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ABSTRACT: The accurate evaluation of the Wigner phase space density for
multidimensional system remains a challenging task. Path integral Monte Carlo
methods offer a numerically exact approach for obtaining the Boltzmann density in
coordinate space, but the Fourier-type integral required to construct the Wigner
distribution generally leads to poor convergence. This paper describes a path integral
method for constructing the Wigner density which substantially mitigates the Monte
Carlo sign problem and thus is applicable to systems with many degrees of freedom.
The starting point is the path integral representation of the coherent state density,
which does not involve a Fourier integral and thus converges rapidly. We then use the relation between the coherent state and
Wigner densities to construct the Wigner function, taking advantage of destructive phase cancellation to truncate the infinite
series and thus confine the integrand, avoiding highly oscillatory regions. We also describe the use of information-guided noise
reduction (IGNoR) to improve the Monte Carlo statistics in the most challenging regimes. The method is applied to strongly
anharmonic one-dimensional models, a system-bath Hamiltonian, as well as the formamide molecule within an ab initio quartic
potential, and the results are compared to those obtained by various approximate methods. These calculations suggest that the
coherent state-based path integral method described in this paper offers an efficient, numerically exact approach for constructing
the Wigner phase space density in systems of many degrees of freedom, and thus will be useful for quantizing the initial
condition in classical trajectory-based simulations of dynamical properties.

I. INTRODUCTION

Fully quantum mechanical treatments for following the
dynamics of condensed phase and biological processes
continue to be prohibitively costly in most situations. While
some rigorous and accurate methods are currently available
for particular types of systems, many simulations continue to
rely on classical trajectories. Classical molecular dynamics
methods are efficient and robust, and even though they cannot
account for quantum mechanical effects, they often lead to
usefully accurate predictions. There are several reasons for this
success of classical mechanical approximations. One of the
hallmarks of quantum mechanics is interference, and this
phenomenon tends to be washed out in condensed phase
dynamics. Quantum mechanical tunneling is often dominated
by over-the-barrier crossing at physiological temperatures. On
the other hand, vibrational zero-point energy (ZPE) effects
can be significant, as many chemical bonds are relatively cold
under common conditions. By design, classical force fields
effectively capture some ZPE effects in an average way
(although this construction makes them temperature-depend-
ent), but the adequacy of this ZPE treatment is hard to assess.
Further, classical force fields are not available for interactions
encountered in many materials. A more rigorous but costly
approach is force evaluation via ab initio electronic structure
methods, which produce the Born−Oppenheimer potential
surface (and its derivatives). In this case, ZPE effects must be
included in the phase space distribution from which classical
trajectories are sampled.

There are a few prescriptions for constructing quantum
mechanical phase space distributions, of which the most
widely used schemes follow the Wigner approach.1 For a
system of one degree of freedom, the Wigner transform of an

operator ̂ is given by the expression
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The Wigner phase space density is frequently used in
connection with the Boltzmann operator, that is,

Z e H1̂ = β− − ̂
, where β = 1/kBT. For simplicity, we denote

the thermal Wigner density as W(q, p). The Wigner transform
AW
β (q, p) of symmetrically thermalized operators, with

Z Ae eH H1 /2 /2̂ = ̂β β− − ̂ − ̂
, is also encountered in the calcu-

lation of time correlation functions.
The simplest scheme for approximating dynamical observ-

ables in the spirit discussed above is known as the
quasiclassical approximation or Wigner dynamics,1,2 and is
equivalent to the linearized semiclassical initial value
representation3−5 (LSC-IVR), which can also be derived
from linearizing the path integral expression.6 According to
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this prescription, the time evolution of the expectation value
of an operator is given by the integral

A t q p W q p A q p( ) d d ( , ) ( , )t t0 0 0 0∫ ∫⟨ ⟩ =
(1.2)

where qt, pt are the phase space coordinates reached by a
classical trajectory with initial condition q0, p0. Similarly, the

choice Z Ae H1̂ = ̂β− − ̂
yields quasiclassical approximations to

time correlation functions. An improved approximation results
from the path integral Liouville dynamics7,8 (PILD)
formulation, which by construction rigorously preserves the
phase space density.
Further, Wigner phase space distributions are employed in

