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Abstract

We propose a susceptible-exposed-infected-recovered-susceptible (SEIRS) reaction-diffusion model,
where the disease transmission and recovery rates can be spatially heterogeneous. The basic reproduction
number (Rp) is connected with the principal eigenvalue of a linear cooperative elliptic system. Threshold-
type results on the global dynamics in terms of R are established. The monotonicity of Ry with respect to
the diffusion rates of the exposed and infected individuals, which does not hold in general, is established in
several cases. Finally, the asymptotic profile of the endemic equilibrium is investigated when the diffusion
rate of the susceptible individuals is small. Our results reveal the importance of the movement of the ex-
posed and recovered individuals in disease dynamics, as opposed to most of previous works which solely
focused on the movement of the susceptible and infected individuals.
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1. Introduction

In epidemiology, there is increasing evidence that environmental heterogeneity and individual
motility have significant impact on the spread of infectious diseases ([4,32]). In recent years, a
number of reaction-diffusion models have been proposed to investigate the roles of movement
and environmental heterogeneity on the transmission of diseases across the habitat ([2,5,6,9,
12,17,22,26-29,33-36,42,43,45]). Among these works, Allen et al. [2] proposed the following
susceptible-infected-susceptible (S15) reaction-diffusion system:

% =dgAS — LW +yx)I, xe,t>0,

S+1
U=di AT+ )1, xeQt>0, (1.1
%:g—fl:O, x€0Q,t>0.

Here, €2 is a bounded domain in R* with smooth boundary 02, where n is the outward nor-
mal unit vector on 92 and the homogeneous Neumann boundary conditions mean that no
individuals cross the boundary. S(x,#) and I(x,t) denote the density of susceptible and in-
fected populations at location x and time ¢, ds and d; represent the diffusion coefficients for
susceptible and infected individuals, and B(x), y (x) are transmission and recovery rates at x,
respectively.

The main results of [2] concern the properties of the basic production number (Rg), threshold-
type results on the global dynamics in terms of Ry, and particularly the existence, uniqueness
and asymptotic behaviors of the endemic equilibrium as the diffusion rate of the susceptible
individuals approaches zero; See also [33-35]. Peng and Zhao ([36]) considered the same SIS
reaction-diffusion model, but the disease transmission and recovery rates are assumed to be spa-
tially heterogeneous and temporally periodic. In [9,43], the authors investigated an SIS model
with mass action infection. In [26], Li et al. provided qualitative analysis on an SIS reaction-
diffusion system with a linear source term. Ge et al. introduced a free boundary model for
characterizing the spreading front of the disease in [17]. The effects of diffusion and advection
for SIS epidemic models in heterogeneous environment were studied in [5,6]. Dynamics and
asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models
with cross-diffusion was considered in [27]. We also refer to [1,8,12,15,22] and the references
therein for related works.

However, these models did not include the class of exposed individuals and ignored the
movement of exposed (latently infected) individuals. For some epidemic diseases, infected in-
dividuals can experience incubation before showing symptoms, e.g. malaria, West Nile virus,
HIV/AIDS. The travel of exposed individuals showing no symptoms can spread the disease ge-
ographically, which makes disease harder to control ([16]). Therefore, it seems imperative to
include the exposed subclass and explore the influences of exposed individuals’ movement on
disease spread. Mathematically, this is related to the dependence of the basic reproduction num-
ber on the diffusion rates of exposed individuals. There were some previous results on this aspect
in discrete-space multi-patch models ([16,44]). In this paper, we will extend continuous-space
model (1.1) to include the exposed and recovery classes, and analyze the corresponding SEIRS
reaction-diffusion model.
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1.1. SEIRS reaction-diffusion model

To model the progress of infectious diseases in populations, we divide the individuals into four
different compartments: susceptible (), exposed (E), infectious (1), recovered (immune by vac-
cination, R). The susceptible individuals are infected by infectious individuals with a rate of 8,
and become exposed; exposed individuals become infectious with a rate o ; infected individuals
are recovered with a rate y; recovery individuals lose immunity and go back into the suscep-
tible class with a rate of «. Thus the SEIRS (suspected-exposed-infected-recovered-suspected)
epidemic reaction-diffusion model are given as follows:

B =dgAS — L + R, xeQ.1>0,
%—f—dEAE—i-SfI(fgiR oE, xeQ,t>0,
‘3—] diANl +0E —yx)I, xe,t>0, (1.2)
IR —drAR +y(x)I —aR, xeQ >0,
88 =0 0L 3R x€dQ,t>0.

Here S(x,t), E(I,t), I(x,t) and R(x, t) denote the density of susceptible, exposed, infected and
recovered individuals at location x and time ¢, and ds, dg, dj, dg represent the diffusion coef-
ficients for susceptible, exposed, infected and recovered populations, respectively. Throughout
this paper, we assume that the disease transmission rate §(x) and recovery rate y (x) are environ-
mentally dependent and could be spatially heterogeneous, and they are assumed to be positive,
Holder continuous functions on €. The latent period 1/o and the rate of loss of immunity o are
not associated with external environment but usually depend on an individual itself, and thus o
and o are always assumed to be constants in this paper.

Throughout the paper, we assume that the initial conditions satisfy
(A1) S(x,0), E(x,0), I(x,0), R(x,0) >0 for x € Q and Jo I(x,0)dx > 0.

It is easy to verify that % is a Lipschitz continuous function of S and I, therefore
we define it to be zero whenever S = 0 or I = 0. By the regularity theory for parabolic equa-
tions ([20]) and assumption (A1), system (1.2) admits a unique classical solution S, E, I, R €
C%1(Q x (0, 00)). Moreover, it follows from the strong maximum principle for parabolic equa-
tions ([37]) that S, E, I and R are positive for x € Q and t > 0. We define the total population
size at time ¢ as

N(t) = /(S(x, H+Ex,t)+1(x,t)+ R(x,t))dx,

and assume that the total population size at the initial time ¢ = 0 is a fixed positive constant,
denoted by Ny. By system (1.2), we have N’(r) = 0 for ¢ > 0. Thus

N(t) = Ny forany t > 0. (1.3)
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This paper also concerns non-negative equilibrium solutions of (1.2) which satisfy

T _BWST_ R
dsAS S+I+Ej~R+aR—O, x €,
= BXSI 7 _
dEA§+m~O'E—O, )CEQ,
diAl+cE —y(x)I =0, x €, (1.4)
dRA§+ y(x)T—aE:O, x e,
3 _ oE _ ol _ 9R _
3—}1—()—”—3—”—3—”—0, XEaQ,
Jo(S+ E+ 1+ R)dx = N,

where §, E , T, , R denote the density of susceptible, exposed, infected and recovered individuals
at equilibrium, respectively. A disease-free equilibrium (DFE) is a solution of (1.4) satisfying
T(x) = 0 for every x € Q2; An endemic equilibrium (EE) is a solution of (1.4) for which T(x) >0
for some x € Q. It is easy to verify that the disease free equilibrium is unique, given by Ey =

(INWO\’ 0,0, 0), where |€2]| is the Lebesgue measure of Q2. By the strong maximum principle, for

any endemic equilibrium, E(x), E (x), T (x), R (x) are positive for any x € Q.
1.2. Statement of main results

The goal of this paper is to investigate the impact of population movement and environmental
heterogeneity on the persistence or extinction of infectious diseases. We will focus on the dynam-
ics of model (1.2), the properties of the basic production number, and the asymptotic behaviors
of the endemic equilibria as the diffusion rate of the susceptible individuals approaches zero.

For infectious disease models, the basic reproduction number, defined as the expected number
of secondary cases produced in a completely susceptible population by an infective individual, is
one of the most significant concepts in studying the transmission of infectious disease ([3,10]).
More importantly, it often determines the threshold behavior for many epidemic models. It is
often the case that a disease dies out if the basic reproduction number is less than unity and the
disease is established in the population if it is greater than unity. We refer to [10,11,41] for the
approach of next generation operators for the basic reproduction number and to [28,29,40,42,45]
for related works.

