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A B S T R A C T

The community composition in open advective environments, where individuals are exposed to unidirectional
flow, is formed by the complex interplays of hydrological and biological factors. We investigate the coexistence
mechanism of species by a reaction-diffusion-advection competition model proposed by Lutscher et al. in [19]. It
turns out that the locations of two critical curves, which separate the stable region of the semi-trivial solutions
from the unstable one, determines whether coexistence or bistability happens. Furthermore, the analytical and
numerical results suggest a tradeoff driven coexistence mechanism. More precisely, there is a tradeoff between
the dispersal strategy and growth competence which allows the transition of competition outcomes, including
competition exclusion, coexistence and bistability. This shifting may have an effect on the community compo-
sition in aquatic habitat.

1. Introduction

Many species, ranging from river-dwelling flora and fauna to gut-
dwelling bacteria, live in environments with predominantly unidirec-
tional flow, which induces a heavy bias in the dispersal of individuals
such as algae, invertebrates and stream insects. The question of how
populations resist washout and manage to maintain a foothold in such
advective environments has been termed the “drift paradox” [6,24].
Inspired by the work of Speirs and Gurney [30], this question has re-
ceived considerable attentions in the past few decades in theoretical
spatial ecology (see [11,12,18,20–22,27,32]). One of the main insights
from all these models is that there exists a threshold value for the flow
speed separating population persistence from extinction (see e.g.
[20,21,27,30]). An intuitive explanation for this result is that unbiased
diffusive movements can balance biased advective movements and give
rise to population persistence.
Another important question is how unidirectional flow influences

the outcome of competition and community compositionin aquatic
habitats, and specifically how it may mediate coexistence of two species
(see [19,25,26,31,33,34]). This issue has been addressed by Lutscher

et al. in [19], and a general two-species competition model for algal
communities in rivers was developed there as follows:
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for x∈ (0, L), t>0, where u(x, t) and v(x, t) are the population densities
of two competing species at time t and location x, respectively. di are
the diffusion rates and α, β denote the effective advection rates caused
by unidirectional flow. ri account for the intrinsic growth rates, and aij
measure the inter- and intra-specific competition, =i j, 1, 2. In this
paper, d1, d2, α, β, r1, r2 are constants.
Under the assumption that =d d1 2 and = , which means that two

species are adopting identical diffusive and advective movements,
Lutscher et al. [19] demonstrated numerically that coexistence or
competitive reversal induced by advection can be achieved via
boundary effect or spatial heterogeneity. Imposing Danckwerts
boundary conditions [1,33], Vasilyeva and Lutscher gave an analytical
confirmation on these numerical results of [19] by using variational
techniques as well as a spatially implicit approximation in [33]. They
explored various tradeoffs between biological and hydrological
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parameters that allow species to invade and persist. Their results il-
lustrate that transition between different competitive outcomes may
occur with a change in flow speed, which implies the composition of
river communities can change when flow speeds change. Moreover,
competitive ability becomes less important as flow speed increases and
intrinsic growth rate becomes more important in determining the
competitive outcome. The effect of changes in flow speed on competi-
tion among multiple species has also been investigated in [31,34].
System (1.1) also serves as a model to study the biological invasion

and evolution of dispersal in open advective environments. Starting with
the work by Hastings [5], one robust prediction is that lower dispersal
rate will be selected in temporally constant but spatially varying en-
vironments, provided that dispersal is unbiased [4]. In contrast, under
the assumption that two species are identical except their diffusion rates,
it is shown in [14] that unidirectional flow can put slow dispersers at a
disadvantage and higher dispersal rate can evolve. It is also shown in
[15] that slower advection wins ultimately if two species are identical
except their advection rates. However, the combined effects of multiple
factors, such as the combination of diffusion and advection [36,37],
diffusion and boundary effect [17], advection and spatial heterogeneity
[13,35], can result in complex dynamical behaviors and give rise to
much richer phenomena including competition exclusion and coex-
istence. Although analytical results in [36,37] suggest that the strategy of
faster diffusion combined with weaker advection is always favorable for
species to win the competition, some intermediate diffusion rate may be
selected as the loss at the downstream end increases [17] or as the result
of spatial heterogeneity [13]. Furthermore, coexistence can happen in
some scenarios, for instance, where faster diffusion goes along with
strong advection [36], two species drift along opposite directions [37], or
environmental heterogeneity is involved [35]. We refer to Lou and Co-
workers [16,38,39] for more recent progress.
In the current paper we will focus on the joint influence of dispersal

strategy and growth ability on the competition outcomes by in-
vestigating the following special model:
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Here we assume =L 1 for simplicity and neglect the impact of inter-
and intra-specific competition between species due to the observation
in [33] that competitive ability becomes less important than intrinsic
growth rate in determining competitive outcome as flow speed in-
creases. To this end, we first recall some existing results on the dy-
namics of the following single species models:
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Consider the linear eigenvalue problem
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where d, r, α are constants with d>0 and α≥0. It is well known that
(see, e.g., [3,10]) problem (1.5) admits a principal eigenvalue con-
tinuously depending on the parameters d, r, α, which is simple, and its
corresponding eigenfunction, denoted by ϕ1, can be chosen positive in
[0, 1]. To emphasize the dependence of the principal eigenvalue on the
parameters d, r, α, we denote it by λ1(d, r, α). It follows from Lemma
2.2(b) of Lou and Zhou [17] that for d1, r1> 0 fixed, there exists a
unique critical value = >d r( , ) 00 0 1 1 such that
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= =
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Similarly, for d2, r2> 0 fixed, there exists a unique critical value
= >d r( , ) 00 0 2 2 such that
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Here λ1(d1, r1, α) and λ1(d2, r2, β) are the principal eigenvalues of the
problem (1.5) with d, r, α replaced by d1, r1, α and d2, r2, β respectively.
Now we are ready to state the results on the single population

models. It follows from Theorem 2.1(b) in [17] (see also Section 3.2.3
of the monograph of [2]) that the following results hold.

Lemma 1.1. Suppose d1, d2> 0 fixed. Let α0(d1, r1), β0(d2, r2) be uniquely
determined by (1.6) and (1.7) respectively.

(i) There exists a unique positive steady state of (1.3) (denoted by θα),
which is globally asymptotically stable among all nonnegative and
nontrivial initial conditions provided that 0≤ α< α0, and =u 0 is
globally asymptotically stable among all nonnegative and nontrivial
initial conditions provided that α≥ α0;

(ii) There exists a unique positive steady state of (1.4) (denoted by ϑβ),
which is globally asymptotically stable among all nonnegative and
nontrivial initial conditions provided that 0≤ β< β0, and =v 0 is
globally asymptotically stable among all nonnegative and nontrivial
initial conditions provided that β≥ β0.

