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Abstract. In this paper, the necessary and sufficient conditions for the existence of traveling
wave solutions are derived for a class of diffusive disease-transmission models with network struc-
tures. The existence of traveling semifronts is obtained by Schauder’s fixed-point theorem, and these
traveling semifronts are shown to be bounded by transforming the boundedness problem into the
classification problem of nonnegative solutions to a linear elliptic system on R. To overcome the
reducibility problem arising in the proofs, Harnack’s inequality for positive supersolutions on R is
proved.
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1. Introduction. Compared with simple compartmental epidemic models, those
with complex network structures can better describe the disease-transmission behav-
iors [22]. In this paper, we aim to show the existence of traveling waves for a class
of diffusive disease-transmission models with network structures, which are formu-
lated by a noncooperative reaction-diffusion system and usually consist of more than
three equations. To that end, methods for traveling waves of noncooperative reaction-
diffusion systems will be developed.

In our model, hosts are assumed to be divided into n+ 1 subclasses, in which each
individual is either susceptible or infected. If a host is infected, we call it a carrier,
who may be infectious or noninfectious (e.g., exposed or infective class; see Britton
[4, Chapter 3]). Let u(z,t) and v;(x,t) denote the densities of susceptible and carrier
hosts with infection character ¢, respectively. Here x is the space variable and ¢ is the
time. Then our diffusive model is given by

0
EF = doAu+ f(u) — go(u, o),
(1.1) a?;t-
N = d;Av; + gi(u,v), i=1,...,n,
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where

v=(v1,...,05), z€ R A= 202’ f(u) = 0(K —u),

n n
Bijv;
U) :Zg?(uav), gz u, v _’U,Z e ) gi(u,v) :g?(u,v)—i—Zmijvj
Jj=1

1 + ’71] 7 =1

with mj, > 01if j # k and m;; < 0. Here d; (j =0,1,...,n), § and K are positive
constants, and 3;; and +y;; are nonnegative constants such that 8;,;, > 0 for some
% stands for the disease incidence due to the jth
carrier class v, which results in the susceptible u becoming carrier v;. It is the famous
bilinear incidence if v;; = 0 and the saturation incidence if ;; > 0 [27].

For system (1.1), we introduce the notations for the two matrices M, G® € R**"
given by (M);; = D.,9:(0,0) = m;; and (GYi; = D,,9:(K,0) = Kf;; +m;j, which
satisfy
(1.2)

index ig and jg. The function

v) = Zmikvk = (Mv); and  gi(K,v) = (G%);i +o(|Jv]) for 1 <i<n.

Both matrices are essentially nonnegative and constant (i.e., off-diagonal entries are
nonnegative). In fact, (GY);; > (M);; for all 7, j. These two matrices play important
roles in determining the critical wave speed and other properties of traveling wave
solutions.

To illustrate the range of disease models to which our methods for (1.1) apply,
we consider a multistage epidemiological model. Guo, Li, and Shuai [17] proposed a
general class of multistage epidemiological models that allow possible deterioration
and amelioration between any two infected stages. That model can describe disease
progression through multiple latent or infectious stages, as in the cases of HIV and
tuberculosis. The host population is partitioned into the following compartments: a
susceptible compartment S, a succession of infectious compartments I;, i = 1,...,n,
whose members are in the ith stage of the disease progression, and a removed com-
partment R. Generally speaking, hosts can diffuse freely, and thus we consider a
special case of Guo’s model with diffusion and bilinear incidence, which is as follows:

a8
5; = WAS + (K =) — Szﬁ”,
ol
" ERCEURE) SUUED SO A
j=1 j=1
I; n .
%:diAIi+Z¢ijIj—¢Ji7 i=2,...,n,
j=1

where 6, K,d;, i = 0,1,...,n, are positive, and ¥; = Z;;l @i + ¢ for all i. Moreover,
¢ii = 0,¢;; > 0 for all 4, j, and Z?:l ¢ji > 0 for all ¢; B;, > 0 for some index 1o,
and ¢; > 0 for all . Obviously, model (1.3) is a special case of (1.1). There are
two network structures in (1.3): the network between S and I := (Iy,...,1I,) and
that among different progression stages I;, ¢ = 1,...,n. In the first network, 8;51;
stands for the disease incidence due to I;. In the second network, ¢;; measures the
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transfer (deterioration or amelioration) rate from I; to I;. Similarly, for model (1.1),

the matrix (%)nxn stands for the transfer network from u to v and the matrix
ijVj
M measures the transfer rates among v;, 1t = 1,...,n.

Besides the multistage epidemiological model (1.3), system (1.1) can also model
the spatial virulence-mutation behaviors [16, 15, 31, 14]. If m;; = 0 = 3;; for all i # j,
and v;; = 0 for all 7,7, then our model (1.1) becomes the one in [31]. If the total
host size is constant (i.e., u(z,t) + Y1, vi(x,t) is constant over R? x [0, 00)) and the
matrix M is irreducible, then our model results in the system of [14], the one in [16]
when n = 2, or the model in [15] when n = 2 and d; = d3. Note that the existence of
traveling waves for our models in special cases [15, 14] has been studied completely.
However, unlike those in [16, 15, 31, 14], our model is more general and allows general
mutation matrix M and varying total host size, which would better describe virulence
evolution among different pathogen strains.

Apart from model (1.3) and those in [16, 15, 31, 14], system (1.1) also contains, as
special cases, the models in [40, 36] and those in [21, 30, 29, 23, 13, 11] with diffusion.
Clearly, in our model (1.1), susceptible hosts u have positive effects on carrier hosts
v, whereas the carrier hosts have negative effects on the susceptible. This means that
system (1.1) is noncooperative. The goal of this paper is to develop a novel method
for the existence of traveling waves of the noncooperative system (1.1) and to apply
this method to model (1.3) and the models in [16, 15, 31, 14, 21, 30, 29, 23, 13, 11].
saturated (bilinear) if v;; = 0 and saturated if v;; > 0. Like [17, 36], we could certainly
make this incidence be a general nonlinear function with some tedious assumptions.
However, the paper organized in this manner may seem complex in writing, and lots
of efforts have to be paid for tedious assumptions. In this paper, in order to avoid
this situation and let the readers easily grasp the main ideas, we thus take the dis-
ease incidence to be the specific function % including saturated and unsaturated
cases. We hope to make the main ideas of the proofs more transparent in this way.

It is easy to verify that the following properties hold for system (1.1):

(C1) go(u,v) is nondecreasing with respect to v > 0 and v > 0, and g;(u,v), j =
1,...,n, are nondecreasing with respect to u > 0 and v; > 0,4 # j.

(C2) For u > 0 and v > 0, and i = 0, 1, ...,n, the Hessian matrices D2g;(u,v)
are negative semidefinite. These two properties will be frequently used in the proofs
of this paper.

For simplicity, we introduce some notations that will be used throughout this
paper and then give some basic definitions.

1.1. Notations.

[n] :={1,2,...,n}.

0,, := zero vector with n entries.

i denotes the imaginary unit, i.e., 12 = —1.

AT .= transpose of the matrix A.

A1 (M) := Perron—Frobenius dominant (or principal) eigenvalue of essentially

nonnegative matrix M.

6. (M);; := the (i,7) entry of matrix M; (v); := the ith entry of vector v;
(mj)nxn denotes the n x n matrix with entries m;;.

7. vl == 227 [(v)4], where v is a vector with n entries.

Note that the disease incidence in (1.1) has the specific form which is un-

GU o=
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8. For vectors v, v € R™, define

v>0vif (v); > (0); forallje [n];
v>0if v >0 and v # v;

v> 0 if (v); > (9); forall je€ [n]

9. s > 1: s is sufficiently large. s < —1: —s is sufficiently large.
10. For © = (99,01, ...,0y) and a function g;(v), set

- 09i , . N g ..
9:4(0) 1= 52t (@), gige(®) = oo (@), 65k =01,n.
J J

1.2. Definitions.

DEFINITION 1.1.
1. A solution (u,v) = (u,v1,v2,...,0,)(x,t) of (1.1) is said to be a traveling
wave solution (TWS) if

(1.4) (u,v)(2,t) = (U, V1, Va, ..., Vi)(s), s=alv+4ct,

for which c is referred to as the wave speed and v € R? is the unit vector of
the traveling direction.
2. A positive TWS (1.4) is called a traveling semifront if

(1.5) (U, V)(=00) = Eo(K, On),

where Ey denotes the invasion-free equilibrium.
3. A traveling semifront (U, V')(s) is called persistent if it is bounded and satisfies

(1.6) liminfU(s) >0, liminfVj(s) >0, j € [n].

s——+oo s——+oo

4. We say that a square matric M = (M;;)nxn is essentially nonnegative if
M;; > 0 whenever i # j. And we say that M is irreducible if for some k € N,
all entries of M* are positive, where

Lo [0 =]
M; "{Mi- ifi# ]

We recall the classical Perron—Frobenius theorem for nonnegative matrices. See,
e.g., [3, pp. 26-27].

THEOREM 1.2. Every essentially nonnegative matrix M has a Perron—Frobenius
dominant eigenvalue A1 (M) € R, which is the eigenvalue with the greatest real part.
Moreover, if M is irreducible, there exists a strictly positive right (resp., left) eigen-
vector Ur (resp.,l U1,), such that

Mg = A(M)Tr  (resp., (0)"M = Ay(M)(7L)7).

