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Abstract

We propose a susceptible-exposed-infected-recovered-susceptible (SEIRS) reaction-diffusion model, 
where the disease transmission and recovery rates can be spatially heterogeneous. The basic reproduction 
number (R0) is connected with the principal eigenvalue of a linear cooperative elliptic system. Threshold-
type results on the global dynamics in terms of R0 are established. The monotonicity of R0 with respect to 
the diffusion rates of the exposed and infected individuals, which does not hold in general, is established in 
several cases. Finally, the asymptotic profile of the endemic equilibrium is investigated when the diffusion 
rate of the susceptible individuals is small. Our results reveal the importance of the movement of the ex-
posed and recovered individuals in disease dynamics, as opposed to most of previous works which solely 
focused on the movement of the susceptible and infected individuals.
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1. Introduction

In epidemiology, there is increasing evidence that environmental heterogeneity and individual 
motility have significant impact on the spread of infectious diseases ([4,32]). In recent years, a 
number of reaction-diffusion models have been proposed to investigate the roles of movement 
and environmental heterogeneity on the transmission of diseases across the habitat ([2,5,6,9,
12,17,22,26–29,33–36,42,43,45]). Among these works, Allen et al. [2] proposed the following 
susceptible-infected-susceptible (SIS) reaction-diffusion system:

⎧⎪⎪⎨⎪⎪⎩
∂S
∂t

= dS�S − β(x)SI
S+I

+ γ (x)I, x ∈ �, t > 0,

∂I
∂t

= dI�I + β(x)SI
S+I

− γ (x)I, x ∈ �, t > 0,

∂S
∂n

= ∂I
∂n

= 0, x ∈ ∂�, t > 0.

(1.1)

Here, � is a bounded domain in Rk with smooth boundary ∂�, where n is the outward nor-
mal unit vector on ∂� and the homogeneous Neumann boundary conditions mean that no 
individuals cross the boundary. S(x, t) and I (x, t) denote the density of susceptible and in-
fected populations at location x and time t , dS and dI represent the diffusion coefficients for 
susceptible and infected individuals, and β(x), γ (x) are transmission and recovery rates at x, 
respectively.

The main results of [2] concern the properties of the basic production number (R0), threshold-
type results on the global dynamics in terms of R0, and particularly the existence, uniqueness 
and asymptotic behaviors of the endemic equilibrium as the diffusion rate of the susceptible 
individuals approaches zero; See also [33–35]. Peng and Zhao ([36]) considered the same SIS 
reaction-diffusion model, but the disease transmission and recovery rates are assumed to be spa-
tially heterogeneous and temporally periodic. In [9,43], the authors investigated an SIS model 
with mass action infection. In [26], Li et al. provided qualitative analysis on an SIS reaction-
diffusion system with a linear source term. Ge et al. introduced a free boundary model for 
characterizing the spreading front of the disease in [17]. The effects of diffusion and advection 
for SIS epidemic models in heterogeneous environment were studied in [5,6]. Dynamics and 
asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models 
with cross-diffusion was considered in [27]. We also refer to [1,8,12,15,22] and the references 
therein for related works.

However, these models did not include the class of exposed individuals and ignored the 
movement of exposed (latently infected) individuals. For some epidemic diseases, infected in-
dividuals can experience incubation before showing symptoms, e.g. malaria, West Nile virus, 
HIV/AIDS. The travel of exposed individuals showing no symptoms can spread the disease ge-
ographically, which makes disease harder to control ([16]). Therefore, it seems imperative to 
include the exposed subclass and explore the influences of exposed individuals’ movement on 
disease spread. Mathematically, this is related to the dependence of the basic reproduction num-
ber on the diffusion rates of exposed individuals. There were some previous results on this aspect 
in discrete-space multi-patch models ([16,44]). In this paper, we will extend continuous-space 
model (1.1) to include the exposed and recovery classes, and analyze the corresponding SEIRS 
reaction-diffusion model.
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1.1. SEIRS reaction-diffusion model

To model the progress of infectious diseases in populations, we divide the individuals into four 
different compartments: susceptible (S), exposed (E), infectious (I ), recovered (immune by vac-
cination, R). The susceptible individuals are infected by infectious individuals with a rate of β , 
and become exposed; exposed individuals become infectious with a rate σ ; infected individuals 
are recovered with a rate γ ; recovery individuals lose immunity and go back into the suscep-
tible class with a rate of α. Thus the SEIRS (suspected-exposed-infected-recovered-suspected) 
epidemic reaction-diffusion model are given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂S
∂t

= dS�S − β(x)SI
S+I+E+R

+ αR, x ∈ �, t > 0,

∂E
∂t

= dE�E + β(x)SI
S+I+E+R

− σE, x ∈ �, t > 0,

∂I
∂t

= dI�I + σE − γ (x)I, x ∈ �, t > 0,

∂R
∂t

= dR�R + γ (x)I − αR, x ∈ �, t > 0,

∂S
∂n

= ∂E
∂n

= ∂I
∂n

= ∂R
∂n

= 0, x ∈ ∂�, t > 0.

(1.2)

Here S(x, t), E(I, t), I (x, t) and R(x, t) denote the density of susceptible, exposed, infected and 
recovered individuals at location x and time t , and dS , dE , dI , dR represent the diffusion coef-
ficients for susceptible, exposed, infected and recovered populations, respectively. Throughout 
this paper, we assume that the disease transmission rate β(x) and recovery rate γ (x) are environ-
mentally dependent and could be spatially heterogeneous, and they are assumed to be positive, 
Hölder continuous functions on �. The latent period 1/σ and the rate of loss of immunity α are 
not associated with external environment but usually depend on an individual itself, and thus σ
and α are always assumed to be constants in this paper.

Throughout the paper, we assume that the initial conditions satisfy

(A1) S(x, 0), E(x, 0), I (x, 0), R(x, 0) ≥ 0 for x ∈ � and 
∫
�

I (x, 0)dx > 0.

It is easy to verify that β(x)SI
S+I+E+R

is a Lipschitz continuous function of S and I , therefore 
we define it to be zero whenever S = 0 or I = 0. By the regularity theory for parabolic equa-
tions ([20]) and assumption (A1), system (1.2) admits a unique classical solution S, E, I, R ∈
C2,1(� × (0, ∞)). Moreover, it follows from the strong maximum principle for parabolic equa-
tions ([37]) that S, E, I and R are positive for x ∈ � and t > 0. We define the total population 
size at time t as

N(t) =
∫
�

(S(x, t) + E(x, t) + I (x, t) + R(x, t))dx,

and assume that the total population size at the initial time t = 0 is a fixed positive constant, 
denoted by N0. By system (1.2), we have N ′(t) = 0 for t > 0. Thus

N(t) = N0 for any t ≥ 0. (1.3)
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This paper also concerns non-negative equilibrium solutions of (1.2) which satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS�S̃ − β(x)S̃Ĩ

S̃+Ĩ+Ẽ+R̃
+ αR̃ = 0, x ∈ �,

dE�Ẽ + β(x)S̃Ĩ

S̃+Ĩ+Ẽ+R̃
− σẼ = 0, x ∈ �,

dI�Ĩ + σẼ − γ (x)Ĩ = 0, x ∈ �,

dR�R̃ + γ (x)Ĩ − αR̃ = 0, x ∈ �,

∂S̃
∂n

= ∂Ẽ
∂n

= ∂Ĩ
∂n

= ∂R̃
∂n

= 0, x ∈ ∂�,∫
�
(S̃ + Ẽ + Ĩ + R̃)dx = N0,

(1.4)

where S̃, Ẽ, ̃I , R̃ denote the density of susceptible, exposed, infected and recovered individuals 
at equilibrium, respectively. A disease-free equilibrium (DFE) is a solution of (1.4) satisfying 
Ĩ (x) = 0 for every x ∈ �; An endemic equilibrium (EE) is a solution of (1.4) for which Ĩ (x) > 0
for some x ∈ �. It is easy to verify that the disease free equilibrium is unique, given by E0 =
(

N0|�| , 0, 0, 0), where |�| is the Lebesgue measure of �. By the strong maximum principle, for 

any endemic equilibrium, S̃(x), Ẽ(x), ̃I (x), R̃(x) are positive for any x ∈ �.

1.2. Statement of main results

The goal of this paper is to investigate the impact of population movement and environmental 
heterogeneity on the persistence or extinction of infectious diseases. We will focus on the dynam-
ics of model (1.2), the properties of the basic production number, and the asymptotic behaviors 
of the endemic equilibria as the diffusion rate of the susceptible individuals approaches zero.

For infectious disease models, the basic reproduction number, defined as the expected number 
of secondary cases produced in a completely susceptible population by an infective individual, is 
one of the most significant concepts in studying the transmission of infectious disease ([3,10]). 
More importantly, it often determines the threshold behavior for many epidemic models. It is 
often the case that a disease dies out if the basic reproduction number is less than unity and the 
disease is established in the population if it is greater than unity. We refer to [10,11,41] for the 
approach of next generation operators for the basic reproduction number and to [28,29,40,42,45]
for related works.

By adopting the theory developed in [40,42], we characterize the basic reproduction number 
of system (1.2), denoted by R0, via the relationship R0 = 1

μ0
(see Lemma 2.2), where μ0 is the 

unique positive eigenvalue with a positive eigenfunction for the linear problem

⎧⎨⎩
−dE�ϕE + σϕE = μβ(x)ϕI , x ∈ �,

−dI�ϕI + γ (x)ϕI − σϕE = 0, x ∈ �,
∂ϕE

∂n
= ∂ϕI

∂n
= 0, x ∈ ∂�.

