 — pa)(1 — pp)} < D < min{ps(1 — pp), (1 — pa)ps}, (7.3b)
where these inequalities hold in Q X [0, o) (e.g., [10]). In particular, the map 7 : Y — X,

given by (7.1), is a homeomorphism, where
Y :={(v1,v2,v3) € C(; [0, 11) x C(Q; [-1,1]) :
— min{v;vy, (1 = v)(1 = v2)} < v3 < min{vi(1 —vp), (1 — vva}}. (7.4)
In addition, we define
Yo={(vi,vo,v3) Y :vi=00rvi=1lorv, =0o0rv, =1} (7.5)

and recall that each of the four edges in Y, = 7 (X)) is invariant (Section 2.2).

Because strong recombination erodes linkage disequilibrium rapidly, we expect that D
will be of order € at stationarity (see [8,41] for related ODE models). If D = 0 then (7.2a)
and (7.2b) describe two uncoupled one-locus systems, which are well understood (Section
3.2). We shall obtain the two-locus cline of (7.2) as a perturbation of the Cartesian product of
the two single-locus clines of (7.2a) and (7.2b) with D = 0. From Section 3.2, and because
we assume (A), we know that both exist if A > max{A,, Ag}, where 44, = A, € (0, ) and
Ag = Ag € (0, 00) are as in (3.10).

For h € {a, B}, let 6,(x) denote the global attractor of the single-locus problem at locus A

or 8B, respectively (Theorem 3.4). The following is the main result of this section.

Theorem 7.1. Suppose that (A) holds. For every 4 > 0 with 4 # max{Aa, Ag} and for
sufficiently small € > 0, the system (1.2) has an equilibrium (p4, ps, D) = (p'0, p\’, D'©) that
attracts all trajectories with initial data in Y \ Yo, where convergence occurs in [C*(Q)]°.

Moreover, the following conclusions hold.
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(a) For every 0 < A < max{Ay, Ag}, there exists €y > 0 such that the system (7.2) admits no
internal equilibrium if € € (0, &]. In fact, at least one of 6, and 63 is trivial, and the globally

attracting equilibrium is independent of €, i.e.,
(€, 99, D) = (8,.05.0) € Y. (7.6)

(b) For every A > max{Ay, Ag}, there exists €y > O such that for every € € (0, €], the globally

attracting equilibrium is internal and satisfies
155, B3 = (Ba Gp)llcr @y + 1Dl = Oe), (7.7)

ie., (ﬁif), ﬁg), lA)(E)) lies in the interior of 'Y and converges to (6,,03,0) in C'(QXCH(Q)XC(Q)

as € — 0.

Remark 7.2. By examining the elliptic system satisfied by the stationary solution (p4, pg, D),
and using the fact that ||D|| =) = O(e), it is not hard to show that ||D|ly2.»q, < C and thus
I(Pa> PB)llc2v@@ < C. This shows that in fact the convergence in (7.7) can be improved to
C*(Q) x C*(Q) x CH(Q).

Remark 7.3. If 0 < A < min{A4, Ag}, Theorem 7.1(a) together with Theorem 3.4 implies that
a monomorphic equilibrium is globally asymptotically stable for (7.2) with sufficiently small

e> 0.

The case 4 = max{Ad,, Ap} is degenerate and is briefly discussed in Section 8. If (A) does

not hold, then convergence to a boundary equilibrium occurs for every 4 > 0 (Section 8).

7.1. Preliminaries and proof of Theorem 7.1(a). Throughout this subsection, we assume
that ((pa(x, 0), pp(x, 0), D(x,0)) € Y \ Y. Then, by Lemma 2.1, the solution of (7.2) satisfies
0 < pa(x,t) < 1and 0 < pg(x,1) < 1in Q X (0, o). For convenience, we define

D(x,1t) D(x,1)

Du(x,t) = , Dp(x, 1) = . (7.8)
! pate D1 = patx,)” " P D(1 = py(x, 1))
Lemma 7.4. For given A > 0, there exists Cy > 0 independent of € such that
Vpalx,t Vpp(x,t
sup [ IVpalx, 0 N IVps(x, 1)l <G, (7.9)
veqzt [ Pa(x, (1 = pa(x, 1)) pp(x, 6)(1 — pp(x, 1))
In particular,
IVpaCx, Ol + [Vpp(x, )l < Co  for (x,1) € Q X [1, 00). (7.10)
Proof. In light of (7.8), we can rewrite (7.2a) and its boundary condition as
0ipa = Apa = A[a +BDs](1 = pa)pa  in QX (0,00), (7.11)
Oypa =0 on 0Q x (0, ), '
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where, by the constraints (7.3),
_ D] D
|Dal = — + <2. (7.12)
pa 1 —pa
Hence, p4 > 0O satisfies the differential inequality

8,pA —ApA < M()pA iIlQX(O, OO),
o,pr =0 on 0Q X (0, ),

where My = A(llallc@q) + 2l|Bllc@))- By comparison we obtain

(7.13)

M
Ipallc@xi-1.0) < € °llpaC,t = Dllcqy forz>1.