There may be other real eigenvalues besides Ai(M), but Ay(M) is the only one with
nonnegative eigenvectors.
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1.3. Methods and related results in the literature. We now review the
methods frequently used for the existence of traveling wave solutions for reaction-
diffusion systems.

Wu and Zou [35], Li, Weinberger, and Lewis [24], and Liang and Zhao [26] set up
the general theory on the existence of TWSs for cooperative (or monotonic) systems
by monotonic theories. For noncooperative systems that can be controlled from above
and from below by cooperative systems, Wang [33] obtained results similar to that
of [24] by comparison arguments. Recently, by using Schauder’s fixed-point theorem
and rescaling method, Girardin [14] studied a noncooperative system, the lineariza-
tion of which at invasion-free equilibrium results in an irreducible (and essentially
nonnegative) matrix.

Unfortunately, a large number of models, such as the famous predator-prey model
and SI disease-transmission model, cannot be controlled by cooperative systems, and
the linearization of these models at invasion-free equilibrium (e.g., prey-only equilib-
rium or disease-free equilibrium) is not cooperative. In this case, we say that the model
is essentially noncooperative. There are two methods commonly used for essentially
noncooperative reaction-diffusion systems, i.e., the geometric approach (or shooting
method) and Schauder’s fixed-point theorem approach. The shooting method was
proposed by Dunbar [9, 10] for predator-prey models and has been adopted by many
researchers for more than 30 years. This method was developed further by Huang [20]
for a class of general noncooperative systems. Though it is powerful, the geometric
method is mainly used for noncooperative systems consisting of two equations. It
is usually challenging to analyze the geometric behaviors of noncooperative systems
consisting of more than three equations. The approach via Schauder’s fixed-point
theorem is also widely used for essentially noncooperative systems; it was proposed
by Ma [28] and developed by Huang and Zou [18, 19] and Li, Lin, and Ruan [25].
Typically, to apply Schauder’s fixed-point theorem, one needs to construct a pair
of appropriate super- and subsolutions connecting two equilibria, which is generally
challenging. To overcome this difficulty, Schauder’s fixed-point theorem method was
developed further by Ducrot, Langlais, and Magal [8], Fu and Tsai [12], and Zhang,
Wang, and Wang [39] by constructing a pair of super- and subsolutions connecting
only invasion-free equilibrium at —oo and by using LaSalle’s invariance principle to
conclude convergence to a positive equilibrium at 4+oco. Zhang, Wang, and Wang
[39] also developed Schauder’s fixed-point theorem by introducing persistence theory
(see Thieme [32]) into the study of traveling waves where Lyapunov function is not
available, whereby LaSalle’s invariance principle cannot be applied. By Schauder’s
fixed-point theorem, Zhang [36] studied the existence of traveling waves with the min-
imal wave speed for a general noncooperative system (with or without recruitment)
consisting of three equations.

We say that system (1.1) is unsaturated if there exist ¢ and j such that 3;; >
0,75 = 0, ie., g?(um) is unbounded with respect to v > 0 for fixed v > 0. Then
system (1.1) may be unsaturated and essentially noncooperative with recruitment
(i.e., f(u) £ 0). The existence of traveling waves for an unsaturated and essentially
noncooperative system without recruitment can be studied by the methods proposed
by Wang and Wu [34] or Zhang and Wang [38]. However, to the best of our knowledge,
there is not much literature on unsaturated and essentially noncooperative systems
consisting of more than two equations with recruitment. Zhao and Wang [40] studied
such a diffusive model, but there are some restrictions on the diffusive coefficients.
Therefore, all the aforementioned methods cannot be directly applied to system (1.1)
since they mainly deal with low-dimensional noncooperative systems (such as the
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geometric method or the methods in [8, 12]) or saturated noncooperative systems
(such as the methods in [39, 36])

In this paper, we study the existence and nonexistence of traveling waves for sys-
tem (1.1) by the rescaling method, which was used by Ducrot, Langlais, and Magal
[8] for the nonexistence of traveling waves and by Berestycki et al. [2] and Girardin
[14] for the existence of traveling waves. However, the methods utilized in these three
papers cannot be directly applied to our model, and the reasons are as follows: (i)
The irreducibility of the linearization matrix plays a key role in [14] since Harnack’s
inequality for elliptic systems works well in that case. In this paper, we assume that
G° is irreducible but do not require M to be irreducible (see (1.2) for the definition
of M and G°). (ii) In [14], the system is, for instance, of Lotka—Volterra type and the
boundedness of traveling waves can be guaranteed by the growth of the competition
terms (assumption (H4) in [14]). This cannot be done for (1.1) in general since our
system (1.1) may be unsaturated. It is a challenge to show the boundedness of travel-
ing waves, especially the traveling wave with minimal wave speed. (iii) The hyperbolic
property was used in [36] when Zhang studied the traveling wave with minimal wave
speed in [36]. However, this property cannot be easily obtained for higher-dimensional
systems such as (1.1). We overcome the obstacles (i)—(iii) by developing Harnack’s
inequality for positive supersolution in entire space (see Lemma 2.1) and by trans-
forming the boundedness problem of traveling waves into the classification problem of
nonnegative solutions to a linear elliptic system (Proposition 2.4). These two results
are of independent interest in linear theory.

1.4. Main results. Recall that M = (m;;)nxn and G are given in (1.2). The
following theorem summarizes the main results of this work.

THEOREM 1.3. Assume that G° is irreducible:
(a) Suppose A1 (GP) < 0; then for any c € R, system (1.1) has no bounded traveling
semifronts with wave speed c.
(b) Suppose A1(G®) > 0; then there exists ¢y > 0 such that the following hold:
(i) For any c € (—o0,c}), system (1.1) has no traveling semifronts with wave
speed c.
(ii) For any c € [cf, +00), system (1.1) has a persistent traveling semifront
with wave speed ¢ if, in addition, Ay (M) < 0 holds.

We discuss briefly the assumption A;(M) < 0 < A;(G°) for the existence of
traveling semifronts. The first condition A;(M) < 0 is natural, as it means that the
disease will become extinct in the absence of susceptibles (v = 0). On the other
hand, the second condition A;(G°) > 0 is, in most cases, equivalent to saying that the
disease can establish when susceptibles are at carrying capacity (u = K) (or that the
basic reproduction number is greater than one). Hence it is necessary for the spread
of the disease. This theorem will be divided into two theorems (Theorems 3.2 and
6.1) to facilitate the organization of this paper.

The remainder of this paper is organized as follows. In section 2, some linear
problems are prepared for the main proofs. Specifically, Harnack’s inequality is devel-
oped for positive supersolution in entire space, and nonnegative solutions for a linear
elliptic system are completely classified. In section 3, we give the definition of the
minimal wave speed ¢f and show the nonexistence of traveling semifronts of system
(1.1) when ¢ < ¢. Section 4 is devoted to the existence and boundedness of traveling
semifronts of system (1.1) with wave speed ¢ > ¢, and section 5 deals with the exis-
tence of traveling semifronts in the case ¢ = ¢j. In section 6, the traveling semifronts
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of (1.1) with wave speed ¢ > ¢ are shown to be persistent. In section 7, we apply
our theorems to the multistage epidemiological model (1.3), and the TWSs for this
model are shown to connect two equilibria by LaSalle’s invariance principle.

2. Preliminary on a linear elliptic system. In this section, three important
results about some linear problems are established, that is, Lemma 2.1, Proposition
2.4, and Lemma 2.9, which play key roles in the proofs following section 2. The results
of this section are independent of other sections.

We first consider the following Harnack’s inequality (see also Arapostathis, Ghosh,
and Marcus [1, Theorem 2.2]).

LEMMA 2.1. Assume that 1(-) € C*(R) is nonnegative in R and 1 (s) satisfies

(2.1) V" 4 pi(s)Y + pa(s)p <0 for s €R,

where p1(-),p2(-) € C(R), |p1(s)| + |p2(s)| < My for some positive constant My and
all s € R:
(i) If¥(s) > 0 for all s € R, then there exists a positive constant Ms depending
only on My such that

‘w'(s)
P(s)

(ii) There exists some positive constant Ms such that

’SMQ for all s € R.

Supdj < M3 inf 11[}3
[a,b] [a,b]

where M3 depends only on My and b — a.

Proof. If ¢ = 0, there is nothing to prove. If ¢ # 0, then the strong maximum
principle implies that ¢ > 0 in R, which we henceforth assume.

First consider the proof of (i). Set ¢ = Int and ¢ = e®. Substituting this
transform into (2.1) yields

¢" 4+ (@) +pi(s)¢’ +pa(s) <0
By setting ¢’ = w, it follows that
w'(s) < —w?(s) — pi(s)w(s) — pa(s).
Note that w(s) = ¥'(s)/1(s). By the boundedness of p; and po, there exists My > 0
depending only on M; such that

1
(2.2) w'(s) < —§|w(s)|2 whenever |w(s)| > Ms.

Suppose w(s1) < —Ma for some s; € R. Then it follows from (2.2) that w'(s) <0
for all s > s; and thus w(s) is strictly decreasing in [s1,+00). In particular, w(s) <
w(s1) < —Ms for all s > s, which means that (2.2) holds in [s;,+00). By the
comparison principle of ordinary differential equations (ODEs), we have

w(s) < 2w(s1)

for all s > 5.
24 (s—s1)w(sy) !