It follows from Lemma 1.1 that for 0≤ α< α0 and 0≤ β< β0, (1.2)
has two semitrivial steady state solutions (θα, 0) and (0, ϑβ). As (1.2)
can be cast into a strongly monotone dymical system (see [7–9,23,29]),
its global dynamics is related to the semi-trivial equilibria and their
stability. Indeed, the global dynamics of system (1.2) with =r r1 2 has
been investigated by Zhou and Zhao in [36]. We recall their main re-
sults in the following theorem:

Theorem 1.1. [36] Assume that 0< d1< d2 and = = >r r r 01 2 . Then

• (0, 0) is globally asymptotically stable among all nonnegative and non-
trivial initial conditions provided that α≥ α0, β≥ β0 (i.e. the white re-
gion in Fig. 1);
• (θα, 0) is globally asymptotically stable among all nonnegative and
nontrivial initial conditions provided that β≥ β0, 0≤ α< α0 or

< <0 , 0 d
d0

1
2

(i.e. the blue and red regions in Fig. 1);

• (0, ϑβ) is globally asymptotically stable among all nonnegative and
nontrivial initial conditions provided that α≥ α0, 0≤ β< β0 or
0< α≤ α0, 0≤ β≤ α (i.e. the yellow and green regions in Fig. 1).

When the advection rates α, β lie in the grey region of Fig. 1, the
authors have also shown that for some ( , ),d

d
1
2

a positive steady
state exists (see Lemma 6.2 of [36]). However, the stability of two
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semitrivial equilibria and the global dynamics of system (1.2) are still
not quite clear, even if =r r1 2.
Biologically, the global stability of (0, ϑβ) in the green region of

Fig. 1 indicates that the movement strategy of faster diffusion together
with weaker advection has more competitive advantages. That is, uni-
directional flow can put the species with slower diffusion and faster
advection at a disadvantage and the faster diffusion together with
weaker advection rate can evolve. This interesting phenomenon has
also been discovered in [14,37]. However, for the strategy of both faster
diffusion and advection, lower ratio of advection and diffusion always
wins as demonstrated in the red region (see [36,37]). These interesting
outcomes illustrate that there is a tradeoff between diffusion and ad-
vection, which affects the competition between species in open ad-
vective environments.
As observed above, both the population persistence and competition

outcomes depend on their diffusion rates, advection rates, as well as
intrinsic growth rates. We further investigate the combined effects of
diffusion, advection and intrinsic growth rates on the competition re-
sults of two aquatic species in open advective environments. It turns out
that the interactions of these factors bring much richer dynamical
phenomena, including competition exclusion, coexistence and, in ad-
dition, bistability (see Figs. 2 and 3).
Arguments similar to those used in [36] show that Theorem 1.1 still

holds when r r1 2 and α, β are located in the white, blue and yellow
regions in Fig. 1 with minor modification of α0, β0. As mentioned

before, α0 and β0 are dependent on the parameters d1, r1 and d2, r2
respectively. Hence, we only need to study the case of 0≤ α< α0,
0≤ β< β0. By symmetry, we always assume the species u has a slower
diffusion rate throughout this paper, that is, d1< d2. As described in
Figs. 2 and 3, the results indicate that there exist two critical increasing
curves in the plane, which separate the stable regions of the semi-
trivial solutions (θα, 0) and (0, ϑβ) from the unstable regions. In what
follows, the critical curves β*(α), β⁎⁎(α) and α*(β), α⁎⁎(β) are uniquely
determined by Lemmas 2.4 and 2.5 and Lemmas 2.7 and 2.8, respec-
tively.

Theorem 1.2. Suppose 0< d1< d2 and 0< r1≤ r2 fixed. Then for
0≤ α≤ α0, there exist β*(α) and β⁎⁎(α) satisfying α≤ β*(α),
β⁎⁎(α)≤ β0 such that

(i) if 0≤ β<min {β*(α), β⁎⁎(α)}, then (θα, 0) is unstable and (0, ϑβ) is
stable;

(ii) if max {β*(α), β⁎⁎(α)}< β< β0, then (θα, 0) is stable and (0, ϑβ) is
unstable;

(iii) if β*(α)< β< β⁎⁎(α), then both (θα, 0) and (0, ϑβ) are stable;
(iv) if β⁎⁎(α)< β< β*(α), then (θα, 0) and (0, ϑβ) are unstable.

Theorem 1.3. Suppose 0< d1< d2 and r1> r2> 0 fixed. Then for
0≤ β≤ β0, there exist α*(β) and α⁎⁎(β) satisfying 0< α*(β),
α⁎⁎(β)≤ α0 such that

Fig. 1. The global dynamics of system (1.2) with < < =d d r r0 ,1 2 1 2 fixed in plane. More precisely, (0, 0) is globally asymptotically stable in the white region;
(θα, 0) is globally asymptotically stable in the blue and red regions; (0, ϑβ) is globally asymptotically stable in the yellow and green regions; there may be a positive
steady state when the advection rates α, β lie in the grey region. Note that < < =d d r r0 ,1 2 1 2 implies < < 1d

d
1
2

0
0

by Lemma 5.3 below. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The stability of the semi-trivial equilibria (θα, 0) and (0, ϑβ) of (1.2) in plane with d1< d2, r1< r2 in (a) and < =d d r r,1 2 1 2 in (b) (see Theorem 1.2).
More precisely, (θα, 0) is stable and (0, ϑβ) is unstable in the blue region; (θα, 0) is unstable and (0, ϑβ) is stable in the yellow region; (θα, 0) and (0, ϑβ) are bistable in
the green region; both (θα, 0) and (0, ϑβ) are unstable in the red region. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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(i) if 0≤ α<min {α*(β), α⁎⁎(β)}, then (θα, 0) is stable and (0, ϑβ) is
unstable;

(ii) if max {α*(β), α⁎⁎(β)}< α< α0, then (θα, 0) is unstable and (0, ϑβ) is
stable;

(iii) if α⁎⁎(β)< α< α*(β), then (θα, 0) and (0, ϑβ) are stable;
(iv) if α*(β)< α< α⁎⁎(β), then both (θα, 0) and (0, ϑβ) are unstable.