Now, we may apply a parabolic L”-estimate to the solution p, of (7.11) and obtain a constant
C, > 0 (independent of ¢ > 1) such that

IpaC, Dllcr@y < CillpaC,t = Dlley forz > 1.
Hence,
[Vpa(x, 1l < Ci SUpeq pa(xX', 1= 1)

o palx,t) infeq pa(x’, 1)
where the second inequality is based on a standard Harnack inequality for homogeneous

<C, fort>1, (7.14)

parabolic equations with uniformly bounded coefficients [24, Corollary 7.42]. (Due to the
Neumann boundary condition, the Harnack inequality can be applied up to the boundary of
the spatial domain €2.)

By repeating the argument with 1 — p4, we obtain

Vpate. Dl _ V(1= paCx. 1)

su = <(Cz; forr>1. (7.15)
o L= patnd)  oeh L-pann)
Combining (7.14) and (7.15), we deduce
\Y \Y \%
suplzsu [l pA|+ | pA|]3C2+C3 fort>1. (7.16)
w0 PAL=pa) x| Pa 1 = pa
The corresponding estimate for pp follows analogously. O

Remark 7.5. The parabolic L” estimate and the Harnack inequality require only the bound-
edness of A. Therefore, for each fixed M > 0, the bound Cy in Lemma 7.4 can be chosen
uniformly for A € (0, M] and € € (0, 00).

Lemma 7.6. For given A > 0 and € > 0 such that

zie > 3ABllc@ + 2C5s (7.17)

where Cy is as in Lemma 7.4, we have
1if£§oup 1DAC, Dlle@y < 4€Co lirtrliup IVPslic@ (7.18a)
lim sup 1D, Dy < 4€Co lim sup IV p4lle - (7.18b)

—o0 [—oo
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In particular, the following holds:

@) if pg(-,1) = 0 or 1 in C(Q), then D4(-,t) — 0 in C(Q);

() if pa(-, 1) = 0 or 1 in C(Q), then Dg(-,1) — 0 in C(Q);

(©) limsup,_,, D4 Dlcay < 4€C2 and limsup, .., IDs(, Nica < 4€C2.

Remark 7.7. It is easy to deduce from (7.8) and Lemma 7.6(c) that for every A4 > 0,
lim sup [|D(:, Dlle@y < limsup [|Da(:, Dlle) = O(€) (7.19)
1—00 t—00
as € — 0. This shows that indeed, as argued verbally in Section 2.3 and above, linkage
disequilibrium decays to values close to O if recombination is sufficiently strong. Similar
results were proved previously for general non-spatial multilocus models [38,41] as well as
for spatial models with a finite number of demes [8]. However, (7.18) is stronger than (7.19),

and it will be essential for the proof of Theorem 7.1.

Proof of Lemma 7.6. From (7.2a), (7.2¢), and (7.8), we derive
2(1 = 2pa)Vpa

0Dy — ADy — “VDy + Dy|AB(1 = 2ps)Dy — AB(1 = 2pp)
pall = pa)
I\ 1 2Vpy -V
o 2AVPaE —] A N inQx(0,00).  (7.20a)
pall —ps) € pal = pa)
0,Dy =0 on 0 X (0, 00) . (7.20b)

Because each of D, € {Dy4, —D,} satisfies the differential inequality

2(1 = 2pa)Vpa

0D = A =

VD,

+ Dy | AB(L = 2pp)Dy = AB(1 = 2pp) + ————— + —| <

pall —=pa) €| pa(l —py)

for a subsolution, their maximum |D4| = max{Dy4, —D,} satisfies the same differential in-

IV psl

2|VPA|2 1] 2|Vp4l

equality in the weak sense.
From (7.17), (7.9), and (7.10), we obtain

1 2|V pal )
— > sup |34B(x)| + —————|Vp4|
2e xeﬂ,gl( o pa(l = pa) A
2\Vpal?
> sup 4B - 2pDs — AB(1 — 2pp) + — AL |
xeQ, 21 pall = pa)

where we used the fact |D4| <2 by (7.12). Then |D,| is a weak subsolution of
2(1 = 2ps)Vpa VD + D 2[Vpal

pa(l = pa) 2e pa(l = pa)
0,D=0 on 0Q X (0,00). (7.21b)

8,D - AD — IVpsl inQx(0,00), (7.21a)
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Now for every 7y > 1, we may construct a supersolution of (7.21) in the domain X [#, o)
as follows:
VPA(" t/)

4+ D)/
pA(" t’)(l - pA('? t/))

D, = desup [

t'>to

||VPB(" t,)”c(fz)
cQ)

Then, clearly, Dy>2> |D4| for x € Q and t = ty. Hence, we can deduce by comparison that
Vpa(, 1)
paC, )1 = pa(, 1))
for t > ty. By letting t — oo and then #; — oo, we obtain (7.18a). An analogous argument for
Dyp yields (7.18b).
For assertion (a), we observe that if pp(-,t) approaches O or 1 uniformly as ¢t — oo, then

+ 2e 028 (7 2D)

IVps(:, t’)”c(fz)

sup [Da(x, t)| < 4esup [ )
fo(())

xeQ t'>to

Lemma 7.4 informs us that |[Vpg(-, 1)llcq) — 0 as t — oo. Hence, we obtain assertion (a) by
(7.18a). The proof of (b) is analogous and is omitted. Part (c) follows directly from (7.18)
and (7.10). O

Remark 7.8. From Remark 7.5 and (7.17), we conclude that for each M > 0, the estimates
in (7.18), Lemma 7.6(c), and (7.19) hold for C, chosen uniformly for A € (0, M] and for
€ < (6[|Bllc@) + 4C(2))_1-

Lemma 7.9. (a) If 0 < A < Ay, there exists €, > 0 such that for € € (0, €],

. _ 1 l:fC_Z>0, . 1/~
}L‘BPA('”)‘{ 0 ifa<o nCE.

