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ABSTRACT: We recently presented a simple, classical trajectory-based method for
generating the Wigner phase space density using classical trajectories evolving under
an adiabatically switched potential. The adiabatically switched Wigner (ASW)
distribution is an approximation to the exact Wigner function, which was found to be
highly accurate on model systems. In this paper we discuss the implementation of the
ASW procedure to polyatomic molecules both in normal mode coordinates and in
Cartesian coordinates. We present its application to a six-degree-of-freedom model
based on an ab initio quartic potential energy surface developed for formaldehyde in
the normal mode representation and for butyne in Cartesian coordinates using the
CHARMM force field. Comparisons of equilibrium properties against accurate
quantum mechanical results indicate that the ASW is reliable and highly accurate over
a wide temperature range in both the coordinate systems. Further, the ASW density is
invariant under classical evolution, thus it is ideally suited to quasiclassical trajectory
simulations. We also describe a very simple ASW-based procedure for obtaining complex-valued quasiclassical time correlation
functions and vibrational spectra.

I. INTRODUCTION

The exponential scaling of quantum mechanics has sparked the
development of a plethora of approximate methods for
studying the equilibrium and dynamical properties of
polyatomic systems. Classical mechanics has a prominent
place in this regard. The computational cost of obtaining
Newtonian trajectories is relative low and scales very favorably
with the number of degrees of freedom. Semiclassical
approximations can account for important quantum effects
semiquantitatively through classical trajectories, and even
purely classical molecular dynamics (MD) simulations can
adequately capture many properties of condensed phase and
biological systems.
The major drawback of MD simulations is the absence of

quantization of the thermal density matrix and the neglect of
zero-point energy (ZPE). The latter can be very substantial for
high-frequency molecular vibrations and can result in
significant broadening of the Boltzmann distribution. In
order to account for such quantum effects, it becomes essential
to incorporate quantization in the phase space density from
which trajectory initial conditions will be sampled. This is
usually achieved by means of the Wigner prescription,1 which
can also be derived by linearizing the semiclassical initial value
representation2 or the path integral expression.3 In these, the
phase space function is obtained via the Wigner transform of
the initial density matrix. The Wigner density is also required
in methods that employ quantum-classical Liouville dynamics.4

For a system of one degree of freedom, the Wigner
transform of a density operator ρ̂ is given by the integral

W x p x x x x d x( , )
1
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0 0 0 0
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+ Δ ̂ − Δ Δ
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∞
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(1.1)

The oscillatory Fourier-like integrand makes the evaluation of
the Wigner density a challenging task for systems of many
degrees of freedom, as Monte Carlo methods5 encounter a
severe “sign problem” and thus do not converge efficiently.
When the use of a quantized phase space density is necessary,
it is common practice to use the Wigner distribution that
corresponds to the harmonic fit to the Hamiltonian.
Approximate procedures for constructing the Wigner density
of anharmonic systems include local6 and variationally
optimized3 Gaussian approximations and the thermal Gaussian
approximation,7 which is based on the dynamics of frozen
Gaussians8 in imaginary time. Extensions of the thermal
Gaussian approximation which capture quantum corrections9

have also been proposed. In the special case of a system
coupled to a harmonic bath, the quasi-adiabatic propagator
path integral10 has been employed to develop a numerically
exact treatment of the bath Wigner density.11

We have recently described12 a very simple, approximate
method for obtaining the Wigner transform of the density
operator corresponding to a thermal Boltzmann density using
the classical adiabatic theorem.13 Starting from a suitable
zeroth-order Hamiltonian for which the Wigner density is
either analytically or numerically available, the phase space
distribution is propagated in time via classical trajectories,

Received: February 26, 2018
Published: October 10, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 5446−5458

© 2018 American Chemical Society 5446 DOI: 10.1021/acs.jctc.8b00179
J. Chem. Theory Comput. 2018, 14, 5446−5458

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 I

L
L

IN
O

IS
 U

R
B

A
N

A
-C

H
A

M
PA

IG
N

 o
n 

Se
pt

em
be

r 
6,

 2
01

9 
at

 1
6:

24
:4

4 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00179
http://dx.doi.org/10.1021/acs.jctc.8b00179


while the potential is slowly transformed to that of the target
Hamiltonian. A series of tests on one-dimensional models and
a system-bath Hamiltonian showed that the adiabatically
switched Wigner (ASW) density is not only easy to obtain but
also quite accurate. Further, the ASW procedure is ideally
suited to propagation via classical trajectories and has the
desirable property of being preserved under classical dynamics.
In the present paper we demonstrate the use of the ASW

method for treating intramolecular vibrations either in the
normal mode representation or in Cartesian coordinates.
Normal mode coordinates provide an excellent starting point
for ASW calculations, since they lead to an obvious, physically
relevant quadratic reference Hamiltonian whose Wigner
density is readily available. Cartesian coordinates are
convenient and often preferred in large molecular systems.
We illustrate the procedure and assess its accuracy by applying
it to a model based on the ab initio quartic potential energy
surface developed for formaldehyde14 and the CHARMM
force field for the butyne molecule in Cartesian coordinates.
We assess the accuracy of the ASW density by evaluating
various thermodynamic properties, which are compared to the
results of fully quantum mechanical path integral Monte
Carlo15 (PIMC) calculations. The ASW results are also
compared to those obtained using the classical Boltzmann
distribution and to quantum mechanical results within a
quadratic approximation. We also illustrate an extremely easy
implementation of the ASW procedure to obtain complex-
valued quasiclassical time correlation functions and vibrational
spectra.
Section II reviews the ASW method and discusses its

implementation in normal mode coordinates and also in
Cartesian coordinates. Section III presents the implementation
of the method on equilibrium and dynamical properties of
formaldehyde and presents comparisons against fully quantum
mechanical results as well as classical, semiclassical, and
quadratic approximations. Section IV shows the results of
applying the method to butyne described by the CHARMM
force field. Some concluding remarks are given in section V.