(1.5)

Threshold-type dynamics for system (1.2) in terms of R0 can be stated as follows:

Theorem 1.1. (i) If R0 ≤ 1, then E(x, t), I (x, t), R(x, t) → 0 uniformly in � as t → ∞, and ∫
S(x, t)dx → N0 as t → ∞;
�
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(ii) If R0 > 1, there exists some constant ε0 > 0 such that any positive solution of (1.2) satisfies

lim inf
t→∞ ‖(S(t, ·),E(t, ·), I (t, ·),R(t, ·)) − (

N0

|�| ,0,0,0)‖L∞(�) > ε0. (1.6)

Moreover, system (1.2) admits at least one endemic equilibrium.

To explore the influence of population movement on the persistence of infectious diseases, 
we proceed to investigate the dependence of R0 on dE, dI . It should be noted that R0 is indepen-
dent of dS and dR . It is shown in [2] that R0 for model (1.1) is decreasing in dI . However, for 
SEIRS system (1.2), it is not always the case, as the movement of exposed individuals makes 
the monotonicity of R0 more subtle. An underlying reason is that for SIS model (1.1), R0 is the 
principal eigenvalue of a self-adjoint elliptic operator and it has a variational characterization, 
which implies that R0 is decreasing in dI . However, for SEIRS system (1.2), the lack of varia-
tional structure for the eigenvalue problem (1.5) makes the situation here more sophisticated and 
the analysis more challenging.

The asymptotic properties of R0 when dE, dI tend to 0 or infinity are given in Theorem 3.1. 
The following result addresses the monotonicity of R0 with respect to dE, dI :

Theorem 1.2. If either β or γ is a constant function, then R0 is a monotone decreasing function 
of dE and dI . Moreover, the strict monotonicity holds if and only if one of them is non-constant.

Theorem 1.2 may fail to hold if both β and γ are non-constant; See Theorem 3.4 and dis-
cussion section for further details. We conjecture that, for any β and γ , there exists a constant 
d̄ independent of dE, dI such that if 0 < dE < d̄ or 0 < dI < d̄ , R0 is monotone decreasing in 
dE, dI .

If the habitat is one dimensional, we have the following result:

Theorem 1.3. Assume � is one dimensional, i.e., k = 1, and one of β and γ is monotone de-
creasing and the other is monotone increasing. Then R0 is a monotone decreasing function of 
dE, dI , and the strict monotonicity holds if and only if β or γ is non-constant.

Theorem 1.3 may even fail to hold if both β(x) and γ (x) are monotone increasing; see Theo-
rem 3.5 and discussion section for further details.

Finally, to understand the effect of the suspected population movement on the spatial distribu-
tion of populations, we investigate the asymptotic profiles of the endemic equilibrium of system 
(1.2) when dS tends to zero. We assume that R0 > 1 so that system (1.2) admits at least one 
endemic equilibrium by Theorem 1.1. To this end, consider the linear eigenvalue problem

−dR�φ + α(1 − γ
β
)φ = λφ in �,

∂φ
∂n

|∂� = 0, (1.7)

and denote the smallest eigenvalue of (1.7) by λ1(−dR� + α(1 − γ
β
)).

Theorem 1.4. Assume R0 > 1 and λ1(−dR� + α(1 − γ
β
)) < 0. Then the following assertions 

hold:



P. Song et al. / J. Differential Equations 267 (2019) 5084–5114 5089
(i) There exist positive constants C1, C2, independent of dS , such that for sufficiently small dS ,

C1 ≤ Ẽ

dS

,
Ĩ

dS

,
R̃

dS

≤ C2;

(ii) As dS → 0, subject to a sequence,

S̃ → S̃∗ = N0(1 − M∗(x))∫
�
(1 − M∗(x))dx

in C1(�),

for some M∗(x) satisfying 0 ≤ M∗ ≤ 1 in � and |{x ∈ � : M∗(x) = 1}| ∈ (0, |�|).

In particular, part (i) of Theorem 1.4 implies that Ẽ, ̃I , R̃ → 0 uniformly in � as dS → 0, 
and part (ii) of Theorem 1.4 implies that S̃∗ ≥ 0, ̃S∗ 
= 0, and the set {x ∈ � : S̃∗(x) = 0} is non-
empty. Biologically, Theorem 1.4 implies that restricting the movement of susceptible population 
can effectively control the number of exposed and infected individuals, and contain susceptible 
individuals in some subregion within the habitat.

Theorem 1.4 may fail to hold if λ1(−dR� +α(1 − γ
β
)) > 0; See discussion section for details.

This paper is organized as follows. In section 2, we establish the wellposedness of model (1.2), 
define R0 and study the dynamics of system (1.2) in terms of R0. In section 3, we investigate the 
asymptotic properties and monotonicity of R0 with respect to diffusion coefficients dE and dI . 
The asymptotic profiles of the endemic equilibrium as dS tends to zero is considered in section 4. 
Finally in section 5, we discuss our main results and present some numerical results.

2. Wellposedness, basic reproduction number and threshold dynamics of model (1.2)

To start with, the following uniform bound for the solution of system (1.2) is established.

Lemma 2.1. There exist some positive constants C1, independent of initial values, and T > 0
such that the solution (S, E, I, R) ∈ C2,1(� × (0, ∞)) of system (1.2) satisfies

‖S(·, t)‖L∞(�) + ‖E(·, t)‖L∞(�) + ‖I (·, t)‖L∞(�) + ‖R(·, t)‖L∞(�) ≤ C1, ∀t > T . (2.1)

The proof of Lemma 2.1 is standard. By (1.3), ‖S(·, t)‖L1(�), ‖E(·, t)‖L1(�), ‖I (·, t)‖L1(�)

and ‖R(·, t)‖L1(�) are uniformly bounded. This and Lemma 2.1 in [13] (due to [25]) with σ =
p0 = 1, along with the positiveness of S, E, I and R, imply (2.1).

We now adopt the theory developed in [42] to derive the basic reproduction number of system 
(1.2). The linearization of system (1.2) at E0 is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S̄
∂t

= dS�S̄ − β(x)Ī + αR̄, x ∈ �, t > 0,

∂Ē
∂t

= dE�Ē + β(x)Ī − σĒ, x ∈ �, t > 0,

∂Ī
∂t

= dI�Ī + σĒ − γ (x)Ī , x ∈ �, t > 0,

∂R̄
∂t

= dR�R̄ + γ (x)Ī − αR̄, x ∈ �, t > 0,

∂S̄ = ∂Ē = ∂Ī = ∂R̄ = 0, x ∈ ∂�, t > 0.

(2.2)
∂n ∂n ∂n ∂n
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Note that the infected compartments are E and I in system (1.2). Besides, L, F(x) and V (x) in 
[42] can be defined as L = diag(−dE�, −dI�),

F(x) =
(

0 β(x)

0 0

)
, V (x) =

(
σ 0

−σ γ (x)

)
. (2.3)

Note that assumptions (A1)-(A6) in [42] hold for model (1.2). Here we point out that F(x) is(
0 β(x)

0 0

)
rather than

(
0 β(x)

σ 0

)
,

as F(x) represents the infection process. In our model, infection process occurs only in S to E
and σ is associated with the transient process from E to I .

Lemma 2.2. The eigenvalue problem (1.5) admits a unique positive eigenvalue, denoted by μ0, 
with a positive eigenfunction. Moreover, the basic reproduction number of system (1.2), denoted 
by R0, satisfies

R0 = 1

μ0
. (2.4)

Proof. By Theorem 5.1 in [31], there exists a positive eigenvalue of (1.5) with a positive eigen-
function. To prove the uniqueness we assume that there exist positive eigenvalue μ1 with pos-
itive eigenfunction ϕ1 = (ϕE,1, ϕI,1)

T and positive eigenvalue μ2 with positive eigenfunction 
ϕ∗

2 = (ϕ∗
E,2, ϕ

∗
I,2)

T such that

Lϕ1 + V ϕ1 = μ1Fϕ1 in �,
∂ϕ1
∂n

|∂� = 0, (2.5)

and

Lϕ∗
2 + V T ϕ∗

2 = μ2F
T ϕ∗

2 in �,
∂ϕ∗

2
∂n

|∂� = 0. (2.6)

We now multiply the equation in (2.5) by (ϕ∗
2 )T and the equation in (2.6) by ϕT

1 , subtract the two 
resulting equations, and integrate by parts over � to give

(μ1 − μ2)

∫
�

βϕ∗
E,2ϕI,1dx = 0.

Since β, ϕ∗
E,2 and ϕI,1 are positive, we obtain μ1 = μ2. This establishes the uniqueness. In view 

of Theorem 3.2 in [42] and the uniqueness of positive eigenvalue with a positive eigenfunction 
for (1.5), we obtain (2.4). �

Next we study the stability of E0 in terms of R0. We first consider the eigenvalue problem⎧⎨⎩
−dE�φE − β(x)φI + σφE = λφE, x ∈ �,

−dI�φI + γ (x)φI − σφE = λφI , x ∈ �,
∂φE = ∂φI = 0, x ∈ ∂�.

(2.7)
∂n ∂n
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By the Krein-Rutman theorem ([23]), the eigenvalue problem (2.7) has a unique principal eigen-
value λ1, that is, a real and simple eigenvalue with positive eigenfunctions φE, φI , and it is 
strictly less than the real parts of all other eigenvalues.

Lemma 2.3. The following relationship holds:

sign(1 − R0) = sign(λ1). (2.8)

Proof. Consider the principal eigenvalue corresponding to the adjoint problem of (2.7), i.e.⎧⎪⎪⎨⎪⎪⎩
−dE�φ∗

E + σφ∗
E − σφ∗

I = λ1φ
∗
E, x ∈ �,

−dI�φ∗
I − β(x)φ∗

E + γ (x)φ∗
I = λ1φ

∗
I , x ∈ �,

∂φ∗
E

∂n
= ∂φ∗

I

∂n
= 0, x ∈ ∂�.

