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ABSTRACT

Modeling buildings’ heat dynamics is a complex process which
depends on various factors including weather, building thermal
capacity, insulation preservation, and residents’ behavior. Gray-box
models offer an explanation of those dynamics, as expressed in
a few parameters specific to built environments that can provide
compelling insights into the characteristics of building artifacts. In
this paper, we present a systematic study of Bayesian approaches
to modeling buildings’ parameters, and hence their thermal char-
acteristics. We build a Bayesian state-space model that can adapt
and incorporate buildings’ thermal equations and postulate a gen-
eralized solution that can easily adapt prior knowledge regarding
the parameters. We then show that a faster approximate approach
using Variational Inference for parameter estimation can posit sim-
ilar parameters’ quantification as that of a more time-consuming
Markov Chain Monte Carlo (MCMC) approach. We perform ex-
tensive evaluations on two datasets to understand the generative
process and attest that the Bayesian approach is more interpretable.
We further study the effects of prior selection on the model pa-
rameters and transfer learning, where we learn parameters from
one season and reuse them to fit the model in other seasons. We
perform extensive evaluations on controlled and real data traces to
enumerate buildings’ parameters within a 95% credible interval.
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1 INTRODUCTION

Retrofitting an existing building often reduces its energy consump-
tion and particularly the heating and cooling costs. To assess the
effectiveness of the retrofit, auditors perform on-site tests to gauge
the insulation and infiltration quality of a house. However, such
tests are expensive and intrusive, and thus cannot be carried out
continuously. The proliferation of smart thermostats such as NEST
and Ecobee [23], and their acceptance and deployment in home
environments are opening up new research avenues. In the near
term, we envision a self-adaptive and programmable thermostat,
that can seamlessly receive environmental data from the indoor
and outdoors, and residents’ activities, to model the inherent ther-
mal characteristics of the building. Such a dynamic and adaptive
smart thermostat will provide an early assessment of the insulation
and leakage, and thus help promote energy sensitive actions and
maintain comfort levels.

Physicists have studied methods for modeling buildings’ thermal
conditions by way of several measurable parameters [10, 39]. In
these models, the thermal dynamics of a building are represented
by an RC-circuit, due to system equivalence, which allows us to
derive a set of stochastic differential equations that describe the
thermal patterns. The composite parameters resistance (R) and ca-
pacitance (C) of the circuit are analogous to the buildings’ insulation
(and to some extent the infiltration), and the thermal mass, respec-
tively. Building quality measurement uses standardized metrics
such as R-value (or U-value) to measure insulation and ACHs to
measure infiltration. The thermal mass of a house is the ability
of a material to absorb and store heat energy. Optimization based
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techniques [16, 34] are popularly used to estimate the parameters,
where the objective is to reduce the error between observed and
predicted values. However, most approaches do not simultaneously
consider two key factors that are common in the real world:

o Stochasticity of the building parameters: The optimization-
based methods are effective for fitting a model to data, but
cannot provide a margin of error on the estimation. This is
important as stochasticity arises due to several unaccounted
factors, including human activity and home appliance usage,
which cannot be directly quantified.

o Presence of prior knowledge: It is common knowledge that
older buildings have poor insulation. Studies [2] show that
the average house size has increased with time, and that
larger homes typically have better insulation quality. By
incorporation of prior knowledge such as “How old is a build-
ing?” or “How much square footage does it have?”, these intu-
itions about a building’s condition can potentially increase
the accuracy of the estimated parameters.

To address these concerns, the Bayesian approach is a natural
and simple way to incorporate prior knowledge in the building
thermal modeling framework which also approximates the factors
influencing the model dynamics. It allows for comparisons among
multiple candidate models instead of performing binary hypoth-
esis tests on a single model. The Bayesian posterior distribution
plays the role of Occam’s razor, effectively penalizing an increase
in model complexity, such as adding variables, while rewarding im-
provements in fit. However, the existing Bayesian approaches have
a few notable limitations: (i) Bayesian inference of the parameters
is primarily performed with Markov Chain Monte Carlo (MCMC)
algorithms [13, 15] which take a long time to converge, and thus
are not well suited for the case where model complexity and/or data
size increase. (ii) A majority of previous works applied uninformed
normal priors and do not evaluate the effect of prior selection on
model performance. As such the full benefit of a Bayesian statis-
tical approach is not utilized. (iii) Finally, most studies limit their
scope to a single seasonal period, particularly in the winter when
residents use the HVAC in heating mode, and do not study how the
model parameters estimated in one season can be used to monitor
the house longitudinally.

To investigate these shortcomings and their resolution, in this
paper we present a systematic study of Bayesian approaches to the
modeling of buildings’ thermal dynamics. We propose a generalized
Bayesian State Space Model (BSSM) that can combine physics-based
thermal models into a probabilistic framework. We further embed
prior intuition and knowledge regarding buildings into the model
based on subjective beliefs. For example, in Figure 1, the probability
densities of the R-values of homes built before the year 2000 differ
depending on their size, in this case whether their area is less than
2000 square feet. We show how to incorporate such knowledge by
effective prior selection. However, such priors are not conjugate to
the likelihood and solutions cannot be computed analytically. We
thus perform inference based on algorithms that do not depend on
conjugacy, such as Automatic Differentiation Variational Inference,
and show that the buildings’ parameters can be estimated effec-
tively with such an approximate approach. We analyze the effect
of learning parameters from one season and use transfer learning
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Figure 1: Distribution of R-values of houses

to estimate the thermal dynamics in a different season when the
HVAC is used in a different mode. We present two case studies on
real data traces to show the effectiveness of the Bayesian approach,
and the effects of prior selection and transfer learning across sea-
sons.