II. ADIABATICALLY SWITCHED WIGNER DENSITY

II.1. Summary of the Procedure. Consider a system
described by the Hamiltonian H(q,p), where q is the vector
containing the n (orthogonal) coordinates and p are the
conjugate momenta. The procedure begins by identifying a
zeroth-order Hamiltonian H0 for which the Wigner function
W(0) is known, either analytically or numerically. A convenient
choice for H0 is often the quadratic part of the Hamiltonian in
normal mode coordinates.
Once the zeroth-order Hamiltonian has been identified, one

uses a Monte Carlo procedure to sample phase space points
from the chosen zeroth-order Wigner distribution. Each of
these phase space points is subsequently used to launch a
classical trajectory, which is propagated under a slowly varying
Hamiltonian that is initially given by H0 and which is gradually
modified by including the remaining potential terms, such that
eventually it becomes the target Hamiltonian H. The
applications reported in this paper used a switching function
of the form23

s t
t t

( )
1

2
sin 2

τ π
π

τ
= − i

k
jjj

y
{
zzz (2.1)

This function is a sigmoidal transfer function which goes from
0 to 1 over the time period of τ.
According to the classical adiabatic theorem, a trajectory that

lies on a phase space torus evolves in such a manner so as to
maintain a constant action, as long as the anharmonic terms
are switched on infinitely slowly. However, the energy of the
trajectory changes during the adiabatic switching process. To
account for the change in the Boltzmann population, we adjust
the weight of each trajectory by a rescaling factor f, i.e.

W W fq p q p( , ) ( , ) ( , )(0)
0 0

(0)κ= (2.2)

where κ is a normalization factor that does not need to be
determined. In particular, we have shown12 that the following
rescaling factor

f E
E

E
E

q p q p
( , ) exp tanh( )
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(2.3)

leads to an excellent approximation of the Wigner density.

Here q p( , )(0)
0 0 is the initial energy of a classical trajectory

with phase space coordinates q0,p0, sampled from the Wigner
distribution corresponding to the harmonic reference Hamil-
tonian, q p( , ) is the energy reached at the end of the
adiabatic switching process, and E0

(0) and E0 are the zero-point
energies (ZPE) of the reference and full Hamiltonians,
respectively. At high temperatures, eq 2.3 becomes the ratio
of the classical Boltzmann factors at the initial and final
energies, ensuring the correct high temperature limit of the
Wigner distribution. At low temperatures, it produces (by
construction) the appropriate quantum mechanical scaling
factor for the harmonic oscillator.12 If the Hamiltonian is
sufficiently quadratic near the potential minimum, this
procedure results in an ASW distribution which faithfully
resembles the Wigner phase space density of the full
Hamiltonian.
Calculation of the ZPE, while possible (e.g., via quantum

Monte Carlo methods16), is impractical for multidimensional
anharmonic systems. However, typical molecular systems are
nearly harmonic at the energy of the ground vibrational state.
In such situations the harmonic ZPE provides a simple and
sufficiently accurate approximation to E0. If the harmonic
approximation to the ZPE is not adequate, it may be improved
(with minimal computational cost) by adding the diagonal
anharmonicity to the harmonic reference Hamiltonian. For the
calculations presented in this paper the use of the harmonic
ZPE in the rescaling factor was sufficiently accurate.
A general issue with quasiclassical propagation methods is

the inconsistency between the initial quantum density and the
classical dynamics that follows. This inconsistency manifests
itself in the loss of temporal invariance of thermal distributions
and thermodynamic quantities. Improved dynamical proce-
dures that partially overcome this issue are available,17

although such schemes are computationally expensive. In this
regard, a significant benefit of the ASW method is that the
obtained phase space density remains (by construction)
invariant. We demonstrate this property for the multidimen-
sional normal mode system studied here.
Last, we note in this section that the zeroth-order

Hamiltonian does not have to be quadratic. Another possibility
is to use a separable, anharmonic Hamiltonian and construct
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the Wigner function for each degree of freedom through an
inexpensive basis set calculation.
II.2. Quasiclassical Time Correlation Functions and

Spectra. One of the most common uses of the Wigner
function is for generating time correlation functions via
classical molecular dynamics calculations and, through Fourier
transformation, molecular spectra. The quantum mechanical
autocorrelation function for the coordinate k is given by

C t q q t( ) Tr( (0) ( ))k k k0ρ= ̂ ̂ ̂ (2.4)

The “proper” (most accurate) way of obtaining a quasiclassical
approximation for this is given by