(2.9)

We multiply the first equation in (1.5) by φ∗
E and the first equation in (2.9) by ϕE , subtract the 

two resulting equations, and integrate by parts to give

λ1

∫
�

ϕEφ∗
Edx =

∫
�

(
1

R0
β(x)ϕIφ

∗
E − σφ∗

I ϕE)dx. (2.10)

Moreover, it follows from multiplying the second equation in (1.5) by φ∗
I and multiplying the 

second equation in (2.9) by ϕI , subtracting the two resulting equations, and integrating by parts 
to find

λ1

∫
�

ϕIφ
∗
I dx = −

∫
�

(β(x)ϕIφ
∗
E − σφ∗

I ϕE)dx. (2.11)

Adding two equations (2.10) and (2.11) yields

λ1

∫
�

(ϕEφ∗
E + ϕIφ

∗
I )dx = 1 − R0

R0

∫
�

β(x)ϕIφ
∗
Edx.

Since ϕE, φ∗
E, ϕI , φ∗

I , β are positive, we have sign(1 − R0) = sign(λ1). �
Lemma 2.4. The disease-free equilibrium E0 in system (1.2) is locally asymptotically stable if 
R0 < 1, unstable if R0 > 1.

Proof. Let 
 be the spectrum of the following eigenvalue problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dS�φS − β(x)φI + αφR + λφS = 0, x ∈ �,

dE�φE + β(x)φI − σφE + λφE = 0, x ∈ �,

dI�φI + σφE − γ (x)φI + λφI = 0, x ∈ �,

dR�φR + γ (x)φI − αφR + λφR = 0, x ∈ �,
∂φS = ∂φE = ∂φI = ∂φR = 0, x ∈ ∂�.

(2.12)
∂n ∂n ∂n ∂n
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We first show that if R0 < 1, then inf{Reλ, λ ∈ 
} > 0. Note that 
 = 
{(φE,φI )
=0} ∪

{(φE,φI )=0}. It is easy to verify inf{Reλ, λ ∈ 
{(φE,φI )=0}} > 0. Moreover, we have

{(φE,φI )
=0} ⊆ σ(L + V − F), where σ(L + V − F) denotes the spectrum of the operator 
L + V − F and L, V, F are defined in (2.3). Note that inf{Reλ, λ ∈ σ(L + V − F)} = λ1 > 0, 
where λ1 is the principal eigenvalue of eigenvalue problem (2.7). By Lemma 2.3, we obtain 
inf{Reλ, λ ∈ 
{(φE,φI )
=0}} > 0. Therefore, by Theorem 5.1.1 in [20], E0 is locally asymptoti-
cally stable if R0 < 1.

To prove E0 is linearly unstable when R0 > 1, we show that there exists a non-trivial solution 
of (2.12) such that Reλ < 0. Let λ = λ1 < 0, where λ1 is the principal eigenvalue of (2.7), and 
choose (φE, φI ) as the eigenfunction of (2.7) associated with λ1. In view of [18], φS, φR in (2.12)
are uniquely solvable. Therefore, Theorem 5.1.3 in [20] yields that E0 is unstable if R0 > 1. �

Now we proceed to the proof of Theorem 1.1.

2.1. Proof of Theorem 1.1(i)

We prove (i) by constructing a Lyapunov functional and applying LaSalle’s invariance prin-
ciple (Theorem 1 in [19]) for infinite dimensional dynamical systems. Let X = C(�; R4) with 
the supremum norm ‖‖∞, then X is an ordered Banach space with the cone P consisting of all 
nonnegative functions in X, and X has nonempty interior, denoted by int (P ). Set

X0 = {u = (us, ue, ui, ur ) ∈ X|
∫
�

(us + ue + ui + ur)dx = N0}

and U = P ∩ X0. It is easy to verify that (1.2) coupled with (1.3) defines a dynamic sys-
tem on U . Denote the unique solution of system (1.2) with initial value (s0, e0, i0, r0) ∈ U by 
�t(s0, e0, i0, r0) = (S(·, t), E(·, t), I (·, t), R(·, t)) for any t > 0. It follows from parabolic Lp

estimates and Sobolev inequalities that for each τ ∈ (0, 1), there exists some positive constant 
C2 such that

‖(S,E, I,R)‖
C

τ, τ
2 (�×[t0− 1

2 ,t0+1))
≤ C2‖(S,E, I,R)‖L∞(�×[t0−1,t0+1])

for each t0 ≥ 1. Since C2 is independent of t0, then we obtain by Lemma 2.1 that

‖(S(·, t),E(·, t), I (·, t),R(·, t))‖Cτ (�̄) ≤ C1C2, t ≥ 1, (2.13)

where C1 is defined in (2.1). Therefore �t is compact, and for each u0 ∈ U , the orbit of u0 under 
the dynamical system generated by (1.2) has compact closure in U .

Define the functional

L(u) =
∫
�

(ueφ
∗
E + uiφ

∗
I )dx

for u ∈ U , where (φ∗
E, φ∗

I ) is the eigenfunction corresponding to the principal eigenvalue λ1
associated with the eigenvalue problem (2.9). Now we prove L(u) is a Lyapunov functional for 
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system (1.2). For an arbitrary solution u = (S, E, I, R) of system (1.2) coupled with (1.3), we 
have

d
dt

L(u(·, t)) = ∫
�
(Etφ

∗
E + Itφ

∗
I )dx

= ∫
�
((dE�E + βSI

S+I+E+R
− σE)φ∗

E + (dI�I + σE − γ I)φ∗
I )dx

= − ∫
�

βφ∗
EI E+I+R

S+I+E+R
dx − λ1

∫
�
(Eφ∗

E + Iφ∗
I )dx.

(2.14)

By Lemma 2.3, R0 ≤ 1 yields that λ1 ≥ 0. Besides, S, E, I, R are nonnegative, and β, φ∗
E, φ∗

I are 
positive. Hence, d

dt
L(u(·, t)) ≤ 0, which implies L(u) is a Lyapunov functional of system (1.2).

Next define

L̇(u0) := d

dt
L(u(·, t))|t=0 and M = {u0 ∈ U |L̇(u0) = 0},

where u = (S, E, I, R) is the unique solution of (1.2) with initial condition u0 = (s0, e0, i0, r0) ∈
U . By (2.14), we have M = {u0 = (s0, e0, i0, r0) ∈ U |i0 = 0} if λ1 = 0, and M = {u0 =
(s0, e0, i0, r0) ∈ U |e0 = i0 = 0} if λ1 > 0. It follows from (1.2) that for λ1 ≥ 0, the maximal 
invariant set in M is given by

M̂ := {u0 = (s0, e0, i0, r0) ∈ U |e0 = i0 = 0}.

Therefore, by the LaSalle invariant principle (Theorem 1 in [19]), we obtain

(E(x, t), I (x, t)) → (0,0) in [L∞(�)]2, as t → ∞,

which together with (1.2) imply R(x, t) → 0 uniformly in � as t → ∞. Therefore, thanks to 
(1.3), we obtain 

∫
�

S(x, t)dx → N0 as t → ∞.

2.2. Proof of Theorem 1.1 (ii)

We appeal to the uniform persistence theory developed in [30,45]. Denote

U0 := {(s0, e0, i0, r0) ∈ U |e0 
= 0 and i0 
= 0},
∂U0 := {(s0, e0, i0, r0) ∈ U |e0 = 0 or i0 = 0}.

Note that U = U0 ∪ ∂U0. Moreover, U0 and ∂U0 are relatively open and closed subsets of 
U , respectively, and U0 is convex. Denote the unique solution of (1.2) with initial value 
(s0, e0, i0, r0) ∈ U by �t(s0, e0, i0, r0) = (S(·, t), E(·, t), I (·, t), R(·, t)) for t > 0. �t is con-
tinuous and compact for t > 0. By Lemma 2.1, �t is pointwisely dissipative. Therefore, �t has 
a global attractor ([45]).

Step 1. We have �tU0 ⊂ U0 for all t > 0. This is a direct result of the strong maximum principle 
for parabolic equations.

Step 2. Let A∂ be the maximal positively invariant set for �(t) in ∂U0, i.e.
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A∂ := {(s0, e0, i0, r0) ∈ U |�(t)(s0, e0, i0, r0) ∈ ∂U0, t ≥ 0}.

It is easy to verify that A∂ = {u0 = (s0, e0, i0, r0) ∈ U |e0 = i0 = 0}.
Denote ω((s0, e0, i0, r0)) as the ω-limit set of (s0, e0, i0, r0) in U (see [45]) and

Â∂ := ∪{(s0,e0,i0,r0)∈A∂ }ω((s0, e0, i0, r0)).

We now prove Â∂ = {E0}. For any (s0, e0, i0, r0) ∈ A∂ , i.e. e0 = i0 = 0, then E(x, t) = I (x, t) =
0 for all x ∈ �, t ≥ 0, and system (1.2) becomes

⎧⎪⎨⎪⎩
∂S
∂t

= dS�S + αR, x ∈ �, t > 0,

∂R
∂t

= dR�R − αR, x ∈ �, t > 0,

∂S
∂n

= ∂R
∂n

= 0, x ∈ ∂�,

which implies R(·, t) → 0, S(·, t) → N0|�| uniformly as t → ∞. Hence, Â∂ = {E0}. Therefore, 
{E0} is a compact and isolated invariant set for �t restricted in A∂ .

Step 3. We prove that there exists some constant ε1 > 0 independent of initial values such that

lim sup
t→∞

‖�t(s0, e0, i0, r0) − (
N0

|�| ,0,0,0)‖ > ε1.