But then w(s) = —oco as s 7 s1 — 2/w(s1), contradicting w(s) = ¥'(s)/¥(s) € C(R).
Hence we conclude that w(s) > —Ms for all s € R.
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Similarly, suppose w(s;) > My for some s; € R; then w'(s) < 0 and w(s) > Ms
for all s < s1. Hence (2.2) holds for all s < s;, and by the comparison principle,

w(s) > 2w(s1)

fi 11 .
2 3 (s = sn)w(sn) or all s < s1

Then it follows that w(s) — 400 as s N\ $1 —2/w(s1), which is a contradiction. Hence
we conclude that w(s) < M, for all s € R. This proves part (i).
Now consider (ii). Let s1, s2 € [a, b]; then it follows from (i) that

p(s2) — p(s1) < sup lw(s)|(b —a) < My(b - a),

implying
P(s2) < Y(sp)eM 7).

(ii) follows from the arbitrariness of s1, s2 € [a, b]. |

Remark 2.2. Note that the result (i) of Lemma 2.1 has been established by
Lemma 3.7 in Zhang and Jin [37]. The proof of (i) in this paper is more direct
than that in [37]. Obviously, (ii) of Lemma 2.1 generalizes Harnack’s inequality in
Arapostathis, Ghosh, and Marcus [1, Theorems 2.1 and 2.2] to positive supersolution
in entire space. We use Lemma 2.1 to deal with the homogeneous linear elliptic system
with an essentially nonnegative (not necessarily irreducible) coefficient matrix.

Throughout this section, let P = (P;j)nxn be a given essentially nonnegative
matrix and let

H,\7c = dlag(dZ/\Q - C)\)
denote the diagonal matrix with diagonal entries d;\* — ¢, i € [n]. The following
lemma is needed to describe Proposition 2.4.

LEMMA 2.3. For each c € R, let
(2.3) Ale) ={ e R: Ay(Hx.+ P) =0}.

(i) If A (P) <0, then for any c € R we have A(c) = {\, A} for some A < 0 < \.
(ii) If A1(P) > 0, then there exists ¢* > 0 such that

(A} for some A < X < 0 when ¢ < —c*,

{A=X} for some A=\ <0 when c = —c*,
Ac)=< 0 when —c¢* <c¢<c*,

{A=X} for some A= X\>0 when c = c*,

(A0} for some 0 < A\ < X when ¢ > c*.

(i) If A < X, then Ay(Hx .+ P) <0 for all X € (A, X).
(ivL If ¢ > ¢*, then X is nonincreasing with respect to Pi;, 1,7 € [n]. Moreover,
X is strictly decreasing with respect to Pyj,1,7 € [n], if P is irreducible.

Proof. Denote p(A) := A1(Hxo + P). Then it is obvious that A;(Hy .+ P) =
w(A) — cA. Tt is easy to verify that

n(\) = dA? + A(N),

where

d= %min{dl, d}, AN = Ay(diag((di — d)N%) + P).
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>v

>

A
(a) Lemma 2.3(i) when ¢ > 0. (b) The third case of Lemma 2.3(ii)
when 0 < ¢ < c*.
AP A(P)
A=2X { Aa X x

(c) The fourth case of Lemma 2.3(ii) (d) The fifth case of Lemma 2.3(ii)
when ¢ = c*. when ¢ > c*.

F1G. 1. Diagram illustrating Lemma 2.3. The solid curve and dashed line are p(X) = A1 (Hy 0+
P) and c), respectively.

Obviously, we have L .
w'(N)=2d+ A"(\) >2d >0,

where we used the fact that A()) is convex in A (see [5]). This means that p())
is strictly convex in A € R. It is obvious that p(\) is an even function and thus
symmetric with respect to the vertical axis. Since Aq(Hz. + P) = 0 if and only if
1(A) = ¢, then (i), (ii), and (iii) can be given by the convexity and symmetry of p(\)
(see Figure 1). It follows from [3, (1.5) Corollary, p. 27] that u(\) is nondecreasing
in P;; and strictly increasing in P;;, provided that P is irreducible. Then (iv) follows
from the convexity and symmetry of (). 0

For each ¢ € R, we define
(2.4) I'(c) = {\ € C: 0 is an eigenvalue of Hy .+ P}.

It is obvious that A(c) C I'(¢). We have the following classification result.

PROPOSITION 2.4. Assume V (s) is a nonnegative solution to
(2.5) 4Vl (s) = cV/(s) + > Pi;Vi(s) =0, s€R, i€[n],
j=1

and for all A € T'(c) let {\ be the unit eigenvector of Hx .+ P corresponding to the
eigenvalue 0. Then the following three conclusions hold:

(i)
(2.6) Vis)= Y cxe™

A€l (c)NR
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with the restriction cx(y > 0.
(i) If P is irreducible, then (2.6) can be strengthened to be

‘7(8): Z C)\GASC)\,

AeA(c)

where the set A(c) is defined in Lemma 2.3 and it contains at most two real numbers.
Moreover, either cx(x = 0 or cx(y > 0. ~
(iii) If P is irreducible and A(c) = 0, then V(s) = 0.

Let I,xn be the identity matrix of size n. By writing (2.5) as a system of 2n
first-order ODEs

v ,_ v B 0 Isn 2nx2n
< w ) = Ac< w >’ where 4, = ( —diag (1/d;)P  diag(c/d;) ) SR

we can write any solution V of system (2.5) in the form

(2.7) V(s) = Z cA f\:Re (e/\ssk*fjd) ,

Ael(e¢) j=0

where k) > 0 is an integer smaller than the dimension my = dim U;>1 ker (Ao, x2n —
A.) (so that err(c) my = 2n), Cﬁ;,j € [k,], are constant vectors, and (Y is an
eigenvector corresponding to the zero eigenvalue of H)y . 4+ P. By possibly replacing
Cﬁ; by —(ﬁ;, we may assume without loss of generality that ¢y > 0 for all A.

Remark 2.5. In the above, we used the elementary fact that 0 is an eigenvalue
of Hy.+ P with eigenvector ¢ € R™ if and only if X is an eigenvalue of A. with
eigenvector (¢, (%) € R?".

The following three lemmas are needed to complete the proof of Proposition 2.4.

LEMMA 2.6. Let
Jo R
©(s) =Re Zajelﬁfs ,
j=1
where a; € C, B; € R, B; # 0 for all j € [jo], and there exists some aj # 0. Then
(i)
liminf ¢(s) <0, liminfe(s) <0, limsupe(s) >0, limsupep(s)> 0.

li
s—r+o0 §——00 s—+00 s——00

(i)
1 so+L
sup — p(s)ds| = 0.

I
Lo LOGR 2L Jyyor
Proof. Tt is obvious that ¢(s) and ¢'(s) are bounded on R and that

/ T o(t)dt = 0

S0

lim
s—=+00 § — S

for any so € R. By Corduneanu [6, Proposition 3.7], for any € > 0 there exists
I =1(e) > 0 such that there exist 7, € (ki, (k + 1)I), k € Z, with the property

(2.8) lo(so + ) — @(s0)| < e for all sp € R.
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If p(s) > 0 for all s € R, then (2.8), the fact that ¢(s) # 0, and the boundedness
of ¢/(s) imply limsup,_, ., —= [i. ¢(t)dt > 0, a contradiction. Hence there exists
s1 such that ¢(s1) < 0. Therefore, (2.8) shows that liminf,_, ;. ¢(s) < 0. Other
inequalities in (i) can be similarly proved.

Assertion (ii) is a direct consequence of ¢(s) being a finite linear combination of

sine and cosine functions. 0

LEMMA 2.7. Suppose for some A\, N € T'(c) we have
(HA,C + P)CA =0 a/n;d (HA',C + P)C)\/ =0

for some Cx € [0,400)™ \ {0} and ¢ € C*\ {0}. If N € R and X = X\ + i for some
B € R\ {0}, then there exists a component i such that ({x); # 0 and ({x); = 0.

Proof. Assume to the contrary that there exists N = X + b € T'(c) \ R with
corresponding eigenvector (s such that

{i: ()i # 0} C{i:(Cn)i >0}
Choose

k := inf {k ER: e [Re(e%bsg/) + kg} > 0 for all s € R} .

Since at least one entry of Re(e®(y) changes sign and is periodic (with period 27 /b)
on R by Lemma 2.6, we can deduce that 0 < k < oo and that

Vo(s) := e [Re(e%bsg}\/) + EC,\]

is a nonnegative, nontrivial solution of (2.5) such that for some index j, (Vo(s)),; has
zero as a strict minimum. This contradicts Harnack’s inequality (Lemma 2.1(ii)). 0O

LEMMA 2.8. Let W(s) = 211:1:1 M35tk (G + pr(s) + en(s)) satisfy
W' +aW' +bW <0 and W >0 fors¢cR,

where Ay < Ao < -+ < Mgy, I € NU{0}, (p,a,b € R, and ¢4 and p1(s) are not both
identically zero. Furthermore, assume that limjs_ o |ex(s)| = 0 and that pi(s) is a
finite linear combination of sine and cosine functions, as in Lemma 2.6. Then
liminf e ***W (s) > 0.
S—r—00
Proof. Let W (s) = e M*W (s); then W” + (2\1 + &)W’ + (A3 4+ a\; + D)W <0
on s € R. Hence we may assume without loss of generality that 0 = A\; < Ay < ---.
If 1 (s) =0, then ¢; # 0. Hence liminfy_, ., |s|""W(s) = |¢1| > 0. This proves
liminf, ,_ o W(s) > 0 in the case of ¢1(s) = 0.
It remains to prove the case when 1 (s) #Z 0. We prove only the case for I; being
even, as the proof for the other case is similar. In this case,
¢1 + liminf ¢q (s) = liminf s 1 W (s) > 0.
S§——00 S§—>—00
By Lemma 2.6(i), liminf,, o 1(s) < 0. Hence ¢; > 0. Assume to the contrary

that there exists s; = —oo such that W(s;) — 0 as j — oco. By Harnack’s inequality
(Lemma 2.1(ii)), we deduce that, for each L > 0,
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Hence, for each L > 0,

sj+L sj+L
(2.9) lim —/ (C1+ ¢1(s))ds = lim —/ s W (s)ds = 0.