C t d d W q tq p q p( ) (0) (0) ( (0), (0)) ( )k k∫ ∫= ̃
−∞

∞

−∞

∞

(2.5)

where W̃ is the Wigner transform of the combined operator
ρ̂0q̂k, and the integration variables {q(0),p(0)} serve as initial
conditions of classical trajectories that reach the phase space
point {q(t),p(t)}. Rather than performing the adiabatic
switching for this modified density, we observe that
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It follows that

d d W q q t C tq p q p(0) (0) ( (0), (0)) (0) ( ) Re ( )k k k∫ ∫ =
−∞

∞

−∞

∞

(2.7)

i.e., the primitive quasiclassical expression (which is used by
some researchers in place of the proper quasiclassical form, eq
2.5), yields the real part of the autocorrelation function. (We
note that this is not true in the case of nonlinear operators.)
This expression involves the Wigner transform of the ordinary
density operator, so one can proceed to implement the ASW
procedure. However, eq 2.7 does not give the imaginary part of
the correlation function, which can be substantial at low
temperatures or for high frequency degrees of freedom.
Spectral information is obtained from the Fourier trans-

formation of time correlation functions

G C t e t( )
1
2

( ) dk k
i t∫ω

π
= ω

−∞

∞

(2.8)

Even if one is only interested in the real part of the
autocorrelation function in the time domain, the imaginary
part of Ck(t) must be retained when calculating the spectrum,
because it contributes to the Fourier integral. The spectrum
can be decomposed into even and odd components

G G G( ) ( ) ( )k k k
even oddω ω ω= + (2.9)

which correspond to the real and the imaginary parts of an
autocorrelation function

G C t e t G i C t e t( ) Re ( ) d , ( ) Im ( ) dk k
i t

k k
i teven odd∫ ∫ω ω≡ ≡ω ω

(2.10)

It has been shown18 that these components are related:

G G( ) coth
1
2

( )k k k
even oddω ω β ω= − ℏi

k
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y
{
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Thus, the spectrum is given by

G G( ) ( ) 1 tanh
1
2k k k
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The quantum mechanical correction arising from the
imaginary part of the correlation function leads to distortion
of the spectrum. According to eq 2.12, this quantum
mechanical effect can be obtained from the primitive
quasiclassical expression which involves the Wigner transform
of the ordinary density. We note that the inferred odd
component of the spectral function, eq 2.12, may be inverse-
Fourier transformed to yield the imaginary part of the
autocorrelation function.
The Wigner density may be evaluated by the ASW

procedure at the end of the required adiabatic switching
time τ, the value of the Wigner function W(q(τ),p(τ)). The
coordinate values q(τ),p(τ) define the initial conditions for the
dynamical calculation to obtain the correlation function, i.e.

C t d d W q q tq p q pRe ( ) ( ) ( ) ( ( ), ( )) ( ) ( )k k k∫ ∫τ τ τ τ τ τ= +
−∞

∞

−∞

∞

(2.13)

Using eq 2.2, along with Liouville’s theorem, this expression
becomes

C t

d d W f q q tq p q p

Re ( )

(0) (0) ( (0), (0)) ( , ) ( ) ( )

k

k k
(0) (0)∫ ∫ τ τ= +

−∞

∞

−∞

∞

(2.14)

which is evaluated by a standard Metropolis Monte Carlo
procedure using the zeroth-order Wigner function as the
sampling function. Eq 2.14 involves combining the adiabatic
switching process with the dynamics of the Hamiltonian of
interest in a single calculation. Starting from the phase space
point q(0),p(0), a classical trajectory is launched, which
evolves under the time-dependent adiabatically switched
potential. At the time τ the potential anharmonicity has been
fully switched on, and the trajectory continues under the full
Hamiltonian (which no longer changes). Correlations are
obtained from this segment of the trajectory.

II.3. Implementation in Normal Mode Coordinates.
Consider a molecular Hamiltonian composed of N atoms,
which is expressed in terms of n = 3N − 6 (or 3N − 5) normal
mode coordinates Q and has the general form

H H V0
̂ = ̂ + ̂ (2.15)

where

H P f Q
1
2i

n

i ii i0
1

2 2∑̂ = ̂ + ̂
=

i
k
jjj

y
{
zzz

(2.16)

V f Q Q Q f Q Q Q QQ( )
i j k

n

ijk i j k
i j k l

n

ijkl i j k l
, , , , ,

∑ ∑= +
(2.17)

Here fii i
1
2

2ω= (where ωi are the normal-mode frequencies),

and f ijk and f ijkl are cubic and quartic anharmonicity
coefficients, respectively, obtained from the potential function
fit. Since the Hamiltonian is expressed in normal modes, the
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quadratic terms are diagonal. Thus, the normal mode
representation gives rise to a convenient zeroth-order
Hamiltonian, whose Wigner density is available analytically.
At a temperature T = 1/kBβ (where kB is the Boltzmann
constant), the Wigner function corresponding to H0 is given by
the expression

W Q P( , ) ( ) tanh
1
2

en

j

n

j
Q P

0
1

tanh( 1
2 )( / / )j j j j j

2 2∏π ωβ= ℏ ℏ ω β ω ω−

=

− ℏ ℏ+ ℏi
k
jjj

y
{
zzz

(2.18)

The ASW density is obtained through the following
procedure.12 Phase space coordinates are sampled from the
zeroth-order Wigner density via a Monte Carlo5 random walk.
Classical trajectories are launched with initial conditions
obtained from the sampled phase space points, while the
Hamiltonian is slowly changed from H0 to the full H over a
time length τ according using a switching function s(t), i.e.

