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Abstract— This paper considers the problem of state-to-
state transition with state and control constraints, for a linear
system with model parameter uncertainties. Polynomial chaos
is used to transform the stochastic model to a deterministic
surrogate model. This surrogate model is used to pose a chance
constrained optimal control problem where the state constraints
and the residual energy cost are represented in terms of
the mean and variance of the stochastic states. The resulting
convex optimization is illustrated on the problem of rest-to-rest
maneuver of the benchmark floating oscillator.

I. INTRODUCTION
Control of flexible structures under assumptions of uncer-

tainties in the model has been a topic of research interest for
a while and a number of researchers have made contributions
to the field ([1], [2], [3]). One of the approaches of dealing
with model parameter uncertainty has been to reduce the
sensitivity of cost function in the proximity of the nominal
model by forcing the local sensitivity to zero [1], [2]. The
other popular approach has been to design controllers so as
to take care of worst case scenarios [4]. But this method
can often lead to very conservative results which may not be
practical.

A way to mitigate the issues of both these methods is to
use the information available in the probability distributions
of the uncertain variables to address robustness. In doing so,
it often leads to posing optimization problems (i.e. optimal
control problems) with probabilistic or chance constraints
([5], [6]). These chance constraints can in fact be written as
deterministic constraints to solve the optimization problem.
For example, Calafiore and El Ghaoui in the article [7]
investigate linear chance constraints which are robust to
distributions of the random variables. The article allows one
to write any linear chance constraint as a deterministic con-
straint based on the available random variable information.

Mesbah et al. in [8] presents a generic framework for
implementing linear chance inequality constraints in Model
Predictive Control (MPC) for non-linear systems with para-
metric uncertainties. Polynomial Chaos (PC) is used to
determine the first 2 moments of the stochastic states which
are then used to enforce these chance constraints. However,
the non-linear inequality constraints remain deterministic and
are limited to the nominal trajectories of the states. The
cost in the MPC framework is also considered to be non-
probabilistic.

In this paper, the focus is on linear systems with linear
constraints and a residual energy cost which has a quadratic

form, making the entire problem convex in a deterministic
framework. In a probabilistic framework, most often, the
worst-case state trajectories have significantly low associated
probabilities of realization [9]. It is also common knowledge
that one needs to trade-off performance for robustness or vice
versa when dealing with uncertain systems. Consequently,
considering a probabilistic cost function permits a simple
approach for the trade-off analysis. The chance constraint
corresponding to a linear constraint for an uncertain system
results in a cone constraint, but does not permit posing
a quadratic cost using the same framework. This prompts
using a l∞ or a l1 norm approximation of the l2 norm
which permits using the chance constraint to pose a convex
optimization problem for the design of controllers.

The structure of the paper is as follows: Section I intro-
duces the problem being solved, provides background on the
type of existing literature and motivates the need for chance
constraints in dynamic systems. Section II and III provides
a brief review of control framework used in the work and
presents a simple example problem that runs throughout
the document respectively. Then, Section IV gives a short
overview of Polynomial Chaos and shows its application in
estimating moments of stochastic states. Using results in this
section, solution to the example problem for chance state
constraints and chance energy constraints are presented in
Sections V and VI. Finally, the paper is completed with
concluding remarks in Section VII.

II. CONTROL OBJECTIVE

This section in the paper is used to present the control
problem clearly and elaborate the framework on which the
work has been developed.
The state space model for a lumped parameter spring-mass-
dashpot system is:,{
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where M , C, K and D are mass, damping, stiffness and
control influence matrices respectively.

Assuming z ∈ Rn (i.e. z = [z1, . . . , zn]T ), Z ∈ R2n. The
discrete time representation of equation (1) is:

Z(k̃ + 1) = AZ(k̃) +Bu(k̃) (2)



which will be used for controller design, where k̃ represents
the k̃th time step. The control objective is to determine u(k̃)
which can be used to drive the system from an initial state
(Z(0) at time t = 0) to a final desired state (Zd(Tf ) at
time t = Tf ) with constraints on the states and control input
during the transition. However, since the system is considered
to have parametric uncertainties, it is impossible to find an
open loop control u(k̃) which assures all realizations of the
dynamic system reach Zd(Tf ). To make all the realizations
reach as close to the desired value as possible, a quantity of
measure is necessary which characterizes this closeness. A
popular choice for this quantity in the literature has been the
residual energy (and thus, the same is chosen for this work).
The residual energy is defined as