quantum-classical simulations. The mapping Hamiltonian
formalism9−11 replaces the discrete states of a quantum
subsystem by continuous degrees of freedom, allowing a
unified treatment of all particles by classical trajectories
launched from a quantized phase space distribution. Recently,
the quantum-classical Liouville equation has been used as the
framework for a systematic expansion12,13 that obtains
dynamical information through classical trajectories sampled
from the Wigner distribution, retaining the discrete character
of the quantum system. A quantum-classical path integral
(QCPI) formulation14−16 has also emerged in the past few
years, which allows a rigorous treatment of discrete systems
interacting with condensed phase environments the dynamics
of which is captured through classical trajectories with Wigner
initial conditions.
Unfortunately, the evaluation of the Wigner phase space

density in systems of many degrees of freedom is far from
straightforward. This is so because the oscillatory phase
involved in the Fourier integral leads to a “sign problem”,
causing exponentially slow convergence of Monte Carlo
integration methods. Several approximate treatments have
been developed for obtaining the Wigner phase space density.
These include local17 or variationally optimized6 Gaussian
wavepacket approaches, and the thermal Gaussian approx-
imation18 (which employ frozen Gaussian dynamics19 in
imaginary time), along with extensions that capture quantum
corrections.20 We recently introduced21,22 a simple, trajectory-
based approximate method that makes use of the classical
adiabatic theorem to slowly convert the Wigner density of a
harmonic reference system to that of the target Hamiltonian.
Other recent work23 has used the quasi-adiabatic propagator
path integral methodology24 to obtain the Wigner distribution
of the bath in the case of a system interacting with a bath of
independent harmonic oscillators.
An attractive alternative for obtaining a quantized phase

space density is offered by the Husimi approach,25 which is
based on the coherent state representation of an operator. The
numerical evaluation of the Husimi expression is not as
challenging, and several techniques are available for this task,
such as semiclassical propagation in imaginary time26 and
numerically exact path integral representations.27

In this paper, we introduce a numerically exact path integral
method for evaluating the Wigner transform of the Boltzmann
operator (or symmetrically thermalized operators). The
starting point is the path integral representation of the
coherent state distribution, which involves a simple and stable
procedure. Subsequently, we use the relation28 between the
Wigner and coherent state densities, which we Taylor-expand.
We show that the expansion converges rapidly, and that the
omission of high order terms dramatically reduces the

instabilities arising from phase cancellation. We also apply
the information-guided noise reduction29 (IGNoR) technique
to further improve the statistics of the coherent state-based
path integral Wigner (CSPIW) method. In challenging
regimes with ∼103 variables, we find that the IGNoR
processing further reduces the statistical error of the CSPIW
results by one or more orders of magnitude.
In section II we derive the CSPIW method for general

thermalized quantum mechanical operators. In section III we
illustrate the procedure by applying it to one-dimensional
model potentials, as well as system-bath Hamiltonians with
many degrees of freedom. We also apply the method to an ab
initio Hamiltonian for the formamide molecule and compare
the CSPIW results to those obtained by using the path
integral Monte Carlo (PIMC) method. Some concluding
remarks are given in section IV.

II. PATH INTEGRAL EXPRESSION OF THE WIGNER
DENSITY
a. Direct Path Integral Discretization of the Wigner

Integral. In this paper we focus on the Wigner transform of
symmetrically thermalized operators,
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With a minor modification, the procedure described below
may be applied to nonsymmetrically thermalized operators,
Z−1 e−βĤÂ. Throughout this section we use one-dimensional
notation for clarity. The extension to systems of many degrees
of freedom is straightforward.
Consider first the discretized path integral representation of

eq 2.1. We begin by splitting the inverse temperature into 2N
imaginary time slices of length Δβ = β/2N and using the
Trotter factorization,30

e (e e e )H T V T N1
2

1
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1
2=β β β β− ̂ − Δ ̂ −Δ ̂ − Δ ̂

(2.2)

where T̂ and V̂ are the kinetic and potential energy operators,
respectively. Inserting the resolution of identity repeatedly, we
arrive at the following discretized path integral31,32 represen-
tation of the Wigner transform:
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(2.3)

(Note that a different operator ordering in eq 2.2, with the
kinetic energy placed in the middle, would have eliminated
two path integral variables. The particular ordering of the
Trotter splitting we employ is motivated by the coherent state
representation that follows. The choice of ordering in the
Trotter factorization does not affect the discussion given
below regarding the severity of the sign problem in the
numerical evaluation of the Wigner transform.)
The kinetic energy factors in eq 2.3 are given by the usual

expression,
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This leads to the standard picture, where the path integral
variables are thought of as classical “beads”, connected via
harmonic springs and experiencing an external potential.33

According to eq 2.4, the dependence on the necklace end
points is given by the factor