Theorems 1.2and 1.3 provide a picture on the stability of the
semitrivial steady states (θα, 0) and (0, ϑβ) in plane when two
species have different dispersal strategy and intrinsic growth rates (see
Figs. 2 and 3). By the theory of the monotone dynamical system, we
have the following results for coexistence and bistability of system
(1.2):

Corollary 1.4. Suppose 0< d1< d2 and 0< r1≤ r2 fixed.

(i) If β⁎⁎(α)< β< β*(α), then the two semitrivial solutions (θα, 0) and (0,
ϑβ) are unstable, and system (1.2) has a locally stable coexistence
steady state;

(ii) If β*(α)< β< β⁎⁎(α), then (θα, 0) and (0, ϑβ) are both stable, and
system (1.2) has at least one unstable positive steady state.

Corollary 1.5. Suppose 0< d1< d2 and r1> r2> 0 fixed.

(i) If α*(β)< α< α⁎⁎(β), then the two semitrivial solutions (θα, 0) and (0,
ϑβ) are unstable, and system (1.2) has a locally stable coexistence
steady state;

(ii) If α⁎⁎(β)< α< α*(β), then (θα, 0) and (0, ϑβ) are both stable, and
system (1.2) has at least one unstable positive steady state.

The results above indicate that the sizes of two critical curves de-
termines whether coexistence or bistability happens. Nevertheless, if

= =d d r r, ,1 2 1 2 it follows from the proof of Lemma 2.4 that both β*(α)
and β⁎⁎(α) coincide exactly with the curve = which implies only
competition exclusion can occur for two almost identical species except
their advection rates (see also [15]). Furthermore, the study in [15]
indicates that the weaker advection may evolve in this case. Mean-
while, the results in [14] show that faster diffusion rate should be se-
lected when two species are identical except their random diffusion
rates. In view of (5.12) (see Appendix 5.2), similar arguments as in

[14,15] suggest that the larger intrinsic growth rate is always beneficial
for species to win the competition when two species are identical except
their intrinsic growth rates. That is, both coexistence and bistability are
impossible for species with only one different trait. A large number of
numerical simulations in the subsequent section illustrate the tradeoff
driven coexistence mechanism, which means that the tradeoff between
different traits of species can drive coexistence of species (see
Figs. 5–7).
The rest of this paper is organized as follows. The goal of Section 2 is

to establish the stability of semi-trivial steady states and to deduce the
main results. In Section 3, we calculate the locations of two critical
curves numerically and determine when coexistence or bistability
happens. The conclusions are discussed in Section 4. The proofs for the
stability of semitrivial solutions are given in Appendix.

2. The stability of semi-trivial solutions

The goal of this section is to investigate the stability of the semi-
trivial steady states (θα, 0) and (0, ϑβ), and to prove Theorems 1.2 and
1.3. To this end, we linearize the corresponding steady state system of
(1.2) at (θα, 0) and (0, ϑβ) with respect to (u, v), and obtain the fol-
lowing two eigenvalue problems

+ =
= =

d r µ x
d

( ) , (0, 1),
(0) (0) 0, (1) 0

xx x

x x

2 2

2 (2.1)

and

+ =
= =

d r x
d

( ) , (0, 1),
(0) (0) 0, (1) 0.

xx x

x x

1 1

1 (2.2)

Denote by (μ1, ψ1) and (σ1, φ1) the first pair of eigenvalue-eigenfunction
of problems (2.1) and (2.2), respectively. It follows from Lemma 5.1
(see Appendix 5.1) that both μ1 and σ1 are simple, and their corre-
sponding eigenfunctions ψ1 and φ1 can be chosen strictly positive on [0,
1]. Moreover, the linear stability of (θα, 0) and (0, ϑβ) can be de-
termined by the signs of μ1 and σ1 respectively. More precisely, (θα, 0) is
stable if μ1< 0 and unstable if μ1> 0, and (0, ϑβ) is stable if σ1< 0 and
unstable if σ1> 0. By virtue of Lemma 5.4 (see Appendix 5.1), one can

Fig. 3. Illustration of the stability of the semi-trivial equilibria (θα, 0) and (0, ϑβ) of (1.2) in plane with d1< d2, r1> r2 (see Theorem 1.3). α0< β0 in (a), and
α0> β0 in (b). As above, (θα, 0) is stable and (0, ϑβ) is unstable in the blue region; (θα, 0) is unstable and (0, ϑβ) is stable in the yellow region; (θα, 0) and (0, ϑβ) are
both stable in the green region; both (θα, 0) and (0, ϑβ) are unstable in the red region. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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conclude that the two principal eigevalues are continuously dependent
on the advection coefficients α, β. To emphasize the dependence of the
principal eigenvalues on the parameters α and β, we denote them by
μ1(α, β) and σ1(α, β).
We first study the properties of the principal eigenvalue μ1(α, β).

The proofs of the following lemmas are given in Appendix 5.2.

Lemma 2.1. Suppose d1, d2> 0 fixed, and α, β≥0. Then

(i) μ1(α, β) is strictly increasing with respect to α in [0, α0);
(ii) μ1(α, β) is strictly decreasing with respect to β in +[0, ).

Lemma 2.2. Suppose d1, d2> 0 fixed, and α, β≥0. Then

(i) =µ r r(0, 0) ,1 2 1 =µ ( , ) 0,1 0 0 =µ r( , 0) ,1 0 2 =µ r(0, )1 0 1;
(ii) μ1(α0, β)> 0 for 0≤ β< β0, and μ1(α, β0)< 0 for 0≤ α< α0;
(iii) if r1≤ r2, then μ1(α, 0)> 0 for 0< α≤ α0; if r1> r2, then μ1(0,

β)< 0 for 0≤ β≤ β0.

Lemma 2.3. Suppose d1, d2> 0 and α, β≥0.

(i) If d1< d2, α≥ β, then µ r r( , ) ,1 2 1 and if d1≥ d2, α≤ β, then
µ r r( , )1 2 1;

(ii) If 0< α< α0, then >µ r r( , )1 2 1 provided d1< d2,
=µ r r( , )1 2 1 provided =d d ,1 2 and <µ r r( , )1 2 1 provided

d1> d2.

By Lemmas 2.1–2.3, we can prove the following two lemmas.