Key Contributions: Our innovations and results provide evi-
dence that the Bayesian approach to modeling a building’s thermal
characteristics is valuable. The primary contributions of our work
are as follows.

e Bayesian State Space Model: We propose a Bayesian state-
space model for estimating buildings’ thermal parameters.
Unlike previous methods [3, 20, 26, 28] which use point esti-
mates, our Bayesian model is capable of incorporating beliefs
using non-conjugate priors, and managing uncertainty in
the parameters. We infer the model parameters within a 95%
credible interval with a Mean Field Variational Approxima-
tion, and show that the estimates are as accurate as that of a
more time-consuming MCMC approach.

o Interpretable assessment of the generative model: We explore
the generative characteristics of the model by Monte-Carlo
simulation and forecasting, which helps understand the causal
physical process that describes the thermal behavior of a
house. We also test the quality of the models by forecasting
indoor temperature with the learned building parameters.

e Effects of transfer learning & prior selection: We propose a
transfer learning based approach by learning buildings’ pa-
rameters in summer, when HVAC is typically operational in
cooling mode, and used it to aid fitting the data in seasons
when HVAC is not used or operates in heating mode. We
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propose a systematic approach to prior selection to incorpo-
rate beliefs about the buildings’ characteristics in the model
and conducted rigorous experiments to study their behavior.

The rest of the paper is structured as follows. In Section 2 we discuss
related work on building parameter identification and Bayesian
estimation. In Section 3 we propose the Bayesian State Space model
for building parameter identification. In Section 4 we present two
case studies and provide analysis of the model and finally conclude
in Section 5.

2 RELATED WORKS

In this section, we review the previous works in three major related
areas — parametric modeling of buildings’ thermal dynamics, tech-
niques for parameter estimation, and a brief review of Bayesian
inference.

Parametric modeling of buildings’ thermal dynamics helps
to understand a building’s quality with few parameters. There are
three approaches for modeling buildings’ thermal dynamics - white-
box, black-box and gray-box modeling. white-box approach models
all physical processes of a building [19, 22] by formulating exact sys-
tem dynamics. Such deterministic models are difficult to construct
as the exact dynamics are often unavailable and due to the presence
of noise in the data, arising from unaccounted factors. Black-box
modeling approaches, such as regression, neural networks etc., are
applied to model indoor temperature as a function of observed data,
much like outdoor temperature [33]. However they do not describe
the generative process and thus isn’t effective for interpretation.
A gray-box model is a combination of prior physical knowledge
and statistical approaches. The heat dynamics of the building was
formulated using several equivalent models of varying complex-
ity in [3], that estimated the insulation and the thermal mass of a
building. An extension of such an approach included the effect of
wind speed on infiltration is proposed in [28], and expansionary
effect of air with temperature changes was modeled in [38].

Parameter estimation for the gray-box model was performed
in [26] by maximum likelihood estimation (MLE) and maximum
a posteriori estimation (MAP). An extension of the approach [14],
chose a simpler model to represent the dynamics and learned the
residuals separately with Gaussian priors. Other works have fo-
cused on optimization based techniques [28, 34], where the objec-
tive is to minimize deviation between measurements and predic-
tions from the model. Although, these approaches are simpler, they
do not incorporate noise estimation in the equations. Alternatively,
a Bayesian approach offers a natural way of dealing with parameter
uncertainty in a state space model [13, 15]. Bayesian methods have
been widely used for the closely related problem of building energy
modeling [17, 21, 24, 29], but have been less well studied in the
context of thermal modeling for buildings [3, 35]. A majority of
previous works have applied the Metropolis-Hastings algorithm
for Bayesian inference [17, 21, 24, 29, 35] which is ill-fitted for
the specific problem as it takes a large number of steps to achieve
convergence. The No U-Turn sampler (NUTS) showed better re-
sults [9] for parameter estimation in a related problem, building
energy models, so we choose the latter.

Bayesian Inference, as performed in the previous works, used
uninformed uniform priors and/or Normal priors for the model
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parameters [3, 35]. Such assumptions do not hold true as the param-
eters typically have non-Normal distributions. Non-normal priors
do not have conjugacy with the likelihood, and analytical solutions
of the posterior distribution are not possible. In such cases, algo-
rithms that do not rely on conjugacy become important such as
MCMC and Variational Inference. MCMC algorithms are capable
of overcoming this problem but are time-consuming. Alternatively,
Variational Inference [4, 30] is an approximate inference that derives
a lower bound for the marginal likelihood which can be optimized
using stochastic gradient descent. In our experiments, we use the
Mean Field Variational Inference and find that it provides similar
parameter estimation to MCMC algorithms.