( ) ( )e e
m x q m x q1

2
1
2N2 1

2

2 2 2

2

β
ξ

β
ξ−

ℏ Δ
− − −

ℏ Δ
− ++ (2.5)

As discussed in the Introduction, the most common use of the
Wigner density is in the context of selecting phase space
coordinates to be used as initial conditions for classical
trajectories, as in eq 1.2. For systems of many degrees of
freedom, Monte Carlo methods provide the only viable
approach to the required multidimensional integrals. Thus,
one needs to identify a sampling function for the phase space
variables q and p, the Fourier variable ξ and the path integral
beads. The exponential factors in eq 2.3 provide the sampling
function for the path integral variables x1, ··· x2N+2. Further,
both the Wigner variable q and the Fourier variable ξ are
connected to the first and last beads through eq 2.5, so these
variables can also be sampled. According to eq 2.5, q 1

2
ξ+ is

held close to x1, while q 1
2
ξ− is close to x2N+2. These

requirements imply that the magnitude of Fourier variable ξ
will be comparable to the distance between the first and last
beads. At low temperatures, the open path integral necklace
has a large span and its ends are far apart. The resulting large
values of the variable ξ lead to a rapidly oscillatory Fourier
factor e−ipξ/ℏ, which is likely to cause poor Monte Carlo
statistics in systems of many degrees of freedom.
Perhaps an even more bothersome issue with the form of eq

2.3, when used in connection with eq 1.2, is the complete
absence of a sampling function for the momentum variable p.
Thus, it is clear that the straightforward path integral
discretization of the Wigner density is not useful for
performing quasiclassical calculations. To remedy this flaw,
notice that eq 2.5 is the only part of the path integral
expression that is dependent on the difference coordinate ξ,
and it has a Gaussian form. Evaluation of the Gaussian integral
leads to the result
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With this, eq 2.3 becomes
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Equation 2.7 contains a Gaussian function of p, which is useful
for generating classical trajectory initial conditions. The
variable q is now tied to the midpoint of the path integral
chain, whose end points can be separated by a large distance
at low temperatures. The Δβ coefficient in the Gaussian
momentum distribution implies that high momentum values
will be sampled, which (given the large values of the end point
coordinate difference) gives rise to a rapidly oscillatory phase
and a rather severe sign problem. One concludes that neither
of the expressions discussed so far are good candidates for
Monte Carlo sampling.

b. Coherent State-Based Path Integral Representa-
tion of the Wigner Density. On the other hand, it is
comparatively easy to calculate the Husimi25 phase space
transform of the operator,

A q p g A g( , ) q p q pH , ,= ⟨ | ̂| ⟩ (2.8)

where |gq, p⟩ are coherent states whose wave functions have
the standard form
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The Wigner and Husimi functions are connected through the
relation28
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It has been shown34 that the first order expansion of this
expression produces the phase space density derived via the
forward−backward semiclassical dynamics (FBSD) approx-
imation of time correlation functions.35,36

Our strategy is to obtain the Wigner density by utilizing its
relation to the Husimi function, whose numerical evaluation is
not as challenging. To proceed, we obtain a discretized path
integral representation for the Husimi transform of the
symmetrically thermalized operator,
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Employing the same factorization of the Boltzmann operator,
we obtain
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Using the analytic expression37 for the coherent state factors,
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eq 2.12 becomes
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The end points of the path integral chain in eq 2.14 are now
linked to the coherent state variable q, which closes the
necklace. As a result, the distance |x1 − x2N+2| does not grow
exceedingly large, preventing dramatic growth of the phase
which would otherwise lead to a sign problem. This is a major
computational advantage of coherent state-based expressions
compared to their Wigner forms.26,27 Note also the presence
of an exponential factor for the momentum variable, which
allows Monte Carlo sampling.
The exponential derivative operator that converts the

Husimi function to the Wigner function acts only on the
coherent state coordinates. Since eq 2.8 is an ordinary
function of q and p, derivatives with respect to q or p
commute, and thus may be evaluated in separate steps.
To evaluate the exponential derivatives, we work in Fourier

space. Consider an operator of the form exp(−η ∂2/∂x2)
acting on a Gaussian function ψ(x) = exp(− ax2 + bx) where
a > 0. The Fourier transform ψ ̃(k) of ψ(x) is given by
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Applying eq 2.16, we obtain
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The last Gaussian factor in eq 2.17 has the desirable
property of holding the chain end points x1 and x2N+2 close
together. However, this factor is exactly canceled by its
reciprocal present in eq 2.18, leading to the open chain
configuration and rapidly oscillatory phase discussed pre-
viously. In fact, upon combining eqs 2.14, 2.17, and 2.18, it is
easy to see that all γ-dependent terms cancel and one recovers
the expression obtained from direct discretization of the
Wigner density, eq 2.7. As discussed earlier, this expression
will lead to sampling of open chains with distant end points,