Er =
1

2
ẋTM ẋ+

1

2
xTKx (3)

where the residual states are defined by

X =

[
x(Tf )
ẋ(Tf )

]
= Z(Tf )−Zd(Tf ). (4)

Z(Tf ) is the terminal value of the states of any realization
of the model in equation (2).
Equation (2) can also be written as a linear function of only
the control inputs and the initial conditions

Z(k̃ + 1) = Ak̃Z(0) +
k̃∑
i=0

Ak̃−iBu(i). (5)

This linear mapping can then be used to write state con-
straints at any instant in time (and if need be at all instants
in time i.e. ∀k̃) with the help of an appropriate output matrix.
Finally, the optimal control problem can be posed as:

minimizeu,f f

subject to E(i)
r 6 f

ulb 6 u(k̃) 6 uub ∀k
State Constraints(i) ∀k
for i = 1, 2, . . . , p.

where p represents the number of different realizations of
the uncertain system. If the state constraints are linear, then
the optimization can be shown to be convex. Barring the
residual energy constraint, all other constraints as well as
the cost function are linear. Moreover, the residual energy
constraint is a quadratic one which can be written as a LMI.
Therefore, the optimization problem is convex.
In fact, the same problem can be posed as a Linear Pro-
gramming (LP) problem if the residual energy constraint is
slightly modified and written as a linear function of the states.
Two such formulations (the l1 and the l∞ formulation) have
been shown in [10] and have been summarised here.
If a new set of states are defined by

Y =

[√
K 0

0
√
M

]
X (6)

the l1 formulation of the residual energy can be written as:
||Y ||1 ≤ f , which is equivalent to 22n linear constraints

±y1 ± y2 . . .± y2n ≤ f (7)

where Y = [y1, . . . , y2n]T . Similarly the l∞ formulation
(||Y ||∞ ≤ f ) can be written as 4n linear constraints

−f ≤ yi ≤ f ; ∀i = 1 . . . 2n. (8)

Other linear approximations of the residual energy function
can be found in [11]. Note that in case the stiffness matrix K
is positive semi-definite, a pseudo energy function is added
to the cost function to make it positive definite.

III. EXAMPLE PROBLEM

This section presents the 2 mass floating oscillator problem
(Figure. 1) which runs throughout the document. All control
problems have been solved on this example for illustration.
The M , C, K and D matrices are given by

Fig. 1. 2 Mass Spring Damper System

M =

[
5 0
0 5

]
; C =

[
1 −1
−1 1

]
; K =

[
k −k
−k k

]
(9)

and D = [1, 0]T .
It is assumed that k is uncertain. The control objective in this
example is to find the control trajectory u(k̃) which can move
the system from an initial rest state Z(0) = [0, 0, 0, 0]T to a
final desired rest state Zd(Tf ) = [1, 1, 0, 0]T under control
constraints: |u(k̃)| ≤ 1, (∀ k̃) and state constraints

|z1(k̃)− z2(k̃)| ≤ 0.15, ∀ k̃. (10)

All simulations in this work were done with a Tf = 15.
The sampling time for discretization used was Ts = 0.1.
Therefore the total number of steps were Nt = Tf/Ts+1 =
151.

IV. POLYNOMIAL CHAOS

This section presents a tool which allows one to charac-
terize the evolution of the uncertainty for stochastic systems
by expressing the stochastic states as a polynomial function
of the uncertain parameters of the model.
First investigated by Norbert Wiener in [12], his work
approximated states of a Gaussian process with an infinite
series expansion of orthogonal Hermite polynomials. Then,
it was shown that this expansion in terms of the Hermite
polynomials converged for any process characterized by a
finite variance [13]. These results were used to solve stochas-
tic differential equations by Ghanem and Spanos in their
book [14]. The infinite series expansion was truncated to a
finite number of terms following which a Galerkin projection
was done to formulate a set of deterministic equations.
The solution to these deterministic equations yielded the



coefficients of the truncated series expansion. However, PC
was generalised by Xiu et al. [15] where they showed that
any stochastic process could be approximated by an infinite
series expansion. The basis functions however, had to be
selected to be appropriate orthogonal polynomials (given by
the Wiener-Askey scheme) for exponential convergence. A
formulation of this concept (generalised PC (gPC)) has been
illustrated on the floating oscillator problem.

