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Abstract— The focus of this paper is on the characterization
of the uncertainties in the evolving states of a diabetic model,
to permit a study of the impact of the time interval between
insulin bolusing and meal initiation on hypo- and hyper-
glycemic events. A polynomial chaos based approach is used
to characterize the independent uncertainties in the initial
condition and meal size. Galerkin projection of the resulting
equations reduce the stochastic differential equations to a set of
deterministic equations. This forms the framework to optimize
for the post bolusing time to initiate the meal. Two cost functions
are considered which correspond to the postprandial hypo-
and hyperglycemic excursions of the blood glucose. Numerical
results from the minimal Bergman model suggest a 13 and 14
minute interval between bolusing and the initiation of the meal.

I. INTRODUCTION

In 2011, the World Health Organisation (WHO) reported
that more than 300 million people suffered from diabetes
world-wide. The three countries where a majority of the
diabetic patients reside are India, China and the USA [1], and
the rate of growth of diagnosed patients are growing rapidly
in China and India. This is clearly a worldwide epidemic,
and the cost to health care will be enormous. In the United
States, 6.4% of the population was identified to suffer from
diabetes with a further 5.2 million with undiagnosed disease.

Blood glucose regulation is a complex process that in-
volves two hormones, insulin and glucagon that are se-
creted into the bloodstream by the pancreas. The loss of
glucose regulation due to autoimmune diabetes (Type 1)
or insulin-resistant diabetes (Type 2) can have dire health
consequences. For individuals with diabetes, blood glucose
levels above the nominal level of 180 mg/dL are indicative of
hyperglycemia, while blood glucose levels below 70 mg/dL
represent hypoglycemia. Of critical importance is the fact
that blood glucose values below 50 mg/dL [2] can lead to
seizures, unconsciousness and possibly permanent damage
to the brain since the brain does not synthesize or store
glucose and relies on glucose transport from the blood
stream. Modest blood glucose excursions above the nominal
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are not as acutely critical as hypoglycemia, as renal glucose
thresholds allow for some glucose excretion in the urine.
However chronic hyperglycemia can lead to blindness, nerve
damage and potential loss of limbs.

Cobelli et al. [3] review the history of the effort to develop
an Artificial Pancreas (AP) also referred to as a bionic
pancreas [4] or artificial β cell [5]. AP is the integration
of an insulin pump and a glucose sensor in conjunction with
a control algorithm to emulate the behavior of the pancreas in
a non-diabetic person. A boost to the effort of developing the
AP was provided when the Juvenile Diabetes Research Foun-
dation launched a consortium in 2006 [3], and was further
supported by the AP@Home effort by the European Union in
2010 [6]. This has led to a profound growth in the publication
of papers dealing with all aspects of problem associated
with the development of an Artificial Pancreas. Lunze et
al. [7] reviewed the current state of controllers proposed for
use in automated blood glucose regulation. There, however,
remain numerous unresolved issues including the impact of
initial condition uncertainty and meal-size uncertainty on the
excursion of blood glucose from the desirable nominal range
of 70-180 mg/dL. Dassau et al.[5] compared various meal
detection algorithms on continuous glucose measurement
(CGM) dataset from 26 children with diabetes. In order
to test meal detection algorithms, mealtime insulin was
withheld for one hour prior to eating breakfast. In these
children, there was a significant variation in the baseline
blood glucose level at the time of meal initiation. They also
observe and remark on the uncertainty in the meal content,
i.e., on the number of grams of carbohydrates consumed in
the meal. Chen et al. [8] also remark on the meal detection
challenge due to meal macronutrient composition uncertainty
and variation in patient specific physiology.

This paper is an attempt to develop a framework to
characterize the uncertainty in the evolution of blood glucose
due to various sources of uncertainties. In this paper we con-
sider two such sources: uncertainty in the initial conditions
(blood glucose) and uncertainty in the meal size (number of
carbohydrates in the meal). A polynomial chaos approach
to represent the evolution of blood glucose uncertainty is
proposed and is used to optimize the meal initiation time
after administering a mealtime insulin bolus. Two cost func-
tions are used to optimize for the meal initiation time. The
first cost is a measure of the probability of blood glucose
levels digressing from acceptable norms. The second cost is
a measure of the percentage of time blood glucose deviates
from the same accepted norms.

The document has been structured as follows: Section I



provides an overview and a background of the problem of
interest. Section II elaborates on the mathematical model and
the simulation environments that have been used. Section
III describes the methodology of Polynomial Chaos to char-
acterize uncertainties with an illustration on the Bergman
Model [9]. Finally, Section IV explains the cost functions
and the results before making concluding remarks in Section
V.