Assume, on the contrary, that for any ε2 > 0, there exists some initial value (s∗
0 , e∗

0, i∗0 , r∗
0 ) such 

that

lim sup
t→∞

‖�t(s
∗
0 , e∗

0, i∗0 , r∗
0 ) − (

N0

|�| ,0,0,0)‖ ≤ ε2

2
. (2.15)

Given any small ε3 > 0 and let λ1(ε3) be the unique principal eigenvalue of the following 
eigenvalue problem with a positive eigenfunction (φE, φI ):

⎧⎪⎪⎨⎪⎪⎩
−dE�φE − β(x)(

N0|�| +ε3)

N0|�| +4ε3
φI + σφE = λφE, x ∈ �,

−dI�φI + γ (x)φI − σφE = λφI , x ∈ �,
∂φE

∂n
= ∂φI

∂n
= 0, x ∈ ∂�.

Note that limε3→0 λ1(ε3) = λ1 < 0, where λ1 is the principal eigenvalue of eigenvalue problem 
(2.7). Therefore, we can choose ε3 such that λ1(ε3) < 0. Since ε2 is arbitrary, choose ε2 = ε3. 
By (2.15), there exists T > 0 such that S∗ ≤ N

|�| + ε3, E∗, I ∗, R∗ ≤ ε3 for any x ∈ �, t ≥ T . 
By the strong maximum principal of parabolic equations, (S∗(·, t), E∗(·, t), I ∗(·, t), R∗(·, t)) ∈
int (P ) for all t > 0. Then we can find a small positive constant c∗ such that E∗(x, T ) ≥
c∗φE, I ∗(x, T ) ≥ c∗φI . It is easy to verify that (E∗(x, t), I ∗(x, t)) is a supersolution of the prob-
lem
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Ê
∂t

= dE�Ê + β(x)(
N0|�| +ε3)

N0|�| +4ε3
Î − σÊ, x ∈ �, t > T ,

∂Î
∂t

= dI�Î + σÊ − γ (x)Î , x ∈ �, t > T ,

∂Ê
∂n

= ∂Î
∂n

= 0, x ∈ ∂�, t > T ,

Ê(x,T ) = c∗φE, Î (x, T ) = c∗φI ,

(2.16)

where (c∗e−λ1(ε3)(t−T )φE, c∗e−λ1(ε3)(t−T )φI ) is the unique solution to system (2.16). Note that 
λ1(ε3) < 0, therefore E∗(x, t) ≥ c∗e−λ1(ε3)(t−T )φE, I ∗(x, t) ≥ c∗e−λ1(ε3)(t−T )φI → ∞ uni-
formly in � as t → ∞. This contradiction finishes the proof of step 3.

The result of step 3 implies that {E0} is an isolated invariant set for �t in U , and WS({E0}) ∩
U0 is an empty set, where WS({E0}) is the stable set of {E0} for �t .

Finally, by steps 1-3 and Theorem 1.3.1 in [45], �t is uniformly persistent with respect 
to (U, ∂U0). Moreover, by Theorem 1.3.7 in [45], (1.2) admits at least one endemic equilib-
rium. �
3. Properties of basic reproduction number R0

We have in previous section established threshold dynamics of system (1.2) in terms of R0. 
In this section, to explore the influence of population movement on the persistence of infectious 
diseases, we will investigate the asymptotic properties and monotonicity of R0 with respect to 
dE, dI .

3.1. Asymptotic properties of R0 with respect to dE, dI

By Lemma 2.2, 1
R0

is the unique principal eigenvalue of (1.5), thus we have

⎧⎨⎩
−dE�ϕE + σϕE = 1

R0
β(x)ϕI , x ∈ �,

−dI�ϕI + γ (x)ϕI − σϕE = 0, x ∈ �,
∂ϕE

∂n
= ∂ϕI

∂n
= 0, x ∈ ∂�.

(3.1)

Moreover, 1
R0

is the unique principal eigenvalue of the adjoint problem of (1.5), i.e.

⎧⎪⎪⎨⎪⎪⎩
−dE�ϕ∗

E + σϕ∗
E − σϕ∗

I = 0, x ∈ �,

−dI�ϕ∗
I + γ (x)ϕ∗

I = 1
R0

β(x)ϕ∗
E, x ∈ �,

∂ϕ∗
E

∂n
= ∂ϕ∗

I

∂n
= 0, x ∈ ∂�,

(3.2)

where (ϕ∗
E, ϕ∗

I ) is an eigenfunction corresponding to the unique principal eigenvalue of the ad-
joint problem of (1.5). Now we give an estimate of R0.

Lemma 3.1. For any dE > 0, dI > 0, the following inequalities hold:

min{β(x)

γ (x)
, x ∈ �} ≤ R0 ≤ max{β(x)

γ (x)
, x ∈ �}. (3.3)
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Proof. It follows from adding two equations of (3.1) that

−dE�ϕE − dI�ϕI + γ (x)ϕI = 1
R0

β(x)ϕI in �,
∂ϕE

∂n
|∂� = ∂ϕI

∂n
|∂� = 0. (3.4)

Integrating (3.4) by parts over � yields∫
�

γ (x)(R0 − β(x)

γ (x)
)ϕI dx = 0.

Since γ (x) and ϕI are positive, we obtain (3.3). �
Lemma 3.1 implies that if β

γ
is constant, then R0 is independent of dE, dI .

Theorem 3.1. (i) Fix dI > 0. Then R0 → 1
μ1

as dE → 0, and R0 → 1
|�|

∫
�
(−dI� + γ )−1β dx

as dE → ∞, where μ1 is the smallest eigenvalue of the problem

−dI�ϕ̄I + γ ϕ̄I = μβϕ̄I in �,
∂ϕ̄I

∂n
|∂� = 0; (3.5)

(ii) Fix dE > 0. Then R0 → 1
μ2

as dI → 0 and R0 →
∫
� β dx∫
� γ dx

as dI → ∞, where μ2 is the 

smallest eigenvalue of the problem

−dE�ϕ̄E + σ ϕ̄E = μ
σβ
γ

ϕ̄E, in �,
∂ϕ̄E

∂n
|∂� = 0; (3.6)

(iii) As dE, dI → 0, then R0 → max{ β(x)
γ (x)

, x ∈ �};
(iv) As dE → ∞ and dI → 0, then R0 → 1

|�|
∫
�

β
γ
dx.

3.1.1. Proof of Theorem 3.1 (i,ii)
We only prove (i) here as (ii) can be established by similar arguments. We first consider the 

case dE → 0. Given ε ∈ (0, 1), since A = {u ∈ C2(�)| ∂u
∂n

= 0} is dense in C(�), we can choose 
β∗

1 (x), β∗
2 (x) ∈ A such that

β(x)

1 + ε
< β∗

1 (x) < β(x) < β∗
2 (x) <

β(x)

1 − ε
.

Set

(ϕ̂E, ϕ̂I ) = (
μ1β

∗
1 ϕ̄I

σ
, ϕ̄I ), (ϕ̌E, ϕ̌I ) = (

μ1β
∗
2 ϕ̄I

σ
, ϕ̄I ).

For any ε ∈ (0, 1), there exists δ such that 0 < dE < δ,

−dE�ϕ̂E + σ(1 − β

β∗
1 (1 + ε)

)ϕ̂E ≥ 0 for x ∈ �,
∂ϕ̂E

∂n
= 0 for x ∈ ∂�, (3.7)

and
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−dE�ϕ̌E + σ(1 − β

β∗
2 (1 − ε)

)ϕ̌E ≤ 0 for x ∈ �,
∂ϕ̌E

∂n
= 0 for x ∈ ∂�. (3.8)

It follows from (3.5) and (3.7) that⎧⎪⎨⎪⎩
−dE�ϕ̂E + σ ϕ̂E ≥ μ1

1+ε
β(x)ϕ̂I , x ∈ �,

−dI�ϕ̂I + γ (x)ϕ̂I − σ ϕ̂E ≥ 0, x ∈ �,

∂ϕ̂E

∂n
= ∂ϕ̂I

∂n
= 0, x ∈ ∂�.

(3.9)

Multiplying the first equation in (3.9) by ϕ∗
E and the first equation in (3.2) by ϕ̂E , subtracting the 

resulting functions and integrating the results by parts over � yield∫
�

(
μ1

1 + ε
β(x)ϕ̂I ϕ

∗
E − σϕ∗

I ϕ̂E)dx ≤ 0. (3.10)

Similarly, multiplying the second equation in (3.9) by ϕ∗
I and the second equation in (3.2) by ϕ̂I , 

subtracting the resulting functions and integrating by parts over � we have∫
�

(
1

R0
β(x)ϕ̂I ϕ

∗
E − σϕ∗

I ϕ̂E)dx ≥ 0. (3.11)

Thus by (3.10) and (3.11) we get

(
1

R0
− μ1

1 + ε
)

∫
�

β(x)ϕ̂I ϕ
∗
Edx ≥ 0,

which implies that R0 ≤ 1+ε
μ1

. Similar procedures yield

(
1

R0
− μ1

1 − ε
)

∫
�

β(x)ϕ̌I ϕ
∗
Edx ≤ 0,

from which it follows that 1−ε
μ1

≤ R0. This proves that R0 → 1/μ1 as dE → 0.
Next we consider the case dE → ∞. It follows from Lemma 3.1 that, passing to a se-

quence if necessary, R0 → R̃0 > 0 as dE → ∞. Without loss of generality, we may assume 
‖ϕE‖L∞(�) +‖ϕI‖L∞(�) = 1. By Lp estimate, for any p > 1, ‖ϕE‖W 2,p(�), ‖ϕI‖W 2,p(�) are uni-
formly bounded. Thus by Sobolev embedding theorem, ‖ϕE‖C1,τ (�), ‖ϕI‖C1,τ (�) are uniformly 
bounded. Passing to a sequence if necessary, ϕE → ϕ̃E, ϕI → ϕ̃I in C1(�) as dE → ∞. There-
fore, ϕ̃I is a H 1 weak solution of

−dI�ϕ̃I + γ (x)ϕ̃I − σ ϕ̃E = 0 for x ∈ � and
∂ϕ̃I

∂n
= 0 for x ∈ ∂�.