A. Methodology
Let a stochastic linear dynamical system be expressed in

the form

ẋ(t, ξ) = A(ξ)x(t) +B(ξ)u(t) and x(t0, ξ) = x0 (11)

where, x ∈ Rñ is the state vector, ξ ∈ Rm, the vector of
random variables, and u(t) the control input.
From gPC, the states can be expressed as

x(t, ξ) =
∞∑
i=0

xi(t)Ψi(ξ) (12)

where, Ψi(ξ) is a complete set of multivariate orthogonal
(w.r.t the pdf of ξ) polynomials and xi ∈ Rñ is the time
varying coefficient vector of Ψi(ξ). The selection of the set
of orthogonal polynomials for popular distributions is given
by the Wiener-Askey scheme [15].
As an approximation, the expansion is usually truncated to a
finite number of terms (depending on the desired accuracy)
[15]. Hence, equation (12) is rewritten as

x(t, ξ) ≈
N∑
i=0

xi(t)Ψi(ξ) (13)

The objective is to evaluate the unknown vectors xi(t) over
time. Equation (13) is substituted in equation (11) to get
N∑
i=0

ẋi(t)Ψi(ξ) = A(ξ)

[
N∑
i=0

xi(t)Ψi(ξ)

]
+B(ξ)u(t) (14)

Using the Galerkin projection approach after truncating the
PC expansion to N = 5 and recognising that for the example
ñ = 2n = 4, (N + 1)ñ = 24 deterministic equations
are formed which are used to evaluate the PC coefficients.
Therefore, if the states are expanded as

Z =
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Z3

Z4

 =


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Z30

Z40

Ψ0 +


Z11

Z21

Z31

Z41

Ψ1 + . . .+


Z15

Z25

Z35

Z45

Ψ5

(15)
where Z = [z1, z2, ż1, ż2]T then the deterministic equations
formed are given byŻ10〈Ψ0,Ψ0〉

...
Ż45〈Ψ5,Ψ5〉

 = G

Z10

...
Z45

+Hu (16)

Since, the control problem has been posed in the discrete
domain, equation (16) is discretized as

ZC(k̃ + 1) = ĀZC(k̃) + B̄u(k̃) (17)

where ZC = [Z10, . . . , Z15, Z20, . . . , Z25, Z30, . . . , Z45]T .

V. CONTROL PROBLEM WITH
NON-PROBABILISTIC ENERGY BUT

PROBABILISTIC STATE CONSTRAINTS

As mentioned previously, [7] provides an approach to
rewrite linear probabilistic inequalities as non-probabilistic
inequalties. In their work, they prove that if a and b are
random variables with known means and variances, then the
constraint:

Prob{aTx+ b ≤ 0} ≥ 1− ε (18)

is equivalent to the constraint√
1− ε
ε
{var[aTx+ b]}1/2 + E[aTx+ b] ≤ 0 (19)

where ε represents the risk level i.e. the probability with
which the constraint is permitted to be violated. It should be
noted that the constraint is conservative since it subsumes all
distributions with the same mean and variance. This means
that the equality sign of equation (18) is going to be active
for only a particular distribution (which is unknown).
Therefore, this simple formulation now allows us to enforce
linear probabilistic constraints as long as the mean and the
variance of the random variables are known. To illustrate
that different distributions yield different results, 3 separate
distributions with same mean and variance for k in the
example problem are considered.
The first distribution is a uniform one and is defined in
terms of the r.v. ξ1 ∈ U [−1, 1]. Therefore, we have k =
1 + 0.2324ξ1.
The second distribution is defined via a beta distributed r.v.
ξ2 ∈ [−1, 1] with parameters a = 1 and b = 1 making
k = 1 + 0.3ξ2.
The final distribution is chosen from the article [16]. The r.v.
ξ3 ∈ [−1, 1] and has a pdf given by

p(ξ3) = 1−W
1∑
i=0

Ai|ξ3|2−i+1 (20)