3 PROPOSED APPROACH

We follow the iterative modeling approach known as Box’s loop [6],
shown in Fig. 2, for estimating buildings’ thermal parameters. The
process starts with a collected and pre-processed dataset. We pro-
pose a Bayesian state space model to frame the problem and esti-
mate parameters using MCMC and Variational Inference. Finally,
we test for model convergence and measure the goodness of fit.

DATA

Sensor data;
weather data

Criticize
Model

Convergence
check; Posterior
Predictive Check

Build
Model

State Space Model

Infer Model

MCMC
Variational Inference

APPLY MODEL

Building quality assessment; Forecasting

Figure 2: Box’s Loop

3.1

The generalized linear state space models consist of a sequence of M-
dimensional observations (y1, y2, ... yN), assumed to be generated
from latent D-dimensional states X = (x1, x2, ... xn57) and control
variables U = (u1, ug, ... un). The data Y is generated by the following
state space equations:

Bayesian Linear State Space Model

Xn = Axp—1 + Bup—1 + N(Ov Q)
yn = Cxp + N(O,R),

(1)
()

where Eqn. 1 is the state evolution equation (analogous to HMM
state transition) and Eqn. 2 is the observation or measurement equa-

tion (emission probability). The overall state transition probability
is given as

P(X|A, B) = N(xolmo, A") %

N
n N(xpn|Axp—1 + Buy, diag(rfl)),

n=1
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where x is an auxiliary initial state with mean m¢ and a precision
matrix of Ag (the matrix inverse of the covariance matrix). The
emission probability is given by

N
P(YIC, X, 7) = | | N(Wn|Cxn, diag(z™)). @)

n=1
Here Y is a normal distribution with mean CX and a covariance
matrix with diag(r~!). The covariance matrix R is a diagonal matrix
as the noise is independent of the observed states Y. The graphical
nature of the BSSM model is shown in Fig 3, which is analogous to
an Input-Output HMM [5].

Figure 3: Bayesian State Space Model

3.2 Problem Formulation

We use an example to illustrate how to formulate a building’s ther-
mal equations and incorporate them into the proposed state space
model framework. Figure 4 shows an equivalent circuit that de-
scribes the thermal dynamics of a house.

Ambient

Rie Rea
N—(>)—

Interior Heater

® O )

Ce

Figure 4: TiTe circuit model

In this example, called the TiTe model [3], we assume that there
are two latent state spaces Ti and Te that describes the indoor and
envelope temperatures. The thermal dynamics is represented by a
set of stochastic differential equations derived from the equivalent
assumption. The equations of the process are given by:
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1 1 Ay
dT; = Te — Ti)dt + —Qpdt + —Osdt + 0dw; 5
i Rieci( e i) C; h C; s oiawij ()
1
dTe = ———(T;i = Te)dt + ———— (T4 — Te)dt + oed 6
e Riece( i e) RBeaCe( a e) OeldWe (6)
Y =Ty +ex, ™)

where t is the time, R;, is the thermal resistance between the
interior and the building envelope, R, is the thermal resistance
between the building envelope and the ambient air, C; is the heat
capacity of the interior, C, is the heat capacity of the building en-
velope, @y, is the energy flux from the heating system, A,, is the
effective window area, ®; is the energy flux from solar radiation,
Ty is the ambient air temperature, {w; s} and {we,;} are standard
Wiener processes with variances o; and o, respectively, where ¢ is
the point in time of a measurement. Y; is the indoor temperature,
T;, is the measured interior and ey is the measurement error, which
is assumed to be a Gaussian white noise process. Converting the
differential equations (Eqns 5-7) as difference equations we get the
transition and emission matrix form as:

Titt+ 1] _ |1~ mocs Ri.C: x | i)
Te(t+1) R,-elce 1= R,-elce B RiaICe Te(®)
Ta(t +1)
0 1 Aw i
+ %i %i X [Pp(t+1)] + % O} ®)
Riace q)s(t + 1) ¢
B Ti(t)
Y(H)=[1 0] x [Te(t)] +0. ©)

Eqn 8 is the state transition of the dynamic system and is equiv-
alent to the general form as presented in Eqn 1 that gives us the
transition probability, i.e P(x;+1]|x;) ~ N(AX + BU,X,,) (Eqn 3).
Similarly, Eqn 9 is equivalent to the measurement equation pro-
vided by Eqn 2 that gives us the emission probability (Eqn 4). In
Eqn 8, the first two matrices models the physical dynamics and the
third matrix is the measure of stochasticity in the data. Similarly, in
Eqn 9, the first matrix is the measurement equation and o is the er-
ror in measurement. In the base case, we assume an uninformative
Gamma prior over the model parameters and the hyper-parameters
of the gamma distribution are automatic relevance determination
(ARD) parameters, which prune out components that are not signif-
icant enough. We provide broad priors to the gamma distribution
by setting the shape and rate to a very small value [4]. Thus pa-
rameters are givenas R ~I'(a = §, = §),C ~T(a = 46, = 9),
Aw ~ I'(a = 8, = 0), where ¢ is a very small value. We also
impose a bound on the parameters, which can help by limiting
the parameters to certain reasonable ranges. We formulate other
instantiations of the physical models in the case studies presented
in Section 4.1.2.