jfL j—o0 2L ijL

Next, choose a constant Ly > 0 such that

1 so+Lo
m/ v1(s)ds

so—Lo

(2.10) sup

1
< 7C17
soER 2

which is possible due to Lemma 2.6(ii) and the fact that {; > 0. Finally, by (2.9) and
(2.10),

sj+Lo 1
0= lim f/ (G +o1(s))ds = 1 — St > 0.
j—oo 2L s;—Lo 2

This leads to a contradiction, and the assertion is approved as s — —o0. ]

Proof of Proposition 2.4. Let 1:/(3) be a nonnegative solution of (2.5). Then V(s)
can be written in the form (2.7): V(s) = Vi(s) + Va(s), where

Vi) = > ae™s™(Q+a(l), Vals)= > che™s™(pals)+o0s(1)),

A€l (e)NR a+iBeT (c)\R

with ¢y > 0, ¢, € R, (Y # 0 (€ R"); each entry of ¢,(s) has the form of ¢(s) in
Lemma 2.6; I, and k, are nonnegative integers; o,(1) — 0, 4 € [2], when |s| — oo,
01(1) =01if Iy =0, and 02(1) = 0 if k, = 0. Define

g1 =max{\: A € I'(c) "R, ¢y # 0},
and define, when V5 # 0 (i.e., o 7 0 for some ap € {a € R: a + i3 € T(c) \ R}),

fio = max{a: a+i8 € T(c)\ R, ¢, #0}.

For each i, d;(V)! — (V)i + Pi(V); < 0 on R. The strong maximum principle implies
that, for each i, either (V); = 0 or (V); > 0 on R. By considering only the nontrivial
components of V(s), we may assume without loss of generality that (V);(s) > 0 for
all ¢ and for all s € R.

Step 1. py is well-defined, and ¢z, > 0, Cgl > 0. Furthermore, if V, # 0, then
f1 2 flg. .

If Va(s) = 0, then it follows from the positivity of V(s) that f; is well-defined
and ¢z, > 0. For each 4 such that (¢J,); # 0, we have (recall that “s > 1”7 means “s
is sufficiently large”)

0 < sgn (‘N/)z(s) =sgn (cg, ( gl)i) for all s > 1.
Since we have chosen cz, to be positive, we conclude that Cgl > 0.

Next, suppose f/g(s) # 0, so that fis is well-defined and, by Lemma 2.6(i), fiy
is also well-defined. Since ¢, (s) # 0 is almost periodic, Lemma 2.6(i) implies that
fi1 > jiz and that ¢2 > 0.

Step 2. Tf Va(s) # 0, then either (a) fiy > fiz; or (b) fiy = fis and Iy, > kp,.

Suppose to the contrary that the above result does not hold. Then it follows from
Step 1 that ¢° > 0, jiy = fiz, and lg, < kg,. Moreover, by the fact that ¢g, # 0 is

1
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almost periodic, Lemma 2.6(i) and V > 0 imply that I;, = kz,. Considering the facts
that (i) V(s) > 0, and that (i) (V1)i(s) = o(e®*) as s — 400 for those components
i such that (¢7 )i = 0, we deduce that {i : (¢, (s))i Z 0} C {i: (¢},)i > 0}. But this
is in contradiction to Lemma 2.7.

Step 3. For each component i € [n] such that (¢) ); > 0, we have

(2.11) liminf e 15| s|~tm (V);(s) > ¢, (¢2, )i > 0.

|s]|—+o0 fy
It follows directly from Step 2 that if (¢2,); > 0, then

e s s (7)) = e, (,): > 0.
To prove (2.11), it suffices to consider the case where s — —oc. Suppose fi; is the only
exponent appearing in (V');(s); then clearly (2.11) holds by Step 2. Otherwise, by
Lemma 2.8, there exists p/ < fi; such that liminf,_, o, e #*(V);(s) > 0, and hence

lim inf e =#1%|s| 71 (V);(s) = lim inf[e =" =#)%|g| ~tar ] [e =5 (V);(s)] = +o0,
S§——00 S§——00
where we used the fact that liminf,_, o e~ ("1=#)%|s|~la = 400, Thus (2.11) holds.

Step 4. 1z, = 0. (Particularly, part (b) of Step 2 is impossible.)

Suppose to the contrary that Iz, > 1. By Step 3, this implies that there exist g
and sq such that V(s) — VOeﬂlscgl is a nonnegative solution to (2.5) where one of the
components achieves minimum value zero at some sy € R. This is impossible in view
of the strong maximum principle for cooperative systems. This proves [z, = 0. By
Step 2, we must have fio < fi7.

From Steps 3 and 4, we deduce that, for each component ¢ such that ( 3 i >0,

(2.12) liminf e =5 (V);(s) > ¢z, (¢ )i > 0.

|s]—+o0 M1

It follows from Steps 2 and 4 that the term in V(s) including e#1* is exactly ¢z, emseh .
Step 5. V(s) — ca, ¢8>0 in R.
Let V., (s) := V(s) — Yep €D

Cram 1. V,(s) >0 forall s €R and 0 <y < 1.

If not, then by (2.12), there exists 0 < vy < 1 such that the minimum value
zero of V,,,(s) (i.e., a nonnegative solution of (2.5) associated with 7p) is attained at
some component ¢ at some sg € R. By this contradiction with the strong maximum
principle, the claim is established.

By continuity and the above claim, we let v ,* 1 and establish Step 5.

Finally, by applying Steps 1 to 5 to the nonnegative solution Ve, := V —
¢ €1°¢) of (2.5) and by repeating this procedure finitely many times, we conclude
that V5 = 0, and thus V satisfies (2.6) and ¢x(x > 0. This completes the proof of
Proposition 2.4(i).

If P is irreducible, then “0 is an eigenvalue of H) . + P with a nonnegative
eigenvector” if and only if “0 = Ay(Hx. + P)” if and only if A € A(c). Using
Proposition 2.4(i) and Lemma 2.3, this proves (ii) and (iii). ad

The following lemma will be used in section 4.3. This lemma is presented here,
as its proof is independent of other sections.
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LEMMA 2.9. Let A(c) and T(c) be given by (2.3) and (2.4), respectively. If
min A(c) < max A(c),
then
(2.13) T'(e)Nn{X € C:minA(c) < ReX < maxA(c)} = 0.

Proof. To prove this lemma, we first assume that P is irreducible. Let min A(c) =
A and maxA(c) = A with corresponding unit eigenvectors ¢ > 0, ¢ > 0, so that

(Hxe+ P)(=0and (Hx .+ P)(=0.

Let \=a+bi e I'(c) such that A < a < ), yielding that zero is an eigenvalue of
H)y .+ P. Suppose b = 0; then the matrix H, .+ P is real and essentially nonnegative.
Hence, by the Perron-Frobenius theorem, Theorem 1.2, for each eigenvalue y of H, .+
P

)

Rep < Ai(H, .+ P) <0;

i.e., zero is not an eigenvalue of H, .+ P, where the second inequality follows from
Lemma 2.3(iii). Therefore, we must have A\ = a + bi for some b # 0. Let ¢\ be a
corresponding eigenvector, and choose

k= inf{k € R: k[e2*¢ + e¥C] + Re(e**¢)) > 0 for all s € R},

Since at least one entry of Re(e**(y) changes sign on R, we deduce that 0 < k < oo,
and that - _
Vo(s) = k[eASQ—F e**C] + Re(e**¢y)

is a nontrivial, nonnegative solution of (2.5) such that for some component j and
so € R, (Vo);(s0) = 0 is a strict minimum of (V4);(s). This is in contradiction to the
strong maximum principle, and thus (2.13) holds if P is irreducible.

Now suppose P is reducible and denote P. = P 4 ¢Z, where Z is an n X n matrix
with entries being one. Then, for each € > 0, P, is irreducible and (2.13) holds. By
continuous dependence of the roots of det(Hy .+ P.) = 0 on €, we may let ¢ — 0 and
deduce that (2.13) holds for P as well. d

3. Nonexistence of traveling semifronts of (1.1). It is easy to show that
the traveling profile (U, V)(s) of system (1.1) defined by Definition 1.1 satisfies the
following system:

3.1
(3.1) V! =d;V" +g:(U, V), i€ln],

{cU’ = doU" + f(U) = go(U, V),
where ’ refers to the derivative with respect to s.
First, we linearize the equations for V; of system (3.1) at Ey = (K,0). Precisely,
if e**( is a solution of the associated linear system, then necessarily (H, . +G°)¢ = 0.
DEFINITION 3.1. Whenever A1(GY) > 0, define cfj > 0 to be the quantity c* given
by Lemma 2.3(ii) with P = G°.

The following theorem establishes the nonexistence of traveling semifronts.

THEOREM 3.2. Assume that G° is irreducible. If A1(G°) < 0, then for any c € R
system (1.1) has no bounded traveling semifronts with wave speed c. If A1(G°) > 0,
then for any c € (—oo,c}) system (1.1) has no traveling semifronts with wave speed c.
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Proof. We will adopt the idea of Girardin [14], but Lemma 6.1 of [14] cannot be
directly used in this proof.