where W = −(3)!; Ai = (−1)i1Ci

2−i+1 ; and 1Ci = 1!
i!(1−i)! . k

is written in terms of ξ3 as k = 1 + 0.3674ξ3.
The mean and the variance of all 3 different k descriptions
are 1 and 0.018 respectively. A PC expansion for each
of these 3 cases are done to determine the mean and the
variance of the states at each time instant. Then these means
and variances are used to implement a probabilistic state
constraint where the probabilistic state constraint is written
in the form of equation (19). In this section, the optimal
control problem in section II is chosen to be solved with
a l∞ residual energy formulation for the example problem.
A linear version of the residual energy need not be chosen
though and any of the other formulations are acceptable.
The control constraints are the same as section III. The
relative displacement state constraint is however modified
to the probabilistic constraints

Prob{Z1(k̃)− Z2(k̃)− 0.15 ≤ 0} ≥ 1− ε (21)

Prob{−Z1(k̃) + Z2(k̃)− 0.15 ≤ 0} ≥ 1− ε (22)



∀ k̃. Equation (21) is equivalent to

ke{var[Z1−Z2−0.15]}1/2 +E[Z1−Z2−0.15] ≤ 0. (23)

where ke =
√

1−ε
ε . If a vector is defined as Ccon =

[1,−1, 0, 0]T , then the constraint can be simplified to

ke{var[CTconZ(k̃)− 0.15]}1/2 + E[CTconZ(k̃)− 0.15] ≤ 0.
(24)

Z(k̃) can be represented as a linear function of the control
input as

Z(k̃) = ΨAeq(k̃)U (25)

where

Ψ︸︷︷︸
(ñ×ñ(N+1))

=

Ψ0 . . . ΨN 0
. . .

0 Ψ0 . . . ΨN

 ;

(26)
Aeq(k̃)︸ ︷︷ ︸

(ñ(N+1)×Nt)

=
[
Āk̃−1B̄ Āk̃−2B̄ . . . B̄ 0T

]
(27)

and U = [u(0), . . . , u(k̃), . . . , u(150)]T . One must be aware
that ZC in equation (17) is basically ZC(k̃) = Aeq(k̃)U .
It should be noted that Ψ is different for the 3 distinct
distributions. The basis functions (Ψ0 through ΨN ) for the
uniform distribution are Legendre polynomials. The basis
functions for the beta distribution are Jacobi polynomials and
the basis functions for the final distribution are generated
using the Gram – Schmidt orthogonalization. Therefore,
different values of Ā, B̄, Aeq and Ψ are calculated for each
distribution. However, the order of PC is chosen to be N = 5
to be the same for all the 3 cases.
Now, using equation (25) we get

E[CTconZ(k̃)− 0.15] = CTconE[ΨAeq(k̃)U ]− 0.15. (28)

Since, the only random variable is Ψ, the equation reduces
to: E[CTconZ(k̃)− 0.15] = CTconE[Ψ]Aeq(k̃)U − 0.15.
Similarly, var[CTconZ(k̃)− 0.15] can be reduced to

UTATeq (E[ΨTCconC
T
conΨ]− E[ΨT ]CconC

T
conE[Ψ])︸ ︷︷ ︸

S

AeqU

(29)
∀ k̃. Defining a new matrix S (S is real symmetric positive
semidefinite) in equation (29), we can derive

var[CTconZ(k̃)− 0.15]
1/2

= ||Λ1/2V TAeqU ||2 (30)

where an SV D decomposition of S is done as: S = V ΛV T .
Once again, the matrices comprising expected values (E[Ψ]
and S) are distribution dependent. Finally, the constraints
described in equation (21) and (22) can be summarised by
the convex constraints

ke||Λ1/2V TAeqU ||2 + CTconE[Ψ]Aeq(k̃)U − 0.15 ≤ 0

ke||Λ1/2V TAeqU ||2 − CTconE[Ψ]Aeq(k̃)U − 0.15 ≤ 0.
(31)

Equation (31) is used to enforce the state constraints when
solving for U , in the example problem.