By first equation of (3.1) and elliptic regularity ([18]), ϕ̃E is constant satisfying ϕ̃E =
∫
� β(x)ϕ̃I dx

σ R̃0|�| . 

Thus the weak solution ϕ̃I is actually a classical solution, i.e. ϕ̃I ∈ C2(�) satisfies
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−dI�ϕ̃I + γ (x)ϕ̃I −
∫
�

β(x)ϕ̃I dx

R̃0|�| = 0 for x ∈ � and
∂ϕ̃I

∂n
= 0 for x ∈ ∂�. (3.12)

Thus, R̃0 = 1
|�|

∫
�
(−dI� + γ (x))−1β(x)dx. This completes the proof of (i).

3.1.2. Proof of Theorem 3.1(iii)
Denote τ0 = max{ β(x)

γ (x)
, x ∈ �̄}. It follows from Lemma 3.1 that, passing to a sequence if 

necessary, R0 → R̃0 > 0 as dE, dI → 0. Then, for any small positive ε, there exists a positive 
constant δ, such that if 0 < dE, dI < δ, then R̃0 − ε < R0 < R̃0 + ε.

Consider the eigenvalue problem

Lu − Fu
τ

+ V u = λ1(τ )u in �, ∂u
∂n

|∂� = 0, (3.13)

where τ is a positive parameter and λ1(τ ) is the principal eigenvalue. Let ϕ = (ϕE, ϕI )
T in (3.1), 

then it follows from (3.1) that

Lϕ − Fϕ

R̃0 − ε
+ V ϕ ≤ 0 ≤ Lϕ − Fϕ

R̃0 + ε
+ V ϕ, x ∈ �.

In view of the comparison principle corresponding to the principal eigenvalue for irreducible 
cooperative elliptic systems (Proposition 3.4 in [24]), we have

λ1(R̃0 − ε) ≤ λ1(R0) = 0 ≤ λ1(R̃0 + ε). (3.14)

Moreover, in view of [24], λ1(τ ) satisfies

λ1(τ ) → λ∗
1(τ ) = −max

x∈�̄


1(
F (x)

τ
− V (x)), (3.15)

as dE, dI → 0, where 
1(
F (x)

τ
− V (x)) is the principal eigenvalue of the cooperative matrix 

F(x)
τ

− V (x) ([14]) at position x. It is easy to verify that


1(
F (x)

τ
− V (x)) =

−σ − γ (x) +
√

(σ + γ (x))2 + 4σβ(x)
τ

− 4σγ (x)

2
. (3.16)

If τ > (=, <)τ0, it follows from (3.16) that maxx∈�̄ 
1(
F (x)

τ
− V (x)) < (=, >)0, and thus 

sign(τ − τ0) = sign(λ∗
1(τ )). Note that (3.14) implies λ∗

1(R̃0 − ε) ≤ 0 ≤ λ∗
1(R̃0 + ε). Hence, 

τ0 − ε ≤ R̃0 ≤ ε + τ0. This establishes (iii). �
3.1.3. Proof of Theorem 3.1 (iv)

Without loss of generality, we may assume ‖ϕE‖L∞(�) + ‖ϕI‖L∞(�) = 1. By Lp estimate, 
for any p > 1, ‖ϕE‖W 2,p(�) is uniformly bounded. Thus by Sobolev embedding theorem, 
‖ϕE‖C1,τ (�) is uniformly bounded. Passing to a sequence if necessary, ϕE → ϕ̃E in C1(�) as 
dE → ∞, dI → 0, where ϕ̃E is a non-negative constant. Therefore, for any small ε, there exists 
δε such that for any 0 < dI , 1 < δε , we have
dE
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σ(ϕ̃E − ε) < −dI�ϕI + γ (x)ϕI < σ(ϕ̃E + ε),

which yields that ϕI → σ ϕ̃E

γ
in L∞(�) as dE → ∞, dI → 0. By ‖ϕE‖L∞(�) + ‖ϕI‖L∞(�) = 1, 

we obtain ϕ̃E > 0. It follows from integrating the first equation of (3.1) and passing to limits that

ϕ̃E |�| = lim
dE→∞
dI →0

1

R0

∫
�

βϕ̃E

γ
dx.

Since ϕ̃E is a positive constant, we have R0 → 1
|�|

∫
�

β
γ
dx as dE → ∞, dI → 0. �

3.2. Monotonicity of R0 with respect to dE, dI

In what follows, we explore some cases that R0 has monotonicity with respect to dE, dI . By 
the same arguments as [4] and Lemma 15.1 in [21], we can show that the basic reproduction 
number R0 and the corresponding eigenfunctions (ϕE, ϕI ), (ϕ∗

E, ϕ∗
I ) are differentiable functions 

of dE, dI . For further purposes, we differentiate both sides of the equations in (3.1) by dE, dI , 
we obtain ⎧⎪⎪⎨⎪⎪⎩

−dE�ϕ′
E − �ϕE + σϕ′

E = 1
R0

β(x)ϕ′
I − R′

0
R2

0
β(x)ϕI , x ∈ �,

−dI�ϕ′
I + γ (x)ϕ′

I − σϕ′
E = 0, x ∈ �,

∂ϕ′
E

∂n
= ∂ϕ′

I

∂n
= 0, x ∈ ∂�,

(3.17)

and ⎧⎪⎪⎨⎪⎪⎩
−dE�ϕ′

E + σϕ′
E = 1

R0
β(x)ϕ′

I − R′
0

R2
0
β(x)ϕI , x ∈ �,

−dI�ϕ′
I − �ϕI + γ (x)ϕ′

I − σϕ′
E = 0, x ∈ �,

∂ϕ′
E

∂n
= ∂ϕ′

I

∂n
= 0, x ∈ ∂�,

(3.18)

respectively. Here, for convenience, the prime notation denotes differentiation by dE or dI since 
no confusion will happen in further proofs.

Theorem 3.2. If β(x) is constant on �, then R0 is monotone decreasing function of dE, dI . 
Moreover, the strict monotonicity holds if γ (x) is nonconstant on �.

Proof of Theorem 3.2. To begin with, we show that R0 is monotone decreasing with respect 
to dE . We now multiply the first equation in (3.17) by ϕE and the first equation in (3.1) by ϕ′

E , 
subtract the two resulting equations, and then integrate by parts over � to give

R′
0

R2
0

∫
�

β(x)ϕIϕEdx = −
∫
�

|∇ϕE |2dx + 1

R0

∫
�

β(x)(ϕ′
I ϕE − ϕIϕ

′
E)dx.

Similarly, we multiply the second equation in (3.17) by ϕI and multiply the second equation in 
(3.1) by ϕ′

I , subtract the two resulting equations, and then integrate by parts over � to give (as σ
is constant)
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∫
�

(ϕ′
I ϕE − ϕIϕ

′
E)dx = 0.

If β(x) is constant on �, we can obtain that

βR′
0

R2
0

∫
�

ϕIϕEdx = −
∫
�

|∇ϕE |2dx.

Since ϕI , ϕE are positive functions, we obtain R′
0 ≤ 0. Furthermore, the equality is possible only 

if ϕE is constant on �. This fact together with the first equation of (3.1) yield that ϕI must be 
constant, which along with the second equation of (3.1) imply γ (x) must be constant. Therefore, 
R0 is monotone decreasing with respect to dE and the strict monotonicity holds if and only if 
γ (x) is nonconstant on �.

We next show that R0 is monotone decreasing with respect to dI . We now multiply the first 
equation in (3.18) by ϕE and the first equation in (3.1) by ϕ′

E , subtract the two resulting equations, 
and then integrate by parts over � to give

R′
0

R0

∫
�

β(x)ϕIϕEdx =
∫
�

β(x)(ϕ′
I ϕE − ϕIϕ

′
E)dx.

Similarly, we multiply the second equation in (3.18) by ϕI and multiply the second equation in 
(3.1) by ϕ′

I , subtract the two resulting equations, and then integrate by parts over � to give∫
�

|∇ϕI |2dx + σ

∫
�

(ϕ′
I ϕE − ϕIϕ

′
E)dx = 0.

If β(x) is constant on �. We obtain

σR′
0

R0

∫
�

ϕIϕEdx = −
∫
�

|∇ϕI |2dx.

By the same arguments as before, R0 is strictly monotone decreasing with respect to dI if and 
only if γ (x) is nonconstant. �
Theorem 3.3. If γ (x) is constant on �, then R0 is monotone decreasing function of dE, dI and 
the strict monotonicity holds if and only if β(x) is nonconstant on �.

Proof of Theorem 3.3. To start with, we show that R0 is monotone decreasing with respect to 
dE . Multiplying the first equation in (3.17) by ϕI and integrating by parts over � yield

R′
0

R2
0

∫
�

β(x)ϕ2
I dx = ∫

�
ϕI�ϕEdx + 1

R0

∫
�

β(x)ϕ′
I ϕI dx − ∫

�
(−dE�ϕ′

E + σϕ′
E)ϕI dx

= ∫
�

ϕE�ϕIdx + 1
R0

∫
�

β(x)ϕ′
I ϕI dx − ∫

�
(−dE�ϕI + σϕI )ϕ

′
Edx.