H t H s t V( ) ( )0= + (2.19)

where s(0) = 0, and s(τ) = 1. Various forms of the switching
function may be used. The switching function used is given
after the discussion on the ASW method in Cartesian
coordinates.
II.4. Implementation in Cartesian Coordinates. When

the Hamiltonian is given in Cartesian coordinates R =
(r1,···,rN) and P, the starting point is again the normal mode
representation of the full Hamiltonian. To obtain the normal
modes, the Hamiltonian is expanded through quadratic terms
about the potential minimum of a “reference” configuration Req

= (r1
eq,...,rN

eq). The normal-mode analysis is performed once, and
the normal mode vectors, along with the force constant matrix
and its eigenvalues, are stored. Given the normal mode
coordinates of a phase space point, it is then easy to obtain the
corresponding Cartesian coordinates. The zeroth-order Ham-
iltonian is

H P f Q
1
2j

N

j jj j0

3 6
2 2∑= +

−

(2.20)

where Q and P are again the normal mode coordinates and
momenta, which are obtained in terms of the Cartesian
variables. For a molecular system, the full Hamiltonian is often
given in terms of bond lengths and angles, as well as
nonbonded atom interactions. The normal mode coordinates
and momenta are functions of the Cartesian variables, and so is
Ĥ0.
During the adiabatic switching process, the Hamiltonian

must be slowly changed from H0 to H over a time period τ

H t s t H s t HR P R P R P( , ; ) (1 ( )) ( , ) ( ) ( , )0= − +
(2.21)

where s(t) is again the switching function.
The procedure starts by sampling a phase space point in

normal mode coordinates from the Wigner density corre-
sponding to H0. To integrate the classical trajectory, the
coordinates of the sampled point are transformed to the
Cartesian representation. The forces are calculated using a
finite difference method, which requires obtaining the energies
at two nearby points. Getting the energies corresponding to
the second term involving the CHARMM force field is
straightforward. However, obtaining the value of H0 at the
instantaneous phase space point R,P requires knowledge of the
force constant matrix and the coordinate displacements. To
minimize numerical error, it is best to reorient the molecule so
that the atoms are as close as possible to the reference
configuration from which the normal modes were obtained.
This is done by using the Eckart frame transformation. This
involves the rotation matrix C, which satisfies the rotational
Eckart relation19

m r C r r( ) 0
j

N

j j j j
1

eq eq∑ × · − =
= (2.22)

The rotation matrix is determined using the procedure
described by described by Czako ́ and Bowman.20 Once the
Eckart rotation matrix has been found, the normal-mode
analysis is now done on the atomic coordinate vectors (C·ri

eq −
req). The force at this point from the zeroth-order Hamiltonian

Table 1. Force Constants (in Atomic Units) for the Modified, Bound Model of the Formaldehyde Normal Mode Vibrations

i, j, k, l force constant i, j, k, l force constant i, j, k, l force constant

1 1 8.95641e-5 1 2 2 2 6.06809e-10 2 3 3 3 5.79834e-11
2 2 3.28072e-5 1 2 2 3 3.49433e-9 2 3 4 4 8.16788e-10
3 3 2.47445e-5 1 2 3 3 3.41881e-9 2 3 5 5 2.49993e-8
4 4 1.46576e-5 1 2 4 4 3.99302e-9 2 3 5 6 8.88722e-9
5 5 9.41724e-5 1 2 5 5 1.23419e-8 2 3 6 6 1.92595e-9
6 6 1.67271e-5 1 2 5 6 4.33096e-8 3 3 3 3 3.01839e-11
1 1 1 1.58395e-6 1 2 6 6 1.98986e-9 3 3 4 4 2.82284e-10
2 2 2 −3.09488e-7 1 3 3 3 8.19983e-10 3 3 5 5 2.08768e-8
3 3 3 −7.42473e-9 1 3 4 4 3.47055e-9 3 3 5 6 2.63248e-9
1 1 1 1 1.64404e-8 1 3 5 5 1.24585e-8 3 3 6 6 1.54438e-9
1 1 1 2 1.75202e-9 1 3 5 6 7.06454e-8 4 4 4 4 7.72218e-10
1 1 1 3 4.35259e-10 1 3 6 6 2.71959e-9 4 4 5 5 2.78328e-8
1 1 2 2 5.11727e-9 2 2 2 2 2.09690e-9 4 4 5 6 3.41463e-10
1 1 2 3 1.84464e-8 2 2 2 3 2.29151e-9 4 4 6 6 1.43632e-9
1 1 3 3 1.54362e-8 2 2 3 3 1.57200e-9 5 5 5 5 2.03858e-8
1 1 4 4 2.35793e-8 2 2 4 4 5.30463e-10 5 5 5 6 4.41000e-9
1 1 5 5 1.13248e-7 2 2 5 5 8.45341e-9 5 5 6 6 2.01654e-8
1 1 5 6 9.64337e-10 2 2 5 6 1.88770e-9 5 6 6 6 7.36786e-10
1 1 6 6 1.84492e-8 2 2 6 6 1.00897e-10 6 6 6 6 6.16225e-10
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is added to the force from the full Hamiltonian according to eq
2.21 to obtain the total force on the atoms.

III. APPLICATION TO A MOLECULAR MODEL WITH
SIX NORMAL MODES

In this section we apply the ASW to a model based on the ab
initio quartic potential energy surface developed by Roma-
nowski et al.14 for the formaldehyde molecule. The normal-
mode frequencies are 2937, 1778, 1544, 1188, 3012, and 1269
cm−1. Adiabatic switching has been used to study the low-lying
semiclassical eigenstates of this system.21 Unfortunately, the
quartic fit to the potential is unbound and thus ill-behaved at
finite temperatures, as it leads to unstable trajectories. We thus
modified the potential to a confined form, for which
trajectories are stable and bound (even at very high
temperatures). Not surprisingly, the confining modification
led to small upward shifts of the energy levels and blue shifts in
most spectral features. Using the adiabatic switching
method13,22 (which is numerically exact for the ground state
energy), we found that the ZPE was increased by 4% and the
energy of the first excited state by nearly 5%. The full
Hamiltonian has the form given in Equations 2.15−2.17 with n
= 6, and the modified force constants are given in Table 1.
The anharmonic terms of the Hamiltonian were switched on

according to eq 2.1 over a time period of τ = 2 ps. The
switching time was chosen to ensure convergence at the
highest temperature and kept fixed for all the results reported.