3.3 Bayesian Inference

Bayesian inference recovers the posterior distribution over param-
eters and latent variables of the model, which can hence be used to
perform prediction. While exact solutions can be achieved for some
basic models, computing the posterior distribution is generally an
intractable problem, in which case approximate inference is needed.
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Markov chain Monte Carlo (MCMC) algorithms are a widely
applied method for approximate inference, which aims to estimate
the posterior using a collection of samples drawn from an appropri-
ate Markov chain. Hamiltonian Monte Carlo (HMC) [32] algorithms
such as NUTS avoid the random walk behavior by taking a series
of steps informed by first-order gradient information. These fea-
tures allow it to converge to high-dimensional target distributions
much more quickly than simpler methods such as random walk
Metropolis Hastings [41]. The No U-Turn Sampler (NUTS) [18]
uses a recursive algorithm to build a set of likely candidate points
that span a range of the target distribution, stopping automatically
when it starts to backtrack and retrace its steps, which prevents the
revisiting of previously explored paths. In this work, we select the
NUTS sampler for inference.

Another option is Variational Inference, which is a class of al-
gorithms that are deterministic alternatives to MCMC. This reduces
inference tasks to an optimization problem [7]. In a probabilistic
latent model setting, Y is the observed data, X is the latent variable
space and 0 the model parameters. An approximating distribution
q(X, 0) over the latent variables and parameters, called the varia-
tional distribution, is constructed to approximate the posterior. The
objective is to reduce the “gap” between the variational and the
posterior distribution. This gap is given by the Kullback-Leibler
divergence, which is the relative entropy between the two distribu-
tions, given as:

q(X, 0)
(X, 1Y)
=Eq4llog q(X, 0)] —=E4[log p(X, 0, Y)| + log p(Y) .

KL(g(X; 0)lIp(X, 0]Y)) = Eq] log

(10)

In Eqn 10, log p(Y) is independent of the distribution g(X, 6), so
minimizing Eqn 10 is equivalent to maximizing:

L(g) = Eqllog p(X. 6, Y)] - Eq[log q(X. 0)]

=Eqllog p(X. 0, Y)] + H(q) . (11)

Using Jensen’s inequality, L(q) can be shown to be a lower bound
on log p(Y), and is hence known as the Evidence Lower Bound
(ELBO). To make inference tractable, we make simplifying assump-
tions on q. The most commonly used assumption is the mean-field
approximation, which assumes that the latent variables are indepen-
dent of each other. Thus the variational distribution with N latent
variables is assumed factorized as q(X, 6) = q(0) [—[ﬁ\i1 q(X;). Tradi-
tionally, a Variational Inference algorithm requires developing and
implementing model specific optimization routines. Automatic
Differentiation Variational Inference (ADVI) [27] proposes an
automatic solution to posterior inference. ADVI first transforms
the model into one with unconstrained real-valued latent variables.
Due to this transformation all the variables can be approximated
using a single variational family for all models. It then recasts the
gradient of the variational objective function as an expectation over
q. This involves the gradient of the log of the joint likelihood with
respect to the latent variable Vg log p(x,0), which is computed
using reverse-mode automatic differentiation [31]. The gradient ex-
pressed as an expectation then can be approximated with a Monte
Carlo integration. ADVI further reparameterizes the gradient in
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terms of a standard Gaussian and uses noisy gradients to optimize
the variational distribution.

It is important to note the underlying assumptions of ADVI. It
factors the posterior distribution such that all the state variables are
statistically independent, following the mean-field approximation.
For a highly correlated posterior, e.g. in state space models, where
the intuition is that x;+1 ~ N(x;, 8) will be highly correlated with
X¢, the mean-field assumption is rather unrealistic. The method can
still work well in practice, however, as the (uncorrelated) q is fit to
the (correlated) p, thereby exploiting dependencies, even though
they are not ultimately encoded in q. NUTS, on the other hand, is
very good at exploring a correlated, high-dimensional distribution,
but can suffer in both run-time and convergence speed versus ADVIL
We empirically evaluate the effectiveness of these approximations
by comparing the parameters inferred by both the methods.

3.4 Model Criticism

Model criticism requires tests for convergence and testing goodness
of fit on held out data. Since the primary objective of the study is to
obtain the estimated parameter values, we also inspect the credible
interval of the parameters. If the region is too wide we infer that
the uncertainty in estimation is high.

Convergence Diagnostics: We select the Gelman-Rubin diag-
nostic [11], which checks for the lack of convergence by comparing
the variance between multiple chains to the variance within each
chain. Convergence is more straightforward to analyze for Vari-
ational Inference. The convergence criterion is simply to iterate
until the ELBO no longer increases.

Goodness of fit is tested using posterior predictive checks, which
are performed by simulating replicated data under the fitted model
and then comparing these to the observed data to look for system-
atic discrepancies between real and simulated data [12].

Credible Interval: The motivation behind using a Bayesian
approach is to find the range of possible values for the building
parameters. A standard measure of confidence in some (scalar)
quantity 6 is the “width” of its posterior distribution. This can be
measured using a 100(1 - «)% credible interval, where we select
as 0.05 to estimate parameters with a 95% probability,

CaD)=(Uu):PI<0<ulV)=1-a, (12)

where the interval for a parameter is bounded by (l,u) with a prob-
ability 1 — a. The credible interval is a Bayesian alternative to a
frequentist confidence interval. A frequentist keeps the parame-
ters fixed and varies the confidence interval whereas a Bayesian
approach is to keep the credible region fixed and vary the model
parameters.