TABLE I
COMPARISON ACROSS DISTRIBUTIONS FROM 100000 MC SIMULATIONS

Uniform Beta Custom
ε f Max. V f Max. V f Max. V
0.2 0.0147 3.46 0.0209 5.17 0.0276 5.66
0.5 0.0105 22.32 0.0161 20.37 0.0229 19.01
0.8 0.0090 51.39 0.0143 47.75 0.0210 45.12

Results
Figure 2(a) shows a plot with MC realizations of the relative
displacement (for ε = 0.5, i.e. for a 50% constraint violation
allowance) for a beta distribution. It can be seen that the
state constraints are in fact violated. Figure. 2(b) shows the
percentage of times these violations take place from 100000
simulations.
Although a 50% violation was allowed, a maximum vio-

lation of only 20.37% is observed. This is not an anomaly
since we must remember that the probabilistic constraint is
a conservative one and that the violations are a function
of the distribution. Table I presents different maximum
percentage violations (Max. V) that were observed for the 3
distributions.

Another interesting observation about the results can be
made from the optimal value of the cost (i.e. f ). For an
l∞ Er, in the deterministic case (where state constraints are
non-probabilistic) the cost f is seen to be 0.0248; while the
probabilistic case with a beta distribution is seen to have a
cost of 0.0161 (Figure 2(c)).
A lower cost for the probabilistic state constraints is expected
since a probabilistic constraint is not a hard one. Therefore,
if certain violations are allowed, the final residual energy
cost is bound to improve. This trend of decreasing optimal
cost with increased probability constraint violations can be
seen across all distributions (Table I).

VI. CONTROL PROBLEM WITH PROBABILISTIC
ENERGY AND PROBABILISTIC STATE

CONSTRAINTS

An approach similar to the probabilistic state constraints
is used to enforce the probabilistic terminal residual energy
constraint. Since, the formulation only allows for linear
constraints, only the linear versions of the residual energy
(l∞ and l1 formulations) can be incorporated.
Therefore, in this section, the optimal control problem in
section II is chosen to be solved with probabilistic state
constraints (same as equations (21) and (22)) and the prob-
abilistic l∞ residual energy constraints

Prob{±yi − f ≤ 0} ≥ 1− ε for i = 1, . . . , 4 (32)

where yi are defined through equation (6). It should be noted
that equation (32) represents a total of 8 constraints for the
fourth order system. The control constraints are chosen to be
the same as before, given in section III.
yi has been explicitly expanded for the example problem in
the following equations

y1 = K1CkX; y2 = K2CkX; (33)
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Fig. 2. (a) Relative displacement vs Time (b) Percentage Violation vs Time (c) Residual Energy Plot

y3 = M1CmX; y4 = M2CmX (34)

where X = Z(Tf )−Zd(Tf );

Ck =

[
1 0 0 0
0 1 0 0

]
; Cm =

[
0 0 1 0
0 0 0 1

]
; (35)

√
K = [KT

1 ,K
T
2 ]T ;

√
M = [MT

1 ,M
T
2 ]T . (36)

One must remember that K1 and K2 are still random row
vectors since K is a random matrix. The development of just
one of the constraints is shown. The other constraints can be
derived in an identical fashion. The constraint shown is

Prob{y1 − f ≤ 0} ≥ 1− ε. (37)

Similar to the previous section, equation (37) is equivalent
to √

1− ε
ε
{var[y1 − f ]}1/2 + E[y1 − f ] ≤ 0. (38)

Now, E[y1 − f ] = E[K1CkZ(Tf )−K1CkZd(Tf )− f ].
(39)

But on substituting Z(Tf ) = ΨAeq(k̃f )U (where k̃f is the
final time iteration number), equation (39) can be written as

E[y1 − f ] = E[K1CkΨ]Aeq(k̃f )U − E[K1]CkZd(Tf )− f.
(40)

Moreover, var[y1 − f ] = var[y1] since f is not a random
variable. After substituting y1 and simplifying the equation
we get

var[y1] = var[K1CkZ(Tf )−K1CkZd(Tf )] (41)

= E[(K1CkZ(Tf )−K1CkZd(Tf ))(K1CkZ(Tf )−
K1CkZd(Tf ))T ]− E[K1CkZ(Tf )−
K1CkZd(Tf )]E[K1CkZ(Tf )−K1CkZd(Tf )]T .