(b) If 0 < A < Ap, there exists &, > 0 such that for € € (0, &],

lim py(.0) = { (1) % Z 8’ in C'(Q).

(©) If 0 < A < max{Au, A}, there exists € = max{§,, &} > 0 such that for € € (0, €],

lim D(-,1) =0 in C(Q).

—o0
Proof. First, we prove (a) and suppose @ < 0. By Theorem 3.4, O is a linearly stable equilib-
rium of
0,0 — A8 = 2a6(1 —0) in QX (0, 00), (7.23a)
0,6 =0 on 9Q % (0, ), (7.23b)
and it attracts all solutions of (7.23) that are not identically equal to 1. Because « changes

sign and @ < 0, for 6; > O sufficiently small, @ + 6, still changes sign and @ + 6, < O.
Moreover, A*(a + 0 ), defined below (3.4), decreases continuously as ¢; increases from 0 [46,
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Proposition 1.5]. Because 4 < 14 = A*(@), we may choose 9; sufficiently small such that
A < A*(a + 61). Therefore, 0 is globally asymptotically stable also for
8,0 — A0 = A(a+6)0(1 —6) in Qx(0,00), (7.24a)
3,0=0 on AQ x (0, ) . (7.24b)
By Lemma 7.6(c), let € be sufficiently small so that for some 7y > 0, |8D4| < 6; in
Q X [to, ©0), and let 6 be a solution of (7.24) with initial condition 6(x, t5) = pa(x, fo). Then
0ipa — Apa = A a +BDx] pa(l = pa) < Aa + 61)pa(l — pa)

on Q X [ty, ). Since also d,p4 = 0 on dQ X (0, 00) and pa(x, ty) = 0(x, ty) in Q, we deduce
by comparison that

0 < pa(x,1) < O(x,1) in QX [ty, ).
Because ||§(-,t)||C(Q) — 0 as ¢t — oo, we have [[pa(:, Dllcq) — 0 as ¢ — oo. By parabolic
regularity, we obtain |[pa(-, Hllc1q) — 0. This proves (a) if @ < 0. The proofs of (a) for @ > 0
and of (b) are analogous and are omitted.

By (7.3), statement (c) follows directly from (a) and (b). O

Remark 7.10. For every given 6 > 0, the constant d; in the above proof can be chosen
uniformly for A4 € (0, 44 — d]. Hence by Lemma 7.6 and Remark 7.8 one can choose €, (resp.,
&) uniformly for A € (0, 44 — d] (resp. 4 € (0, Az — d]).
Lemma 7.11. Suppose A > A4, and define
L,=-A-2a(l -2¢). (7.25)

Then there exists 5, > 0 such that if ¢ € C(Q) satisfies || — Oullc@) < 01, then

o(Ly,) C{z€eC:Rez >y} forsomedy> 0. (7.26)
Proof. Because A > A4, the positive equilibrium 6, is linearly stable in the single-locus prob-
lem, i.e., there exists 6y > 0 such that the operator Ly, satisfies 0-(Ly,) C {z € C : Rez > 26y}.

The lemma thus follows from upper semicontinuity of the spectrum of L, with respect to the

coefficient ¢ € C(Q). O
Lemma 7.12. Suppose g4 is a solution of
0iqa + Loga = F(x,1)  in QX (fy, ), (7.27a)
0,94 =0 on 0Q X (tg, ), (7.27b)

where L, satisfies (7.26) and F(x,t) € C (QX[ty, 00)). Then there exists C' > 0 (which depends
on L, but is independent of F) such that

lim sup [lga(-, Hllcr@y < C" limsup |[F (-, Dllc@) - (7.28)

—00 t—o00
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Proof. By the variation-of-constants formula, we have

!
ga(, 1) = e g (1) + f eI R(, 5)ds fort>ty, (7.29)
To

where e~ 'L

¢ is the semigroup generated by L, under homogeneous Neumann boundary con-
ditions. Using (7.26), it is a consequence of [31, (2.3.3)] that for every y € (0,1) and p > 1

there is a constant ¢ > 0 such that

—50t|

—tL — _
lle™*Wlip,, .00 < €t Te ™| wllcy forallzr>0,

where Dy, (y,0) is the real interpolation space between C(Q) and the domain D(L,) =
Np=1 W*(Q). Because Dy (y, ) € C*71(Q) if y € (3, 1) [31, Theorem 3.1.30], we obtain

e wlle1 ) < ct‘ye_‘s(”llwllc@ forallr>0. (7.30)

Applying (7.30) to (7.29), we derive

!
lgaC, Dl < et — 1) e o0 ga (-, ollc@ + f c(t — ) Ve, e ds

4]

for t >ty > 0. Letting t — oo, we arrive at (7.28). a

Proposition 7.13. (a) If 1 > Ay, then for every trajectory (pa, pg, D) of (7.2) with initial data
pa(-,0) ¢ {0, 1}, we have

limsup [[pa(-, 1) — Oullcio) = O(e)  as e — 0. (7.31)