3.5 Application of the Models

3.5.1 Exploration. In terms of building modeling, we are pri-
marily interested in learning the different R and C parameters. As
we consider different multi-state lumped models, the cardinality of
the sets R and C may vary but the overall values should remain
the same. To find the composite resistance of the equivalent cir-
cuit, the resistance and capacitance are obtained by Kirchoff’s law.
However, the simple addition or geometric sum required to com-
pute the composite parameters cannot straightforwardly be done
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as Bayesian Inference provides random variables rather than scalar
quantities. The distribution of the sum of two random variables can
be obtained by the convolution of their density functions.

Algorithm 1 Indoor Temperature Forecast

1: procedure FORECAST (Input: Distribution of the model parameters 8 =
{R, C, A, X1}, time window of forecast K)

2: Set start temperature state to X7

3 {R;, Ci, Aj} <- Draw N Sample(R, C, A)

4 foriin1:Ndo

5 Xk & BSSM(Xt, R, Ci, A;)

6: end for )

7 Mean Prediction « E{X;filﬂ.”(

8: Credible Interval « {Max(X(TiilzTJrK) , Min(ngllzTJrK)}

9: end procedure

3.5.2  Forecasting. We perform 24 hour ahead forecast, after
learning the parameters of the model. We assume that a outdoor
temperature forecast data is given to us and we assumed that the
HVAC is operational in the last known mode. The forecasting and
prediction of HVAC time is given in Algorithm 1. When the HVAC is
set to a particular temperature and assuming that it is not changed
within the horizon of the forecast, then the indoor temperature will
be centered around the set-point in a range known as the thermostat
hysteresis setting. In general, the range is + J lies within 0.5 - 1 °F.
We sample from the estimated parameters’ distributions to obtain
the forecasting interval.

3.6 Implementation

We implemented the Bayesian State Space model using the PyMC3
probabilistic programming library in Python [36]. PyMC3 is built
on Theano [40] and has built-in implementations for MCMC al-
gorithms and Variational Inference methods. We formulated the
different components of the state space model and set the prior
distributions for the model parameters. We deployed our methods
on a system with 16 GB RAM system and I7 processor. The initial
version of the codes is available in the BSSP Github repository.

4 ANALYSIS

In this section we provide two case studies. In the first test case we
compare the results with small dataset to contrast and compare the
gray-box models’ solutions with the Kalman filter and Bayesian
state space model. In the second case study, we present results and
analyses on larger scale data from the Dataport Dataset [1].

4.1 Case Study I: Exploratory Study on a
Benchmark Dataset

4.1.1 Dataset. We compare the results with the benchmark
dataset provided in [3] and the circuit assumptions of the house
mentioned in the paper. The data is from a Flexhouse in Rise DTU in
Denmark, and was collected during a series of experiments carried
out in February to April 2009, where measurements consist of five
minute values over a period of six days. The dataset consist of a
single signal representing the indoor temperature (y °C). Observed
ambient air temperature at the climate station (Ta °C). Total heat
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input from the electrical heaters in the building (®; kW). The global
irradiance was measured at the climate station (&5 kKW/m?).

4.1.2  Problem Formulation. First we constructed all the models
suggested in [3]. The CTSM [25] package can be used to model
Continuous Time Stochastic Processes which is realized using an
Extended Kalman Filter (EKF). We define R, C, and A to be the
set of resistances, capacitances and area of solar infiltration for
individual models. The three models which we chose for inspection
and their system dynamics as follows:

e Ti Model: Here the house as a whole is assumed to have one
thermal resistance (R;4) and capacitance (C;).

1 1
Ti(k+1)=(1- Ti(k Te(k+1)+ — x®p(k+1
1( + ) ( Riuci)x 1( )+Riucix e( + )+Ci>< h( + )
A
+ 2ok +1)+0; (13)
Ci
Yi = Ti(k) + ex (14)

o TiTe Model: We provided a detailed description of formulation
using the TiTe model in Section 3.2.

o TiTeTh Model: The three state model represents the interior
subscripted by i, the exterior subscripted by e and the heater
subscripted by h. The formulation for the three states are as

follows:
Tok +1) = (1= — ) x Ty(k) + ——— X Tk + 1)+ 22 x @y (k +1) +
) —(1— ) Aw o
' RieCi ! RieCi ¢ Ci ) !
(15)
Tk +1)=(1 - — L X To(k) + — X Ta(k +1)
¢ - Riece Reace € Reace “
+ X Ti(k +1) + o, 16
RiaC. i( )+ oe (16)
1 1 1
Tp(k+1)=(1- )X Tp(k)+ =—— xTi(k+1)+ — X Pp(k +1)+ oy,
RinChp RipCp = Ch
(17)
Yi = Ti(k) + ex (18)

4.1.3 Results Discussion. We show the results of the first case
study in Table 1. We provide the mean and variances (u, o) of the
estimated model parameters — R, C and Aw, within a 95% credible
interval range as shown in Table 1. The total R and total C the
composite thermal resistance and capacitance of the building. We
compare the results of Bayesian Inference with the point estimates
with an Extended Kalman Filter (EKF). The insights from the study
are as follows:

Estimated model parameters: From the Table 1 we found that
the mean of the credible interval for the estimated parameters for
the Bayesian approaches is similar to that of the EKF point estimate.
The EKF assumes the parameters to have uniform priors and thus
performs MLE for estimation. An approximate ADVI provides a
similar parameter estimation as that of an equivalent run of MCMC
inference.