II. MODEL AND SIMULATION ENVIRONMENT

The model chosen to represent the glucose-insulin dynam-
ics in this work was Bergman’s Minimal Model [9]. The
Bergman model is a two compartment physiological model
where the evolution of the model states are defined by:

Ġ(t) = −(X(t) + p1)G(t) + p1Gb +D(t) (1)

Ẋ(t) = −p2X(t) + p3(I(t)− Ib) (2)

İ(t) = −p4(I(t)− Ib) + γ(G(t)− h)∆t. (3)

p1, p2, p3, p4, γ and h are parameters of the model. The
states G(t), X(t) and I(t) represent the blood (plasma)
glucose concentration, (effective) insulin in the remote com-
partment and the plasma insulin concentration respectively.
Gb and Ib represent certain basal values of the states G(t)
and I(t). The term γ(G(t)− h)∆t mimics the action of the
human pancreas.
The additional term D(t) is introduced in the model to
replicate a meal intake disturbance. In this work, the structure
of the meal disturbance (D(t)) is assumed to be that defined
by Fisher in [10] as

D(t) =

{
0 t < tm

Be−d(t−tm) t ≥ tm

where tm is the meal initiation time, d is the natural rate of
decay of glucose in blood and B characterizes the quantity
of food consumed.
To make D(t) a smooth function (as opposed to piecewise
continuous), it is written in terms of a sigmoidal function as

D(t) = Be−d(t−tm)

(
1− 1

1 + er(t−tm)

)
(4)

where r defines the steepness of the sigmoid part (and is
chosen to be r = 100 for all simulations). In case of a person
suffering from Type-1 diabetes, the natural pancreas term in
equation (3) (γ(G(t)− h)∆t) is removed and is substituted
by an artificial insulin input term U(t) similar to Lynch and
Bequette in [11]. Thus the final model becomes

Ġ(t) = −(X(t) + p1)G(t) + p1Gb +D(t) (5)

Ẋ(t) = −p2X(t) + p3(I(t)− Ib) (6)

İ(t) = −p4(I(t)− Ib) + U(t) (7)

where D(t) is given by equation (4).
The values for the parameters (corresponding to Type-1

diabetic patients) are chosen from literature [11] and are
given by

p1 = 0.028735
1

min
; p2 = 0.028344

1

min
; (8)

p3 = 5.035e− 5
mU

L
; p4 =

5

54

1

min
; d = 0.05. (9)

The basal values for plasma glucose and insulin concen-
trations were obtained by averaging respective values from
30 subjects (10 of each: adults, adolescents and children)
available from the FDA approved Type 1 Diabetes Metabolic
Simulator (T1DMS) software. These values are

Gb = 119.1858
mg

dL
and Ib = 15.3872

mU

L
. (10)

In this work, it is assumed that the initial value of glucose
concentration in plasma (G(0) or G0) and the meal quantity
(B) are uncertain variables with known specific distributions.

A. Distribution of G0 and B

It is assumed in the simulations that t = 0 corresponds
to the instant at which the diabetic patient injects the bolus
into the bloodstream. This action is simulated by making the
insulin input term (U(t)) an impulse function lasting for a
minute (between t = 0 to t = 1). The impulse function can
be determined using the following formula.

U(t) =

{
1000×(CHO Amount in g)

CR×Vi
0 < t ≤ 1

0 1 < t
(11)

where CR is the insulin-to-carb ratio (a.k.a. CR ratio) and
Vi is the distribution volume of insulin. According to the
Diabetes Teaching Center at the University of California, San
Francisco: CR ratios range between 6 and 30 [12]. After
averaging CR ratios of 30 subjects (10 adults, adolescents
and children obtained from T1DMS), a CR ratio of 18.477
was chosen for all simulations in this work. The value
of Vi was chosen to be 12L (taken from literature [11]).
Considering all these numbers, for a meal comprising 45g
of carbohydrates, the impulse magnitude turns out to be
202.96mU

L .
G0 is defined to be the glucose concentration in plasma when
the insulin bolus is taken. Since, the glucose concentration
at that instant is unlikely to be exactly the basal value
(Gb), G0 is assumed to be uniformly distributed about
Gb with a 10% variation on either side of it. Therefore,
G0 ∈ U [107.2672, 131.1044]. It can be defined in terms
of another uniformly distributed random variable (ξ1) where
ξ1 ∈ U [−1, 1] as