—o0

(b) If A > Ap, then for every trajectory (pa, pg, D) of (7.2) with initial data pg(-,0) ¢ {0, 1},

we have

lim sup ||ps(-, 1) = G4, = OC€)  as e — 0. (7.32)
t—o0

Proof. To prove (a), assume A > A4. We may choose a constant 6, > 0 sufficiently small such
that

A > Ayes  forall 6 with |6] < 6, ,

where A,,s is defined in (3.10). Then the single-locus equation
0,0 —A0=Aa+9)0(1 -60) inQx(0,00), (7.33a)
0,0 =0 on 0Q X (0, o) (7.33b)
has a unique globally asymptotically stable equilibrium 6,,. Let C’ be given by Lemma 7.12,

where L, = Ly, and let ¢’ =

non-trivial initial condition,

—L___ We claim that for each sufficiently small €, and any
C ||/1(1||C(Q)

limsup [|paC:, 1) = balle@) < 0" (7.34)

t—00
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To prove (7.34), let 6’ > 0 be given as above. Since 4 > A4, the steady state 6,.s; depends
continuously on ¢ € [0, 0], thus there exists n7 € (0, 6,) (depending on §”) such that

10a-n = Balle@) + 100y — Balle@) < 6" (7.35)

Next, fix € > 0 small enough so that 46C§||,8||C(Q) < nand (7.17) are satisfied (where Cj is as
in Lemma 7.4). Then, by Lemma 7.6, there exists 7, > 0 such that

BD
pa(l = pa)

=|BDsl <1 in QX [ty, ).
In this case, p, satisfies

Aa=mpa(l = pa) < 0pa —Apa < Aa +n)pa(l = pa)  in QX [, ).
Hence, by comparison and by the fact that 6,., is the globally asymptotically stable equilib-
rium of (7.33) with 6 = %7, respectively, we deduce that

Op—p(x) < hm 1nf pa(x, 1) < limsup pa(x, 1) < Oyipy(x).

[—00

Combining this with (7.35), we obtain

lim sup [|pa(-, 1) — G,llc@)

t—00

< lim sup max(pA(x 1) — 6,(x)),

t—00 xeQ

< MNOgsn = Oallc@) + 1160 = Oayllc@y < 9

+ lim sup [max(@a(x) pa(x, 1),

t—00 xeQ

which proves (7.34).
Next, let g4(x,1) = pa(x,t) — 6,(x) and F(x, 1) = —Aa(qa)* + ABDspa(1 — p4). Then

0iqa + Lg,qa = F(x,1), (7.36)

where Ly, is defined according to (7.25). Since A > A, the equilibrium 6, is linearly sta-
ble and thus o(Ly,) C {z € C : Rez > &y} for some d, > 0. Because (7.19) entails
lim sup,_,, [IF'(:, Dllc@) = O(€)+||Aall¢@) limsup,_, ., [lgaC, t)||C(Q), we can invoke Lemma 7.12
to deduce that for some constant C’ > 0 (the same as the one at the beginning of the proof),

we have

lim sup [lg4C. Dller ) = €' [0() + lallcg, lim supllgaC. D2 g, |- (7.37)

t—o00 —00

By our choice of ¢’ = and (7.34), we have

2¢ II/ldll

1
C’llallc() lim sup|lga(-, l)||C(Q) thSUPHCIA( Dl

t—o00 —00

and (7.37) yields
lim sup [lga (-, Dllcr @) = O(e).

t—00

This proves (a) for 4 > A4. The proof of (b) is analogous. O
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We end this subsection with the proof of Theorem 7.1(a).

Proof of Theorem 7.1(a). Let A < max{A4, Ag}. Without loss of generality, we assume A < Ap.
Then by Lemma 7.9(b) and Lemma 7.6(a) we have

e ) = 0or1 inC(Q) and Dy —> 0 in C(Q), (7.38)

respectively. Hence, equation (7.2a) for p, is asymptotic to (3.9a) with & = «.

Now, for (3.9a) with & = a, the equilibrium 6, is globally asymptotically stable (recall
that 0 < 6, < 1if 4 > A4, and 6, € {0,1} if A < A4). Any other equilibrium in {0, 1} is
linearly unstable. For every given trajectory {pa(:, 1)}, of (7.2a), the omega limit set wy is an
internally chain-transitive set of the semiflow generated by the limiting equation (3.9a) with
h = a. In particular, wy, must be a singleton set containing one of the equilibria {0, 6,, 1}, i.e.,
pa(-, t) converges to one of the equilibria as t — oo.

To prove that pa(-,1) — 6, in C'(Q), we consider the case @ > 0 first. If 0 < A1 < Ay,
then 6, = 1 and ps(-,t) — 1 follows from Lemma7.9(a). If 4 > A4, then 0 < 6,(x) < 1
on Q and Proposition 7.13(a) excludes the possibility that p4(-,f) — 0 or 1 and thus leads to
paC-,t) = 6,. If A = A4, then 6, = 1, and O is linearly unstable as an equilibrium of (3.9a)

with & = @. We rewrite the equation (7.2a) for p4 as

0ipa — Apa = Aa(l — pa)pa + Ag(x,)pa  in QX (0, 00), (7.39a)
O,pa =0 on 0Q X (0, 00), (7.39b)
pa(x,0) >0 and ps(x,0) 0 inQ, (7.39¢)

where, by (7.38),
g(x,1) = B(x)DA(1 — pa(x,1)) = 0in C(Q) as t — . (7.40)