By adopting the theory developed in [40,42], we characterize the basic reproduction number
of system (1.2), denoted by Ry, via the relationship Ry = L (see Lemma 2.2), where g is the
unique positive eigenvalue with a positive eigenfunction for the linear problem

—de A + o9 = pupx)er, x €,

—diApr +yx)gr —opp =0, x€Q, (1.5)
S = 301 — ¢ x€09Q
n n ’ .

Threshold-type dynamics for system (1.2) in terms of Ry can be stated as follows:

Theorem 1.1. (i) If Ry < 1, then E(x,t),I(x,t), R(x,t) — O uniformly in Qast — oo, and
Jo S(x,1)dx — Ny as t — oo;
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(11) If Ro > 1, there exists some constant €g > 0 such that any positive solution of (1.2) satisfies

No

:0,0,0) () > €o- (1.6)
Q| ()

litrll)gng(S(t, ), E@, ), I(t,-), R(t,)) — (

Moreover, system (1.2) admits at least one endemic equilibrium.

To explore the influence of population movement on the persistence of infectious diseases,
we proceed to investigate the dependence of Ry on dg, dj. It should be noted that Ry is indepen-
dent of dg and dg. It is shown in [2] that Ry for model (1.1) is decreasing in d;j. However, for
SEIRS system (1.2), it is not always the case, as the movement of exposed individuals makes
the monotonicity of Ry more subtle. An underlying reason is that for SIS model (1.1), Ry is the
principal eigenvalue of a self-adjoint elliptic operator and it has a variational characterization,
which implies that Ry is decreasing in d;. However, for SEIRS system (1.2), the lack of varia-
tional structure for the eigenvalue problem (1.5) makes the situation here more sophisticated and
the analysis more challenging.

The asymptotic properties of Ryg when dg, dj tend to O or infinity are given in Theorem 3.1.
The following result addresses the monotonicity of Ry with respect to dg, d;:

Theorem 1.2. If either B or y is a constant function, then Ry is a monotone decreasing function
of dg and dj. Moreover, the strict monotonicity holds if and only if one of them is non-constant.

Theorem 1.2 may fail to hold if both 8 and y are non-constant; See Theorem 3.4 and dis-
cussion section for further details. We conjecture that, for any § and y, there exists a constant
d independent of dg, d; such that if 0 < dg < dor0<d; <d, R( is monotone decreasing in
dg,d;.

If the habitat is one dimensional, we have the following result:

Theorem 1.3. Assume Q2 is one dimensional, i.e., k = 1, and one of B and y is monotone de-
creasing and the other is monotone increasing. Then Ry is a monotone decreasing function of
dg, d;, and the strict monotonicity holds if and only if B or y is non-constant.

Theorem 1.3 may even fail to hold if both 8(x) and y (x) are monotone increasing; see Theo-
rem 3.5 and discussion section for further details.

Finally, to understand the effect of the suspected population movement on the spatial distribu-
tion of populations, we investigate the asymptotic profiles of the endemic equilibrium of system
(1.2) when dg tends to zero. We assume that Ry > 1 so that system (1.2) admits at least one
endemic equilibrium by Theorem 1.1. To this end, consider the linear eigenvalue problem

—drAg +a(l =5 =1¢ in 2 Flle =0, (17
and denote the smallest eigenvalue of (1.7) by A1 (—drA + (1 — %)).

Theorem 1.4. Assume Ry > 1 and M (—drA + a(1 — %)) < 0. Then the following assertions
hold:
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(1) There exist positive constants C1, Ca, independent of dg, such that for sufficiently small ds,

Q~|t"11z
&‘|>Uz

T
C < — <C;
1 'S’ <

(i) As ds — 0, subject to a sequence,

5w Mol = M)
— 5" = i
fQ(l — M*(x))dx

n CL(Q),

for some M*(x) satisfying 0 < M* < 1in Qand |{x € Q: M*(x) = 1}| € (0, |2)).

In particular, part (i) of Theorem 1.4 implies ~that E , T, , R—0 uniformlyv in Q as dg — 0,
and part (ii) of Theorem 1.4 implies that $* > 0, $* # 0, and the set {x € Q2 : $*(x) = 0} is non-
empty. Biologically, Theorem 1.4 implies that restricting the movement of susceptible population
can effectively control the number of exposed and infected individuals, and contain susceptible
individuals in some subregion within the habitat.

Theorem 1.4 may fail to hold if A;(—dgr A +a (1 — %)) > 0; See discussion section for details.

This paper is organized as follows. In section 2, we establish the wellposedness of model (1.2),
define Rg and study the dynamics of system (1.2) in terms of Ry. In section 3, we investigate the
asymptotic properties and monotonicity of Ry with respect to diffusion coefficients dg and dj.
The asymptotic profiles of the endemic equilibrium as dg tends to zero is considered in section 4.
Finally in section 5, we discuss our main results and present some numerical results.

2. Wellposedness, basic reproduction number and threshold dynamics of model (1.2)
To start with, the following uniform bound for the solution of system (1.2) is established.

Lemma 2.1. There exist some positive constants C\, independent of initial values, and T > 0
such that the solution (S, E, I, R) € C>1(Q x (0, 00)) of system (1.2) satisfies

ISC.Ollze@ +IEC Dl + 1 G Dlle@ + IR D<@ = Ci1, Vi>T. (2.1)

The proof of Lemma 2.1 is standard. By (1.3), ISC, )l 1@y, IEC, Dl 111G D1 g
and || R(-, 1) p1(g) are uniformly bounded. This and Lemma 2.1 in [13] (due to [25]) with o =
po = 1, along with the positiveness of S, E, I and R, imply (2.1).

We now adopt the theory developed in [42] to derive the basic reproduction number of system
(1.2). The linearization of system (1.2) at Ey is given by

=dgAS — ,B(x)l—i—otR xeQ,t>0,
_dEAE+,3(X)I—0E xeQ,t>0,

Bl ol Q)|Q) | Q,|
|w~|>:| '~|~m| >

:d,AI +0E— y(x)l xeQ,t>0, (2.2)
=drAR+y(x)I —aR, xeQ,t>0,
=B 0L _9R o  xedQ,r>0.

— n on an
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Note that the infected compartments are E and [ in system (1.2). Besides, L, F(x) and V (x) in
[42] can be defined as L =diag(—dgA, —d; A),

F(x):(g ,386)>, V(X)Z(_Oo_ y?x)>. (2.3)

Note that assumptions (A1)-(A6) in [42] hold for model (1.2). Here we point out that F(x) is

<8 ﬂi)x)) rather than <2 ﬁE)X))’

as F(x) represents the infection process. In our model, infection process occurs only in S to E
and o is associated with the transient process from E to I.