Lemma 2.4. Suppose 0< d1< d2 and 0< r1≤ r2 fixed. Then for
0≤ α≤ α0, there exists β*(α) satisfying that α≤ β*(α)≤ β0, and

(i) (θα, 0) is stable if β> β*(α), and unstable if 0≤ β< β*(α), where
β*(α) is uniquely determined by =µ ( , * ( )) 01 ;

(ii) the function β*(α) is strictly increasing with respect to α on [0, α0] with
=* ( ) .0 0

Lemma 2.5. Suppose 0< d1< d2 and r1> r2> 0 fixed. Then for
0≤ β≤ β0, there exists α*(β)∈ (0, α0] such that

(i) (θα, 0) is stable if 0≤ α< α*(β), and unstable if α*(β)< α< α0,
where α*(β) is uniquely determined by =µ ( * ( ), ) 01 ;

(ii) the function α*(β) is strictly increasing with respect to β on [0, β0] with
=* ( ) .0 0

Repeating the similar arguments as in Lemmas 2.1–2.3, we can find
that the principal eigenvalue σ1(α, β) has the following properties.

Lemma 2.6. Suppose d1, d2> 0 fixed, and α, β≥0. Then

(i) σ1(α, β) is strictly decreasing with respect to α in +[0, );
(ii) σ1(α, β) is strictly increasing with respect to β in [0, β0);
(iii) = r r(0, 0) ,1 1 2 =( , ) 0,1 0 0 = r( , 0) ,1 0 2 = r(0, )1 0 1;
(iv) σ1(α0, β)< 0 for 0≤ β< β0, and σ1(α, β0)> 0 for 0≤ α< α0;
(v) if r1≤ r2, then σ1(α, 0)< 0 for 0< α≤ α0; if r1> r2, then σ1(0,

β)> 0 for 0≤ β≤ β0;
(vi) if d1< d2, α≥ β, then r r( , ) ,1 1 2 and if d1≥ d2, α≤ β, then

r r( , )1 1 2;
(vii) if 0< α< α0, then < r r( , )1 1 2 provided d1< d2,

= r r( , )1 1 2 provided =d d ,1 2 and > r r( , )1 1 2 provided
d1> d2.

With the aid of Lemma 2.6, similar arguments as in Lemmas 2.4 and
2.5 indicate that there exists a strictly increasing curve in the plane

Fig. 4. The diagrams of the critical curves β*(α) and β⁎⁎(α) in plane with =d 0.251 m2/s, =d 22 m2/s, = =r r 11 2 day 1. By computation, = 0.2748 km/day0
and = 0.6081 km/day0 . The difference between β*(α) and β⁎⁎(α) is plotted in (b) versus the advection rate α.

Fig. 5. The diagrams of the critical curves β*(α) and β⁎⁎(α) in plane with =d 0.251 m2/s, =d 0.52 m2/s, =r 0.391 day ,1 =r 0.52 day 1. By computation,
= 0.1594 km/day0 and = 0.2419 km/day0 . The difference between β*(α) and β⁎⁎(α) is plotted in (b) versus the advection rate α.
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, which separates the stable region of the semi-trivial solution (0,
ϑβ) from the unstable one. The results are illustrated in the following
two lemmas.

Lemma 2.7. Suppose 0< d1< d2 and 0< r1≤ r2 fixed. Then for
0≤ α≤ α0, there exists β⁎⁎(α) such that α≤ β⁎⁎(α)≤ β0, and

(i) (0, ϑβ) is unstable if β⁎⁎(α)< β< β0, and stable if 0≤ β< β⁎⁎(α),
where β⁎⁎(α) is uniquely determined by =( , ** ( )) 0.1

(ii) the function β⁎⁎(α) is strictly increasing with respect to α on [0, α0] with
=** ( ) .0 0

Lemma 2.8. Suppose 0< d1< d2 and r1> r2> 0 fixed. Then for
0≤ β≤ β0, there exists α⁎⁎(β) such that 0< α⁎⁎(β)≤ α0, and

(i) (0, ϑβ) is unstable if 0≤ α< α⁎⁎(β), and stable if α⁎⁎(β)< α< α0,
where α⁎⁎(β) is uniquely determined by =µ ( ** ( ), ) 0.1

(ii) the function α⁎⁎(β) is strictly increasing with respect to β on [0, β0] with
=** ( ) .0 0

Remark 2.1. It is easy to see that Theorems 1.2 and 1.3 can be derived
directly by Lemmas 2.4–2.5 and 2.7–2.8 repectively. As shown in
Figs. 2–3, Theorems 1.2 and 1.3 provide us a clear picture on the
stability of the semitrivial steady states (θα, 0) and (0, ϑβ). Moreover,
coexistence of two species happens when β⁎⁎(α)< β*(α) or
α*(β)< α⁎⁎(β), and bistability occurs when β*(α)< β⁎⁎(α) or
α⁎⁎(β)< α*(β). However, we only determine the signs of

* ( ) ** ( ) and * ( ) ** ( ) mathematically in some special
cases (see Proposition 2.9). In fact, our numerical simulations
demonstrate that both * ( ) ** ( ) and * ( ) ** ( ) could

change sign when two species have different dispersal strategy and
intrinsic growth rates. These numerical simulation results indicate that
both coexistence and bistability can occur in advective environments.

Proposition 2.9. Suppose 0< r1< r2 fixed. There exist positive constants
M large and δ small such that β*(α)< β⁎⁎(α) for 0< d1< δ, d2>M and
0< α< δ.

Remark 2.2.We suspect that β*(0)< β⁎⁎(0) holds as long as r1< r2. By
symmetry, similar arguments as in Proposition 2.9 yield that for
0< r1< r2 fixed, there exist positive constants M1 large and δ1 small
such that α⁎⁎(β)< α*(β) provided that 0< d2< δ1, d1>M and
0< β< δ1.

3. Numerical simulations

As shown before, the locations of two critical curves determine
whether coexistence or bistability happens. However, it is generally
difficult to compare them mathematically since they are determined by
some spatially dependent eigenvalue problems. The purpose of this
section is to calculate the two critical curves numerically. Throughout
this section, we fix the length of stream or river =L 1 km, and vary the
parameter values of d1, d2, r1, r2 to observe the various possible loca-
tions of the two critical curves. The data used here are taken from Speirs
and Gurney [30]. With the assigned values, we have observed that both

* ( ) ** ( ) and * ( ) ** ( ) could change sign, which indicates
that coexistence or bistability can happen in open advective environ-
ments, depending on tradeoffs between species in their movement
strategy and growth requirement.