We note that much shorter switching times could have been
chosen at lower temperatures.

III.1. Equilibrium Properties. To assess the accuracy of
the ASW density, we first compare various equilibrium
properties to accurate results obtained via PIMC calculations
and also against those obtained within the harmonic
approximation at various temperatures. Figures 1 and 2 show
the marginal distributions

Figure 1.Marginal distributions of the six normal modes at 300 K. At this temperature ℏωminβ = 5.70 and ℏωmaxβ = 14.4. Black line: PIMC results.
Blue dashed lines: harmonic approximation to Wigner density. Green line: classical Boltzmann approximation. Red markers: ASW results.

Figure 2. Potential energy distribution function at 300 K. Black line:
PIMC results. Blue markers: harmonic approximation to Wigner
density. Green line: classical Boltzmann approximation. Red markers:
ASW results.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00179
J. Chem. Theory Comput. 2018, 14, 5446−5458

5450

http://dx.doi.org/10.1021/acs.jctc.8b00179


P Q dQ dQ dQ dQ dP

dP W Q Q P P

( )

( , ..., , , ..., )

i i i i n

n n n

1 1 1 1

1 1

∫ ∫ ∫ ∫ ∫
∫

= ··· ···
−∞

∞

−∞

∞

− −∞

∞

+ −∞

∞

−∞

∞

−∞

∞
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of the normal mode coordinates, as well as the distribution of
the total potential energy
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∫ δ
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∞

−∞

∞

−∞

∞

−∞

∞

(3.2)

at 300 K. All vibrational modes of this molecule are relatively
cold at room temperature (ℏωiβ > 5). As a result, the normal
mode distributions shown in Figure 1 are Gaussian-like and in
good agreement with those obtained from the harmonic
approximation to the Wigner density. Anharmonicity leads to
small deviations from the harmonic results. Quantum ZPE
effects are very prominent at this temperature. The marginal
distributions and potential energy distribution obtained from
the classical Boltzmann density are much narrower and shifted
compared to the PIMC results. As seen in Figures 1 and 2, the
ASW density does an excellent job of capturing these ZPE
effects and the small anharmonic corrections.
While neither the original nor the modified potential surface

is suitable for high-temperature calculations, the modified
potential offers a convenient model for investigating the
accuracy of various approximations over a wide range of
temperatures. In particular, anharmonicity effects are very

prominent at high temperatures, both in the diagonal terms but
also in the mode−mode coupling parts of the potential. The
results of this comparison have important implications for the
performance of these approximate methods on large molecules
containing low-frequency vibrations, which are highly excited
at physiological temperatures and often strongly anharmonic.
Figures 3 and 4 shows the normal mode distributions at a
temperature for which ℏωminβ = 0.11 and ℏωmaxβ = 0.27. The
accurate distributions obtained from PIMC calculations are

Figure 3. Marginal distributions of the six normal modes at a high temperature such that ℏωminβ = 0.11 and ℏωmaxβ = 0.27. Black line: PIMC
results. Blue dashed lines: harmonic approximation to Wigner density. Green line: classical Boltzmann approximation. Red markers: ASW results.

Figure 4. Potential energy distribution function at the temperature
specified in Figure 3. Black line: PIMC results. Blue markers:
harmonic approximation to Wigner density. Green line: classical
Boltzmann approximation. Red markers: ASW results.
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strongly skewed at this temperature and resemble closely the
classical Boltzmann distributions. Not surprisingly, the
harmonic approximation leads to poor results in this case.
The ASW procedure again leads to results that are practically
indistinguishable from those obtained through the numerically
exact PIMC methodology.
In order to quantify the accuracy of the ASW distribution

over a broad temperature range, we report the Hellinger
distance of the ASW marginal distribution of each mode from
that given by the PIMC calculation, given by

g P Q P Q dQ1 ( ) ( )i i i i i i
ASW ASW PIMC

1/2

∫= −
−∞

∞i
k
jjj

y
{
zzz (3.3)

The Hellinger distance is a measure of the similarity of two
probability distributions. The measure is zero for identical
distributions and unity for pairs of distributions that do not
overlap. In Figure 5 we compare the Hellinger distance of the

ASW distribution from the PIMC result against the Hellinger
distance gi

har of the harmonic Wigner density and that of the
classical Boltzmann density gi

cl. Not surprisingly, the error of
the harmonic approximation to the Wigner density decreases
monotonically with increasing temperature, while the classical
Boltzmann density fails at low temperatures. The Hellinger
distance of the ASW density remains smaller than 0.03 over the
entire temperature range considered, including low temper-
atures with large ZPE effects and very high temperatures where
strongly anharmonic potential regions are probed.
Last, we use the Wigner distributions to obtain the

expectation values of the squares of the normal mode
coordinates
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Figure 6 shows the percentage error of ⟨Qi
2⟩ at various

temperatures. It is seen that the error of the harmonic
approximation grows steeply with temperature. The error
resulting from ASW distribution remains small at all temper-
atures, exhibiting a broad maximum at intermediate temper-
atures.