Lemma 2.2. The eigenvalue problem (1.5) admits a unique positive eigenvalue, denoted by 1,
with a positive eigenfunction. Moreover, the basic reproduction number of system (1.2), denoted
by Ry, satisfies

1
Ry =

=—. (2.4)
o

Proof. By Theorem 5.1 in [31], there exists a positive eigenvalue of (1.5) with a positive eigen-
function. To prove the uniqueness we assume that there exist positive eigenvalue p; with pos-
itive eigenfunction ¢ = ((pE,l,gle)T and positive eigenvalue u, with positive eigenfunction
@3 = (PF 2, (p}*’z)T such that

Loi+ Vi =u1For in @, %0=0, (2.5)
and
. a3
Loi+ VT3 =uFTo} in Q, %lag =0. (2.6)

We now multiply the equation in (2.5) by (gog‘)T and the equation in (2.6) by <p1T , subtract the two
resulting equations, and integrate by parts over €2 to give

(n1 — p2) f BeE 2¢1.1dx =0.
Q

Since B, ¢}, , and @y 1 are positive, we obtain t1; = u. This establishes the uniqueness. In view
of Theorem 3.2 in [42] and the uniqueness of positive eigenvalue with a positive eigenfunction
for (1.5), we obtain (2.4). O

Next we study the stability of Eg in terms of Ry. We first consider the eigenvalue problem

—dpAgg — B(X)p; + 0P =ApE, x €K,
—diA¢r +y(x)pr —opp =rp;, x€Q, 2.7

dpp _ 961 _
d0p _ 301 _, x €dQ.
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By the Krein-Rutman theorem ([23]), the eigenvalue problem (2.7) has a unique principal eigen-
value A1, that is, a real and simple eigenvalue with positive eigenfunctions ¢, ¢;, and it is
strictly less than the real parts of all other eigenvalues.
Lemma 2.3. The following relationship holds:

sign(l — Ro) = sign(A1). (2.8)

Proof. Consider the principal eigenvalue corresponding to the adjoint problem of (2.7), i.e.

—dp AL+ 0dh — ot = Mgk, xeQ,

—diAg] — By +y()P] = M), x€Q, (2.9)
o X

a—nE = a—nl = O, x €082.

We multiply the first equation in (1.5) by ¢}, and the first equation in (2.9) by ¢, subtract the
two resulting equations, and integrate by parts to give

1
M/sDEchdx = /(R—Oﬁ(X)W(bE —odrep)dx. (2.10)
Q Q

Moreover, it follows from multiplying the second equation in (1.5) by ¢7 and multiplying the

second equation in (2.9) by ¢;, subtracting the two resulting equations, and integrating by parts
to find

M/wfﬁdx = —/(ﬂ(X)prﬁ: —o¢rpE)dx. 2.11)
Q

Q

Adding two equations (2.10) and (2.11) yields

1-R
[t + oiopar =72 [ ppisya
Q Q

Since ¢, ¢z, o1, ¢;‘, B are positive, we have sign(1 — Rg) = sign(A;). O

Lemma 2.4. The disease-free equilibrium Eq in system (1.2) is locally asymptotically stable if
Ry < 1, unstable if Ry > 1.

Proof. Let A be the spectrum of the following eigenvalue problem:

dsAps — B(x)pr +agr +rps =0, x €,
dpA¢e + B(xX)pr —o¢p + AP =0, x €,

diAd; +0op —y ()1 + Ay =0, x€Q, (2.12)
drAPRr +y (X)) —agr +Adr =0, x€,
805 = r — 801 — Mk — ), x €dQ.

an on on on
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We first show that if Ry < 1, then inf{ReA, A € A} > 0. Note that A = Ay, ¢=0) U
Afpp,pp=0y- It is easy to verify inf{Red, A € Ay ¢)=0)) > 0. Moreover, we have
Aqpg.on=0y S o(L +V — F), where o(L + V — F) denotes the spectrum of the operator
L+V —FandL,V,F are defined in (2.3). Note that inf{ReA,A€o(L+V — F)} =11 >0,
where A; is the principal eigenvalue of eigenvalue problem (2.7). By Lemma 2.3, we obtain
inf{Re), A € A(gg,¢p)20} > 0. Therefore, by Theorem 5.1.1 in [20], Ep is locally asymptoti-
cally stable if Rg < 1.

To prove Ej is linearly unstable when R > 1, we show that there exists a non-trivial solution
of (2.12) such that ReA < 0. Let A = A1 < 0, where A is the principal eigenvalue of (2.7), and
choose (¢, ¢1) as the eigenfunction of (2.7) associated with A1. In view of [ 18], ¢s, ¢g in (2.12)
are uniquely solvable. Therefore, Theorem 5.1.3 in [20] yields that Ej is unstable if Rp > 1. O

Now we proceed to the proof of Theorem 1.1.
2.1. Proof of Theorem 1.1(i)

We prove (i) by constructing a Lyapunov functional and applying LaSalle’s invariance prin-
ciple (Theorem 1 in [19]) for infinite dimensional dynamical systems. Let X = C (Q R4) with
the supremum norm || ||, then X is an ordered Banach space with the cone P consisting of all
nonnegative functions in X, and X has nonempty interior, denoted by inf(P). Set

Xo={u= (us, e, u;,u,) € X| f(uv + ue +u; +u,)dx = No}
Q

and U = P N Xp. It is easy to verify that (1.2) coupled with (1.3) defines a dynamic sys-
tem on U. Denote the unique solution of system (1.2) with initial value (so, eg, i, 79) € U by
D, (s0, €0, i, 70) = (S(-, 1), E(-, 1), I(-, 1), R(-, 1)) for any ¢ > 0. It follows from parabolic L?
estimates and Sobolev inequalities that for each 7 € (0, 1), there exists some positive constant
C; such that

(S, E, I, R)| <C|(S, E, I, R)||L00(§><[;071,;0+1J)

C™E @xl— L +1) =

for each #p > 1. Since C; is independent of 7y, then we obtain by Lemma 2.1 that
”(S(7t)’E(at)71(at)’R(7t))”Cf(Q)SCICZv IZL (213)

where C is defined in (2.1). Therefore ®; is compact, and for each ug € U, the orbit of ug under

the dynamical system generated by (1.2) has compact closure in U.
Define the functional

L) = / (et + uid})dx
Q

for u € U, where (¢}, ¢7) is the eigenfunction corresponding to the principal eigenvalue A
associated with the eigenvalue problem (2.9). Now we prove L(u) is a Lyapunov functional for
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system (1.2). For an arbitrary solution u = (S, E, I, R) of system (1.2) coupled with (1.3), we
have

LLW( 1) = [o(E:d} + Lip})dx
= JoUdEAE + B — 0 E)pl + (1Al +0E —yDe}dx  (2.14)
E+I+R
= — [o Por] siiErrdx — M [o(Edf + 1¢])dx.
By Lemma 2.3, Ry < 1 yields that 1| > 0. Besides, S, E, I, R are nonnegative, and j, ¢}, ¢7 are

positive. Hence, j—tL(u(-, t)) <0, which implies L(u) is a Lyapunov functional of system (1.2).
Next define

. d .
L(uo) := - L(u(,1)li=0 and M ={uo € U|L(uo) =0},

where u = (S, E, I, R) is the unique solution of (1.2) with initial condition ug = (so, e, io, 70) €
U. By (2.14), we have M = {up = (s0, €0, 10,70) € Ulip =0} if A1 =0, and M = {up =
(so, eo, ig, r0) € Uleg = ig = 0} if A1 > 0. It follows from (1.2) that for A; > 0, the maximal
invariant set in M is given by

M := {uo = (s0, €0, io, 0) € Uleg = io = 0}.

Therefore, by the LaSalle invariant principle (Theorem 1 in [19]), we obtain

(E(x,1),I(x,1)) — (0,0) in [L®(Q)]?, as t — oo,

which together with (1.2) imply R(x,t) — O uniformly in Q as t — o0o. Therefore, thanks to
(1.3), we obtain [, S(x,)dx — No as t — 00.

2.2. Proof of Theorem 1.1 (ii)

We appeal to the uniform persistence theory developed in [30,45]. Denote

Up :=1{(s0,e0,i0,70) € Uleo #0 and ip # 0},
aUy :={(s0, eq, in, r0) € Uleg =0 or ig=0}.

Note that U = Up U dUp. Moreover, Uy and dUj are relatively open and closed subsets of
U, respectively, and Uy is convex. Denote the unique solution of (1.2) with initial value
(s0, €0, i0, r0) € U by ®¢(so, €0, i0,r0) = (S(, 1), E(-, 1), I(-, 1), R(-, 1)) for t > 0. ®; is con-
tinuous and compact for # > 0. By Lemma 2.1, @, is pointwisely dissipative. Therefore, ®, has
a global attractor ([45]).