Fig. 6. The diagrams of the critical curves α*(β) and α⁎⁎(β) in plane with =d 0.251 m2/s, =d 0.52 m2/s, =r 0.51 day ,1 =r 0.392 day 1. By computation,
= 0.1850 km/day0 and = 0.2059 km/day0 . The difference between α*(β) and α⁎⁎(β) is plotted in (b) versus the advection rate β.

Fig. 7. The diagrams of the critical curves α*(β) and α⁎⁎(β) in plane with =d 0.251 m2/s, =d 0.52 m2/s, =r 11 day ,1 =r 0.392 day 1. By computation,
= 0.2748 km/day0 and = 0.2059 km/day0 . The difference between α*(β) and α⁎⁎(β) is plotted in (b) versus the advection rate β.
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At first, assuming that two species have identical intrinsic growth
rates and different movement strategy, i.e. =r r d d, ,1 2 1 2 we always
observe that β*(α)< β⁎⁎(α) for α∈ (0, α0) (see Fig. 4). Hence, compe-
titive exclusion that depends on initial data (i.e. bistability) may occur
when two species with identical growth rates take different movement
strategy.
Secondly, assuming that d1< d2 and the species u has smaller

growth rate than the species v, i.e. r1< r2, we conclude that α0< β0 by
Lemma 5.3 (see Appendix 5.1). Numerical results demonstrate that

* ( ) ** ( ) may change sign from positive to negative with the
increasing advection rates α of the first species, see Fig. 5(b). System
(1.2) displays outcomes of competitive exclusion independent of initial
conditions (see Fig. 1), competitive exclusion that depends on initial
conditions (bistability), and coexistence, depending on tradeoffs be-
tween species in their movement strategy and growth competence (see
Fig. 5). In biological terms, if the inferior competitor in growth (i.e.
species u due to r1< r2) takes a slower advection rate, it can coexist
with, or even out-compete its superior opponent as the speed of di-
rected movement of its superior opponent increases. In reverse, if the
inferior competitor takes a strategy of faster advection rates, then, at
most, bistability can be observed. Moreover, it is easier to be excluded
by its superior counterpart.
Finally, if the species u possesses higher growth rate than the species

v, i.e. r1> r2, then there are two possibilities: (i) α0≤ β0 or (ii) α0> β0
due to the assumption d1< d2. The numerical simulations illustrate that

* ( ) ** ( ) may change sign from negative to positive with the
increasing advection rates β of the second species, see Figs. 6(b) and
7(b). As above, system (1.2) displays the similar transition between
different competitive outcomes no matter the sizes of α0 and β0, see
Figs. 6 and 7. In summary, the numerical simulations indicate that
certain tradeoffs between growth competence and movement strategy
allow coexistence or bistability to become apparent.

4. Conclusion

It is shown in [14] that unidirectional flow can put slow dispersers
at a disadvantage and higher dispersal rate can evolve under the as-
sumption that two species are identical except their diffusion rates.
Coincidentally, the results in [15] show that slower advection should be
selected when two species are identical except their advection rates.
Noting that (5.12) (see Appendix 5.2), similar arguments as in [14,15]
suggest that the larger intrinsic growth rate is always beneficial for
species to win the competition when two species are identical except
their intrinsic growth rates. These observations strongly suggest that
both coexistence and bistability are impossible for aquatic species
which differ only by a single trait. The question how aquatic species,
exposed to unidirectional flow, can coexist has received much attention
including ecologists and bio-mathematicians. It turns out that the
combined effects of multiple factors, such as the combination of diffu-
sion and advection [36,37], diffusion and boundary effect [17], ad-
vection and spatial heterogeneity[13,35], will result in complex dyna-
mical behaviors and give rise to much richer phenomena including
competition exclusion and coexistence. For instance, coexistence can
happen in some scenarios, where faster diffusion goes along with strong
advection [36], two species drift along opposite directions [37], or
environmental heterogeneity is involved [35]. We mainly focus on the
combined influence of the dispersal strategy and growth ability on the
competition outcomes of two aquatic species in open advective en-
vironments. It turns out that two critical curves determine whether
species can invade successfully or not. Due to the strict monotonicity of
competition system, mutual invasibility implies stable coexistence.
Hence the locations of the two critical curves determine whether co-
existence or bistability happens.
Theorem 1.1shows that the curve = k d

d
1
2
with 0< k≤1 belongs

to the globally asymptotically stable region of (θα, 0) (see Fig. 1). That

is, the invasion of the species with faster diffusion and advection is
impossible when two species have identical growth rates and adopt the
dispersal strategy satisfying < 1d

d
1
2

.
Theorem 1.2indicates that for the case of d1< d2, r1< r2, the two

critical curves β*(α) and β⁎⁎(α), which separate the stable region of the
semi-trivial solutions from the unstable one, lie on the right-hand side
of the curve = in the plane (see Fig. 2, or the numerical
Fig. 5). Hence the curve = k d

d
1
2
with < <k0 min{1, / }d

d
0
0

1
2
passes

through the yellow, red and blue regions or the yellow, green and blue
regions in Fig. 2(a). In biological terms, the superior competitor with
larger growth rate (i.e. species v due to r2> r1) can invade the single
species equilibrium of the inferior competitor as the speed of its di-
rected movement decreases. In reverse, by adopting a dispersal strategy
of slower diffusion and advection, the inferior competitor with smaller
growth rate (i.e. species u due to r1< r2) can coexist with, or even out-
compete the superior competitor as the speed of directed movement of
the superior competitor increases.
Theorem 1.3illustrates that for the case of d1< d2, r1> r2, the two

critical curves α*(β) and α⁎⁎(β) locate above the curve = 0
0
or =

in the plane (see Fig. 3, or the numerical Figs. 6 and 7). Hence the
curve = k with < <k0 min{1, }0

0
lies in the stable region of (θα, 0)

completely, which suggests the invasion of species with lower growth
rate is impossible.
In summary, the analytical results and numerical simulations sug-

gest a tradeoff driven coexistence mechanism. More precisely, there is a
tradeoff between the dispersal strategy and growth competence which
allows the transition of competition outcomes, including competition
exclusion, coexistence and bistability. This shifting may have an effect
on the community composition in aquatic habitat. Moreover, the results
show that the growth competence is crucial in determining the out-
comes of competition.

5. Appendix

In this appendix, we will finish the proofs of Lemmas 2.1–2.5, and
Proposition 2.9.