Assume system (1.1) has a bounded traveling semifront (u,v)(z,t) = (U, V)(s),
s = x + ct. We claim that u, :=limsup,_,, U(s) < K. Suppose to the contrary
that w), > K. If U(s) is fluctuating for s > 1, there exists s, — 400 such that

(3.2) U(sk) »ul,, Ul(sk) =0, U'(sp) = UL <0

for some constant U,. If U(s) is monotonic for s > 1, (3.2) still obviously holds for
some s — +o0. It follows by passing to a further subsequence that limg_, o V(sk)
exists. By the first equation of (3.1),

0=doU + (K —uZ,) — go(us, lim V(sk)) <0,

which leads to a contradiction. We therefore have uX, < K. Assume that there
exists s such that U(sg) > K. It follows from (1.5) and u’, < K that there exists
s1 such that U(sy) > K, U'(s1) = 0, U"(s1) < 0, contradicting the first equality
of (3.1). We thus have U(s) < K for all s € R. It can be similarly shown that
U(s) < K for all s € R.

Now let A;(GY) < 0 and let ¢ > 0 be the corresponding principal eigenvector.
Obviously, for any 7 > 0, d(t) = re1(G)I( is a positive supersolution of the second
equation of (1.1) such that ¢(t) — 0. Then we have

%(ﬁ — ) — diag(d;)A(0 —v) = G% — g(u,v) > G°(v —v),

where g(u,v)(z,t) < g(K,v) < G% is used (see property (C2) in section 1). Let 7 be
sufficiently large such that 7¢ > v(z,0) for all x € R. It follows from the comparison
principle that 0 < v(z,t) < ©(t) — 0. Therefore, it is impossible for (1.1) to admit
bounded traveling semifronts.

Suppose now that A;(G?) > 0 and system (1.1) has a traveling semifront (U, V)(s)
with wave speed ¢ < ¢, which is the positive solution of (3.1) satisfying (1.5). Obvi-
ously, it is impossible that (V'(s)); is nonincreasing for s < —1. Thus there exists a
sequence s; — —oo such that (V’(s;))1 > 0. Define

(i L V(S + Sl)
VOE) = T

and thus [|[V@(0)] = 1,(V®)"(0) > 0. Lemma 2.1 shows that V() (.) converges to
some V(+) in C7_(R), where V,(-) is a nonnegative solution of (2.5) with P = G°. If
—c¢} < ¢ < ¢§, Lemma 2.3(ii) says that A(c) = 0}, and Proposition 2.4(iii) says that
V.(-) = 0, contradicting ||V, (0)]] = 1. If ¢ < —¢, Proposition 2.4(ii) and Lemma
2.3(ii) yield that

Vi(s) = cAeASCA + CXeXSCX’
where

CAZO, CXZOa C)\+CX>03 A§X<Oa CA>>O? CX>>0

However,

V/(0) = cx A + e\ G < 0,
contradicting (ff*’(()))l > 0. 0
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In what follows (i.e., sections 4, 5, and 6), to study the existence of traveling
semifronts and by Theorem 3.2, we assume the following assumption (A1) holds.
(A1) Ay(M) < 0 < A1(G?), and G? is irreducible,
where M = (m;;)nxn and G are given in (1.2).

4. Existence of traveling semifronts of (1.1) with ¢ > ¢j. Noting that
assumption (A1) holds, in this section we assume that ¢ > ¢f. Since A1(G?) > 0, where
GY is given by (1.2), ¢f; > 0 is well-defined by Definition 3.1. We will show the existence
of traveling semifronts of (1.1) with wave speed ¢ > ¢. This is accomplished by using
Schauder’s fixed-point theorem with the aid of a pair of super- and subsolutions.
In addition, we show the boundedness of these traveling semifronts in L>(R) by a
rescaling argument.

4.1. The super- and subsolutions. Now we construct a pair of super- and
subsolutions. Denote

Ayei=Hye+G% and A=),
where \ > 0 is determined by Lemma 2.3(ii) with P = G°. Define
U(s) =K, U(s) := max{K — gpe*®, 0},

4.1 —=

(4.1) Vi(s) i= rieM®,  V.(s) := max{k;e**(1 — 0;e),0}

for i € [n], where kK = (k1,...,%,)7 is the unit positive eigenvector associated with
A1(Ay, o), 1e., Ay, ck =0, and €,a, 0; (¢ = 0,1,...,n) are positive constants to be

determined later. Note that the vector x > 0, as G is irreducible. The following
results establish the inequities that this pair of super- and subsolutions satisfy.

LEMMA 4.1. The function V;, i € [n], satisfies
Vi >diV) + (K V), V=(Vi,... V).
Proof. By definition (4.1) and Taylor’s theorem, we obtain
iV =V, + (K, V)

3

9ijk(E5)V Vi

N —

= dZV;/ — CV; + ng- (EO)V] +
7j=1 j,k=1

L1 J——
= (Ax, ck); e + 3 > 9iin(E5VVi
jk=1
1 <& J——
=5 > 9BV, Vi <0,
Jik=1
where E} = (1 —t9)Eo + to(K, ke®) = (K, tore®) for some tg = to(s) € [0,1], and
property (C2) in section 1 is used for the last inequality. 0

LEMMA 4.2. Choose o, oq such that

2

1 . c > i=190,5(Eo)k,
(4.2) 0<a<m1n{do,)\1}, UO>maX{K7JOé(10—jd()Oé)j :

Then the function U(s) satisfies the following inequality:

_ 1. K
(4.3) cU' <doU" + f(U) — go(U,V)  fors+#s, ::alna—.
0
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Proof. Since og > K, it is clear that s, = £ In(K/0o) < 0. If s > s, then U =0
and (4.3) is clearly satisfied. If s < s, < 0, then we have

doU" — cU' + f(U) — go(U, V)
> —Jo(doa —ca)e™ — go(K,V)

:—Uo(do()é —COé Zgoonv ZgojkEOVV
jk=1

NJM—\

Y

_Jo(doa —COé ZQO] EO /{]
n
=e* | ooa(c — doa) — Zgo,j (Eo)rjeM—)s
j=1

> e | opalec — doa) — ZQOJ Ey)k

>0,
where property (C2) in section 1 is used for the second inequality, and (4.2) is used
for the last inequality. O

LEMMA 4.3. Let o and o¢ be chosen such that (4.2) holds. Then there exist € > 0
sufficiently small and o; = 1 such that V(s) satisfies

(44) CK; S d’LK;, + gz(ga Z); K = (Kl? e 7Kn)7

fors#s;:=—2Ino;, i € [n].

Proof. Recall that (i) k = (k;) is the unit positive eigenvector of Ay, ., so that
Ay, ok =0, and (ii) o, 0¢ are specified in (4.2), so that 0 < a < A\;. Now choose €
such that

(4.5) 0 < e < min{a, A1, A — A},

where )\ (= A\;) and X are determined by Lemma 2.3(ii) with P = G°. By Lemma
2.3(iii), A1(Ax +4ec) < 0 and we denote the corresponding unit positive eigenvector
to be n = (n;), so that

(4.6) (Axite,en)j = M(Axitee)n; < 0.

Set lj := —(Ax +e,eM)j, 05 = MoNj/Kj, Jj € [n], such that [; > 0 by (4.6), where 1o > 0
will be determined later. We can assume that s; < s, < 0 by setting 19 > 1. Here
s; € R is the nonsmooth point of V,(s).

Having defined o; and thus V,(s) according to (4.1), we proceed to show the
differential inequality (4.4). First, we note that (4.4) is satisﬁed trivially whenever
Vi(s) =0, ie, s > s;. Denote Vj(s) = r;e**(1 — 0;e), j € [n], yielding that
V,(s) =Vi(s) >0 for s <s; and that V(s ) =0 > Vi(s) for s > s;. Observe that
for each fixed i € [n] and s < s;, we have
V.(s)=V:(s)>0 and V;(s) > Kj(s) Vi € [n].

—1
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In view of Taylor’s theorem, we compute

gi(Q V)
= Zg” (U,00)V, + = Z 9ijk(Po)V,; V),

j=1 j,k 1

~ 1
= Z [9:.5(Eo) + gi0;(P))(U — K)|V; + 3 Z i,k (Po)V ; V.,

jk 1
2 Zg’t] EO +Zg’LO] U K)V + = Z Gi,jk PO)V Vk7
]k 1

for which
EOZ(Kaon)a P0:<Qa§OK>7 P] :(éjgaon)a €O7£j S [07 1], _]E [n]
Then we have
e Mo VY — Vi 4 g:(U, V)]
> |:(di>\% —ch)k; + Zgi,j(Eo)fﬁj}

j=1

— S

(dZ(Al + 6)2 — C<>\1 =+ 6))I€i0'i + Zgi’j (Eo)HjUj

j=1

— 0oR1(5)e®® + Ry(s)eM?
= (A ,ck)i — € no(Ar,e,cn)i — oo R1(8)e™ + Ry(s)e™*
= —e“no(Ax,+e.ch)i — oo R1(5)e™® + Ry(s)eM®
= e“nol; — ooR1(5)e*® + Ry(s)e™?,

where
n
Ri(s) = gi0j(Py)rj(1— 05e),
j=1
1 n
Ry(s) = 5 > gin(Po)rjrk(l — 05e) 1 (1 — ope)
k=1
and ¢(s); = max{p(s),0}. Since 0 < (1 —0;e);: < 1,5 € [n], g:(-) € C*RTH),
there exists M = M (e) > 0 such that |R;(s)| < M(¢), j =1, 2. Then we have

e~ Ms [dizg’ _ CZ; +g:(U, K)]
> [noli — ooRy(s)el@™)® ¢ RQ(S)G(Are)s]ees
> (nol; — oM — M)e® > 0,

provided we choose 1y > 0 such that ng > % and use (4.5) and s < 0. d

4.2. Existence of traveling semifronts. Note that ¢ > ¢j in this section. For
a > 0, we define I, = (—a,a), I, = [—a,al], and
Lo ={(U,V)() € CLo,R"") :U(s) < U(s) < T(s),
V.(s) < Vi(s) <Vi(s),i € [n],s € I,}.
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Consider the following boundary-value problem:

doU" —cU' + f(U) — go(U, V) =0, s¢l,,
(4.7) d;Vi' —eVi+g;(UV) =0, jeln], se€l,,
(U, V)(=a) = (U,V)(—a), (U, V)(a)=0.