Step 1. We have ®,Uy C Uy for all ¢ > 0. This is a direct result of the strong maximum principle
for parabolic equations.

Step 2. Let Ay be the maximal positively invariant set for ®(¢) in 9Uy, i.e.
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Ay = {(s0, €0, io, ro) € U|P(#)(s0, €0, io, ro) € Vo, t > O}.

It is easy to verify that Ay = {ug = (so, €0, i, ro) € Uleg = ig = 0}.
Denote w ((so, eg, ig, o)) as the w-limit set of (s, eg, ig, ro) in U (see [45]) and

Ay = U(sg,e0,i0,r0) €A1 @ ((S0, €0, 10, 70))-

‘We now prO\EAa = {Eo}. For any (so, o, ig, 70) € Ay, i.e.eo =ip =0, then E(x,t) =1(x,t) =
0 for all x € 2, ¢ > 0, and system (1.2) becomes

3 =dsAS+aR, xeQ,t>0,
SR —dgrAR—aR, xe,t>0,

S _ OR
98— 3R x €09,

which implies R(-,¢) — 0, S(-, 1) — %" uniformly as + — oco. Hence, Aa = {Ey}. Therefore,
{Ep} is a compact and isolated invariant set for @, restricted in Ajy.
Step 3. We prove that there exists some constant €] > 0 independent of initial values such that

No
limsup [|®; (0, €0, i0, 70) — (57, 0,0,0)|| > €1.

1—00 2

Assume, on the contrary, that for any €, > 0, there exists some initial value (sa‘, eg, ia‘, rg) such
that

N, €
limsup [|®, (s, €5 it 1) — (—, 0,0,0)|| <

2
s 00 |Q|’ s Yy 2

(2.15)

Given any small €3 > 0 and let 11(e3) be the unique principal eigenvalue of the following
eigenvalue problem with a positive eigenfunction (¢, ¢):

ﬁ(x)(féz' +€3)

—dpA¢E — ¢1+ode =rpE, x €,
\Q\+43

—diA¢r +y(x)pr —opE = Ay, x €€,

09 __ 0¢

8_11E_3_n[_0 x €0Q.

Note that lim; o A1(e3) = A1 <0, where A is the principal eigenvalue of eigenvalue problem
(2.7). Therefore, we can choose €3 such that A (63) < 0. Since ¢ is arbitrary, choose €; = €3.
By (2.15), there exists T > 0 such that $* < ISZ +e3, EX, I* R* <e3forany x € Q,t > T.
By the strong maximum principal of parabolic equations, (S*(-,t), E*(-, 1), I*(-, 1), R*(-, 1)) €
int(P) for all ¢+ > 0. Then we can find a small positive constant ¢, such that E*(x,T) >
cx®p, I*(x, T) > cyy. Itis easy to verify that (E*(x, 1), [*(x, t)) is a supersolution of the prob-
lem
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a—’f_dEAE+MI oE, xeQ>T,

i |Q‘+43

%—] d]AI+OE y(x)] XGQ,I>T, (216)
9 _ 3L x€dQ,t>T,
Ex,T)=cpp, 1(x,T) =cy¢y,

where (c*e_}‘l(e»‘)(t_T)qSE, c*e_kl(e»*)(’_T)qﬁ]) is the unique solution to system (2.16). Note that
r(€3) < 0, therefore E*(x,t) > cxe MDD gr [*(x,1) > cpe 1D 5 60 uni-
formly in Q as r — oo. This contradiction finishes the proof of step 3.

The result of step 3 implies that { £} is an isolated invariant set for ®; in U, and W5 ({Ep}) N
Uy is an empty set, where WS ({Ep)}) is the stable set of {Ey)} for ;.

Finally, by steps 1-3 and Theorem 1.3.1 in [45], ®, is uniformly persistent with respect
to (U, dUp). Moreover, by Theorem 1.3.7 in [45], (1.2) admits at least one endemic equilib-
rmum. O

3. Properties of basic reproduction number R
We have in previous section established threshold dynamics of system (1.2) in terms of Ry.
In this section, to explore the influence of population movement on the persistence of infectious

diseases, we will investigate the asymptotic properties and monotonicity of Ry with respect to
dg,dj.

3.1. Asymptotic properties of Ry with respect to dg, d;

By Lemma 2.2, lo is the unique principal eigenvalue of (1.5), thus we have

—dpAge +09E = 31, x€Q,

—diApr +y(x)pr —opp =0, x€Q, 3.1
0 0
e = 2P =, x €99

Moreover, %0 is the unique principal eigenvalue of the adjoint problem of (1.5), i.e.

—dpAg}, + o) —oe; =0, x €,

—di1 g} +y (D9f = g BR9E, X ELQ, (3.2)
dpy _ dg]

-5 =5 =0, x €02,

where (¢}, ¢7) is an eigenfunction corresponding to the unique principal eigenvalue of the ad-
joint problem of (1.5). Now we give an estimate of Ry.

Lemma 3.1. For any dg > 0, d; > 0, the following inequalities hold:

min{@,x e§}<Ro<max{@,x€§}. (3.3)

y(x) - y(x)
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Proof. It follows from adding two equations of (3.1) that
—dpApp —diAgr +y ()1 = BN in @, Hlyg=Lo=0.  (34)

Integrating (3.4) by parts over 2 yields

/ (X)(Ro - %)wdx —o.
Q

Since y (x) and ¢; are positive, we obtain (3.3). O
Lemma 3.1 implies that if g is constant, then Ry is independent of dg, d;.

Theorem 3.1. (i) Fix d; > 0. Then Ry — % as dg — 0, and Ry — ﬁ Jo(=diA+y)"'Bdx
as dg — 00, where 1 is the smallest eigenvalue of the problem

—di MG+ y 1 = pBér in Q. Wjyq =0; (3.5)

(i1) Fix dg > 0. Then Ry — t as di - 0 and Ry — f“ijﬁ as di — oo, where |1y is the
Q

smallest eigenvalue of the problem
—deAGE +0fr =nLor, in @ Hrlg=0; 3.6)

(iii) As dg,d; — 0, then Ry — max{%, X € 5};

(iv) As dg — oo and dj — 0, then Ry — I_Sll\ Ja gdx.

3.1.1. Proof of Theorem 3.1 (i,ii)

We only prove (i) here as (ii) can be established by similar arguments. We first consider the
case dg — 0. Given € € (0, 1), since A ={u € C2(§)|g—z =0} is dense in C(€2), we can choose
By (x), B3 (x) € A such that

% <BT(x) <B(x) < B5(x) < %
Set
Mlﬁ or MI,B or
@E. @) =(—2=.91). (@e.¢1)=(—2—.¢)).
For any € € (0, 1), there exists § such that 0 < dg < 4,

. B . IPE
—dpA l]— ——— >0 f Q, —=0"f 0%, 3.7
EAYE +o( ﬁf(l—i—e))wE_ or x € o or x € 3.7

and
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v

3
YoE <0 for xeQ, LE_0 for xedQ.  (3.8)

B5(1—¢) an

It follows from (3.5) and (3.7) that

—dgAgp +o(1 -

—dgAQE + 0P > {1 B(0)P1, x €,

—di A +y(X)P; —0PE >0, x€Q, (3.9)
8r _ 301 _, X €9Q.