Thus, we may apply [26, Lemma 2.5] to deduce that p4(-,#) — 1 in C'(Q) as t — oco. For
each fixed e, the convergence of (py4, pg, D) as t — oo can in fact be improved to [C2( QP
via parabolic regularity. This completes the proof of ps(-,7) — 6, as t — oo. Finally, the

proof for the case @ < 0 is similar and is omitted. O

Remark 7.14. Here is an alternative proof of Theorem 7.1(a) without using the chain transi-
tivity. As above, we consider the case @ > 0. If 0 < 1 < A4, we apply [26, Lemma 2.5] to
equation (7.39) and conclude that ps(-,1) —» 1 ast — oo. If 4 > A, we apply [26, Lemma
2.5] to both p4 and (1 — p,) to obtain

liminf pa(x, 1) > 6,(x)
[—0o0

and

liminf(1 — pa(x,1)) > 1 — 6,(x), i.e., limsuppa(x, 1) < 6,(x),
[—o0

t—00
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respectively. This implies pa(x,) — 6,(x) pointwise as t — oco. By parabolic regularity and
the Arzela-Ascoli Lemma, we infer that p,(x, ) — 6,(x) in C*(Q), as in [26, Theorem 2.1].

Remark 7.15. Based on Remarks 7.8, 7.10 and the proof of Theorem 7.1(a), we observe
that for every 0 € (0, max{dy, A3}) the & in Theorem 7.1(a) can be chosen independently of
A € (0, max{A,, A5} — 46].

7.2. Persistence results and existence of internal equilibrium. For the rest of this paper,
we treat the case A > max{A4, A}, so that the single-locus problems at loci A and B admit lin-
early stable clines 6, and 6, respectively (Theorem 3.4). First, we will use persistence theory

(e.g. [51]) to establish the existence of an internal equilibrium of the two-locus problem.

Definition 1. Let ® : Y X [0, 00) — Y be a semiflow.
(1) @ is point-dissipative if there exists C > 0 independent of initial conditions Qy € Y such
that

lim sup |@(Qo)lly < C. (7.41)

—00
(i) @ is eventually bounded on Y if | J,, ©(Y) is bounded for some t; > .
(1) @, : Y — Y is compact for given t > 0 if ®,(B) is precompact for every bounded subset
BofY.

Proposition 7.16. The system (7.2) generates a semiflow ® on'Y, i.e., for initial data Qy € Y
and every t > 0, let ®,(Qy) = (pa(:, 1), pp(-, 1), D(-, 1)), where (pa, pg, D) is the corresponding
solution of (7.2). Then ® is (i) point-dissipative, (i1) eventually bounded on Y, and (iii)
D, : Y — Y is compact for every t > Q.

Proof. Because the map 7 : Y — Xin (7.1) is a homeomorphism and X in (2.10) is forward
invariant under the semiflow ¥ generated by (2.6), Y is forward invariant under ®. Therefore,
®,(Qo) = (pa, pa, D)(+, 1) exists and remains in Y for all # > 0. Since Y is a bounded set, ® is
point-dissipative and eventually bounded.

To prove (iii), we rewrite the first two equations of (7.2) as

a,pA - ApA :FA = /lCZpA(l _pA) + /lﬁD,
0ipg — App =Fp := ABpp(1 — pp) + AaD,

and apply semigroup and regularity theory. For every ¢y > 7 > 0, there exists C > 0 indepen-

dent of € and initial data, such that

(P4, pB)||W2’1’1’(Q><[lo,to+7]) < C(||(Fa, FB)||LP(Q><[;O_T,;0+T]) + l(pa, PB)||LP(Q><[;0—T,;0+T]))
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[24, Theorem 7.35], and the constant C depends on min{zy, 1} because we can take 7 =
min{1fo, 3}. By Sobolev embedding, we deduce

sup  [|paC, 1), P, Dllcrn@

telto,to+7]

44 5 44
<C (H(pA’pB)||C((_2><[t0—T,t0+T]) + 1D, t)”C(QX[tO—T,tO+T])) < ZC ) (7.42)

where the last inequality follows from (7.3).

Similarly, for every #y > 7 > O there is a constant C. independent of initial data, such that

sup |ID(, Dllcrv@) < Ce.
to<t<to+t

(Note that C. depends not only on min{fy, 1}, as above, but also on € because the coeffi-
cients in equation (7.2c) for D depend on €.) Therefore, @, is a bounded mapping from
Y - YN C*(Q;[0, 117 X [-4, 1]) for every t > 1, i.e., there is a constant M,, such that
1P (Q)llc1+v@y < M, for all Qy € Y. By the compactness of the embedding C"(Q; [0, 17% x

[—}L, %]) — C(Q;[0,1]*> x —}L, %]) and because #, can be arbitrarily small, we deduce that

®, : Y — Y is compact for every ¢ > 0. O

Corollary 7.17. The semiflow ® has a compact attractor C of Y, i.e., dist(®,(Y),C) — 0 as

t — o0,

Proof. By [51, Theorem 2.30 and Remark 2.26(b)], it is sufficient to verify that the semiflow
® is (i) point-dissipative, (ii) eventually bounded on Y, and (iii) @, : Y — Y is compact for

some ¢ > 0. These have been shown in Proposition 7.16. O
Definition 2. (i) Define the function k : Y — [0, o0) by
k(v v2,v3) 1= inf [min {v; (x), 1 = vi(x), v2(x), 1 =20} - (7.43)