III.2. Dynamical Properties. As discussed earlier, the main
appeal of the Wigner density is its use for generating initial
conditions for quasiclassical or semiclassial trajectory simu-
lations. In the last part of this section we study the evolution of
the ASW density under classical dynamics, as well as time-
dependent observables and the resulting frequency-domain
spectra.
First we examine the temporal invariance of thermodynamic

quantities. Figure 7 shows the average potential energy as a
function of time at two temperatures. It is seen that this
quantity remains constant, as the ASW-generated Wigner
density remains invariant under classical propagation. This
stability, a consequence of the classical procedure used to
generate this phase space density, is an appealing feature of the
ASW scheme from the perspective of quasiclassical dynamics
calculations, which prevents spurious oscillations of time-
dependent observables. We note again that the exact Wigner
function remains invariant only under fully quantum
mechanical propagation, exhibiting spiral fluctuations during
classical evolution.18a,23 Figure 7 also shows that the average
potential arising from the harmonic-based Wigner density
exhibits significant oscillations during classical trajectory
propagation.
Time propagation is often used to generate spectra.

Quantum ZPE effects are very important if the forces on the
classical trajectories are obtained from ab initio electronic
structure calculations, thus the use of a quantized phase space
distribution is critical in this task. Below we discuss the
quasiclassical time autocorrelation functions for the six normal
modes of the modified formaldehyde potential, along with the
corresponding mode-specific spectra.
The quantum mechanical position autocorrelation function

for a normal mode is given by

C t Q Q t( ) Tr( (0) ( ))k k k0ρ= ̂ ̂ ̂ (3.5)

We use the primitive quasiclassical expression
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Figure 5. Hellinger distances of the position distributions of the
various modes with the PIMC distributions as a function of
temperature. Markers: ASW density. Solid lines: harmonic approx-
imation to the Wigner density. Dashed lines: classical Boltzmann
density. Black: mode 1. Blue: mode 2. Red: mode 3. Green: mode 4.
Purple: mode 5. Orange: mode 6.

Figure 6. Percent errors in ⟨Qi
2⟩ for the normal mode coordinates as a

function of temperature. Solid markers: results from ASW density.
Solid lines: results from harmonic approximation to the Wigner
density. Dashed lines: results from classical Boltzmann density. Black:
mode 1. Blue: mode 2. Red: mode 3. Green: mode 4. Purple: mode 5.
Orange: mode 6.
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to obtain the real part of the autocorrelation function, which
we transform to the frequency domain, and use the procedure
described in section II.2 to obtain the odd component of the
spectrum which corresponds to the imaginary part of the
autocorrelation function. This procedure yields the mode-
specific spectra Gk(ω) within the quasiclassical approximation
with the ASW density.

Figure 8 shows the mode-specific spectra obtained from the
quasiclassical autocorrelation function, eq 2.5, at 3156 K. In
addition, Figure 8 shows quantum mechanical spectra within
the harmonic approximation and also with diagonal
anharmonicity terms included (obtained from one-dimensional
basis set calculations). The one-dimensional anharmonic
spectra consist of delta functions (which have been given

Figure 7. Average potential energy as a function of time. Blue line: harmonic Wigner density. Black line: ASW density. Left panel: T = 300 K, right:
T = 3156 K. Arrow: the exact equilibrium value calculated by PIMC.

Figure 8. Mode-specific spectra at 3156 K obtained by Fourier transforming the position autocorrelation function of the six normal modes. Black
lines show the spectra obtained from the quasiclassical procedure described in section II with the ASW density. Red lines indicate the quantum
mechanical spectra arising from the harmonic part of the Hamiltonian. Blue lines show quantum mechanical results in the absence of anharmonic
mode coupling terms. The relative peak heights in each set of stick spectra are correct, but the overall scaling is arbitrary.
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very small widths for visual clarity) whose peaks exhibit small,
primarily blue shifts from the harmonic frequencies, which
arise from the quartic potential terms.
The spectra shown in Figure 8 are significantly asymmetric

through the addition of the odd spectral component to the
even part obtained from the real part of the correlation
function. This effect cannot be seen in Figure 8, since only the
positive frequency axis is shown there. To illustrate this
distortion, we show in Figure 9 the even and odd components,

along with the total spectrum over the entire frequency
domain, for normal mode 2. The asymmetry which arises from
the imaginary part of the autocorrelation function (which we
obtain indirectly) is a strictly quantum mechanical effect and is
prominent at fairly high temperatures in modes with relatively
high frequencies. The effect is even more prominent in the
higher frequency normal modes.
A fully quantum mechanical calculation of the correlation

functions with all six coupled degrees of freedom would be
illuminating but is rather challenging. However, we have been
able to obtain accurate energy eigenvalues for several low-lying
states via the original semiclassical adiabatic switching
method.13,22 The transition frequencies obtained from these
values are shown in Figure 10. These transition frequencies

exhibit additional blue shifts in comparison with those
obtained from the calculations that account only for diagonal
anharmonicity, a consequence of confining quartic terms in the
mode−mode potential interactions. The spectral peaks
obtained from the quasiclassical correlation functions with
the ASW phase space density correlate well with the transition
frequencies corresponding to the full six-dimensional potential.
In addition, the ASW spectra are broadened. This broadening

is an intrinsic feature of quasiclassical correlation functions,
which eventually decay to zero without being able to account
for recurrences associated with quantum interference. In very
small systems of only a few degrees of freedom, the absence of
recurrences and resulting spectral broadening tend to lead to
significant discrepancies from fully quantum mechanical
results. However, the rapidly growing number of transitions
in polyatomic molecular systems causes very long recurrence
times and densely packed spectral lines that are discernible
only via high-resolution spectroscopic tools. In such situations
quasiclassical calculations tend to produce a low-resolution
spectrum that can offer adequate accuracy, provided that ZPE
is properly accounted for in the phase space density that
specifies trajectory initial conditions. The results presented in
this section suggest that the ASW procedure provides an
excellent way of achieving this quantization for molecular
systems in the normal mode representation.