Multiplying the first equation in (3.9) by ¢} and the first equation in (3.2) by ¢, subtracting the
resulting functions and integrating the results by parts over €2 yield

nw A o

/ (1—1ﬂ<x>¢1<p2 — 09f¢r)dx <0. (3.10)
+€

Q

Similarly, multiplying the second equation in (3.9) by ¢} and the second equation in (3.2) by ¢y,
subtracting the resulting functions and integrating by parts over 2 we have

1 R .
/(R—Oﬁ(x)wupE —0@[¢p)dx > 0. (3.11)
Q

Thus by (3.10) and (3.11) we get

1 1 .
— = dx >0,
(R0 1+6)/ﬂ(x)<p1<pE x =
Q
which implies that Ry < 1}% Similar procedures yield
(& = 1) [ Bwirgrdx <0
Ry 1—¢ progpax =Y,
Q

from which it follows that 1;16 < Ryp. This proves that Ry — 1/u1 as dg — 0.

Next we consider the case dp — oco. It follows from Lemma 3.1 that, passing to a se-
quence if necessary, Ry — Ro > 0 as dg — oo. Without loss of generality, we may assume
loellL=@) +ll¢rllLe@ = 1. By L estimate, forany p > 1, [|¢g lw2.r (). 91 llw2r(q) are uni-
formly bounded. Thus by Sobolev embedding theorem, |[¢£llc1.(q), 91l c1.r (o) are uniformly
bounded. Passing to a sequence if necessary, o — @g, ¢; — ¢y in CL(Q) as dg — oo. There-
fore, ¢y is a H' weak solution of

96
—diAGs 4y ()¢ —ogE =0 for x €Q and % —0 for x € 9.
n
By first equation of (3.1) and elliptic regularity ([18]), ¢ is constant satisfying o = %.
0

Thus the weak solution @; is actually a classical solution, i.e. §; € C*(S) satisfies
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Jo BC)@rdx

-
A —0forxeQ and L0 for xe Q.  (3.12)
Rol©l an

—diAgr +y(xX)¢r —

Thus, 150 = ﬁ fQ(—dIA + y(x))_l,B(x)dx. This completes the proof of (i).

3.1.2. ProofofTheorem ? 1(iii)

Denote 79 = max{ J/(X),x € Q). It follows from Lemma 3.1 that, passing to a sequence if

necessary, Ry — Ro > 0 as dg,d; — 0. Then, for any small positive €, there exists a positive
constant 8, such that if 0 < dg, d; < 8, then Ro —€< Ry < Ro + €.
Consider the eigenvalue problem

Lu—£ 4+ Vu=x(0u in @, |;0=0, (3.13)

where 7 is a positive parameter and A1 (7) is the principal eigenvalue. Let ¢ = (¢g, ¢ NTin(3.1),
then it follows from (3.1) that

Lo — — +Ve<0<Lyp——
Ro—¢ Ro+e€

+ Ve, xeQ.

In view of the comparison principle corresponding to the principal eigenvalue for irreducible
cooperative elliptic systems (Proposition 3.4 in [24]), we have

A (Ro—€) <M (Ro) =0 < A1(Ro +e). (3.14)
Moreover, in view of [24], A1(t) satisfies

F(x)

)»1(1:)—>A ()= —maxAl(——V( ), (3.15)
xXeQ
as dg,d; — 0, where Al(@ — V(x)) is the principal eigenvalue of the cooperative matrix
@ — V(x) ([14]) at position x. It is easy to verify that
F(x) 0~y () /(@ + ¥ () +47ED 4oy (x)
Ax( —Vx) = (3.16)
2

If T > (=, <)o, it follows from (3.16) that max, g A1(F2 — V(x)) < (=,>)0, and thus
sign(t — 19) = sign(A}(7)). Note that (3.14) implies )LT(RO —e)<0< )»T(Iéo + ¢€). Hence,
T9—€< R’o < € + 19. This establishes (iii). O

3.1.3. Proof of Theorem 3.1 (iv)

Without loss of generality, we may assume |¢g|lzo@) + ll¢rllz~@) = 1. By L? estimate,
for any p > 1, |l¢Ellw2r(q) 1s uniformly bounded. Thus by Sobolev embedding theorem,
leEellcre(q) is uniformly bounded. Passing to a sequence if necessary, 9 — ¢g in C 1(Q) as
dg — 00,d; — 0, where (Z)E is a non-negative constant. Therefore, for any small €, there exists
8¢ such that for any 0 < d I, 77 <0, we have
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o (g —€) < —diAp; +y(x)p; <o (@ +¢€),

which yields that ¢; — 99E in L®(Q) as df — 0o, d; — 0. By lleellre@) + ll@rllie ) =1,

we obtain ¢ > 0. It follows from integrating the first equation of (3.1) and passing to limits that

| i

FElQl= lim —[ﬁﬂdx.
dg—o0 Ry y
di—0 Q

Since ¢ is a positive constant, we have Ry — ﬁ ]Q gdx asdg —o00,di—0. O
3.2. Monotonicity of Ry with respect to dg, d|

In what follows, we explore some cases that Ry has monotonicity with respect to dg, d;. By
the same arguments as [4] and Lemma 15.1 in [21], we can show that the basic reproduction
number R and the corresponding eigenfunctions (¢g, ¢;), ((p%, gp}‘) are differentiable functions

of dg, d;. For further purposes, we differentiate both sides of the equations in (3.1) by dg, d;,
we obtain

R/
—dEAG — App + 00 = 7 B()9) — X, ¥ EQ

—diAg; 4+ y(x)¢; —o@E =0, xeqQ, (3.17)
3¢/ ¢/
= =0, x €99,

and

R!
—deAG + 09 = 7 B¢ — B9, x e,

—diAg; — Apr +y(x)g; —opp =0, x e, (3.18)
¢’ 3¢
3_1’{2 = d_nl = O, X € 89,

respectively. Here, for convenience, the prime notation denotes differentiation by dg or d; since
no confusion will happen in further proofs.

Theorem 3.2. If B(x) is constant on 2, then Ry is monotone decreasing function of dg, d;.
Moreover, the strict monotonicity holds if y (x) is nonconstant on Q.

Proof of Theorem 3.2. To begin with, we show that R is monotone decreasing with respect
to dr. We now multiply the first equation in (3.17) by ¢ and the first equation in (3.1) by ¢},
subtract the two resulting equations, and then integrate by parts over €2 to give

R/ 1
o [Bwerpeds == [ 1voePax+ o [ bwwior - oropax.
0
Q Q Q

Similarly, we multiply the second equation in (3.17) by ¢; and multiply the second equation in
(3.1) by ¢}, subtract the two resulting equations, and then integrate by parts over 2 to give (as o
is constant)
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/(<P}90E —1¢g)dx =0.
Q

If B(x) is constant on £2, we can obtain that

/
% Yroedx = —/ Ve[ dx.

09 Q
Since ¢y, ¢ are positive functions, we obtain R;, < 0. Furthermore, the equality is possible only
if pf is constant on 2. This fact together with the first equation of (3.1) yield that ¢; must be
constant, which along with the second equation of (3.1) imply y (x) must be constant. Therefore,
Rp is monotone decreasing with respect to dr and the strict monotonicity holds if and only if
y (x) is nonconstant on €.

We next show that R( is monotone decreasing with respect to d;. We now multiply the first
equation in (3.18) by ¢ and the first equation in (3.1) by ¢/, subtract the two resulting equations,
and then integrate by parts over 2 to give

R/
R—g/ﬂ(x)wwdx:/ﬂ(x)(w}w —@r@p)dx.
Q Q

Similarly, we multiply the second equation in (3.18) by ¢; and multiply the second equation in
(3.1) by ¢}, subtract the two resulting equations, and then integrate by parts over Q to give

/ Vo *dx + o /(w}qu — @1¢)dx =0.
Q Q

If B(x) is constant on 2. We obtain
oR) 5
preepdx =— [ |Vor|“dx.
Ry
Q Q

By the same arguments as before, Ry is strictly monotone decreasing with respect to d; if and
only if y (x) is nonconstant. O

Theorem 3.3. If y (x) is constant on <2, then Rq is monotone decreasing function of dg,d; and
the strict monotonicity holds if and only if B(x) is nonconstant on Q.