LEMMA 4.4. Boundary-value problem (4.7) has a solution
(U7 V)() € CQ(jav RnJrl) NT,

for any large a > 0.
Proof. Set

= max |Go,0(u, v)| + EZ[:] gii(u,v)] |,
en

where
Go(u,v) = f(u) — go(u,v), Ty ={(u,v) ER":0<u<K, 0<v<V(a)}.

Define the operator T : T, — C(I,, R"*1) by T(U°,V°) = (U, V), where (U, V)(s) is
the unique solution to
(4.8)
—doU" + U +~yU = ~yU° + go(U°, V°) = Fy(U°,V?), s € (—a,a),
—d; V" + V! + 4V, =4V + g;(U°, V) = F;(U°V?), i€ n], s€(—a,a),
(U V)(=a) = (T, V)(=a), (U,V)(a)=0.

A regularity estimate for elliptic equations shows that (U,V) € C?(I,,R"*1). From
the choice of ~, we have, for all (u,v) € T, that Fy(u,v) is increasing in « and
decreasing in v; and that for each i € [n], F;(u,v) is increasing in both w and v;.

CLAM 2. For each a =1, T(T'y) C T,.

Let (U,V) = T(U% V) for some (U° V) € Ty, and let a > 0 be large enough
such that —a < s, < a, where s is defined in Lemma 4.2. Define ¢(s) = U(s) —U(s).
We claim that ¢(s) satisfies in the weak sense

{ —do¢" + ¢ +v9 >0 for s €I,

(4.9) é(£a) > 0.

It is obvious that ¢(+a) = 0. Next, Lemma 4.2 and the first equality of (4.7) show
that

—do¢" + c¢' + ¢ > Fo(U°,V°) — Fy(U,V) >0, s € (—a,sy) U (sg,0).

This and the fact that ¢'(sy—) > ¢/(So+) show that the differential inequality in
(4.9) holds in the weak sense. i.e., ¢(s) is a weak supersolution (see, e.g., [7, section
4.2] for the definition of weak super- and subsolutions). Since the coefficient of the
zeroth-order term, «, in (4.9) is nonnegative, we conclude that ¢(s) > 0 for s € I,.
By arguing similarly, one may show that U(s) < U(s), V(s) < V(s) < V(s) for
s € [—a,a] and thus that (U, V) € T',. The proof of this claim is completed.

Elliptic estimates imply that 7 : 'y, — I’ is continuous and compact. Obviously,
T’y is closed and convex. Then Schauder’s fixed-point theorem shows that 7 has a
fixed point in I',, which is a nonnegative solution of (4.7). d
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LEMMA 4.5. System (3.1) has a positive solution (U, V)(s), s € R, satisfying
boundary condition (1.5).

Proof. Lemma 4.4 shows that (3.1) has a solution (U*, V*)(-) € C%([—k, k], R**1)N
Ty for any positive integer k. Elliptic estimates show, by passing to (diagonal) subse-
quence, that (U*(s), VF(s)) — (U2 (s), V°(s)) in C} (R, R™*1), where (UX, V,°)(-) €
I'» is a nonnegative solution of (3.1). Since

U<UX<U and V<V>*<V inR,

it follows from (U,V)(—oc0) = Eg = (U,V)(—o0) that (U, V,°)(s) satisfies (1.5).
Since (U, V,2°)(s) > 0 for s < —1, Lemma 2.1(ii) shows that (U2°, V,>°)(s) is positive
on R. O

4.3. Boundedness of traveling semifronts. The boundedness plays an im-
portant role in studying TWSs. In this subsection, we will show the boundedness of
traveling semifronts obtained in Lemma 4.5. For this purpose, let Go and M be given
by (1.2) (note that A1(Go) >0 > A1(M), i.e., (Al)), so that ¢f > 0 is given by (3.1).
Lemma 4.5 says that, for each ¢ > ¢, system (3.1) has a positive solution (U, V) on
R.

LEMMA 4.6. For each open bounded interval I C (cf,+00), there exists C > 0
such that

sup [(Ue, Volllewy < C,
ce

where (U, V.) is a positive solution of (3.1) with wave speed ¢ obtained in Lemma
4.5.

Proof. By the construction of the super- and subsolutions in (4.1), 0 < U.(s) < K
for all ¢ > ¢ and s € R. So if we suppose to the contrary that this lemma is false, then
there exist a sequence of wave speeds ¢, € I and corresponding solution (U, , V., ) of
system (3.1) such that (for the notation || - || see section 1.1)

Ck — Coo € [¢),+00) and My :=sup ||V, (s)]| = +oo.
seR
Again by the construction in (4.1),

(4.10) Ve, (s)]| < ZH’W exp(A,s) = exp(A,s) for s € R,

j=1

where )\, > 0 is the A in (the last case of) Lemma 2.3(ii) with ¢ = ¢; and P = Gg

(Kk1,---sKkn) is the unit positive eigenvector of Hy, e, + G° associated with ).
Hence

where A\, > 0 is the A in (the last or second to last case of) Lemma 2.3(ii) with
¢ = cs and P = Gy.
Step 1. If || V¢, (sk)|| = 400 for some sequence s, then

g?(UCk7 Ck)( + Sk)

(4.12) IVor (52T

—0 in Cloc(R).
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We discuss two cases separately: (i) M |

, — Tooor (ii) LU(U% )’9 .
remains bounded in k.

For case (i), one may infer, by Harnack’s inequality (Lemma 2.1(ii)) applied to
equation of V¢, , that if (V,,);/(sx) — +oo for some j', then infj,, _7 s, 41](Ve,)j7 —

gO(Uck: )

+oo for each L > 0. Hence we deduce that, for each L > 0, inf[,, 1 , 41 —

Ck,
+00. Then, for any € > 0, take a test function u(s) € C?([—L, L]) satisfying
(L) =K, u(s)>0 in[-L,L], and w@(s)=¢€ in[-L/2,L/2].

0(’u. V(‘ )

It follows from the fact that inf[, _r s, 41 — 400 that

_00(, Ve, s + 1)

U
provided k is large enough. Denote w := @(s) — U, (s + sk), so that w(£L) > 0. Then
by the first equality of (3.1) we get for all s € (—L, L) and large k that

dot” —cu' +6(K —u) —

<0 forse(-L,L),

dow” — ¢’ — 6w — go (@, Ver (s + 8k)) + 9o (Ue, (5 + Sk), Ver (s + 81))
= dO'LDN —cw' — [5 + Dugo(fh VCk (3 + Sk))}w <0,

where 4 is between @ and U,, (s + s). Since Dy, go (4, Ve, (s+s)) > 0, the comparison
principle shows that, for sufficiently large &, U, (s + sg) < u(s) in s € [-L, L] and
thus Ug, (s + si) < ein s € [-L/2,L/2]. Since € and L are arbitrary, we show that
Ue, (s +5k) = 0 (as k — 00) in Cioe(R). By the definition of g, this implies (4.12).

gO(UCk 7Vck)

For case (i), = remains bounded even if |V, (sg)|| = +o0. It follows
K

-
from the definition of gy (see system (1.1)) and Harnack’s inequality (Lemma 2.1(ii))
that the family {go(Ue,, Ve, )(- + sk)} remains bounded in any compact subinterval of
R. By the definitions of gy and g;?, we have 0 < g;-)(u, v) < go(u,v), so the same holds
for {g9(Ue,, Ve, ) (- + 51)}. Combining with the fact that ||V, (sx)|| = 400, we obtain
(4.12).

Step 2. Let ¢ = coo and P = M, let A\, > 0 be the corresponding A in Lemma
2.3(i), and let T'(c) and A(c) be given in (2.4) and (2.3), respectively. Then

(4.13) T(c)N[0,00) =T(c)N[sup A(c),00), T'(c)N(—o0,0] =T(c)N(—o0,inf A(c)],

where inf A(c) < 0 < supA(c), and supA(c) = A.. Furthermore, A, > A, in
particular, A, > ()\ + Ao) > A, for all k sufficiently large, where ), and A\, are
defined after (4. 10) and (4.11).

By hypothesis, A;(M) < 0, so that by Lemma 2.3(i), inf A(c) < 0 < sup A(c).
Hence Lemma 2.9 says that I'(¢) N [0,00) = I'(¢) N [sup A(c), o0). The second part of
(4.13) is similar. Also, it follows by the definition (when ¢ = ¢o, and P = M) that
supA(c) = .