(3.19)

It follows (3.17) and (3.1) that
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ϕ′
E = −dI�ϕ′

I + γ ϕ′
I

σ
, ϕE = −dI�ϕI + γ ϕI

σ
, (3.20)

respectively. Thus, by substituting (3.20) into the last equality of (3.19) and integrating by parts 
over �, we obtain

R′
0

R2
0

∫
�

β(x)ϕ2
I dx = 1

σ

∫
�
(−dI |�ϕI |2 − γ |∇ϕI |2)dx + 1

R0

∫
�

β(x)ϕ′
I ϕI dx

− 1
σ

∫
�
(−dE�ϕI + σϕI )(−dI�ϕ′

I + γ ϕ′
I )dx.

(3.21)

Multiplying the first equation in (3.1) by ϕ′
I and integrating by parts over � claim

1

R0

∫
�

β(x)ϕ′
I ϕI dx −

∫
�

(−dE�ϕ′
I + σϕ′

I )ϕEdx = 0. (3.22)

Moreover, ϕE = (−dI�ϕI + γ ϕI )/σ gives∫
�
(−dE�ϕ′

I + σϕ′
I )ϕEdx = 1

σ

∫
�
(−dE�ϕ′

I + σϕ′
I )(−dI�ϕI + γ ϕI )dx

= 1
σ

∫
�
(−dE�ϕI + σϕI )(−dI�ϕ′

I + γ ϕ′
I )dx,

where the second equality holds because γ and σ are constants. This together with (3.22) yield

1

R0

∫
�

β(x)ϕ′
I ϕI dx − 1

σ

∫
�

(−dE�ϕI + σϕI )(−dI�ϕ′
I + γ ϕ′

I )dx = 0. (3.23)

It follows from (3.21) and (3.23) that

σR′
0

R2
0

∫
�

β(x)ϕ2
I dx =

∫
�

(−dI |�ϕI |2 − γ |∇ϕI |2)dx.

Therefore, R′
0 ≤ 0. The same argument as Theorem 3.2 shows the strict monotonicity holds if 

β(x) is nonconstant on �.
Next, we show that R0 is monotone decreasing with respect to dI . It follows from multiplying 

the first equation in (3.18) by ϕI and integrating by parts over � that

R′
0

R2
0

∫
�

β(x)ϕ2
I dx = 1

R0

∫
�

β(x)ϕ′
I ϕI dx − ∫

�
(−dE�ϕ′

E + σϕ′
E)ϕI dx

= 1
R0

∫
�

β(x)ϕ′
I ϕI dx − ∫

�
(−dE�ϕI + σϕI )ϕ

′
Edx.

(3.24)

In view of the second equation of (3.18), we have

ϕ′
E = −dI�ϕ′

I + γ ϕ′
I − �ϕI

σ
. (3.25)

By (3.24), (3.25) and integrating by parts over �, we have
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R′
0

R2
0

∫
�

β(x)ϕ2
I dx = 1

σ

∫
�
(−dE |�ϕI |2 − σ |∇ϕI |2)dx + 1

R0

∫
�

β(x)ϕ′
I ϕI dx

− 1
σ

∫
�
(−dE�ϕI + σϕI )(−dI�ϕ′

I + γ ϕ′
I )dx.

(3.26)

By the same arguments as before, we obtain

1

R0

∫
�

β(x)ϕ′
I ϕI dx − 1

σ

∫
�

(−dE�ϕI + σϕI )(−dI�ϕ′
I + γ ϕ′

I )dx = 0. (3.27)

By equations (3.26) and (3.27), we obtain

σR′
0

R2
0

∫
�

β(x)ϕ2
I dx =

∫
�

(−dE |�ϕI |2 − σ |∇ϕI |2)dx.

Hence, R′
0 ≤ 0 and strict monotonicity holds if β(x) is nonconstant on �. �

3.3. One dimensional habitat

In this part, we assume the habitat is a bounded open interval and prove Theorem 1.3.

Proof of Theorem 1.3. We first consider the case β(x) is monotone decreasing in x and γ (x)

is monotone increasing, and show that R0 is monotone decreasing with respect to dE . Without 
loss of generality, let � = (0, 1). We now multiply the first equation in (3.17) by ϕ∗

E and the first 
equation in (3.2) by ϕ′

E , subtract the two resulting equations, and then integrate by parts over �
to give

R′
0

R2
0

1∫
0

β(x)ϕIϕ
∗
Edx =

1∫
0

ϕ∗
E

d2ϕE

dx2 dx +
1∫

0

(
1

R0
β(x)ϕ′

I ϕ
∗
E − σϕ∗

I ϕ′
E)dx. (3.28)

By multiplying the second equation in (3.17) by ϕ∗
I and multiplying the second equation in (3.2)

by ϕ′
I , we obtain

1∫
0

(
1

R0
β(x)ϕ′

I ϕ
∗
E − σϕ∗

I ϕ′
E)dx = 0. (3.29)

It follows from (3.28) and (3.29) that

R′
0

R2
0

1∫
β(x)ϕIϕ

∗
Edx =

1∫
ϕ∗

E

d2ϕE

dx2 dx = −
1∫

dϕ∗
E

dx

dϕE

dx
dx. (3.30)
0 0 0
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Next, we show that 
dϕ∗

E

dx
dϕE

dx
≥ 0 on �. We differentiate (3.1) with respect to x to obtain

⎧⎪⎪⎨⎪⎪⎩
−dE

d3ϕE

dx3 + σ
dϕE

dx
− 1

R0
β(x)

dϕI

dx
= 1

R0
ϕI

dβ(x)
dx

, x ∈ �,

−dI
d3ϕI

dx3 + γ (x)
dϕI

dx
− σ

dϕE

dx
= −ϕI

dγ (x)
dx

, x ∈ �,

dϕE

dx
(0) = dϕE

dx
(1) = dϕI

dx
(0) = dϕI

dx
(1) = 0,

(3.31)

and (3.2) with respect to x to give

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−dE

d3ϕ∗
E

dx3 + σ
dϕ∗

E

dx
− σ

dϕ∗
I

dx
= 0, x ∈ �,

−dI
d3ϕ∗

I

dx3 + γ (x)
dϕ∗

I

dx
− 1

R0
β(x)

dϕ∗
E

dx
= − dγ (x)

dx
ϕ∗

I + 1
R0

dβ(x)
dx

ϕ∗
E, x ∈ �,

dϕ∗
E

dx
(0) = dϕ∗

E

dx
(1) = dϕ∗

I

dx
(0) = dϕ∗

I

dx
(1) = 0.

(3.32)

Denote L = diag(−dE
d2

dx2 , −dI
d2

dx2 ) and

M(x) =
(

−σ
β(x)
R0

σ −γ (x)

)
.

Let λ1(LN −M), λ1(LD −M) be the unique principal eigenvalue of L −M under the Neumann 
and Dirichlet conditions, respectively. Besides, λ1(LN − MT ), λ1(LD − MT ) are defined as the 
unique principal eigenvalue corresponding to the adjoint operator of L − M under the Neumann 
and Dirichlet conditions, respectively. It can be seen from (3.1) and (3.2) that λ1(LN − M) = 0, 
λ1(LN − MT ) = 0. In view of Proposition 3.4 in [24], we obtain

λ1(LD − M) > 0 and λ1(LD − MT ) > 0. (3.33)

Since β(x) is monotone decreasing in x and γ (x) is monotone increasing, we have dβ(x)
dx

≤
0, dγ (x)

dx
≥ 0. Then, it follows from (3.31), (3.32) (3.33) and the maximum principle for cooper-

ative elliptic systems (Theorem 1.1 in [39]) that dϕE

dx
, dϕI

dx
, 

dϕ∗
E

dx
, 

dϕ∗
I

dx
≤ 0 for x ∈ �. This together 

with (3.30) implies R′
0 ≤ 0. By the same arguments as the proof of Theorem 3.2, the equality 

holds if and only if both β(x) and γ (x) are constants.
If β(x) is monotone increasing in x and γ (x) is monotone decreasing, by similar arguments 

we obtain dϕE

dx
, dϕI

dx
, 

dϕ∗
E

dx
, 

dϕ∗
I

dx
≥ 0 for x ∈ �. The rest arguments are similar.

Next we show that R0 is monotone decreasing with respect to dI . By the same arguments as 
before, we show that

R′
0

R2
0

1∫
0

β(x)ϕIϕ
∗
Edx = −

1∫
0

dϕ∗
I

dx

dϕI

dx
dx,

and the rest arguments are similar.
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3.4. Non-monotonicity of R0 in dE, dI

In previous subsections, we have proved in some cases, R0 is monotone decreasing in dE, dI . 
In this subsection, we will show R0 is not always monotone decreasing associated with dE, dI .

Theorem 3.4. There exist d0
E and d1

I < d2
I such that R0(d

0
E, d1

I ) < R0(d
0
E, d2

I ), if∫
�

β(x)dx∫
�

γ (x)dx
>

1

|�|
∫
�

β(x)

γ (x)
dx.

Proof of Theorem 3.4. In view of Theorem 3.1, we know for any fixed dE > 0, R0 →
∫
� β(x)dx∫
� γ (x)dx

as dI → ∞, and R0 → 1
|�|

∫
�

β(x)
γ (x)

dx as dI → 0, dE → ∞. Then, for any positive small ε, there 

exists C1(ε) large enough, such that for any 1
d1
I

, dE ≥ C1(ε), we have

R0(dE, d1
I ) ≤ 1 + ε

|�|
∫
�

β(x)

γ (x)
dx.

Moreover, there exists C2(ε, dE) such that for any d2
I ≥ C2(ε, dE),

R0(dE, d2
I ) ≥ (1 − ε)

∫
�

β(x)dx∫
�

γ (x)dx
.