Proof of Theorem 3.3. To start with, we show that R( is monotone decreasing with respect to
dg. Multiplying the first equation in (3.17) by ¢; and integrating by parts over 2 yield

RI
® Jo BOIOTdx = Jo 01 Aprdx + g7 Jo B9 p1dx — [o(=dp Mgy + 09 )grdx

(3.19)
= [q@EA@1dx + 3= [o BR)Q01dx — [o(—dEAps + o p)@dx.

It follows (3.17) and (3.1) that
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—diAg; + v e; op = —diApr +ygr
o ’ N o ’

¢y = (3.20)

respectively. Thus, by substituting (3.20) into the last equality of (3.19) and integrating by parts
over 2, we obtain

R/
@ Ja BOOIdx = 2 fo(=di1Aei? = yIVeiP)dx + g7 fo B9 grdx

(3.21)
—5 Jo(~de A1 + 09D (=di Ag) +yp))dx.
Multiplying the first equation in (3.1) by ¢} and integrating by parts over €2 claim
1 / / /
Re Bx)¢rprdx — [ (—deAg; +o¢)epdx =0. (3.22)
Q Q

Moreover, o = (—d;Agr +y o) /o gives

Jo(—dEAQ) +09)epdx = L [ (~dgAg) +0¢))(—d; Aps + ypr)dx
= L[ (—dpAgr +001)(~di A, + y¢))dx,

where the second equality holds because y and ¢ are constants. This together with (3.22) yield
1 1
Ro / B)grprdx — - /(—dEA(PI +opn)(—diAp; +yepdx =0. (3.23)
Q Q
It follows from (3.21) and (3.23) that

GR(/) 2 2 2
o ﬂ(x)wldx=/(—d1IA<p1| YV P)dx.
0 Q Q

Therefore, R6 < 0. The same argument as Theorem 3.2 shows the strict monotonicity holds if
B(x) is nonconstant on 2.

Next, we show that Ry is monotone decreasing with respect to d;. It follows from multiplying
the first equation in (3.18) by ¢; and integrating by parts over <2 that

R/
o JaBOeidx = 3= [o BOO@ prdx — [o(—dE AP +0@))erdx

(3.24)
= 7 Jo BO@ 9rdx — [o(=dEAgr + 0 p)@)dx.
In view of the second equation of (3.18), we have
—di A, + v, — A
(p}: _ 12Q; TY¢; (D4 - (3.25)

o

By (3.24), (3.25) and integrating by parts over 2, we have
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RI
@ Jo BOOGIdx = 3 [o(=delAgi? = a|Ver P)dx + 75 [o B¢ prdx

| (3.26)
—= Jo(—deAgr + o) (—di A@) + y@))dx.
By the same arguments as before, we obtain
1 / 1 / /
R BX)perdx — > (=dpAor+oep)(—diAg; +ye)dx =0. (3.27)
Q

By equations (3.26) and (3.27), we obtain
o R, 2 2 2
e BX)prdx = | (=delAgrl” —o|Ver|F)dx.
09 Q

Hence, R(’) < 0 and strict monotonicity holds if B(x) is nonconstanton Q. O
3.3. One dimensional habitat
In this part, we assume the habitat is a bounded open interval and prove Theorem 1.3.

Proof of Theorem 1.3. We first consider the case S(x) is monotone decreasing in x and y (x)
is monotone increasing, and show that Ry is monotone decreasing with respect to dg. Without
loss of generality, let 2 = (0, 1). We now multiply the first equation in (3.17) by ¢}, and the first
equation in (3.2) by ¢, subtract the two resulting equations, and then integrate by parts over
to give

1

1
/
%/‘MW%M /
0 0

0

/(_ﬂ(x)‘P[QoE _U‘PHPE)dx (3.28)

By multiplying the second equation in (3.17) by ¢} and multiplying the second equation in (3.2)
by ¢, we obtain

1
1 / * x /
(—Roﬂ(x)%(ﬂg —o@;pp)dx =0. (3.29)
0

It follows from (3.28) and (3.29) that

1
Ry d*¢E d‘P dog
0 * “YE

— dx = ———dx = —dx. 3.30
8//3(35)901905 X /‘PE dx2 dx dx X ( )

0 0
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do* . . . .
Next, we show that % dd% > 0 on Q2. We differentiate (3.1) with respect to x to obtain

_dEd YE +O.d‘ﬂE _ Roﬁ(x)d‘ﬂl _ Lgoldﬁ(x) xeQ,

Ry dx
—d1 Ty ()% o = g, —dﬁff), xeQ, (3.31)
Le ) = 2 (1) = LL0) = L1 (1) =

and (3.2) with respect to x to give

d3* do* d
—dp Sy oW % o, xeq,

d d
~dy Sy ) W LB WE = A0 LBO g eq (3.32)

WE ) = 2E (1) = %L 0) = d‘”' (1) =0.

Denote L = diag(—dE%, —d; dd—;) and

B
_(-° %
Mm_( o —V%x))'

Let A1 (Ly — M), A1 (Lp — M) be the unique principal eigenvalue of L — M under the Neumann
and Dirichlet conditions, respectively. Besides, A1 (Ly — M Ty 2 (Lp — MT) are defined as the
unique principal eigenvalue corresponding to the adjoint operator of L — M under the Neumann
and Dirichlet conditions, respectively. It can be seen from (3.1) and (3.2) that A1 (Ly — M) =0
M(Ly —MT) =0. In view of Proposition 3.4 in [24], we obtain

AM(Lp—M)>0 and A (Lp —MT) > 0. (3.33)

d
Since B(x) is monotone decreasing in x and y (x) is monotone increasing, we have ’3 (x) <

0, M > 0. Then, it follows from (3.31), (3.32) (3.33) and the maximum principle for cooper-

ative elhptlc systems (Theorem 1.1 in [39]) that d‘/;E , ‘fi‘i’ , dfxE , ‘f;;’ <0 for x € Q. This together
with (3.30) implies R;, < 0. By the same arguments as the proof of Theorem 3.2, the equality
holds if and only if both B(x) and y (x) are constants.

If B(x) is monotone increasing in x and y (x) is monotone decreasing, by similar arguments

dop de; deg dej s
we obtain dx o dx o dx dn > 0 for x € Q. The rest arguments are similar.

Next we show that R( is monotone decreasing with respect to d;. By the same arguments as
before, we show that

1 1
R/ dgol
0 *
- dx =
R% / ﬂ(x)¢1¢E X = / X dx
0 0

and the rest arguments are similar.
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3.4. Non-monotonicity of Ry in dg, d;

In previous subsections, we have proved in some cases, Ry is monotone decreasing in dg, d;.
In this subsection, we will show Ry is not always monotone decreasing associated with dg, dj.

Theorem 3.4. There exist d» and d} < d? such that Ro(d%,d}) < Ro(d%, d?), if

JoPWdx 1 [ pw)
Jo v (x)dx IQIQ y(x)

fQ B(x)dx
f y (x)dx

as d;j — o0, and Ry — |512| fQ yg;dx as d;j — 0,dg — oo. Then, for any positive small €, there

exists Cq(€) large enough, such that for any 1 ,dg > Cq(¢), we have

Proof of Theorem 3.4. In view of Theorem 3.1, we know for any fixed dg > 0, Ry —

I+e /3(x)
IQI (X)

Ro(dg, d}) <

Moreover, there exists Ca (€, dg) such that for any d12 > Cr(e,dE),

2 JaBdx
Ro(dg,d7) > (1 E)ny(x)dx'
Since
JoB(x)dx pdx B(x)

Jar)dx y(dx IQI Y@
we can choose €y small enough such that

JoBXdx 1+¢ ﬁ(X)d

1— ,
( GO)ny(x)dx> o] / >0 X

and let d) = Ci(€o), d] Cl(go), d? = Ca(€o, d%), we have Ro(dY,d}) < Ro(d%,d?). O

Jg v @dx

Theorem 3.5. Let v = Jo, BG)dx
Q

and @1, @1 be the unique solutions of

0
—Ap; =B —vy, x €Q with —a(m =0, x €I
n

and

d
—A¢1=%/ﬁdx—y, x € Q with %:O, x €90,
Q

n



P. Song et al. / J. Differential Equations 267 (2019) 5084-5114 5105

respectively. If

/ (v = v0B) (g1 — 1)dx > 0, (3.34)
Q

there exist d? and d}; < d% such that Ro(d}., d?) < Ro(d%, d?).