IV. APPLICATION TO BUTYNE DESCRIBED BY A
CHARMM FORCE FIELD IN CARTESIAN
COORDINATES

In this section we describe the application of the ASW method
to a molecular Hamiltonian in Cartesian coordinates. The
chosen system is the but-2-yne molecule, with intramolecular
interactions described by the CHARMM force field.24 Because
they are parametrized to experimental observable, classical
force fields account (approximately, in an average way) for
some nuclear quantum effects at a particular temperature. It is
thus clear that such force fields are meant to be used in
classical molecular dynamics simulations with trajectories
sampled from the classical Boltzmann distribution. Quantizing
this distribution via a Wigner function would be double-
counting quantum effects, which is likely to lead to worse
results. Our goal in this study is to assess the consequences of
density quantization on a typical small polyatomic molecule.
We find the effects of this quantization to be rather large.
Further, since the AS-Wigner approach allows efficient
generation of the quantized Wigner density in the context of
a classical trajectory simulation, it offers a practical way of
reparameterizing force fields, making them suitable for
molecular dynamics simulations with quantized initial
conditions. This approach would capture quantum effects
associated with nuclear zero-point energy and vibrational level
structure faithfully, in full atomistic detail, over a wide range of
temperatures.
The CHARMM potential is given in terms of bond lengths

and angles, as well as nonbonded interactions. The latter
consist of van der Waals interactions, which have the Lennard-
Jones form, and Coulombic electrostatic interactions. All the
parameters have been obtained from the CHARMM force
field. The bond vibrations are described as purely harmonic
vibrations. Thus, the anharmonicity in the Hamiltonian comes
from the angular interaction terms, the Lennard-Jones form,
and the electrostatic interactions.
Consider the molecule at room temperature (T = 298 K)

and an elevated temperature of 400 K. The convergence of the
potential energy distribution was used to determine a switching
time of τ = 0.25 ps. Figure 11 shows the bond length
distributions of the three unique types of bonds present in
butyne, a CC single bond, a CH single bond, and a CC triple
bond. We see that the exact quantum bond length distributions
are quite faithfully reproduced by ASW. For the CC single and
triple bonds, the method reproduces the PIMC results

Figure 9. Quasiclassical ASW spectrum for normal mode 2 over the
entire frequency domain. Red and blue lines show the even and odd
components, respectively, while the black line shows the total
spectrum.

Figure 10. Transition frequencies from semiclassical eigenstates
obtained via the ASW method.
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quantitatively. For the CH single bond, there are very slight
differences between the PIMC and the ASW calculations,
which occur because of errors accumulating over the many
transformations to and from the Cartesian and normal mode
coordinates. All the thermodynamic features of a quantum
mechanical distribution are preserved in the ASW distribu-
tions. The classical distributions get broader on increasing the
temperature, whereas both the PIMC and the ASW
distributions remain invariant between temperatures of 298

K (left panels) and 400 K (right panels). This is indicative of
the presence of zero point energy, and for this case of double
quantization, at these temperatures, only the ground state is
populated. The quantum mechanical excited state is not
thermally accessible even at 400 K.
Figure 12 shows the potential energy distributions under the

classical Boltzmann distribution and the quantum distributions
at two different temperatures, 298 and 400 K, given by eq 3.2.
We note that the ASW result matches the quantum PIMC

Figure 11. Distributions of bond lengths of the three different bonds at T = 298 K (left panels) and T = 400 K (right panels). Black line: PIMC
results. Green line: classical Boltzmann approximation. Red markers: ASW results. Row (a): bond length distribution for CC single bonds, row (b):
CH single bonds, row (c): CC triple bonds.

Figure 12. Distributions of bond lengths of the three different bonds at T = 298 K (left panel) and T = 400 K (right panel). Black line: PIMC
results. Green line: classical Boltzmann approximation. Red markers: ASW results.
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results in a quantitative manner. The classical Boltzmann result
undergoes a large change as the temperature is increased from
298 to 400 K, and the average potential energy shifts from 2.26
to 4.60 kcal/mol. The spread of the distributions also
increases, from 2.01 to 2.70 kcal/mol. This is a consequence
of the absence of ZPE in the classical density. By contrast,
there is no such shift or broadening in either the PIMC or the
ASW distribution. The ZPE effects shift the average potential
energy up to almost 20 kcal/mol. The spread, though invariant
with temperature, is still significantly greater than that in the
purely classical simulation as a result of quantum penetration
into classically forbidden regions of phase space.