Since ∫
�

β(x)dx∫
�

γ (x)dx
>

1

|�|
∫
�

β(x)

γ (x)
dx,

we can choose ε0 small enough such that

(1 − ε0)

∫
�

β(x)dx∫
�

γ (x)dx
>

1 + ε0

|�|
∫
�

β(x)

γ (x)
dx,

and let d0
E = C1(ε0), d1

I = 1
C1(ε0)

, d2
I = C2(ε0, d0

E), we have R0(d
0
E, d1

I ) < R0(d
0
E, d2

I ). �
Theorem 3.5. Let ν0 =

∫
� γ (x)dx∫
� β(x)dx

and ϕ1, φ1 be the unique solutions of

−�ϕ1 = ν0β − γ, x ∈ � with
∂ϕ1

∂n
= 0, x ∈ ∂�

and

−�φ1 = ν0

|�|
∫

βdx − γ, x ∈ � with
∂φ1

∂n
= 0, x ∈ ∂�,
�
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respectively. If ∫
�

(γ − ν0β)(ϕ1 − φ1)dx > 0, (3.34)

there exist d0
I and d1

E < d2
E such that R0(d

1
E, d0

I ) < R0(d
2
E, d0

I ).

Proof of Theorem 3.5. Consider the principal eigenvalues, denoted by μ and ν respectively, of 
the following two eigenvalue problems:

−dI�ϕ + γ (x)ϕ = μβ(x)ϕ in �,
∂ϕ
∂n

|∂� = 0, (3.35)

and

−dI�φ + γ (x)φ = ν
|�|

∫
�

β(x)φdx in �,
∂φ
∂n

|∂� = 0 (3.36)

with 
∫
�

ϕ2dx = ∫
�

φ2dx = |�|. Now we take ε = 1
dI

and the expansions on (ϕ, μ) and (φ, ν) to 
give

ϕ(x) = ϕ0(x) + εϕ1(x) + ε2ϕ2(x, ε),

φ(x) = φ0(x) + εφ1(x) + ε2φ2(x, ε),

μ = μ0 + εμ1 + ε2μ2(ε),

ν = ν0 + εν1 + ε2ν2(ε).

(3.37)

Our goal is to prove μ > ν when ε is small under the condition (3.34). By direct calculation, 

we obtain ϕ0 = φ0 = 1, μ0 = ν0 =
∫
� γ (x)dx∫
� β(x)dx

and ϕ1, φ1 satisfy

−�ϕ1 = μ0β − γ in �,
∂ϕ1
∂n

|∂� = 0

and

−�φ1 = ν0|�|
∫
�

βdx − γ in �,
∂φ1
∂n

|∂� = 0,

respectively. Furthermore, we have∫
�

γϕ1dx = μ0

∫
�

βϕ1dx + μ1

∫
�

βdx (3.38)

and ∫
�

γφ1dx = ν0

∫
�

βφ1dx + ν1

∫
�

βdx. (3.39)

Therefore, by condition (3.34), (3.38), (3.39) and μ0 = ν0, we obtain
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(μ1 − ν1)
∫
�

βdx = ∫
�
(γ − ν0β)(ϕ1 − φ1)dx > 0.

Thus μ > ν for large dI . It follows from Theorem 3.1 that for any fixed dI > 0, R0 → 1
μ

as 

dE → 0 and R0 → 1
ν

as dE → ∞. Therefore, we can find d0
I large, and d2

E large, d1
E small such 

that R0(d
1
E, d0

I ) < R0(d
2
E, d0

I ). �
Remark: We give a case such that condition (3.34) holds. Let � = (0, 1), β = √

x + 0.001 and 
γ = x + 0.001, then direct calculation yields∫

�

(γ − ν0β)(ϕ1 − φ1)dx = 0.0021 > 0.

4. Asymptotic properties of endemic equilibrium

Throughout this section, we assume that (A1) holds, N0 is fixed and R0 > 1 so that system 
(1.2) admits at least one endemic equilibrium by Theorem 1.1. To further understand the effect 
of the suspected population movement on the spatial distribution of the individuals of system 
(1.2) in heterogeneous environment, we will investigate the asymptotic profiles of the endemic 
equilibria when dS approaches zero.

For later purposes, we start by rewriting the endemic equilibria problem (1.4). Denote ξ =
dSS̃ + dEẼ + dI Ĩ + dRR̃, and set S = S̃

ξ
, E = Ẽ

ξ
, I = Ĩ

ξ
, R = R̃

ξ
. It follows from (1.4) that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dE�E + β(x)SI
S+I+E+R

− σE = 0, x ∈ �,

dI�I + σE − γ (x)I = 0, x ∈ �,

dR�R + γ (x)I − αR = 0, x ∈ �,

dSS + dEE + dI I + dRR = 1, x ∈ �,

∂E
∂n

= ∂I
∂n

= ∂R
∂n

= 0, x ∈ ∂�.

(4.1)

Therefore, the following results hold:

Lemma 4.1. (S̃, Ẽ, ̃I , R̃) is a solution of (1.4) if and only if (S, E, I, R) is a solution of (4.1). 
Moreover, S̃ = ξS, Ẽ = ξE, ̃I = ξI, R̃ = ξR and

ξ = N0∫
�
(S + E + I + R)dx

.

We now investigate the asymptotic profiles of the endemic equilibria when dS tends to zero. 
Recall that λ1(−dR� + α(1 − γ

β
)) is the smallest eigenvalue of the eigenvalue problem (1.7).

Theorem 4.1. Assume that R0 > 1. Then the following assertions hold:

(i) As dS → 0, subject to a sequence, E, I, R converge to E∗, I ∗, R∗ in C1(�), respectively, for 
some E∗ ≥ 0, I ∗ > 0, R∗ > 0;
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(ii) The set J+ := {x|M∗(x) = 1, x ∈ �} has positive Lebesgue measure, where M∗(x) :=
dEE∗ + dI I

∗ + dRR∗;

(iii) If further assume λ1(−dR� + α(1 − γ
β
)) < 0, then the set J− := {x|M∗(x) < 1, x ∈ �} has 

positive Lebesgue measure.

Theorem 4.2. Assume R0 > 1 and λ1(−dR� + α(1 − γ
β
)) < 0. Then the following assertions 

hold:

(i) As dS → 0, subject to a sequence,

ξ

dS

→ N0∫
�
(1 − M∗(x))dx

and S̃ → S̃∗ = N0(1 − M∗(x))∫
�
(1 − M∗(x))dx

in C1(�);

(ii) There exist positive constants C1, C2, independent of dS such that for sufficiently small dS ,

C1 ≤ Ẽ

dS

,
Ĩ

dS

,
R̃

dS

≤ C2.

4.1. Proof of Theorem 4.1

We first prove part (i). Note that E(x), I (x), R(x) > 0 for any x ∈ �, dS > 0. In view of 
dSS + dEE + dI I + dRR = 1, β(x)SI

S+E+I+R
is uniformly bounded for any dS > 0. It follows from 

Lp estimate ([18]) that ‖E‖W 2,p is bounded for any p > 1. Thus, ‖E‖C1,τ is bounded for any 
τ ∈ (0, 1) by Sobolev embedding theorem. Passing to a subsequence if necessary, E → E∗ in 
C1(�) as dS → 0 where E∗(x) ≥ 0 for x ∈ � and ∂E∗

∂n
= 0 for x ∈ ∂�. By similar arguments, 

I → I ∗, R → R∗ in C1(�) as dS → 0 where I ∗(x), R∗(x) ≥ 0 for x ∈ �, which satisfy⎧⎨⎩
dI�I ∗ + σE∗ − γ (x)I ∗ = 0, x ∈ �,

dR�R∗ + γ (x)I ∗ − αR∗ = 0, x ∈ �,
∂I∗
∂n

= ∂R∗
∂n

= 0, x ∈ ∂�.

(4.2)

Now we show that E∗(x) 
≡ 0 on � by contradiction argument. If E∗ = 0, then we obtain by 
(4.2) that I ∗ = R∗ = 0, which implies that S → ∞ a.e as dS → 0. Thus β(x)S

S+E+I+R
→ β(x) a.e

as dS → 0. Define

K = ‖E‖L∞(�) + ‖I‖L∞(�) + ‖R‖L∞(�), Ê = E

K
, Î = I

K
, R̂ = R

K
.

Note that Ê, Î , R̂ > 0 and ‖Ê‖L∞(�) +‖Î‖L∞(�) +‖R̂‖L∞(�) = 1. Then as before, by a standard 
compactness argument for elliptic equations, after passing to a further subsequence if necessary, 
we have Ê → Ê∗, Î → Î ∗, R̂ → R̂∗ in C1(�) as dS → 0, where Ê∗(x), Î ∗(x), R̂∗(x) ≥ 0 for 
x ∈ � and

‖Ê∗‖L∞(�) + ‖Î ∗‖L∞(�) + ‖R̂∗‖L∞(�) = 1 (4.3)

with ∂Ê∗
∂n

= ∂Î∗
∂n

= ∂R̂∗
∂n

= 0 for x ∈ ∂�. It follows from β(x)S
S+E+I+R

→ β(x) a.e as dS → 0 that 

Ê∗ is a weak solution of
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dE�Ê∗ − σÊ∗ + β(x)Î ∗ = 0 in �,
∂Ê∗

∂n

∣∣
∂�

= 0.

By elliptic regularity, we have Ê∗ ∈ C2(�), which gives⎧⎪⎪⎪⎨⎪⎪⎪⎩
dE�Ê∗ − σÊ∗ + β(x)Î ∗ = 0, x ∈ �,

dI�Î ∗ + σÊ∗ − γ (x)Î ∗ = 0, x ∈ �,

dR�R̂∗ + γ (x)Î ∗ − αR̂∗ = 0, x ∈ �,
∂Ê∗
∂n

= ∂Î∗
∂n

= ∂R̂∗
∂n

= 0, x ∈ ∂�.

(4.4)

It follows from maximum principle together with (4.3) that Ê∗(x), Î ∗(x), R̂∗(x) > 0, which im-
plies that R0 = 1. This contradiction yields E∗(x) 
≡ 0. Therefore, again by maximum principle 
together with (4.2), we obtain I ∗, R∗ > 0.