(42)

Equation (42) can be simplified to var[y1] = UTPU +
2QU +R where

P = Aeq(k̃f )T (E[ΨTCTk K
T
1 K1CkΨ]−

E[ΨTCTk K
T
1 ]E[K1CkΨ])Aeq(k̃f ); (43)

Q = Zd
TCTk (E[KT

1 ]E[K1CkΨ]−E[KT
1 K1CkΨ])Aeq(k̃f )

(44)

and R = Zd
TCk(E[KT

1 K1]− E[KT
1 ]E[K1])CkZd.

Since, var[y1 − f ] ≥ 0, a factorization exists of the form

var[y1 − f ] = (MU +D)T (MU +D), (45)

in which case we get, var[y1 − f ]
1/2

= ||MU + D||2.
Therefore, the probability constraint (equation (37)) finally
becomes the convex constraint

ke||MU +D||2+

E[K1CkΨ]Aeq(k̃f )U − E[K1]CkZd(Tf )− f ≤ 0. (46)

Similarly, the probability constraint

Prob{−y1 − f ≤ 0} ≥ 1− ε (47)

amounts to the convex constraint

ke||MU +D||2−
E[K1CkΨ]Aeq(k̃f )U + E[K1]CkZd(Tf )− f ≤ 0 (48)

(from a development similar to equations (37) through (46)).
The other probability constraints to enforce the residual
energy can be done in the same way.

Results
After the formulation of all the constraints (both state

and terminal residual energy), the example problem was
solved. Once again, results from the Beta distribution is
presented. In all subsequent notations, ε1 has been used
to indicate the risk levels for the state constraints and ε2
has been used to indicate the risk levels for the residual
energy constraints. Since, the constraints are all conservative,
a maximum state constraint violation of only 5.06% is
observed (although the allowance was 20%). Figure. 3 shows
a plot of the l∞ residual energy. The red dotted line indicates
the cost determined for the case of probabilistic state and
energy constraints. The black dotted line is the deterministic
counterpart and is the same as Figure 2(c). It can be seen
that the cost (f = 0.0082) has significantly reduced since
the constraints are no longer hard (as limited violations are
permitted) compared to the deterministic case (f = 0.0248).
Furthermore, it is seen that the cost is less even compared to
when only state constraints were probabilistic (f = 0.0209
for ε = 0.2 in Table I) as expected. The blue dots represent
the MC realizations when both constraints (state and energy)



TABLE II
COMPARISON ACROSS DISTRIBUTIONS FROM 100000 MC SIMULATIONS

Uniform Beta Custom
ε1 ε2 f Max. Vs Max. Ve f Max. Vs Max. Ve f Max. Vs Max. Ve

0.2 0.2 0.0154 3.68 6.16 0.0161 5.06 5.84 0.0167 5.27 5.53
0.2 0.5 0.0078 3.48 21.57 0.0082 5.06 19.24 0.0085 5.15 17.98
0.2 0.8 0.0039 3.39 44.62 0.0041 5.11 43.41 0.0043 5.12 42.44
0.5 0.2 0.0110 22.66 7.51 0.0118 20.08 6.45 0.0125 19.14 5.91
0.5 0.5 0.0055 22.69 21.49 0.0059 20.29 18.94 0.0063 19.16 17.65
0.5 0.8 0.0027 22.23 50.28 0.0030 20.27 49.22 0.0032 19.19 46.68
0.8 0.2 0.0091 51.77 7.93 0.0100 46.83 6.62 0.0107 45.09 5.95
0.8 0.5 0.0046 51.77 20.69 0.0050 47.34 18.13 0.0054 44.80 17.11
0.8 0.8 0.0023 51.88 53.17 0.0025 47.32 46.67 0.0027 45.22 44.77

are probabilistic. From 10000 MC simulations, the maximum
percentage violation of an energy constraint was seen to be
23.2% (well within the allowed 50%). This means that the
majority of the blue dots lie within red dotted lines.

Fig. 3. Residual Energy Boundary: E(1)
r : probabilistic state and energy

constraints, E(2)
r : probabilistic state constraints, E(3)

r : deterministic state
and energy constraints

The violations are all distribution dependent and Table II
has been used to list the results for the 3 distributions for
various combinations of ε1 and ε2. Max. Vs and Max. Ve
represents the maximum violations observed for the state
and the energy constraints respectively.