(i1) We call the semiflow © uniformly k-persistent, if there exists 6y > 0 independent of initial
condition Qo € Y \ Y such that

lim inf x(®:(Qo)) = liminf | inf min {pa(x, 1), 1 = pa(x. 1), pp(x, 1), 1 = pp(x, D} | 2 o .
1—00 t—o00 X€E

The function « is continuous and, by Lemma 2.1, satisfies k(pa(:, 1), pp(:, 1), D(-, 1)) > 0
for t > O if either

k(pa(-,0), ps(-, 0), D(-,0)) > 0
or
k(pa(-,0), ps(-,0), D(-,0)) = 0 and (pa(-,0), ps(-,0), D(-,0)) € Y \ Yo.
In the following, we apply standard results from persistence theory to prove the existence

of at least one internal equilibrium. Any such equilibrium will satisfy (7.7).
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Corollary 7.18. Suppose A > max{A,, Ag}. Then for every sufficiently small € > 0, the system
(7.2) has an internal equilibrium, i.e., there exists (Pa, P, D)= (pf), ﬁg), D©) in the interior

of Y, such that k(pa, pp, D) > 0 and ©,(pa, ps, D) = (Pa, P, ﬁ)for all t > 0. Moreover,

[(as P5) = (Bar09)| 1 5 + IDllcy = OC(€) (7.44)
((9)

as € — 0.

Proof. We recall that the semiflow @ on Y is equivalent to the semiflow ¥ on X via the
relation ®, = 7! o ¥, o 7, where X is given in (2.10), and 7 (p4, ps, D) = (p1, P2, P3, P4) is
given in (7.1). If we define ¥’ : X — [0, o) by

K (uy, Uy, u3, Ug) = irelg [min{u; + up, 1 —uy —up, uy + us, 1 —uy —u3}] ,
X

thenk’ = ko 71,

For every fixed, sufficiently small €, we observe that (i) the semiflow ¥ is uniformly «’-
persistent (because @ is uniformly «-persistent by Proposition 7.13); (i) ¥, : X — X is
compact, hence condensing, for every ¢ > 0 (because @, : Y — Y is compact for every
t > 0 by Proposition 7.16, and 7 : Y — X is a homeomorphism); and (iii) ¥ has a compact
attractor in X (because @ has a compact attractor in Y by Corollary 7.17), which shows that
Y has a compact attractor of neighborhoods of compact sets.

Observe in addition that

e X is a closed convex subset of the Banach space C(Q; R*).
e ' : X — R, is continuous and concave, where concave means
K(AQ1 + (1 = )Qy) > A (Q1) + (1 = VK'(Q2)
forall 2 € [0,1] and Oy, 0, € X.

Therefore, the existence of an equilibrium (py, p», p3, p4) satistying «'(p1, pa, p3, pa) > 0
follows from [51, Theorem 6.2]. Hence, (P4, ps, D) := TY(p1, P2» P3, P4) is an equilibrium
of the semiflow @ associated with (7.2). Because

K(ﬁA’ﬁB9 D) = K/(ﬁlaﬁ25ﬁ39ﬁ4) > Oa

(Pas, Pa, 15) is an internal equilibrium of (7.2). Finally, (7.44) follows from (7.31), (7.32), and
(7.19). O

7.3. Global asymptotic stability. Let 1 > max{d,, Az} and let (P4, pp, D) be an internal
equilibrium given by Corollary 7.18, we will show that it attracts all trajectories initiating
in Y \ Yy. This in particular implies the uniqueness of the internal equilibrium. Part (b) of

Theorem 7.1 is an immediate consequence of Corollary 7.18 and the following proposition.
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Proposition 7.19. Let A > max{Ayu, Ag}. For every sufficiently small € > 0, the internal
equilibrium (P, pg, D) attracts all trajectories initiating in Y \ Yo, where convergence occurs

in[CHQ)P. In particular, (P4, Pg, 15) is the unique internal equilibrium of (7.2).
To prepare for the proof of Proposition 7.19, we define

(Pa(x, 1), pa(x, 1), D(x, 1)) := (pa(x, 1) = pa(x), pp(x, 1) = pu(x), D(x, 1) = D(x)).

If 4 > max{A,, Ag}, then by Proposition 7.13, Remark 7.7, and Corollary 7.18, there exist
C,; > 0 and € > 0 such that

tim sup (154 p5)C Dllciay + 1DC, Dlley| < Cre (7.45)

[—00

for every € € (0, €]. Furthermore, observe that (p,(x, 1), pg(x, 1), D(x, 1)) satisfies

Oipa — APa — Aa(xX)(1 = 2pA(x))Pa = —Aa(x)(Pa)* + ABX)D  in QX (0,00),  (7.46a)
8:pp — APs — BN = 2pp(x)ps = —ABX)(Pp)’ + Aa(x)D  inQx (0,00),  (7.46b)
0ypa = 0,pp =0 on 0Q x (0,0), (7.46¢)

and
- - - 1.
0D — AD — A[a(1 =2pa) + B(1 = 2pp)| D + ZD

=2Vpg - Vpu +2Vpa-Vpg —2daDp, —2A8Dpp  in Q x (0, 00), (7.47a)
0,D=0 on Q % (0, 00). (7.47b)
Lemma 7.20. Let A > max{A,, Ag}. Then there exists C; > 0 such that
liﬂiup IDC, Dlle@) < €C lir[rliup N(BaC, 1), PEC, Dllcreyy (7.48)
for every € < min{e, &2}, where € is associated with (7.45) and €, is chosen such that