G0 = Gb + 0.1Gbξ1. (12)

According to the 2010 Dietary Guidelines [13] published
by the U. S. Department of Agriculture, Health and Human
Services, the daily carbohydrate (CHO) intake goal for all
ages should be 130 gr. Depending on the individual and
time of day, meal sizes can vary. Light and heavy meals
vary in their CHO counts significantly. The values can vary
between 15 gr for a snack to 75 gr for lunch if CHOs



from all foods at a meal are added up. A breakdown of
the carbohydrate content of recommended foods for diabetic
patients can be found in the article [14] from the American
Diabetes Association. Based on the daily total and mealtime
CHO recommedations, a meal of 45 gr of CHO is assumed
to be common practice. Hence, a beta distribution is assumed
for the meal quantity with its mode corresponding to a meal
of 45g of CHO.
To determine the value of B corresponding to a 45gr CHO
meal, the glucose appearance rate in plasma (Rag(t)) was
observed from a T1DMS simulation (for an average adult
subject). The area under the curve Rag was evaluated to
estimate the total concentration of glucose that was absorbed
in the plasma. Consequently, B was chosen such that the
area under the curve D(t) was the same as the area under
the curve Rag ensuring that the same amount of glucose
entered the blood stream (in the Bergman model) as deemed
acceptable by the FDA.
Table. I shows the values of B determined for 3 different
quantities of meals. Based on these numbers, the random

30 gr 45 gr 60 gr
B 19.46 28.98 38.91

TABLE I
VALUES OF B FOR DIFFERENT MEAL SIZES

variable B is expressed as an affine function of a Beta
random variable (ξ2), where ξ2 is defined over [−1, 1] with
parameters a = 4 and b = 6. The expression of B is written
as

B = 24 + 24ξ2. (13)

With this distribution, B has a mode at B = 28.8, which is
very close to B corresponding to a 45gr CHO meal (Table.
I) as seen in Figure. 1.

Fig. 1. Distribution of B

III. POLYNOMIAL CHAOS (PC) EXPANSION

Polynomial Chaos is a tool extensively used in the field
of uncertainty quantification to characterize uncertainties
in dynamic systems that stem from uncertainties in initial

conditions and model parameters. It was first investigated by
Norbert Wiener in his article [15]. In this work, states of
a Gaussian process were approximated by an infinite series
expansion of orthogonal Hermite polynomials. Cameron and
Martin [16] later proved that such an expansion always
converges for any stochastic process with a finite variance.
Ghanem and Spanos in their book [17] used these results
to solve stochastic differential equations related to solid me-
chanics. They cleverly truncated the series to a finite number
of terms before using Galerkin projection to formulate a
set of deterministic equations, and finally solve them to
obtain the coefficients of their truncated series expansion.
Xiu et al. [18] generalized the concept of PC. They showed
that any stochastic process could be approximated with
exponential convergence by an infinite series expansion as
long as appropriate orthogonal polynomials (given by the
Wiener-Askey scheme) were used as the basis functions.
A formulation of this concept (generalised PC (gPC)) has
been presented in this section and is illustrated on Bergman’s
minimal Model.

A. Methodology

Let a stochastic dynamical system be expressed in the form

ẋ(t, ξ) = f(x(t), ξ,u(t)) and x(t0, ξ) = x0 (14)

where, x ∈ Rn is the state vector, ξ ∈ Rm, the vector of
random variables, and u(t) the control input.
From gPC, the states can be expressed as

x(t, ξ) =
∞∑
i=0

xi(t)Ψi(ξ) (15)

where, Ψi(ξ) is a complete set of multivariate orthogonal
(w.r.t the pdf of ξ) polynomials and xi ∈ Rn is the time
varying coefficient vector of Ψi(ξ). The selection of the set
of orthogonal polynomials for popular distributions is given
by the Wiener-Askey scheme [18]. If there is one random
variable, the bases are simply univariate polynomials of the
random variable. If there are more random variables and they
are independent of each other, the basis functions are the
multivariate polynomials derived from the tensor product of
the univariate basis functions of each random variable. The
expansion is typically truncated to a finite number of terms
(depending on the desired accuracy) as an approximation
[18]. Hence, equation (15) is rewritten as

x(t, ξ) ≈
N∑
i=0

xi(t)Ψi(ξ) (16)

The objective is to evaluate the unknown vectors xi(t) over
time. Equation (16) is substituted in equation (14) to get

N∑
i=0

ẋi(t)Ψi(ξ) = f(
N∑
i=0

xi(t)Ψi(ξ), ξ,u(t)) (17)

The essence of PC expansion is to form a set of deterministic
differential equations from the stochastic equation (17);
whose solution allows us to approximate the states over time.
This can be done by performing the Galerkin Projection on



it over each of the orthogonal basis functions (i.e. Ψk, where
k = 0, 1, . . . , N ). The solution to these equations yield the
desired elements of xi(t).