5.1. Preliminaries for proofs

In this subsection we present some useful lemmas in regard to the
linear eigenvalue problem as well as some existing results concerning
the steady state of single-species model as preliminaries. With this in
mind, we consider the linear eigenvalue problem

+ + = < <
= =

d q x x
d

( ) , 0 1,
(0) (0) 0, (1) 0,

xx x

x x (5.1)

where d, α are nonnegative constants with d>0, and q(x) is a con-
tinuous function in [0, 1].

Lemma 5.1. [3, 10] Suppose α≥0. Then all eigenvalues of (5.1) are real,
and the smallest eigenvalue η1(q(x), α) can be characterized as

=
+ +

q x

e d q x x

e x

( ( ), )

inf
( ( ) )d (0)

d
,

H

x
x

x

1

0, (0,1)
0
1 2 2 2

0
1 2

d

d
1

which corresponds to a positive eigenfunction φ1, and η1(q(x), α) is the only
eigenvalue whose corresponding eigenfunction does not change sign.
Moreover,

(i) q1(x)≥ q2(x) implies η1(q1(x), α)≥ η1(q2(x), α), and the equality
holds only if q1(x)≡ q2(x);

(ii) qn(x)→ q(x) in C([0, 1]) implies η1(qn(x), α) → η1(q(x), α).

Remark 5.1. By Lemma 5.1, it is easy to see that if q(x)≡ q0 (a
constant), then = +q q( , ) (0, ) .1 0 1 0
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Lemma 5.2. Suppose d, r, α are constants with d>0 and α≥0. Let λ1(d,
r, α) be the principal eigenvalue of the eigenvalue problem (1.5) with the
corresponding positive eigenfunction ϕ1 normalized by =max 1.

x [0,1] 1 Then

(i) the positive eigenfunction ϕ1 has the following properties:

< < > =
d

0 ( ) if 0, and 1 if 0;x1 1 1

(ii) λ1(d, r, α) is strictly decreasing with respect to α in +[0, ) with
=d r r( , , 0)1 and =

+
d rlim ( , , ) ;1

(iii) λ1(d, r, α) is strictly increasing with respect to d in +(0, ) with
=

+
d rlim ( , , ) ,

d 0
1 and =

+
d r rlim ( , , )

d
1 ;

(iv) λ1(d, r, α) is strictly increasing with respect to r in +( , ).

Proof. The proof of (ii) can refer to Lemmas 4.8 and 4.9 of [14] and
Proposition 2.1 of [17]. In addition, (iv) is a direct result of Lemma 5.1.
It remains to show (i) and (iii).
Set =P ( )x1

1
. Then

+ =
= > =

dP dP P x
P P

(2 ) 0, (0, 1),
(0) 0, (1) 0.
xx x

d

By the strong maximum principle [28],

< <P
d

in0 (0, 1),

which concludes the result (i).
Note that =d r r d( , , ) * ( , ),1 where λ*(d, α) is the principal

eigenvalue of the following eigenvalue problem

+ =
= =

d d x
d

* ( , ) 0, (0, 1),
(0) (0) 0, (1) 0.

xx x

x x (5.2)

Similar arguments as in Proposition 2.1 in [1] show that (iii) holds. □

As mentioned by (1.6) and (1.7), the critical advection rates α0, β0
are dependent on the diffusion rate and the growth rate of the species.
Next, we investigate the combined effect of the diffusion rate and the
growth rate on the critical advection rate. It turns out that faster dif-
fusion along with higher growth is favorable for the persistence of
species.

Lemma 5.3. Suppose 0< d1≤ d2 and 0< r1≤ r2 fixed. Let α0(d1, r1),
β0(d2, r2) be uniquely determined by =d r( , , ) 01 1 1 0 and =d r( , , ) 01 2 2 0
respectively. Then α0(d1, r1), β0(d2, r2) are strictly increasing with respect to
d1, r1 and d2, r2 respectively. Moreover,

(i) α0≤ β0, and =0 0 if and only if = =d d r r,1 2 1 2;
(ii) < <d

d 0 0 0
1
2

if d1< d2 and =r r1 2;
(iii) =d r rlim ( , )

d
0 1 1 1

1
and =d r rlim ( , )

d 0 2 2 2
2

.

Proof. By Lemma 5.2 and the implicit function theorem, one can easily
conclude that α0(d1, r1) is strictly increasing with respect to d1 and r1,
and β0(d2, r2) is strictly increasing with respect to d2 and r2 respectively.
Next, we compare the values of α0(d1, r1) and β0(d2, r2). To this end,

we recall that

+ =
= =

d r x
d

( ) ( ) 0, (0, 1),
( ) (0) (0) 0, ( ) (1) 0,

xx x

x x

1 1 0 1 1 1

1 1 0 1 1 (5.3)

+ =
= =

d r x
d

( ) ( ) 0, (0, 1),
( ) (0) (0) 0, ( ) (1) 0,

xx x

x x

2 2 0 2 2 2

2 2 0 2 2 (5.4)

where ϕ1 and ϕ2 are the corresponding positive eigenfunctions. It fol-
lows from Lemma 5.2 that < <0 ( )x d1 1

0
1
and < <0 ( )x d2 2

0
2
. Re-

write (5.4) as

+ =
+

= =

d r d d
x

d

( ) ( ) ( )( )
( )( ) , (0, 1),

( ) (0) (0) 0, ( ) (1) 0.

xx x xx

x

x x

1 2 0 2 2 2 1 2 2

0 0 2

2 2 0 2 2 (5.5)

Multiplying (5.3) by e x
2d

0
1 and (5.5) by e ,x

1d
0
1 integrating over (0, 1)

by parts, we get

+

= +

d d e x

r r e x

e x

( ) ( ) ( ) d

( ) d

( )[ ( ) d (0) (0)].

x
x x

x

x
x

1 2 0
1

1 2

2 1 0
1

1 2

0 0 0
1

1 2 1 2

d

d

d

0
1

0
1

0
1 (5.6)

In view of d1≤ d2 and r1≤ r2, one can easily conclude that (i) holds.
If < =d d r r, ,1 2 1 2 then α0< β0 and (5.6) becomes

=
+ <

e x

d d e x

( ) ( ) d

( ) ( ) ( ) d
( ) (0) (0) 0

d
d

x
x

x
x x

0 0 0
1

1 2

1 2 0
1

1 2

0 0 1 2

d

d

2
1

0
1

0
1

since (ϕ1)x, (ϕ2)x>0 on [0, 1]. This implies that < < .d
d 0 0 0

1
2

(iii) Integrating the first equation of (5.3) on [0, x], we have

+ =d r x( ) d 0.x
x

1 1 1 1 0 1

Assume =xmax ( ) 1
[0,1] 1 . One can conclude that (ϕ1)x is uniformly

bounded, and then from (5.3) (ϕ1)xx is uniformly bounded. Passing to a
subsequence if necessary, we can deduce that ϕ1→ 1 as d1→∞ uni-
formly on [0, 1]. Integrating the first equation of (5.3) on [0, 1], we
have + =r x x(1) ( )d 0,0 1 1 0

1
1 which implies that

=d r rlim ( , )
d

0 1 1 1
1

. Similar arguments yield =d r rlim ( , )
d 0 2 2 2

2
. □

The unique positive steady state θα for single population model (1.3)
has the following properties. Similar properties hold for ϑβ.