1
76 1 Sup (le(x)] + [B(x)]) = 4 Sup |l (X)(1 = 2pa(x)) + B)(1 = 2pp(x))] . (7.49)

Proof. To prove (7.48), we define
D*(t) = max{sup D()C, t)? O} and ﬁ*(t) = ||(ﬁA(’ t)? pB('? t))HC](Q) .
xXeQ
We choose, by (7.10), a positive constant C, > 0 such that the right hand side of (7.47a)
is bounded from above by %Czﬁ*(t) for t > 1. We claim that D* satisfies the following

differential inequality (in the weak sense)

d % 1 % C2 ~%
ZID 1)+ Z_ED (1 < > pi(t) forte(l,o). (7.50)
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First, we observe that D*(7) is Lipschitz in [1, 00). For fixed M > 0 and #,1, € [1, M], we
assume without loss that D*(¢;) < D*(t,), and let sup ., D(x, ;) = D(x;,t;) for some x; € Q
(i=1,2). Then

|D*(t;) — D*(t))| = max{D(x,, 1), 0} — max{D(x,, #,), 0}
< D(x2, 1) = D(x1,11) < D(x2,12) = D(x2, 11)

and thus [D*]Lip([l,M]) < ||(9[D||C(QX[LM]), where the latter is finite because 9,D is Holder con-
tinuous by parabolic Schauder estimates.

It remains to show that D* satisfies (7.50) whenever it is differentiable. To this end, sup-
pose %f)*(to) exists for some #, > 0. There are two cases: Case (a) sup,.q D(x, 1) < 0; Case
(b) D*(ty) = D(xo,1) > 0 for some x, € Q. In Case (a), D*(r) = 0 in a neigborhood of
to and (7.50) holds trivially. For Case (b), we claim that AD(xo, fy) < 0. Assume not, then
AD(xy, ;) > 0 and x, cannot be an interior maximum point. Thus, xy € dQ and there exists
¢’ > 0 such that

D(x, 1)) < D(xo,%) and AD(x,t)) >0 in Bg(xo) N Q.

But then the Hopf lemma applies to yield that d,D(xo, ) > 0. This is in contradiction with
the Neumann boundary condition imposed on D on Q x (0, o). Thus, AD(xo, tp) < 0.
With this, we may evaluate (7.47a) at (x, fo) to obtain (here the choice of € < ¢, is needed)

0 ~ 1 - C,
— D(xy, 1, —D(x, o) < —p" ().
% (xo o)+2€ (x0, 1) 2P(o)

Since D is differentiable at fy and D*(ty) = D(xo, fo) > 0, we must have < D*(ty) = 2 D(xy, 1),
hence we deduce (7.50) at ¢ = f,. Since D* € C([0, 0)) N Lip ([1, o)) (and thus absolutely
continuous in [1, 00)), and satisfies (7.50) at all points where it is differentiable, it satisfies
(7.50) in the weak sense.

From (7.50) we deduce

() C ! —(=s)
x +72 e > p'(s)ds forr>1.
1

D*(t) < D*(1)e”
This implies

lim sup [sup D(x, t)] < lim sup D*(f) < Cyelim sup j*(2).
xeQ

—00 —00 —00

Similarly, we obtain
lim inf [in(f2 D(x, t)] > —Creliminf p*(¢),
t—oo X€E t—o0

which proves (7.48). O

We are now in the position to prove the main result of this section.
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Proof of Proposition 7.19. We claim that

lim sup (B, Pp)C:, Dllcr@y = 0. (7.51)

—o0
To this end, let L;, and L;, be defined according to (7.25). By (7.44), we can apply Lemma
7.11 and obtain

o(Lp,) C{z€ C:Rez >y} and o(Lp,) C {z € C:Rez> 6y}

for some 0, > 0. Hence, we can apply Lemma 7.12 to (7.46) to deduce

2
limsup [|(pa, Pp)(, Dl < Cs [(lim sup [[(Pa, P)(: t)llcl@) + lim sup [ID(:, t)”C(Q)] :
[—00

—o0 —o0

Now, by (7.45) and (7.48) there exists a constant C, independent of € such that

lim sup [|(Pa, Pp)(, Dllcr@y < Ca€ [lim sup [[(Pa, Pr)(:, t)||cl(ﬁ)] .

t— o0 1—o00
This proves (7.51) provided € < min{e;, &, 1/C4}.
Finally, the estimates (7.51) and (7.48) imply
lim sup ||(Pa, Pp)(-, Dllci @) = lim sup 1D, Dllew =0,

t—o0 —
i.e., (paC, 1), pa(-, 1), D(-, 1)) = (Pa, pp, D) in C'(Q) x C1(Q) X C(Q) as t — 0. In particular,
(Pas, Pa, 15) is the unique internal equilibrium of (7.2). As before, for each fixed € > 0, we
may apply parabolic regularity theory to strengthen the above convergence to [C?(Q)]*. This
completes the proof. O

8. DIscussioN

The aim of this work was the establishment of conditions for existence, uniqueness, and
stability of two-locus clines. This has been achieved for two limiting cases: weak recombina-
tion (p < 1, Theorem 6.1) and strong recombination (o > 1, Theorem 7.1). In the latter case,
even global asymptotic stability could be proved, whereas in the former case only existence
and linear stability were proved. For general strength of recombination, the problem remains
largely unresolved, and the equilibrium structure and dynamics are likely more complex.