B. PC on Bergman Model

Results from a PC implementation on the Bergman model
is presented in this subsection. If the model is observed
carefully, it can be seen that X(t) and I(t) can be solved
independently from G(t). Moreover, since the uncertainties
are only with B and G0; X(t) and I(t) can be solved
deterministically making the PC expansion relevant only for
G(t).
Since, there are 2 random variables (one having a Beta
distribution and another a Uniform distribution), the basis
functions are formed from a tensor product of uni-variate
Legendre polynomials (Ln1

(ξ1)) and uni-variate Jacobi poly-
nomials (Jn2(ξ2)). For the simulations, Ln1(ξ1) and Jn2(ξ2)
are both considered up to 3rd order (i.e n1 = 3 and n2 = 3).
On taking a tensor product between the polynomial spaces,
a total of (n1 + 1)(n2 + 1) = 16 basis functions (Ψi(ξ1, ξ2))
were formed. These basis functions are then used to form a
series expansion for G(t), i.e.

G(t) = x0Ψ0 + x1Ψ1 + . . .+ x15Ψ15. (18)

Equation (18) is then substituted in equation (5), following
which a Galerkin projection (over Ψk ∀k) is done to form 16
simultaneous deterministic differential equations (each for x0
through x15). A solution to them yields the evolution of the
coefficients over time. A generic form of the deterministic
equations for the Bergman model with (N+1) basis functions
is summarised by equation (19) where

〈fi(ξ1, ξ2), fj(ξ1, ξ2)〉 =∫ ∞
−∞

∫ ∞
−∞

fi(ξ1, ξ2)fj(ξ1, ξ2)pdf(ξ1)pdf(ξ2)dξ1dξ1. (20)

Once the coefficients are known in time, G(t) at any instant
is given by a polynomial function of the random variables
ξ1 and ξ2 and serves as a surrogate model. Hence, different
realizations of the stochastic dynamic model can now be
easily simulated by substituting different samples of the
random variables in the polynomial functions instead of
running integrators for each realization.
Figure. 2 presents a comparison of the mean G(t) trajectories
derived from 10000 MC simulations and PC. It can be seen
that the 2 curves completely overlap each other illustrating
that the PC provides accurate approximation of the state.
Although only the first moment has been shown, similar
comparisons for other moments were also done and yielded
similar results.

IV. OPTIMAL tm

Once a surrogate model is available, it can be sampled to
investigate the uncertainty in G(t) in a way which is com-
putationally faster and more cost effective. This uncertainty
in G(t) can now be used to define cost functions quantifying
undesirable glucose concentration behaviour. Consequently,

Fig. 2. Comparison of MC and PC for tm = 30min

optimization problems can be posed to find a meal time
after bolusing (tm) that minimizes these costs. Two such
cost functions have been formulated and investigated in this
work.
The first cost function J1 quantifies a value proportional to
the probability of G(t) being outside tolerance levels for
all time for a particular tm. The second cost function J2
calculates the percentage of time G(t) is likely to spend
outside tolerance levels for a particular tm. The objective is
to find tm = t∗m which minimizes these costs.

A. Optimal tm for J1
The surrogate model is used to determine a pdf distribution

of G(t) by sampling it at every instant, thereby generating
the evolution of the pdf in time (pdf(G, t)). J1 is defined in
terms of pdf(G, t) as

J1 =

∫ T

0

(∫ Glb

0

pdf(G, t)dG

)
dt+∫ T

tm+120

(∫ ∞
Gub

pdf(G, t)dG

)
dt. (21)

where T is the final time of simulation and is taken to be
T = 300min throughout.
The motivation for the cost function is as follows. It is recom-
mended that plasma glucose concentration never falls below
a lower bound Glb (hypoglycemia) at any time. According
to a joint consensus statement from the ADA and the En-
docrine Society regarding hypoglycemia and diabetes [19],
Glb should be 70mg

dL . In addition, after 2 hours (120 min)
of a meal, it is recommended by the American Diabetes
Association [20] that the plasma glucose concentration be
below 180 mg

dL . If a surface was to be plotted showing
the evolution of pdf(t, G) over time, the first term of J1
would indicate the volume under it that is below 70 mg

dL
(hypoglycemic region) on the glucose axis. Similarly, the
second term would indicate the volume under the surface that
is above 180 mg

dL on the glucose axis and above tm+120min
on the time axis (hyperglycemic region). Figure. 3 shows
such a snapshot of the pdf evolution for tm = 25min. The