Comparison with the point estimates: A direct comparison of
the model’s performances between the Bayesian methods and the
EKF is difficult. We take the mean of the parameter estimated from
Bayesian inference and then perform a one-step-ahead prediction
and compare that with the EKF. The metrics used for comparison
are the root mean squared (RMSE) and the normalized root mean
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Table 1: Results of Study I

Model Method TotalR TotalC Ria Rie Rih Rea Ci Ce Ch Aw Ae NRMSE RMSE
(%)
EKF 5.29 24.797 5.29 - - - 2.06 - - 7.89 - 0.4 0.06
Ti MCMC  5.29, 24.96, 5.29, - - - 24.96, - - 7.95, - 0.8 0.10
0.06 0.36 0.06 0.36 - 0.675
ADVI 5.29, 24.75, 5.29, - - - 24.73, - - 7.87, - 0.4 0.05
0.67 0.40 0.067 0.43 0.675
EKF 5.36 39.17 - 5.17 - 0.19 19.99 19.18 - 23.78 - 0.3 0.04
TiTe MCMC 5.27, 89.95, - 1.73, - 3.54, 21.39, 68.56, - 10.75, - 0.3 0.04
0.17 7.92 0.056 0.122 0.30 7.91 0.64
ADVI 5.29, 25.31, - 1.98, - 3.31, 2449 , 0.82, - 7.90, - 0.3 0.04
0.002 0.86 0.001 0.002 0.502 0.008 0.86
TiTeTh MCMC - - - 159.13, 70.23, 23.08, 119.77, 121.85, 313.33, 15.52, 0.092, - -
273.83 159.81 68.44 206.30 184.87 342.47 28.71 0.60
ADVI 2.8, 184.45, - 2.176, 0.23, 0.63, 177.82, 2.05, 4.59, 52.76, 45.50, - -
0.004 13.58 0.010 0.003 0.003 83.22 0.03 0.097 193.86 181.90

squared errors (NRMSE) of the one-step-ahead prediction and we
find that estimates from ADVI give us the best results (Table 1).

Time of execution to reach convergence: MLE estimates of
the EKF is the fastest as it does not require computation of the
full posterior distribution, however, it does not provide estimation
error over model parameters. The MCMC algorithm is the most
time consuming one, where we increase the number of steps and
check for convergence using Gelman-Rubin diagnostic. We selected
4 chains and an initial burn in 5000 steps which is intended to give
the Markov Chain time to reach its equilibrium distribution when
there is a random initial starting point. Compared to MCMC, ADVI
is much faster. For the TiTeTh model, we obtain no convergence
for the EKF or MCMC, i.e. the credible intervals are very wide. But
ADVI provides reasonable intervals for some parameters. We listed
the time of execution for the different approaches in Table 2.

Table 2: Results of Convergence for Study I

Model  Method Convergence Time (Steps)
EKF 2.68s ( Steps = 39)
Ti MCMC 30 min (Chains = 4, Steps = 5000)
ADVI 2.26min (Steps = 180000)
EKF 14.65s (100)
TiTe MCMC 1.5 hrs (4,5000)
ADVI 2:38 min (Steps = 180000)
EKF No Convergence
TiTeTh MCMC  No Convergence
ADVI 4.23min (Steps = 180000)

95

Ti Model Simulation

Temperature

75 Simulated
—— Observed
o 250 500 750 1000

Time

1250 1500 1750

(a) Ti model
TiTe Model Simulation

£ Simulated
— Observed

Temperature

o 250 500 750 1000

Time

1250 1500 1750

(b) TiTe model

Figure 6: Monte Carlo Simulation of Indoor Temperature

Monte-Carlo simulation: We perform a Monte-Carlo simula-
tion to generate the possible indoor temperature scenarios when
weather and HVAC usage is provided. In Figure 6 we show the re-
sults of the simulated prediction for the Ti and TiTe models, drawing
samples from the inferred parameter distributions. We considered
the starting state to be drawn from a N(70, 5) distribution, i.e. our
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Figure 5: Comparison of Forecasting

guess for the indoor temperature will be within the range of 60 -
80°F. The simulated prediction shows that the actual value of the
indoor temperature is enclosed within the credible region. It, how-
ever, deviates in certain sections, which we hypothesize is because
the thermal mass of a house can change with varying temperature.
The RC constant [8] of the data changes with time as the thermal
mass C of a house can vary, due expansion (or contraction) of air.
A more generalized formulation of thermal dynamics will require
exploring longitudinal studies that to correlate between the param-
eter and temperature changes with the heater and cooler usage for
long duration.