We conjecture that for intermediate recombination rates and if the strength of selection
relative to diffusion is in a certain range, an internal equilibrium, i.e., a two-locus cline, can
be simultaneously stable with a boundary equilibrium. For a related ODE model, in which
there is unidirectional migration from one deme into an other deme, this was proved in [11].
Numerical solution of the system (7.2) supports this conjecture (RB, unpublished).

A global convergence result that applies to arbitrary recombination is Theorem 4.6. It

shows that for every fixed r > 0 and s > 0, there exists dy = dy(r, s) > 1 such that the
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monomorphic equilibrium with the highest spatially averaged fitness is globally asymptoti-
cally stable if d > dy. We conjecture that for given s > 0, d, can be chosen even independent
of r > 0; in other words, there exists 1y < 1 such that such monomorphic equilibrium is
globally asymptotically stable for (2.6) if 4 < 4y (Remark 4.7).

A limiting case, for which we also conjecture existence of a globally asymptotically stable
two-locus cline is that of weak migration relative to selection and recombination (d < 1).
However, this limit is degenerate. For a single locus, profiles of the clines were derived in
this limit under various assumptions about dominance in [27] and [44]. There are other cases
that should be amenable to a rigorous analysis.

For a finite number of demes, several limiting cases were studied rigorously in [8]. In
such discrete-space models, selection and recombination in each deme are described by dif-
ference equations (if generations are discrete) or ODEs (if generations are overlapping), and
migration between demes is modeled by an ergodic matrix. In [8], global convergence results
were proved for weak migration and for strong migration, subject to additional, also scaling,
assumptions which guaranteed that the set of chain-recurrent points of an appropriate limit-
ing system consists of hyperbolic equilibria only. There, an arbitrary number of multiallelic
loci was admitted as well as selection schemes with dominance and epistasis. Despite this
additional complications (which enable multiple stable equilibria), the proofs (if restricted
to two diallelic loci) are simpler than here, and also different, because they rely on methods
and results developed in [41] and invoke perturbation theory of compact normally hyperbolic
manifolds and of chain-recurrent sets for dynamical systems on compact state spaces. The
case of strong recombination is briefly outlined in [9, Section 7.9]. For the special case of
two diallelic loci and additive fitnesses as in (2.15) and (2.16), the result given there reduces
to an analogue of the present Theorem 7.1.

It is of considerable biological interest to study how the shape of a cline depends on the
underlying parameters. In the present context, population genetic intuition suggests that the
two-locus cline becomes steeper with stronger linkage, i.e., smaller r (hence p), provided
the functions @ and S have the same sign. The reason is that positive linkage disequilibrium
(covariance) between the loci will be generated in this case, so that a kind of mutual rein-
forcement emerges. Support for this conjecture comes from numerical results and formal
calculations [4,5,49], as well as from related ODE models [2,11,19]. For a step environment
on the real line, i.e., if each of a(x) and B(x) assume only two values and change sign at the
same location, the slope of each of the allele-frequency clines (pa, pp) at the step was shown
to increase with decreasing p provided p was sufficiently large [10]. This was done by de-

riving an explicit first-order approximation of the two-locus cline. It would be of interest to
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show similar results for the allele-frequency clines of the present model, possibly following
[25] and using [|[Vpall;2q) as a measure of the steepness.

Throughout the present paper, we assumed an open bounded domain. It would be desir-
able and challenging to develop an analogous theory for unbounded domains. For one locus
with two alleles, various results on the existence, uniqueness and stability of clines were de-
rived in [12] and [15]. In particular, Conley [12] showed that a cline exists if the function
describing the influence of environmental variation, say /(x), is not integrable near +oo and
sgn h(x) = sgnx. Therefore, in contrast to a bounded domain, a cline exists independently
of the strength of diffusion relative to selection (see also [10] for the two-locus model with a
step environment). For the two-locus case, one may conjecture that a two-locus cline exists
if both a(x) and B(x) satisfy these conditions on A(x).

Another general assumption was that the functions a(x) and S(x) change sign in Q, i.e.,
(A). For a single locus, it is well known that in the absence of a sign change, one of the trivial
equilibria is globally asymptotically stable (eg. [26,29]). Assume that S(x) does not change
sign, but a(x) does. Then the results in Section 3.1 imply that Az = Ag = co. Therefore, we
can follow the proof of Theorem 7.1(a) to show global convergence to a boundary equilibrium
for every 4 > 0.

In Theorem 7.1, the degenerate case 4 = max{Ad,, Az} was excluded. Assuming A = A4 >
Ag, our results in Section 7 show that §, = 0 (or §, = 1) and 0 < 6 < 1. Straightforward
linearization is insufficient to determine whether the perturbation of the equilibrium (6,, 63, 0)
is in the state space or not. We expect that a sufficient condition for the existence of an internal
equilibrium for large p is that a(x) and S(x) have the same sign.
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