ẋ0〈Ψ0,Ψ0〉
ẋ1〈Ψ1,Ψ1〉

...
ẋN 〈ΨN ,ΨN 〉

 = −(X + p1)


〈Ψ0,Ψ0〉x0
〈Ψ1,Ψ1〉x1

...
〈ΨN ,ΨN 〉xN

+ p1Gb


〈1,Ψ0〉
〈1,Ψ1〉

...
〈1,ΨN 〉

+ e−d(t−tm)

(
1−

1

1 + er(t−tm)

)
〈(24 + 24ξ2),Ψ0〉
〈(24 + 24ξ2),Ψ1〉

...
〈(24 + 24ξ2),ΨN 〉

 (19)

volume in red indicates the value of the first term. In this
case, the second term was observed to be 0, and therefore
was not included in the figure.

After evaluating the cost function for various values of

Fig. 3. Evolution of pdf(t, G) for tm = 25min

Fig. 4. J1 : Metric representing hypo/hyper glycemic excursions

tm, Figure. 4 was generated. Some interesting observations
can be made from this plot. The cost has a minima at
t∗m = 13 min which turns out to be the optimal time after
bolusing when a meal should be consumed to minimize
the probability of deviation from acceptable norms. It is
also observed that the cost has a very minimal value for
meal times between tm = 6 min to tm = 14 min. This
means that, presuming that the CR is correct, if the meal is
consumed between those times after bolusing, there is low
likelihood that the individual would experience either hypo-
or hyperglycemia following meals. Moreover, it can be seen
that the magnitude of the cost for tm = 1 through tm = 6 is
not very high either, indicating that perhaps the patient can

consume the meal anywhere between tm = 0 and tm = 14
without much threat.
For purposes of comparison, a snapshot of the evolution of
pdf(t, G) for a meal time at the optimal tm is shown in Fig-
ure. 5. It can be seen that there is hardly any hypoglycemic
(red) region at all as compared to Figure. 3.

Fig. 5. Evolution of pdf(t, G) for tm = 13min

B. Optimal tm for J2
To calculate the percentage of plasma glucose concentra-

tion time outside the tolerance levels, first, the uncertain
space (ξ1 and ξ2) was sampled NMC times. Then for
each sample, the trajectory of plasma glucose (Si) was
determined using the surrogate model for a particular tm.
Each trajectory (Si) was then observed carefully to determine
time intervals (∆i) for which violations of acceptable glucose
levels happened. Acceptable glucose levels were considered
to be identical to the last subsection. Finally, the cost was
calculated as

J2 =

∑NMC

i=1 ∆i

T ×NMC
. (22)

J2 was calculated for a range of tm values and a plot has
been shown in Figure. 6.
The minima is found to be at tm = 14min with a cost of

0.0128%. The percentage of time, plasma glucose actually
violates acceptable levels never goes higher than 0.1% until
a meal time of 15 min. The value of the cost once again is
seen to rise beyond the 15min mark. Therefore, J2 makes a
similar claim to J1 where it deems consuming a meal within
the first 14− 15 min safest.

V. CONCLUSIONS

Glucose insulin dynamics for Type 1 diabetic patients are
characterized by intra- and inter-patient variability. This, in
conjunction with uncertainties in the meal size, makes the



Fig. 6. J2: Metric representing time spent outside the glycemic range

optimal timing of the time interval between insulin bolusing
and meal initiation an important variable to study in view of
its impact on hypo and hyperglycemic excursions. Additional
iterations of this work will be applicable to populations
with alternate glycemic targets. This includes individuals
with hypoglycemia unawareness for whom the low threshold
may be increased and women with gestational diabetes for
whom the hyperglycemia threshold is 140 mg/dL. This paper
presents a polynomial chaos framework which permits incor-
porating the initial condition, meal size and model parameter
uncertainties into the optimization problem formulation. This
paper considers initial condition and meal uncertainty to
identify the optimal time interval between insulin bolusing
and meal initiation. The minimal Bergman model was con-
sidered to illustrate the proposed approach and the results
of the optimization suggest a 13-14 minute interval between
bolusing and meal initiation.
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