Qualitative assessment of the hidden states: In Figure 7, we
show the learned hidden states of the two-state TiTe and three
state TiTeTh model. For the TiTe model shown in Fig 7a, show
that the estimated hidden state for the envelope is sandwiched
between the indoor temperature and the outdoor temperature and
is more correlated with the indoor temperature. Whereas in the
TiTeTh model (Fig 7b) the envelope state is more correlated with
the outdoor temperature. However, the heater’s temperature is the
same as that of the indoor temperature, which implies it does not
capture an independent factor of the hidden state space. The plots
in Fig 7 show the error margin of the hidden states obtained from
the highest posterior distribution.

Table 3: Results of Forecasting
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Method MAPE | % of data within 95%
forecast interval

ARIMAX 0.19 100%

Ti Model 0.05 78%

TiTe Model | 0.04 79%

Figure 7: Visualizing Hidden State Dynamics

Forecasting: We compared the forecasting results of the BSSM
with an auto-regressive integrated moving average with exoge-
nous variables (ARIMAX). We used the first 5 days for training the
BSSM and learn the building parameters. We then used the learned
parameters to obtain a day ahead forecast within 95% prediction
interval, as presented in Algorithm 1. Our assumption is that the
heater stays in the same state as the last known state and assumed
that the solar radiation and temperature data are available. In Fig-
ures 5a — 5¢ we show the output of forecasting for the ARIMAX, Ti
and TiTe models. For quantitative evaluation we chose the mean
absolute percentage error (MAPE) to find the error in mean of the
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forecast and calculated the percent of data within 95% forecast
interval as shown in Table 3. The mean forecast error is lower in
case of the BSSM models as they better learn the dynamics of the
process. However, as the model parameters have a narrow credible
interval, the actual data lies outside the forecast interval in but
provides a narrower band for which the actual value partially lies
outside the credible interval. In contrast, the forecasting result of
ARIMAX has less correlation, although the actual forecast is within
the confidence interval.
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Table 4: Results of Case Study II

Homes HVAC Mode R-Value Informed Priors Hyper Priors Uninformed Priors
R C R C R C
No Usage 26,0.02  85.92,12 53.24, 14.99  81.6, 10.86 449.04, 431.90  80.82, 10.71
484 AC 26 26, 0.02 85.03,12.5 52.12,15.33  80.81,11.08  453.73, 428.96 80.25, 10.99
Heater 26,0.02  132.44,12.79 75.87,15.9 89.35, 11.7 343.63,276.16 81.48,11.73
No Usage 6.1,0.23 73.15, 18.84 61.82,14.46 15.43,1.945 62.1,14.33 15.33, 2.005
739 AC 6 6.1,0.23 64.09, 20.7 58.88,10.87  15.55,1.79 59.47,10.43 15.65, 1.84
Heater - - - - - -
No Usage - - 24.52,0.215 103.4,7.34 48.66, 20.91 107.42, 7.56
1507 AC NA - - 23.58,0.215 103.52,7.89 47.65, 21.95 107.88, 7.55
Heater - - 23.58,0.23 104.65, 8.79  52.22, 26.62 108.84, 8.38

4.2 Case Study II: Prior Selection & Transfer
Learning

4.2.1 Dataset. The Dataport dataset is a publicly available dataset,
created by Pecan Street Inc, which contains building-level electric-
ity data from 1000+ households. We performed our experiments
on three single-family homes from Texas (dataid = 484, 739, 1507)
based on metadata availability and proper registration of indoor
temperature and HVAC usage data. The metadata, which has infor-
mation about 52 homes, provides a general understanding about
the buildings and helps us create prior distributions over the R-
values. Here, House 739 does not have heating data available and
the metadata does not include a measure for House 1507’s R-value.
We ran our experiments on over 30 other homes but due to im-
proper registration of the indoor temperature data, we can evaluate
our experiments only on 3 homes.

4.2.2  Experimental setup. In this case study we explore the ef-
fects of prior selection and transfer learning. The two processes
are inherently tied together, since in the Bayesian approach, “to-
day’s posterior becomes tomorrow’s prior.” Our approach here is
to learn the parameters from the AC usage season, where data is
more consistent, and transfer the learned parameters as priors to
seasons when HVAC has typically no usage and/or operates in
heating mode. This is because we don’t have the exact measure
of the thermal flux from the HVAC but only the “ON” and “OFF”
values from the furnace. Hence, we have to consider the thermal
flux multiplier as an extra parameter during the heating mode and
set an uninformed flat gamma prior. Due to the addition of an extra
unknown parameter, estimation during heating phase is less con-
sistent than that of in the cooling period. We investigate the effect
of three sets of priors:

o Informed Priors (Set 1): We select informed gamma priors.
This is useful when we have some notion about the parame-
ters’ values such as an initial audit to estimate the R-value
of a building. We select a strong prior on the R-value where
the mean of the R-value is same as that of the estimate and
the standard deviation is 1.