The strict inequality A\, > A follows from the fact that Gy > M and Lemma
2.3(iv) (see Figure 2). The inequality A, > 1(XA.+A) > A, follows from (4.11). This
proves Step 2.

Step 3. It is impossible that there exists a sequence s; € R such that

(4.14) [Ver ()]l = 400, [[VZ] (si)]| < 0.
We suppose to the contrary that (4.14) holds. But if we define

¥ L ‘/Ck(s—i_sk)
Vile) =
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FIG. 2. Diagram illustrating the definition of Ao, < A«. The solid curve is A — A1 (Hy e, +M);
the dashed curve is A — A1(H) .. + GO).

then, passing to a subsequence, we deduce that Vi = Voo in C? .(R). Moreover, by

the arguments of Step 1, V. is a nonnegative solution of
ooV = diag(d;)VL + MV, in R and ||V (0)]| = 1,

where the coefficient matrix M is defined in (1.2). However, by Proposition 2.4(i), we
deduce that Vi, (s) = DA€l (orR exe*®*Cy, where cy(y > 0. By Step 2, 0 ¢ I'(c) N R.
Therefore, ||V (0)|| > 0, which contradicts (4.14). This completes Step 3.

Step 4. There exists sj, € R such that for k sufficiently large, ||V;,(s)]| is strictly
increasing in [s}, +00), and ||V, (s},)]] — +oo.

By Step 3 and the fact that My — +oo, My, # maxser | Ve, (5)| for all large k.
Then we deduce that My, = limsup,_, , . ||Ve, (s)| since (U, , Ve, ) satisfies (1.5). If
for k sufficiently large, ||Ve, (s)|| is not strictly increasing for s > 1, then there exists
a sequence s; € R such that (4.14) holds, contradicting Step 3. Step 4 is proved.

Step 5. Let A, be as in Step 2. Then

!
[[ inf VC’“(S)} >\,

4.15 lim inf
( ) 51, +k,00) Vck (S)

k—o0
Now, let s} be any sequence such that s} > s} + k for all k. By Step 4, we have
Ve, (8P|l = +o00. Hence we may define Vi (s) := Ve (s 4+ s1)/ Ve, (s3)]] and pass to

the limit Vj, — Voo in C? .(R) as in Step 3, where V., is a nonnegative solution to

ooV = diag(d;)VZ + MV, in R and ||V (0)]| = 1.

By Proposition 2.4 and Step 2,
(4.16) Va(s) = Y eae™iy,

AeT(c)NR

where the constant coefficients satisfy ¢x(x > 0 and T'(c) is given in (2.4) with ¢ = ¢
and P = M.

By Step 4, ||V., (s)| is nondecreasing in [s},, +00), so that ||Vi.(s)| (resp., ||Vao (s)]])
is nondecreasing in [—k, +00) (resp., R). Hence the sum in (4.16) is taken over \ €

I'(c) N ]0,00) only. Combining with I'(c) N [0,00) = T'(¢) N [Ax, 00) (Step 2), we have

Voo(s) = Z exe™ (.

AET(c)N[Ax,00)
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This implies that
V! (s (71 .
o WVAGDI_ V2O | 5
koo [[Ve (I [[Vao (0)]
Since this is true for arbitrary sequence sj > s + k, this proves Step 5.
Finally, since 0 < 1(As + Ay,) < A, Step 5 shows that for all large k,

1 _
(417) Vo)l = [Vas o+ Wl exp (G084 )5 = sk = 1)) for s st

Since (by Step 2) (X + M) > A, for k large, (4.17) is in contradiction to (4.10). O

5. Existence of traveling semifront of (1.1) with ¢ = ¢j. Take a sequence
¢j N\ ¢b, and let ®;(s) := (UW,VU)(s) be a positive solution of (3.1) with wave
speed ¢;. Lemma 4.6 shows that ®;(s) := (U, V1))(s) is uniformly bounded with
respect to j and s € R. In this section, we will pass to the limit ; — co to obtain a
traveling wave with the critical wave speed cj.

LEMMA 5.1
lim sup [sup(K — U(j)(s))} >0

j—o0 seR
or

lim sup {sup ||V(j)(5)||} > 0.

j—o0 seR

Proof. Suppose for contradiction that, as j — oo,

(5.1) sup(K —UW(s)) =0 and sup||[VU(s)|| —= 0.
seR seR

Lemma 2.1(i) yields V@ (s) — 0 in C?(R) as j — oo.

We claim that there exists jo such that for j > jo and k € [n], Vk(J )(s) are
nondecreasing with respect to s € R. We suppose by passing to a subsequence (in j)
to the contrary that there exist k; € [n] and s; € R such that

N /!
Vil (s) =0, Vi (s <0, j =1
It is evident that the second part of (3.1) can be rewritten as
(5.2) VO = diag(d)VD" + GOV + o[V (s)])).

Define . /
(VD (s;+5),..., Vi (s; + )T
V@ (s))]

V@(s) =

Then it is easy to see by passing to a subsequence that VU (-) — V(*)(.) in C? (R),
where V() (s) is a nonnegative solution of

sV = diag(d))V" + GV

with [V (0)|| = 1, f/,(:io)/(()) = 0. However, it follows from Lemma 2.3(ii) and
Proposition 2.4(ii) that V() (s) = e3¢y, where ¢y, > 0 is a unit vector, contra-
dicting f/k(loo)”(O) < 0. In conclusion, there exists jy such that for all j > jy and
k € [n], Vk(j )(s) is nondecreasing with respect to s € R.
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From the above claim, we deduce that for j > jo, the limit V) (+o00) exists,
and hence U (+00) also exists. Obviously, (UV)(+00), V1) (+00)) is a sequence of
positive equilibria of (5.2), that is,

GOV (400) = o( |V (+00) ).
Furthermore, by (5.1) we have

(UD, VD)(+00) = Eo(K,0,).
Define, for each j, the constant vectors

o) . W (r00), . W (roo))
- V@ (+o0)]] !

so that f/o(g ) Véooo) by passing to a subsequence, where
GOV — o, ([T =1, T > 0,

Since G is irreducible, it follows from Theorem 1.2 that A;(G°) = 0, contradicting
assumption (Al). 0

LEMMA 5.2. System (3.1) with ¢ = ¢ has a bounded positive solution (U, V)(s)
satisfying (1.5).

Proof. Lemma 5.1 yields that

lim sup(K —UY(s)) >0 or  lim sup ||V (s)|| > 0.

J—00 seR J = seR

Set € > 0 small enough. Since (U, V())(s) satisfies (1.5), by possible translations
we can suppose that

UD(s)> K —¢, |[VO(s)|<e ¥s<O

and that
UD0)=K—¢ or VW) =e

holds. It follows by elliptic estimate and by passing to a subsequence that

(U(j), V(j))(') — (U, V)(-)

in C? (R), where (U, V)(-) is a nonnegative solution of (3.1) with ¢ = ¢{; such that
(5.3) Uls) 2K —¢, [[V(s)| <€ Vs<0

and that

(5.4) UO) =K —c or [V(0)] =

holds. Lemma 2.1(ii) yields U(s) > 0 for all s € R.
CLamM 3. V(s) >0 for all s € R.
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If ||V (0)|| = 0, then U(0) = K — € and Lemma 2.1(ii) shows that V(s) =0, s € R.
Hence U (s) satisfies

(5.5) U = doU" + f(U).

We claim that U’(s) < 0, s € [0,400). Assume to the contrary that this does not hold.
Then there exists sg > 0 such that U'(sg) = 0,U"(sg) > 0, U(sg) < K, implying,
together with (5.5), that 0 = U"(so) + f(U(s0)) > 0, a contradiction. Consequently,
U'(s) <0, s € [0,+00). Then (5.5) gives that U”(s) < 0, s € (0,400), yielding that
U(400) = —o0, a contradiction to U being nonnegative. This shows that ||V (0)|| > 0,
and Harnack’s inequality [1, Theorem 2.2] gives V(s) > 0 for all s € R.

So far we have shown that 0 < U(s) < K, V(s) > 0 for all s € R and that (5.3)
and (5.4) hold. Define ¢; := €/3, j € [n]. It follows from the arbitrariness of the above

small e that there exists a positive solution (U7, V7)(-) to (3.1) with ¢ = ¢} such that
U (s) > K =, [VP(s)| <e; ¥s<0
and that one of the following holds:
U0 =K — ¢, V70 = ¢

CrAaM 4. For large j, each entry of V*(j)(s) is monotonic with respect to s < —1.

Assume to the contrary that this claim does not hold. By passing to a subse-

quence, there exist kg € [n] and jj such that V*(,Q(s) is not monotonic with respect to

s < —1 for j > jo. Then there exists s; = —oo such that

)/l

! .
(5.6) VP (s5) =0, VI (s;) <0, j>jo.

Since €; — 0, then by passing to a subsequence, we have (Uij)7 V*(j))(s) — FEo(K,0,)
in C?,((—00,0)). Define
-~ (j V(j)T(s-Jrs)
[Ve?” (s5)]

Then, similar to the proof of Lemma 5.1, we have V*(j)(s) — e3¢y, in C} (R), where
¢y, > 0, contradicting (5.6).

It follows from the above claim that (Uij U TA ))(—oo) exists for large j and is
a sequence of equilibria of (3.1) such that (UY), Vi¥)(—=00) — E,(K,0,). Since
Ey(K,0,) is an isolated equilibrium, we deduce that for all j sufficiently large,

(U, V) (~o0) = Eo.