VII. CONCLUSIONS
In this paper, a design approach is presented which re-

sults in a convex optimization problem for the design of
controllers for linear systems with model parameter uncer-
tainties. The probabilistic representation of model parameter
uncertainties is suited to the use of polynomial chaos to con-
vert the stochastic model to a deterministic surrogate model,
which permits evaluation of the mean and variance of the
evolving states. The chance constraint are used to formulate
a convex optimization problem as a function of an acceptable
level of constraint violation. Since the problem formulation
is agnostic to the distribution of the uncertainty if their
mean and variance match, three distributions are selected to
illustrate the relative performance for the benchmark floating
oscillator problem. It is seen that the constraint violation are
always significantly smaller than the bounds that are imposed
in the optimal control problem.

ACKNOWLEDGMENT

This material is based upon work supported through Na-
tional Science Foundation (NSF) under Awards No. CMMI-
1537210. All results and opinions expressed in this article
are those of the authors and do not reflect opinions of NSF.

REFERENCES

[1] N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce
system vibration,” Journal of Dynamic Systems, Measurement, and
Control, vol. 112, no. 1, pp. 76–82, 1990.

[2] T. Singh and S. Vadali, “Robust time-delay control,” Journal of
dynamic systems, measurement, and control, vol. 115, no. 2A, pp.
303–306, 1993.

[3] S. Nandi, V. Migeon, T. Singh, and P. Singla, “State constrained
controller design for uncertain linear systems using polynomial chaos,”
in 2016 American Control Conference (ACC). IEEE, 2016, pp. 2005–
2010.

[4] T. Singh, “Minimax design of robust controllers for flexible systems,”
Journal of guidance, control, and dynamics, vol. 25, no. 5, pp. 868–
875, 2002.

[5] G. Schildbach, G. C. Calafiore, L. Fagiano, and M. Morari, “Random-
ized model predictive control for stochastic linear systems,” in 2012
American Control Conference (ACC). IEEE, 2012, pp. 417–422.

[6] G. Schildbach, P. Goulart, and M. Morari, “The linear quadratic
regulator with chance constraints,” in Control Conference (ECC), 2013
European. IEEE, 2013, pp. 2746–2751.

[7] G. C. Calafiore and L. El Ghaoui, “On distributionally robust chance-
constrained linear programs,” Journal of Optimization Theory and
Applications, vol. 130, no. 1, pp. 1–22, 2006.

[8] A. Mesbah, S. Streif, R. Findeisen, and R. D. Braatz, “Stochastic
nonlinear model predictive control with probabilistic constraints,” in
2014 American Control Conference. IEEE, 2014, pp. 2413–2419.

[9] S. Garatti and M. C. Campi, “Modulating robustness in control design:
Principles and algorithms,” IEEE Control Systems, vol. 33, no. 2, pp.
36–51, 2013.

[10] T. Singh, Optimal reference shaping for dynamical systems: theory
and applications. CRC Press, 2009.

[11] ——, “Minimax input shaper design using linear programming,”
Journal of Dynamic Systems, Measurement, and Control, vol. 130,
no. 5, p. 051010, 2008.

[12] N. Wiener, “The homogeneous chaos,” American Journal of
Mathematics, vol. 60, no. 4, pp. 897–936 c, 1938. [Online].
Available: http://www.jstor.org/stable/2371268

[13] R. H. Cameron and W. T. Martin, “The orthogonal development
of non-linear functionals in series of fourier-hermite functionals,”
Annals of Mathematics, vol. 48, no. 2, pp. 385–392 h, 1947. [Online].
Available: http://www.jstor.org/stable/1969178

[14] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: Aspectral
Approach. Springer New York, 1991.

[15] D. Xiu and G. E. Karniadakis, “The wiener–askey polynomial
chaos for stochastic differential equations,” SIAM J. Sci. Comput.,
vol. 24, no. 2, pp. 619–644 o, Feb. 2002. [Online]. Available:
http://dx.doi.org/10.1137/S1064827501387826

[16] T. Singh, P. Singla, and U. Konda, “Polynomial chaos based design
of robust input shapers,” Journal of Dynamic Systems, Measurement,
and Control, vol. 132, no. 5, p. 051010, 2010.