Proof of Theorem 3.5. Consider the principal eigenvalues, denoted by w and v respectively, of
the following two eigenvalue problems:

~diAp+y (g =pB()g in Q, ¥|q=0, (3.35)

and
~diAp+y (09 = & [ B$dx in Q. ol =0 (3:36)

with fQ @2dx = fQ ¢*dx = |S2|. Now we take € = % and the expansions on (¢, 1) and (¢, v) to
give

P(x) = @o(x) + €91 (x) + 202 (x, €),
P (x) = go(x) +€p1(x) + 2P (x, €),
B = po+epnr + € ua(e),

v = vy + €v] + €21 (€).

(3.37)

Our goal is to prove p > v when € is small under the condition (3.34). By direct calculation,
Jo y(x)dx
Jo B(x)dx

we obtain g9 =¢g =1, ug=vp = and ¢, ¢ satisfy

—Apr=pof—y in Q =0

and
—A(b = e / ,de - in Q —‘ 1 | == 0
1 ‘Szl Q V ’ an BQ ’

respectively. Furthermore, we have

/ yordx = pg / Bordx + 11 / Bdx (3.38)
Q Q Q

and
/ yordx = vy / Bordx + vy /,de. (3.39)
Q Q Q

Therefore, by condition (3.34), (3.38), (3.39) and uo = vp, we obtain
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(m1 = 1) [ Bdx = [o(y — voB) (1 — d1)dx > 0.

Thus p > v for large dj. It follows from Theorem 3.1 that for any fixed d; > 0, Ry — i as

drp — 0 and Ry — % as dg — 00. Therefore, we can find d? large, and d% large, d }E small such
that Ro(dL,dY) < Ro(d%,dY). O

Remark: We give a case such that condition (3.34) holds. Let Q = (0, 1), 8 = 4/x + 0.001 and
y = x + 0.001, then direct calculation yields

/(y —vpB) (91 — ¢1)dx =0.0021 > 0.

4. Asymptotic properties of endemic equilibrium

Throughout this section, we assume that (A1) holds, Ny is fixed and Ry > 1 so that system
(1.2) admits at least one endemic equilibrium by Theorem 1.1. To further understand the effect
of the suspected population movement on the spatial distribution of the individuals of system
(1.2) in heterogeneous environment, we will investigate the asymptotic profiles of the endemic
equilibria when dg approaches zero.

For later purposes, we start by rewriting the endemic equilibria problem (1.4). Denote & =

dsS+dgE +d; T+ dgR, andsetS_g,E § 1_g,RzE.Itfouowsfrom(l.zx)that

dpAE+ L8 —6E=0, xeq,

diAl+cE —y(x)I =0, x €,

drRAR+y(x)I —aR =0, x e, “.1)
dsS+dgE+dijl+drR=1, xe€,

JE __ ol __ 0R __

W_W_W_O’ x €0Q.

Therefore, the following results hold:

Lemma 41 (§ E,Z, N) s a solution of (1.4) if and only if (S, E, I, R) is a solution of (4.1).
Moreover, S=&ES,E=§E,1 =§£1, R= &R and
No
&=

Jo(S+E+1I1+Rydx

We now investigate the asymptotic profiles of the endemic equilibria when dg tends to zero.
Recall that A (—dp A + a(1 — %)) is the smallest eigenvalue of the eigenvalue problem (1.7).

Theorem 4.1. Assume that Ry > 1. Then the following assertions hold:

(1) As dg — 0, subject to a sequence, E, I, R converge to E*, I*, R* in C! (), respectively, for
some E*>0,I*>0,R* > 0;
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(ii) The set J* = (x|M*(x) = 1,x € §} has positive Lebesgue measure, where M*(x) :=
dpE* +d;I* +drR*;

@iii) If further assume L (—dp A + a(1 — %)) <0, then the set J~ := {x|M*(x) < 1,x € Q) has
positive Lebesgue measure.

Theorem 4.2. Assume Rg > 1 and A (—dpA + a(l — %)) < 0. Then the following assertions
hold:

(1) As ds — 0, subject to a sequence,

£ No w . No(1—M*(x))
= - and S — S
dg fQ(l — M*(x))dx fQ(l — M*(x))dx

in C'(Q);
(i) There exist positive constants C1, C», independent of ds such that for sufficiently small ds,

E R
ds’ ds’ ds

&INz

C1 < < (Cs.

4.1. Proof of Theorem 4.1

We first prove part (i). Note that E(x), I (x), R(x) > 0 for any x € Q,ds > 0. In view of
dsS+dgE +d;l +drR=1, % is uniformly bounded for any dg > 0. It follows from
L? estimate ([18]) that || E||y2.» is bounded for any p > 1. Thus, || E||c1.- is bounded for any
7 € (0, 1) by Sobolev embedding theorem. Passing to a subsequence if necessary, E — E* in
CY(Q) as ds — 0 where E*(x) > 0 for x € Q and "ain* =0 for x € Q2. By similar arguments,

I — I*, R — R*in C'(Q) as dg — 0 where I*(x), R*(x) > 0 for x € Q, which satisfy

diAI*+0E*—y(x)[*=0, xeQ,

dRAR*+y(x)I* —aR*=0, xeQ, 4.2)
AT — IR X €09

Now we show that E*(x) # 0 on Q2 by contradiction argument. If E* = 0, then we obtain by
(4.2) that I'* = R* = 0, which implies that S — oo a.e as dg — 0. Thus % — B(x) a.e
as dg — 0. Define

E . I 5 R
—, I==, R=-.
K K K

A

K =|Elr~@) + iz~ + IRIlL=w), E=

Note that £, I, R > 0 and || E|| (@) + [l | L= (@) + | Rl L (@) = 1. Then as before, by a standard
compactness argument for elliptic equatlons after passing to a further subsequence if necessary,
we have £ — E*, [ — [*, R — R* in C! (€) as dg — 0, where E*(x) I*(x) R*(x) > 0 for
x € Q and

IE* | ooy + 1T (@) + 1R ooy = 1 4.3)
with % = aaln* = ‘)an =0 for x € 0Q2. It follows from % — B(x) a.e as dg — 0 that

E* is a weak solution of
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JE*

dpAE* —cE* + B(x)[* =0 inQ, —laa

=0.

By elliptic regularity, we have £* € C2(Q), which gives

dpAE* —cE* + B(x)[* =0, xe®,
diAT*+0E* —y(x)[*=0, xe®,
dRAR*+y(x)[* —aR*=0, xeQ,

aE* _ al* _ 9R* _
T = an = =0, x €982,

(4.4)

It follows from maximum principle together with (4.3) that E*(x), I*(x), R*(x) > 0, which im-
plies that Ry = 1. This contradiction yields E*(x) # 0. Therefore, again by maximum principle
together with (4.2), we obtain I*, R* > 0.