Hyper Priors (Set 2): In this set, we do not have a direct
estimation regarding the buildings’ parameters but have
a vague understanding about the expected value from the
metadata. We encode such beliefs by setting a hyper-prior
for the mean, that is sampled selected from a mixture of
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lognormal distributions. We empirically found that R-values
are a mixture of lognormal distributions, conditioned on
the year built and conditioned square foot, by performing a
maximum likelihood estimate. The estimated parameters of
the two lognormal distributions as shown in Fig 1, are (uo,
00) = (3.02, 0.59) and (1, 01) = (3.43, 0.50), respectively.
Uninformed Priors (Set 3): Finally, in Set 3, we chose unin-
formed flat gamma priors for the R-values, where, we have
no knowledge of the buildings’ parameters. In all three cases
we set a flat gamma prior on the C-values.

For all three cases, we set an upper bound on the R-values to be
70, which we found from the metadata. We assign an uninformed
gamma prior on the C values. For all cases, we initially estimate
for the AC usage scenario and use the mean and variance of the
estimated parameters to set the prior for the other seasons. The sign
of the heat flux, as provided in Eqn 8, is negative when AC is used
and the HVAC is in cooling mode. We do not have an exact value for
heater’s flux but we use the furnace which provides the binary “ON-
OFF” signal of the heater and multiply an extra unknown parameter
@}, to estimate the heat flux. Similarly to the previous section, we
estimate all parameters within a 95% credible interval. We also
varied the size of the dataset of sizes [200, 500, 1000, 2000, 5000].

4.2.3 Results. The prior selection directly influences the value
of the parameters, parameter transfer and depends on the size of the
dataset. A summary of the results is presented in Table 4 for 2000
data points, which provides us the most likely parameter estimates.
We present the result in the form of mean and the error margins
ie. (4, +€). We find that the Informed Priors provide us with the
most consistent estimates both across size of the datasets and when
we perform transfer learning. As shown in Fig 8a, the informed
parameters remain consistent with the change in the size of the
dataset with very little margin of error (+ 1). Parameter transfer
also works best when informed priors are applied (Fig 8a), but can
provide us different estimates when being transferred from AC
usage to Heater usage seasons. The hyper-priors reduce the margin
of error when applied for smaller datasets. For example, in Fig 8c,
the R-values have large error margins when uninformed priors are
chosen, which is significantly reduced when hyperpriors were used
Fig 8b.

4.2.4 Discussion. Information in the data overwhelms prior
information not only when the size of the dataset is large, but also
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Figure 8: Results of Prior selection & Parameter Transfer for House 484

when the prior encodes relatively small information. For example
in House 739 (Table 4), an approach using uninformed priors will
try to get the best estimate that fits the data, but the parameters
may not be accurate. For this case, a sharp prior centered around
an initial estimate gives the best result. Uninformative priors are
easily persuaded by data, while strongly informative ones may be
more resistant. When the size of the dataset is small, hyperpriors
effectively reduce the margin of error in parameter estimation
Fig. 8b.

4.3 General Recommendations

Based on our studies, we recommend constructing a Bayesian state
space model customized for the problem at hand, carefully select-
ing the system dynamics and priors. We suggest using ADVI for
parameter estimation as it provides similar estimates but is faster
than MCMC. Although the Bayesian approach provided us with
similar estimates as that of EKF in Case Study I, the former is better
suited for constructing hierarchical models with multiple priors on
model parameters. On the otherhand, EKF can only provide point
estimates with uninformed priors. In realistic settings, it is better to
perform an initial audit to determine the home’s insulation param-
eters and fix an informed prior on the parameter set. We suggest to
use informative priors, if enough metadata is available to set them
reliably. However, if the objective is to monitor a large set of homes,
we recommend setting a hyper prior based on the beliefs from a
sample of the dataset. If the heat flux is known from the HVAC,
learning from one season and applying it to another can improve
estimation.

5 CONCLUSION & FUTURE WORK

In this paper, we proposed and systematically studied Bayesian
statistical approaches to buildings’ thermal parameter estimation.
We developed a generalized state-space modeling framework that
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integrates building physics equations with a statistical model. The
model estimates buildings’ structural parameters which influence
the indoor temperature conditioned on HVAC usage and weather
factors. We contrast model learning using MCMC and ADVI algo-
rithms and show that Variational Inference is faster and provides
a similar estimation to MCMC. A visual inspection of the hidden
states was employed to assess the model dynamics, and we found
that merely increasing model complexity does not capture any sig-
nificant factors of the thermal characteristics. We further showed
the model’s applications, such as simulating probable outcomes
and forecasting the future. The effects of prior selection on the pa-
rameter estimation were studied in detail. We found that informed
priors provide the best estimates, but when such information is
not present prior beliefs can help to better learn the models. Also,
we found that priors are key to transfer learning, and model pa-
rameters learned from one season can be used to model thermal
dynamics under the condition that properly scaled exogenous data
is available.

The focus of our future research is in two directions. We are
presently instrumenting several homes with smart thermostats and
temperature sensors. This study serves as a guide to large-scale
analysis as we attempt to further incorporate air leakages and con-
struct room level thermal behavior analysis. We plan to learn from
the data that is being collected longitudinally and incorporate the
learned models in NEST thermostats to monitor homes’ condition
continuously. Secondly, we will focus on incorporating air-leakage
into the framework and correlating with standardized metrics such
as ACHsp. Common air-infiltration models (e.g. LBL model [37]),
have complex non-linear characteristics for which we will explore
non-linear state space models.
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