Lemma 5.4. Suppose0≤ α< α0. Then

(i) 0< θα< r1 on [0, 1], and < <0 ( )x d1
in (0,1) if 0< α< α0;

(ii) θα is continuously differentiable for α∈ [0, α0), and it is decreasing
pointwisely on [0,1] when α increases;

(iii) =
+

rlim
d

1
1

uniformly on [0, 1].

Proof. (i) By the strong maximum principle, it is easy to see that
0< θα< r1 on [0, 1]. The proof for the conclusion < <0 ( )x d1

in
(0,1) follows from Lemma 2.1 in [36].
(ii) Define ×G C C: (0, ) ([0, 1]) ([0, 1])B0

2 by

= +G u d u u u r u( , ) ( ),xx x1

where = + = =C u C d u u u([0, 1]) { ([0, 1]): (0) (0) 0, (1) 0}B x x
2 2

1 .
Clearly, G is a C1 functional. For any given α∈ (0, α0), it is easy to see
that =G ( , ) 0 and the Fréchet derivative

= +D G d r( , ) 2u x x1
2
2 . Noting that 1

+ =d r( ) 0,
x x1
2
2 one can assert that all eigenvalues of DuG(α,

θα) are strictly negative, which implies that DuG(α, θα) is a non-de-
generate and negative operator. It follows from the implicit function
theorem and compactness arguments that there exists a C1 function
u s C( ): (0, ) ([0, 1])B0

2 such that ==u s( )|s and =G s u s( , ( )) 0.
From the uniqueness of the solution (s, u(s)) close to (α, θα), one can
assert that =u s( ) if =s and that θα is continuously differentiable
with respect to α in (0, α0).
Differentiating the equation of θα with respect to α, we obtain

+
= <

+ = <
=

d r
x

d

( ) ( ) ( 2 )
( ) 0, (0, 1),

( ) (0) (0) (0) 0,
( ) (1) 0.

xx x

x

x

x

1

1
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By the strong maximum principle, we have < 0, that is, θα is de-
creasing pointwisely on [0,1] when α increases.
(iii) Integrating the equation for θα on [0, x], we have

+ =d r x( ) ( ) d 0.x
x

1 0 1

In view of 0< θα< r1, one can conclude that (θα)x is uniformly
bounded, and then (θα)xx is uniformly bounded. Passing to a sub-
sequence if necessary, we can deduce that θα converges to some positive
constant uniformly on [0, 1] when d1→∞. Integrating the equation for
θα on [0, 1], we have

=r x( ) d (1),
0

1
1

which implies that =
+

rlim
d

1
1

uniformly on [0, 1]. □

Remark 5.2. It is easy to see that θα≡ r1 on [0,1] if = 0.

5.2. Some mathematical proofs

Now, we are ready to establish Lemmas 2.1–2.5, and
Proposition 2.9.
The proof of Lemma 2.1: (i) Recall that

+
=

= =

d r
µ x

d

( ) ( ) ( )
( , ) , (0, 1),

( ) (0) (0) 0, ( ) (1) 0.

xx x

x x

2 1 1 2 1

1 1

2 1 1 1 (5.7)

Differentiating (5.7) with respect to α, we obtain

+
= +

= =

d r
µ µ x

d

( ) ( ) ( )
( , ) ( , ) , (0, 1),

( ) (0) (0) 0, ( ) (1) 0,

xx x

x x

2 1 1 2 1 1

1 1 1 1

2 1 1 1 (5.8)

where µ, ( , ),1 1 are the derivatives of ψ1, μ1(α, β), θα with respect

to α respectively. Multiplying (5.8) by e x
1d2 and (5.7) by e ,x

1d2 and
integrating over (0, 1) by parts, we get

= >µ e x e x( , ) d d 0d x d x
1 0

1
1
2

0

1
1
22 2

by Lemma 5.4(ii). Hence, μ1(α, β) is strictly increasing with respect to α
in [0, α0).

(ii) Let = e ,x
1 d2 where ψ1 is the positive eigenfunction corre-

sponding to the eigenvalue μ1(α, β). Then

+ +
=

= + =

d r
µ x

d

( )
( , ) , (0, 1),

(0) 0, (1) (1) 0.

xx x

x x

2 2

1

2 (5.9)

Differentiating (5.9) with respect to β, we obtain

+ + +
= +

=
+ + =

d r
µ µ x

d

( )
( , ) ( , ) , (0, 1),

(0) 0,
(1) (1) (1) 0,

xx x x

x

x

2 2

1 1

2 (5.10)

where µ, ( , )1 are the derivatives of Ψ, μ1(α, β) with respect to β

respectively. Multiplying (5.10) by e xd2 and (5.9) by e ,xd2 and in-
tegrating over (0, 1) by parts, we get

= +

= + +

<

µ e x

e e x

e
d

e x

( , ) d

(1) d

1
2

[ (0) (1) d ]

0,

d x

d x
x

d x

1 0

1 2

2
0

1

2 2

2 0

1 2

d

d

2

2 2

2 2

which implies that μ1(α, β) is strictly decreasing with respect to β in
+[0, ).
The proof of Lemma 2.2: (i) It follows from Remark 5.2 that if = 0,

then θα≡ r1 on [0, 1]. Hence, it is easy to check that =µ r r(0, 0)1 2 1.
In view of =d r( , , ) 0,1 2 2 0 it follows that =µ r(0, )1 0 1.
Noting that = 00 on [0, 1] and =d r( , , ) 0,1 2 2 0 one can easily

find that = =µ d r( , ) ( , , ) 0,1 0 0 1 2 2 0 and =µ r( , 0)1 0 2.
(ii) By virtue of =µ ( , ) 01 0 0 and =µ r( , 0) ,1 0 2 it follows from the

strict monotonicity of μ1(α, β) with respect to β that μ1(α0, β)> 0 for
0≤ β< β0. In view of =µ ( , ) 01 0 0 and =µ r(0, ) ,1 0 1 one can con-
clude that μ1(α, β0)< 0 for 0≤ α< α0 since μ1(α, β) is strictly in-
creasing with respect to α in [0, α0).
(iii) If r1≤ r2, then =µ r r(0, 0) 01 2 1 . Hence we deduce that