Next we prove |J*| > 0 by contradiction. If | J*| =0, then S — 0o a.e as dg — 0 and thus

% — B(x)I* a.e as ds — 0. Therefore, E* is a H' weak solution of
dgAE* —cE*+B(x)[*"=0 inQ, —|,,=0.
n Q2

By elliptic regularity, we have E* € C?(2), which yields

dgAE* —cE*+ B(x)I[*=0, xeQ,
diAI*+0E*—y(x)I[*=0, xeQ,
dRAR*+y(x)I* —aR*=0, xeQ,

OE* _ a1 _ 0R" _
on T 9n — on _0’ x € 9%2.

4.5)

It follows from (4.5) together with I* > 0, R* > 0 that E* > 0. Thus, Ry = 1. This contradiction
implies |J 1| > 0.
We prove part (iii) by contradiction. Now assume that |J~| = 0. Denote h(x) := % —

o R and choose ¢ € C'(RQ) such that ¢ > 0 on Q. Multiplying the first three equations in (4.1) by
¢, adding them together and integrating on €2, we have

—/V<p~V(dEE+d11+dRR)dx+f¢h(x)dx =0. (4.6)
Q Q

As|J7|=0, M*(x) =0 a.e. in . Thus, we obtain

/h(x)godx —0as ds—0 4.7
Q

for any ¢ € clQ), ¢ > 0 on Q. Hence, (4.7) holds for any ¢ € C () such that ¢ >0on Q.
Let ¢o be a positive eigenfunction of A1 (—dgrA + (1 — %)), ie.

3o

o l,o =0 (4.8)

—drAgo+a(l — %)(ﬁo =gy in 2,
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Since dRAR + y(x)I —aR=0and S, E, I, R > 0 on €2, we have

CdpAR a1~ Y gL YR o (4.9

B(x) Bx)
Multiplying (4.9) by ¢o, integrating by parts over €2 and applying (4.8), we obtain

)»1/¢0Rdx>/w¢odx.
Q Q

B(x)

Let ds — 0, it follows from (4.7) that A [, ¢oR*dx > 0. Since ¢o, R* > 0 on Q, we see that
A1 > 0. This contradiction yields (iii). O

4.2. Proof of Theorem 4.2

We first prove part (i). Denote for further purposes M (x) :=dgE +d;I +drR. By (4.1), we
have

No = [o(S+E+T+ Rydx
(o ds(E+ 1+ Rydx + [o(1 — M(x))dx).

It follows from S, E,I,R > 0 and dsS + dgE + d;I +dgR =1 that E, I, R are uniformly
bounded with respect to ds. Thus,

/dS(E+I+R)dx—>O as ds — 0.
Q

In view of Theorem 4.1 (i) (ii),

/(1 — Mx)dx — /(1 — M*(x))dx >0 as dg— 0.
Q Q

Therefore,

3 No

A N IR EEE: as dg — 0. (4.10)

Moreover, (4.1) yields S= %(1 — M (x)). By (4.10) together with Theorem 4.1 (i),

G No(1 — M*(x))
— 8" =
fQ(l — M*(x))dx

in C1(Q) as dg — 0. N 5
Next we prove part (ii). It follows from dsS +dgE +d;jl +drR=1,and E = d%dSE, 1=

j—sdsl, R= f—SdSR that
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E T R & 1 11

Hence, (i) implies

~ ~ ~

. E . 1 . R - No
imsup sup —, lim sup sup —, lim sup sup — < m
ds—0 @ ds de0 @ ds a0 @ ds ~ [o(1 —M*(x))dx

{1 ! 1} 4.11)
ax{—, —, —}. (4.
dp d; dg

Now we prove

min{igff, ing, igfﬁ}/ds +0, as ds— 0 (4.12)

by contradiction. Assume that min{infg E, infq I, infg R} = o(ds). By Lemma 2.3 in [7] and
(1.4), there exists a positive constant é such that

info E > 8 [q ?f%dx =80 [q Edx,

infq I > 0 [, Edx,
infq R > S« Jo Rdx = 8o Ja Edx.
Hence [, Edx = o(ds). In view of
a/ﬁdx:/y(x)fdx:o/fdx,
Q Q Q

we obtain [, Tdx, Jo Rdx = o(ds), which implies

dpE +d;T+drR
/ EZTAITHARR b 0 as ds— 0. (4.13)

ds
Q

Note that

ds ds
Q Q

dpE +d;T +dgR o~~~
N0=/5dx—/ gLt il +dr dx+f(E+1+R)dx.
Q
Let dg — 0, it follows from (i), (4.11) and (4.13) that

_ Nl
Jo( = M*(x))dx’

No

which yields that |J~| = 0. This contradiction implies (ii). O
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Fig. 1. 2= (0, 1.4), 0 =0.1. The dyed part means Ry < 1. Contour of Ry(dE,d) in phase (dg, dy) under: (a) B(x) =
2.44cos(x/2.8), y(x)=x+1;(b) B(x) =0.916(x + 1), y(x) =1 +cos(mx/2.8); (c) B(x) =x+ 1,y (x) =0.74(x +
1 +sin(rx/2.8)); (d) B(x) =1/(x + 1) +cos(mx/2.8),y =2/(x + 1).

5. Numerical simulation and discussion

In this section, we use numerical results to demonstrate our theoretical findings and explore
the effect of exposed and recovered individuals’ movement on disease persistence. We refer to
[38] for more extensive numerical results.

We first illustrate by numerical examples that the movement of exposed individuals makes the
monotonicity of the basic reproduction number Ry more complex. Fig. 1(a, b) shows that if one
of B(x) and y (x) is increasing and the other is decreasing, then R( is monotone decreasing in
dg,d;, which is in agreement with the results in Theorem 1.3. However, if both B(x) and y (x)
are increasing or decreasing, we can see from the curve Ry =1 in Fig. 1(c) that Ry is no longer
decreasing in dg which agrees with the result in Theorem 3.5. Interestingly, Fig. 1(d) shows when
dr > e~%, Ry is an increasing function of d;. Fig. 1(d) is probably more close to the real epidemic
situation and potentially explains the relationship between the basic reproduction number and the
movement of infected individuals, as the movement of exposed individuals may not be restricted
during the epidemic. The faster the infected individuals move, the more infections happen.

Fig. 2 represents the contour of Ro(dE, dy) in phase (dg, d;) for non-monotone 8, y, where
the dyed part means Ry < 1. It can be observed from Fig. 2 that when dg is small, R is a
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Fig. 2. 2= (0, 1.4),0 =0.1. The dyed part means Ry < 1. Contour of Ry(dg, dy) in phase (dg, d;) under: (a) B(x) =
2.58(1 —sin(1.057x/1.4)(x + 1), y(x) =x + 1;(b) B(x) =3.74x(1.6 — x), y(x) =x + 1 +0.1sin(7wx/1.4).

0 0.2 0.4 0.6 0.8 1 12 1.4

Fig. 3. An endemic equilibrium IN(x) of system (1.2). Q = (0,1.4), ds~0,dg =dj = e_g,dR =l,a=0=
0.1, Bx) =1+ x—-0.1)x—-02)y(x), yx)=2x+1, S(x,0)=10000, E(x,0)=1(x,00=1, R(x,0)=0.

monotone decreasing function of d;. However, as dg increases, Rg loses the monotonicity with
respect to dy and reveals complicated dependences upon dg and dj.

Next we give a numerical example to show that the movement of recovered individuals may
increase the number of infected individuals and enhance the endemic. For the parameters given in
Fig. 3, we can calculate Ry &~ 2.2846 > 1, A1 (—drA +a(1 — %)) ~0.0251 > 0. Fig. 3 suggests
that 7 does not converge to zero as ds — 0, which is in contrast with conclusions of Theo-
rem 1.4.

Our theoretical and numerical results suggest that the travel of exposed individuals could have
an important impact on the persistence of disease and the movement of recovered individuals may
enhance the endemic. Accordingly, a good understanding of the behaviors of the exposed and
recovered individuals could also be important in designing effective disease control measures.
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