Next we prove |J+| > 0 by contradiction. If |J+| = 0, then S → ∞ a.e as dS → 0 and thus 
β(x)SI

S+E+I+R
→ β(x)I ∗ a.e as dS → 0. Therefore, E∗ is a H 1 weak solution of

dE�E∗ − σE∗ + β(x)I ∗ = 0 in �,
∂E∗

∂n

∣∣
∂�

= 0.

By elliptic regularity, we have E∗ ∈ C2(�), which yields⎧⎪⎪⎨⎪⎪⎩
dE�E∗ − σE∗ + β(x)I ∗ = 0, x ∈ �,

dI�I ∗ + σE∗ − γ (x)I ∗ = 0, x ∈ �,

dR�R∗ + γ (x)I ∗ − αR∗ = 0, x ∈ �,
∂E∗
∂n

= ∂I∗
∂n

= ∂R∗
∂n

= 0, x ∈ ∂�.

(4.5)

It follows from (4.5) together with I ∗ > 0, R∗ > 0 that E∗ > 0. Thus, R0 = 1. This contradiction 
implies |J+| > 0.

We prove part (iii) by contradiction. Now assume that |J−| = 0. Denote h(x) := β(x)SI
S+E+I+R

−
αR and choose ϕ ∈ C1(�) such that ϕ ≥ 0 on �. Multiplying the first three equations in (4.1) by 
ϕ, adding them together and integrating on �, we have

−
∫
�

∇ϕ · ∇(dEE + dI I + dRR)dx +
∫
�

ϕh(x)dx = 0. (4.6)

As |J−| = 0, M∗(x) = 0 a.e. in �. Thus, we obtain∫
�

h(x)ϕdx → 0 as dS → 0 (4.7)

for any ϕ ∈ C1(�), ϕ ≥ 0 on �. Hence, (4.7) holds for any ϕ ∈ C(�) such that ϕ ≥ 0 on �.
Let φ0 be a positive eigenfunction of λ1(−dR� + α(1 − γ

β
)), i.e.

−dR�φ0 + α(1 − γ
)φ0 = λ1φ0 in �,

∂φ0 ∣∣
∂�

= 0. (4.8)

β ∂n
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Since dR�R + γ (x)I − αR = 0 and S, E, I, R > 0 on �, we have

−dR�R + α(1 − γ (x)

β(x)
)R >

γ (x)h(x)

β(x)
, x ∈ �. (4.9)

Multiplying (4.9) by φ0, integrating by parts over � and applying (4.8), we obtain

λ1

∫
�

φ0Rdx >

∫
�

γ (x)h(x)

β(x)
φ0dx.

Let dS → 0, it follows from (4.7) that λ1
∫
�

φ0R
∗dx ≥ 0. Since φ0, R∗ > 0 on �, we see that 

λ1 ≥ 0. This contradiction yields (iii). �
4.2. Proof of Theorem 4.2

We first prove part (i). Denote for further purposes M(x) := dEE + dI I + dRR. By (4.1), we 
have

N0 = ∫
�
(S̃ + Ẽ + Ĩ + R̃)dx

= ξ
dS

(
∫
�

dS(E + I + R)dx + ∫
�
(1 − M(x))dx).

It follows from S, E, I, R > 0 and dSS + dEE + dI I + dRR = 1 that E, I, R are uniformly 
bounded with respect to dS . Thus,∫

�

dS(E + I + R)dx → 0 as dS → 0.

In view of Theorem 4.1 (i) (ii),∫
�

(1 − M(x))dx →
∫
�

(1 − M∗(x))dx > 0 as dS → 0.

Therefore,

ξ

dS

→ N0∫
�
(1 − M∗(x))dx

as dS → 0. (4.10)

Moreover, (4.1) yields S̃ = ξ
dS

(1 − M(x)). By (4.10) together with Theorem 4.1 (i),

S̃ → S̃∗ = N0(1 − M∗(x))∫
�
(1 − M∗(x))dx

in C1(�) as dS → 0.
Next we prove part (ii). It follows from dSS + dEE + dI I + dRR = 1, and Ẽ = ξ

dS
dSE, Ĩ =

ξ
dSI, R̃ = ξ

dSR that

dS dS
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0 <
Ẽ

dS

,
Ĩ

dS

,
R̃

dS

<
ξ

dS

max{ 1

dE

,
1

dI

,
1

dR

}.

Hence, (i) implies

lim sup
dS→0

sup
�

Ẽ

dS

, lim sup
dS→0

sup
�

Ĩ

dS

, lim sup
dS→0

sup
�

R̃

dS

≤ N0∫
�
(1 − M∗(x))dx

max{ 1

dE

,
1

dI

,
1

dR

}. (4.11)

Now we prove

min{inf
�

Ẽ, inf
�

Ĩ , inf
�

R̃}/dS � 0, as dS → 0 (4.12)

by contradiction. Assume that min{inf� Ẽ, inf� Ĩ , inf� R̃} = o(dS). By Lemma 2.3 in [7] and 
(1.4), there exists a positive constant δ such that

inf� Ẽ ≥ δ
∫
�

β(x)S̃Ĩ

S̃+Ĩ+Ẽ+R̃
dx = δσ

∫
�

Ẽdx,

inf� Ĩ ≥ δσ
∫
�

Ẽdx,

inf� R̃ ≥ δα
∫
�

R̃dx = δσ
∫
�

Ẽdx.

Hence 
∫
�

Ẽdx = o(dS). In view of

α

∫
�

R̃dx =
∫
�

γ (x)Ĩdx = σ

∫
�

Ẽdx,

we obtain 
∫
�

Ĩdx, 
∫
�

R̃dx = o(dS), which implies

∫
�

dEẼ + dI Ĩ + dRR̃

dS

dx → 0 as dS → 0. (4.13)

Note that

N0 =
∫
�

ξ

dS

dx −
∫
�

dEẼ + dI Ĩ + dRR̃

dS

dx +
∫
�

(Ẽ + Ĩ + R̃)dx.

Let dS → 0, it follows from (i), (4.11) and (4.13) that

N0 = N0|�|∫
�
(1 − M∗(x))dx

,

which yields that |J−| = 0. This contradiction implies (ii). �
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Fig. 1. � = (0, 1.4), σ = 0.1. The dyed part means R0 < 1. Contour of R0(dE, dI ) in phase (dE, dI ) under: (a) β(x) =
2.44 cos(πx/2.8), γ (x) = x + 1; (b) β(x) = 0.916(x + 1), γ (x) = 1 + cos(πx/2.8); (c) β(x) = x + 1, γ (x) = 0.74(x +
1 + sin(πx/2.8)); (d) β(x) = 1/(x + 1) + cos(πx/2.8), γ = 2/(x + 1).

5. Numerical simulation and discussion

In this section, we use numerical results to demonstrate our theoretical findings and explore 
the effect of exposed and recovered individuals’ movement on disease persistence. We refer to 
[38] for more extensive numerical results.

We first illustrate by numerical examples that the movement of exposed individuals makes the 
monotonicity of the basic reproduction number R0 more complex. Fig. 1(a, b) shows that if one 
of β(x) and γ (x) is increasing and the other is decreasing, then R0 is monotone decreasing in 
dE, dI , which is in agreement with the results in Theorem 1.3. However, if both β(x) and γ (x)

are increasing or decreasing, we can see from the curve R0 = 1 in Fig. 1(c) that R0 is no longer 
decreasing in dE which agrees with the result in Theorem 3.5. Interestingly, Fig. 1(d) shows when 
dE > e−2, R0 is an increasing function of dI . Fig. 1(d) is probably more close to the real epidemic 
situation and potentially explains the relationship between the basic reproduction number and the 
movement of infected individuals, as the movement of exposed individuals may not be restricted 
during the epidemic. The faster the infected individuals move, the more infections happen.

Fig. 2 represents the contour of R0(dE, dI ) in phase (dE, dI ) for non-monotone β, γ , where 
the dyed part means R0 < 1. It can be observed from Fig. 2 that when dE is small, R0 is a 
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Fig. 2. � = (0, 1.4), σ = 0.1. The dyed part means R0 < 1. Contour of R0(dE, dI ) in phase (dE, dI ) under: (a) β(x) =
2.58(1 − sin(1.05πx/1.4))(x + 1), γ (x) = x + 1; (b) β(x) = 3.74x(1.6 − x), γ (x) = x + 1 + 0.1 sin(πx/1.4).

Fig. 3. An endemic equilibrium Ĩ (x) of system (1.2). � = (0, 1.4), dS ≈ 0, dE = dI = e−9, dR = 1, α = σ =
0.1, β(x) = (1 + (x − 0.1)(x − 0.2))γ (x), γ (x) = 2x + 1, S(x, 0) = 10000, E(x, 0) = I (x, 0) = 1, R(x, 0) = 0.

monotone decreasing function of dI . However, as dE increases, R0 loses the monotonicity with 
respect to dI and reveals complicated dependences upon dE and dI .

Next we give a numerical example to show that the movement of recovered individuals may 
increase the number of infected individuals and enhance the endemic. For the parameters given in 
Fig. 3, we can calculate R0 ≈ 2.2846 > 1, λ1(−dR� + α(1 − γ

β
)) ≈ 0.0251 > 0. Fig. 3 suggests 

that Ĩ does not converge to zero as dS → 0, which is in contrast with conclusions of Theo-
rem 1.4.

Our theoretical and numerical results suggest that the travel of exposed individuals could have 
an important impact on the persistence of disease and the movement of recovered individuals may 
enhance the endemic. Accordingly, a good understanding of the behaviors of the exposed and 
recovered individuals could also be important in designing effective disease control measures.
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