This completes the proof of this lemma. 0

6. Persistence of traveling semifronts. Note that we assume that assump-
tion (A1) holds in this section.

THEOREM 6.1. System (1.1) has a persistent traveling semifront ®(x + ct) if ¢ >

*

-

Remark 6.2. It follows from Theorems 3.2 and 6.1 that ¢ is the minimal wave
speed of system (1.1) if A;(G°) > 0.
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Proof. Let (U(s),V(s)) be the bounded traveling semifront in Lemma 4.5 or
Lemma 5.2. We claim that liminfs_, . U(s) > 0. Suppose to the contrary that
liminf U(s) = 0.
s—+o00
Then there exists a sequence s; — +0o such that U(s;) — 0. Lemma 2.1 shows that
U(s+s;) — 0in C? (R) by passing to a subsequence. It follows from the boundedness
of V(s) and the first equality of (3.1) that 0K = 0, a contradiction. We thus have
liminfs . U(s) > 0.
Next, we show that liminf,_, . V(s) > 0. Assume to the contrary that there
exists jo € [n] such that liminf, , . Vj (s) = 0, implying there exists a sequence
s; — 400 such that Vj,(s;) — 0, V] (s;) < 0. We can rewrite g;(U, V), i € [n], as

(1 (U, V), ..., .U, V)T = G(s)V,

where G(s) is an n x n matrix. It follows from liminfs_, o U(s) > 0 that there exists
an irreducible matrix G* such that G(s) > G* for large s. Then Harnack’s inequality
[1, Theorem 2.2] yields that V(s; +-) — 0 in Cjye(R). Lemma 2.1(i) implies that
V(s; ++) — 0in C?_(R). It follows from the first equality of (3.1) (possibly by
passing to a subsequence) that U(s;+-) — U*(+) in C? (R), where U*(s) is a solution
to

U™ = doU*" +§(K —U").

However, any solution of this equation can be expressed as U*(s) = ¢; M fcge? K,
where A\; < 0 < A are the zeros to doA? — cA — 6 = 0. Since U*(s) < K is bounded
in R, it follows that U*(s) = K and U(s; + s) — K in C? _(R). Define

V(s +s;)

VOO =

s € R,

and thus |V (0)] = 1, Vj(oi)/(()) < 0. Then it follows by passing to a subsequence and
from Lemma 2.1(i) that V() (-) converges to some V,(-) in C? (R), where V,(-) is a

nonnegative solution of (2.5) with P = G° and sa‘cisﬁesﬁ(f/,,f)j0 (0) < 0. Proposition
2.4 and Lemma 2.3(ii) imply that V,(s) = cxe2* () + e (5, where

0<A<A (>0, >0, >0, ¢x>0, and ¢y +cx > 0.

Then V/(0) = exAy + exAG > 0, contradicting (V) ;,(0) < 0. Hence we have proved
liminfs ;4o V(s) > 0. d

7. Applications. The TWSs in Theorem 6.1 connect the disease-free equilib-
rium Ey(K,0,) at s = —oo and are persistent at s = +oo. In this section, we will
apply Theorems 3.2 and 6.1 for system (1.1) to system (1.3) and show that the TWSs
of system (1.3) connect the endemic equilibrium at s = 400 (this is a more detailed
result than persistence property). In addition, it will be shown that this method for
system (1.3) can be applied to a class of specific disease-transmission models.

For system (1.3), define

BiK BoK - BuK Y1 —¢12 - —01n
0 0o -~ 0 —¢21 Y2 - —¢op
= : : . : , V= : : . :

6 0 cee 0 _Q;nl _énZ e wn
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Then V is a nonsingular M-matrix and its inverse V! is nonnegative (see [17, p. 267]).
Define %o := A1 (FV~1), which is the basic reproduction number. It follows from the
expression of F and the nonnegativity of V~! that %, = (FV~!)1;. Note that the
linearization of the reaction terms in I;, i € [n], of (1.3) at the equilibrium Py(K,0,,)
is GO := F — V. Indeed, it is possible that GV is irreducible and yet —V (which plays
the role of M in the notations of earlier sections) is not irreducible.

THEOREM 7.1. Assume GO is irreducible. System (1.3) has no bounded positive
TWS connecting Py at s = —c0 if Zo < 1. Now let %o > 1. Then (1.3) has a unique
endemic equilibrium P*(S*,I*). Furthermore, there exists a constant ¢§ > 0 such
that (1.3) has a positive TWS ®(z + ct) satisfying boundary conditions

(7.1) B(—00) = Py, B(+00) = P*

if and only if ¢ > cf.
Proof. We first study the relation between A;(G°) and Z.
CramM 5. A1 (G®) = 0 if and only if %o = 1.

We first consider the necessity and suppose A1(G°®) = 0. Since G° is irreducible,
Theorem 1.2 gives that there exists a positive eigenvector v > 0 such that G'v =
Fv—VYv = 0. Then the expression of F shows that Vv = Fv = (k*,0,...,0)T, where
Kk* > 0. This yields that

0=(G"%); = (GV~"'Wr);, = (GV1)1k%,
and thus (G°V~1);; = 0. Since V=1 and, therefore, FV~! are nonnegative, we have
0=(GV = FV ' —ILix)u=FV Hu—-1=% -1,

where I, is the identity matrix.
Now suppose %y = 1. Since Zo = (FV~1)11, it is easy to show that

GV7H(1,0,...,00T = (FV™! — I,x»)(1,0,...,00T = 0.

Since V71(1,0,...,0)7 is a nonnegative and nonzero vector, Theorem 1.2 implies that
A1(G°) = 0. This claim is proved.

Next we show that %, > 1 if and only if A1(G°) > 0. It follows from the
expression of F and the nonnegativity of V~! that

Ry = (FV 1 = KZﬂi(Vfl)u-
i=1

Thus %, is strictly increasing with respect to K > 0. Since G° is irreducible, the
Perron—Frobenius theorem shows that A;(G°) is also strictly increasing with respect
to K > 0. Then the monotonicity of %Zy and A1 (G°) with respect to K > 0 and Claim
5 show that %, > 1 if and only if A;(GY) > 0.

Similarly to the proof of Theorem 3.2, we can show that system (1.3) has no
bounded positive TWS connecting Py at s = —oo if Zy < 1. In the following, we
assume %o > 1, i.e., A1(G°) > 0. Let ¢} be the ¢* in Lemma 2.3(ii) with P = G°.
Since V is a nonsingular M-matrix, we have A;(—)V) < 0 [3, p. 135]. This means that
the corresponding assumption (A1) for (1.3) holds. Completely similar to the proofs
of Theorems 3.2 and 6.1, it can be shown that (1.3) has a persistent positive TWS
(S(z +ct), I(x + ct)) connecting Py if and only if ¢ > ¢f.
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Next, suppose ¢ > ¢f. To complete the proof, we need to show (S, I)(4+00) = P*.
Following the idea of [10, 8, 12, 39], a Lyapunov function, motivated by [17], will be
constructed. It is obvious that (S,1)(s), s = x + ct, satisfies

SIZWO7
doW} = Wy — Go(S, 1),
(7.2) oHo =t o($: 1)
I, =W,
de{ :CWi_Gi(Svl)v (S [n]v
where

Go(S,I) = 6o(K — S) — SZ@ 5 G1(S, 1) SZBJI +Z¢1j1 — 1,

Jj=1 Jj=1 Jj=1

I):Z@jfj—?/)i]i, 1=2,...,n.
i=1
Define

5) == Z o;L;(s)
3=0

where positive constants o; will be determined later and

S * *
Lo(s) zc/ 1—%015 doWo (1— i,)v

*

L Ir Ir
Li(s):c/ 1—?d§fdiWi <1;>, i € [n].

Trivial calculations give

dLO S—5*  dyWyS*Ss’
|(7 9y = [¢Wo — doWg) g 2
S—8*  dyS*WE
= I _
Go(S D) —g 52
=: Jo1 — Jo2-
It can be similarly shown that
dLi(s) L—17  &I;WE .
s = G;(S,1) [P PR Ji1 — Jiz, 1€ [n].

It is evident that Jrs > 0, 0 < k < n, and that the conditions of this theorem imply
those of Theorem 5.1 of [17]. Then, from the proof of Theorem 5.1 of [17], there exist
positive constants o;, j = 0,1,...,n, such that Z?:O 0;J;1 < 0. This means that
L’(s) <0 and that the only invariant set in the set {L’(s) = 0} is the singleton

(S, I)(s) = (5", I"), W(s)=0, 0<j<n.

Since (S,1)(s) is persistent and W;(s),0 < j < n, are bounded in [0,+00), we
have that L(s) is bounded in [0,+00). Then LaSalle’s invariance principle gives
(S, I)(+00) = P*. O
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Remark 7.2. Since the saturation condition ((A5)(II)) is required for the model
in [36], the methods in this paper can be applied to the model in [36] under a weaker
(unsaturated) condition.

By the proof of Theorem 7.1, we know that the Lyapunov function L(s) for
system (7.2) is constructed based on that in [17] for the ODE or nondiffusive model
corresponding to diffusive model (1.3) (i.e., model (1.3) with d; = 0fori =0,1,...,n).
Generally speaking, a Lyapunov function for the traveling-wave system (3.1) can be
constructed if the corresponding ODE or nondiffusive model has a Lyapunov function.
We can thus obtain a theorem similar to Theorem 7.1 for the models or special cases
in [21, 30, 29, 23, 13, 11, 40].
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