V. CONCLUDING REMARKS
In this paper we have shown that the ASW method can be
straightforwardly applied to generate the Wigner phase space
density for a molecular system with several degrees of freedom
whose potential function is available either in normal mode
coordinates or in Cartesian coordinates. The implementation
of the method is very simple in both cases; however, there are a
few subtleties when the method is implemented in Cartesian
coordinates. The starting Wigner density has a particularly
simple form for the separable, quadratic normal mode zeroth-
order Hamiltonian. Because the ASW procedure requires
classical trajectory propagation, the potential energy function
must be bound over the energy region accessed by trajectories
whose initial conditions are sampled from the Wigner
distribution of the quadratic normal mode Hamiltonian at
the given temperature. This requirement is not particularly
restrictive, given that the Wigner distribution is usually desired
as the starting point of quasiclassical trajectory calculations,
which would be subject to the same confining potential
considerations.
A common use of the Wigner density is in the context of

quasiclassical trajectory calculations. We have shown that
dynamical properties can be obtained in a single procedure
that involves classical trajectories sampled from the zeroth-
order Wigner density, which are integrated first under the
adiabatically switched potential and subsequently by the full
Hamiltonian. Thus, the ASW method provides a very simple
approach to quasiclassical calculations.
In its simplest form, which involves the Wigner transform of

the bare Boltzmann factor, the quasiclassical expression is real
valued, thus this procedure cannot give the imaginary part of
time correlation functions which leads to distortion of the
spectrum. We have shown that the spectral component
corresponding to the imaginary part can be inferred, thus
prominent features of molecular spectra are accurately
accounted for.
We first applied the ASW method to the formaldehyde

molecule in the normal mode representation, with a small
modification of the anharmonic terms to prevent unbound
trajectories. A number of comparisons against highly accurate
PIMC calculations demonstrated that the ASW procedure
yields a highly accurate quantum phase space distribution over
a wide range of temperatures. In order to provide a challenge
to the ASW method, we included temperatures that are
unrealistically high for this molecule but are such that cause the
trajectories to access regions of strong anharmonicity; such
regions would be accessible at physiological temperatures in
large molecules containing many low-frequency vibrations.
Simple harmonic approximations to the Wigner density cannot
describe such anharmonic regions properly, while the classical

Boltzmann distribution is unable to account for ZPE effects
and thus fails at low temperatures. Given the quadratic nature
of the reference Hamiltonian, which is the starting point for
the ASW procedure, the strongly anharmonic, high-temper-
ature regime is most challenging, thus the ability of the ASW
procedure to yield highly accurate results in this regime is very
encouraging.
As a second example of calculating the quantum phase space

distribution for an atomistic potential, we applied it to the
butyne molecule described by the CHARMM force field. In
this case, of course, the quantization leads to a double
inclusion of the quantum effects; however, it is sufficient as a
test of correctness and applicability of the ASW method for
Hamiltonians in Cartesian coordinates. The most attractive
feature of using the ASW procedure with ab initio potential
energy surfaces even in the Cartesian coordinates stems from
the fact that the method is no longer limited to a certain
parameter regime of fitting. In fact, it would be very exciting to
couple this method to density functional theory or other
electronic structure methods which can give us the locally
relevant Born−Oppenheimer potential energy surface on the
fly.
When used for launching classical trajectories, the ASW

density has the desirable feature of exactly preserving the
temporal invariance of the distribution, thus eliminating
spurious oscillatory features in dynamical observables.
Quasiclassical trajectory calculations often provide the only
pragmatic approach to time-dependent properties of polya-
tomic systems. However, if accurate ab initio potential energy
calculations are employed for force determination, it is
necessary to account for quantum mechanical effects in the
initial phase space distribution. The ASW scheme is ideally
suited to this task. It yields highly accurate results with
relatively little effort and requires practically no additional
setup, as the trajectories used to generate it can be continued
forward in time in order to generate the desired dynamics. We
thus envision that the ASW will find broad application in the
simulation of molecular systems via quasiclassical methods. It
will be most interesting to apply the ASW procedure to larger
molecular systems whose intramolecular dynamics are
described by accurate, permutationally invariant potential
energy surfaces25 that do not lead to unbound trajectories.
Quasiclassical trajectory calculations produce time correla-

tion functions that tend to decay faster than their fully
quantum mechanical counterparts, giving rise to broadened
spectra. This artifact is not a severe flaw in systems of many
degrees of freedom, where the density of spectral lines is high
and individual peaks can be distinguished only via high
resolution spectroscopy. A recently proposed imaginary-time
path integral-based Liouville dynamics (PILD) method,26

which can be derived from equilibrium Wigner dynamics,27 has
been shown to remove much of this broadening, capturing
sharp spectral peaks even with less accurate Gaussian
approximations to the Wigner density. Combination with the
ASW approach to generate a more accurate phase space
density for PILD propagation may lead to a very promising and
practical approach for generating quasiclassical spectra in small
polyatomic molecules.
Last, the ASW procedure may be applied without

modification to generate a quantized phase space distribution
in a subspace of the system’s coordinates, as required in the
quantum-classical path integral (QCPI) methodology.28 QCPI
offers a rigorous quantum-classical description of nonadiabatic
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processes in condensed phase and biological environments
which captures the interaction between quantum and classical
degrees of freedom without ad hoc assumptions or
approximations. Recent applications to charge transfer
processes in solution (where over 1000 solvent degrees of
freedom were described by classical trajectories governed by
classical force fields while the charge transfer pair was treated
fully quantum mechanically via the path integral formula-
tion29) showed that accurate, assumption-free quantum-
classical simulations are within reach. More recent develop-
ments30 have increased dramatically the efficiency of the QCPI
methodology, allowing highly accurate calculations with effort
comparable to that in routine molecular dynamics simulation.
These developments invite application of QCPI to charge
transfer in materials, where classical force fields are not
available, thus ab initio evaluation of the forces offers the only
available avenue. However, ZPE effects in vibrational degrees
of freedom are expected to be large. The ASW methodology
will allow quantization of the phase space density describing
the nuclear degrees of freedom within the QCPI framework,
providing a highly accurate and efficient approach to charge
transfer processes in many condensed phase systems.
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