μ1(α, 0)> 0 for 0< α≤ α0 by Lemma 2.1(i). In reverse, if r1> r2, then
= <µ r r(0, 0) 0,1 2 1 which indicates that μ1(0, β)< 0 for 0≤ β≤ β0

by Lemma 2.1(ii).
The proof of Lemma 2.3: Let ψ1 be the corresponding positive ei-

genfunction of μ1(α, β) and set =P ( )x1
1
. Then

+ =
= > =

d P d P P x
P P

(2 ) ( ) 0, (0, 1),
(0) 0, (1) 0.

xx x x

d

2 2

2

By the strong maximum principle, P cannot attain a nonnegative
maximum in (0, 1). Hence <P d2

in (0, 1), which implies

<( ) 0x d1 12
in (0, 1).

Note that

+
= +

= =

d r
d d

d

( ) ( ) ( )
( )( ) ( )( ) ,

( ) (0) (0) 0, ( ) (1) 0.

xx x

xx x

x x

2 1

2 1

1 (5.11)

Multiplying (5.7) by e xd2 and (5.11) by e ,x
1d2 integrating over (0,

1) by parts, we get

+

=

+ +

µ r r e x

d d e x

e x

( ( , ) ) d

( ) ( ) ( ) d

( )[ ( ) d (0) (0)].

x

x
x x

x
x

1 1 2 0
1

1

1 2 0
1

1

0
1

1 1

d

d

d

2

2

2 (5.12)

The conclusions (i) and (ii) can be deduced directly from the equation
(5.12) by means of (θα)x>0 in (0, 1) for 0< α< α0 and

<( ) 0x d1 12
in (0, 1).

The proof of Lemma 2.4: Clearly, we have α0≤ β0 by Lemma 5.3. If
= =d d r r, ,1 2 1 2 it follows from Lemma 2.3(i) that =µ ( , ) 0,1 which

implies =* ( ) when 0≤ α≤ α0. Otherwise, we can conclude μ1(α,
α)> 0 when 0< α< α0. Note that =µ r r(0, 0) 01 2 1 and μ1(α,
β0)< 0 when 0≤ α< α0. By continuity and the strict monotonicity of
the eigenvalue μ1(α, β) with respect to β, we can conclude that for
0≤ α≤ α0, there exists a unique β*(α) such that α≤ β*(α)≤ β0 and

< >
= =
> <

µ
µ
µ

( , ) 0 if * ( ),
( , ) 0 if * ( ),
( , ) 0 if 0 * ( ).

1

1

1

That is, (i) holds. By Lemma 2.1 and the implicit function theorem, we
can conclude that the function β*(α) is strictly increasing with respect
to α in [0, α0]. Moreover, it is easy to see that =* ( )0 0 by means of

=µ ( , ) 01 0 0 .
The proof of Lemma 2.5: By Lemma 2.2, we have μ1(α0, β)> 0 for

0≤ β< β0, and μ1(0, β)< 0 for 0≤ β≤ β0 based on r1> r2. By con-
tinuity and the strict monotonicity of the eigenvalue μ1(α, β) with re-
spect to α, we can conclude that for 0≤ β≤ β0, there exists a unique
α*(β) such that 0< α*(β)≤ α0 and
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< <
= =
> < <

µ
µ
µ

( , ) 0 if 0 * ( ),
( , ) 0 if * ( ),
( , ) 0 if * ( ) .

1

1

1 0

That is, (i) holds. By Lemma 2.1 and the implicit function theorem, we
can conclude that the function α*(β) is strictly increasing with respect
to β on [0, β0]. Moreover, it is easy to see that =* ( )0 0 by means of

=µ ( , ) 01 0 0 .
The proof of Proposition 2.9: Suppose +d n2, as n→∞. It fol-

lows from Lemma 5.4 that rn, 2 as n→∞, where ϑβ, n is the
unique positive steady state of the single population model (1.4) with

=d d n2 2, . Let σ1, n(α, β) be the principal eigenvalue of (2.2) with ϑβ
replaced by ϑβ, n. Then

+
= + +

d r r
d r r

( , ) ( , , )
( , , 0)

n1, 1 1 1 2

1 1 1 2

as n→∞, which implies

r r d** ( ) ( ) ( , , 0)n 2 1 1 1 (5.13)

as n→∞. Here ** ( )n is uniquely determined by =( , ** ( )) 0n n1, .
By Lemma 5.2, λ1(d1, α, 0) is strictly increasing with respect to d1 in

+(0, ) with =
+

dlim ( , , 0)
d 0

1 1
1

. Hence, r r( )2 1

+d( , , 0)1 1 as +d 01 .
On the other hand, let (μ1, n(α, β), ψn(x)) be the pair of principal

eigenvalue-eigenfunction of problem (2.1) with =d d n2 2, . Hence, * ( )n
satisfies that

+ =
= =

d
r x

d

( *) ( *)
( ) * 0, (0, 1),

( *) (0) ( *)(0) 0, ( *) (1) 0.

n n xx n x

n

n x n n x

2,

2

2 (5.14)

Similar arguments as in Lemma 5.3(iii) yield that * 1n as n→∞ due
to the assumption of =xmax *( ) 1n[0,1]

. Integrating the first equation of

(5.14) on [0, 1], we easily deduce that

r x n* ( ) ( )d as .n 0

1
2 (5.15)

Recalling that θα→ r1 as +0 and +r r d( ) ( , , 0)2 1 1 1 as
+d 0 ,1 one can deduce that there exists some constant δ>0 small

such that for 0< d1≤ δ and 0< α≤ δ, we have < < rr
2 1
1 on [0, 1]

and >r r d r( ) ( , , 0) ( )r
2 1 1 1 2 2

1 .
Combining (5.13) and (5.15), we can conclude that there exist po-

sitive constants M large and δ small such that for d2≥M, 0< d1≤ δ,
and 0< α≤ δ, we have > >r** ( ) ( ) * ( )r

2 2
1 . The proof is fin-

ished.
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