and of large momentum values corresponding to a high-
temperature distribution.
Rather than allowing phase cancellation to narrow the phase

space distribution at the cost of poor Monte Carlo
convergence, we propose to replace the integrand with a
more confined distribution, which can gradually be broadened
until convergence is achieved. The first step involves
expanding the inverse Gaussian of eq 2.18 in a truncated
polynomial through order nx,
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Equation 2.19 becomes exact as nx → ∞. Using this
truncation, the Wigner transform becomes
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Since a Gaussian decays faster than a polynomial of any finite
order, the truncated form of eq 2.20 prevents the distance of
the chain end points from growing too large.
To narrow the momentum distribution toward the expected

Boltzmann form at the given temperature, we insert the
Gaussian factor exp(−αp2/2m) and its reciprocal, which we
subsequently expand through order np. This procedure leads
us to the following final expression for the Wigner transform
of the operator, which contains two truncation parameters, nx
and np:
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(2.21)

We note that the level of truncation required for convergence,
that is, the parameters nx and np, can be different for different
degrees of freedom, and that the rate of convergence also
depends on the observable under consideration.
Equation 2.21 is the final expression of the CSPIW method.

The coherent state factor γ is estimated from the width of the
ground state wave function or the quantum dispersion of the
particles. An accurate estimation of the coherent state
parameter is not necessary for convergence. The Gaussian
parameter α is to be chosen based on physical intuition. Good
choices of α lead to convergence with smaller values of np. At
relatively high temperatures, one expects the classical
Boltzmann distribution to provide a reasonable approximation
to the momentum dependence of the Wigner distribution, so
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a sensible choice is in this case α = β, the inverse temperature.
Another choice results from the momentum dependence of
the harmonic approximation, which suggests the value

2
tanh

1
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i
k
jjj

y
{
zzzα

ω
ωβ=

ℏ
ℏ

(2.22)

where ω is the frequency of the harmonic fit to the potential.
It is important to note that the correctness of the resulting
Wigner distribution is not dependent upon the choice of α,
which only affects the rate of convergence with respect to the
truncation parameters.
The entire integrand of eq 2.21, apart from the phase, can

be used as the Monte Carlo sampling function. In the rest of
this paper, we focus on the Wigner function corresponding to
the thermal density operator, obtained by setting Â = 1, which
introduces the delta function δ(xN+2 − xN+1) in the integrand.
Since the Wigner function is real-valued, the imaginary part of
the integrand must integrate to zero. The CSPIW expression
for the thermal Wigner density, which we label Wnx, np

β (q, p), is
thus given by the expression

W q p x x

f q p x x x g x x

( , ) d d

( , , , , ) ( , )
n n N

N N

, 1 2 2

1 2 2 2 1 2 2

x p
∫ ∫= ···

···

β
+

+ + (2.23)

with

f q p x x x m x x

x x x x x x x

x

j
m x x

m k
p
m

( , , , , )
2

e e

e e e ( )

e e

e

1 ( )
2(2 )

1
( )

2

N
V x T

V x T
N

T
N N N N

T
N

V x

p
m

m q
x x m

m
x x

j

n
N

j

k

n k

1 2 2 2

1/2
( )

1 2

( )
2 3

1
2 1 2 1 2

1
2 3

( )

2
2

2 2(2 )
( )

0

1 2 2
2

0

2

N
N

x p

1

2

3

2
1 2 2

2

1 2 2
2

i
k
jjj

y
{
zzz

i

k

jjjjjjj
i

k
jjjjj

y

{
zzzzz
y

{

zzzzzzz
i

k

jjjjjjjj
i
k
jjjjj

y
{
zzzzz

y

{

zzzzzzzz

i
k
jjj y

{
zzz

∑ ∑

γ
π βγ

δ

γ
βγ

α β

··· =
Δ

⟨ | | ⟩

⟨ | | ⟩···⟨ | | ⟩ − ⟨ |

| ⟩

···

!
−
+ Δ !

− Δ

β β

β β β

β β

α β
γ

βγ

+
−Δ −Δ ̂

−Δ −Δ ̂ − Δ ̂
+ + + +

− Δ ̂
+

−Δ

− − Δ −
+

−
+Δ

−

=

+

=

+
+

(2.24)

and

g x x p x x( , ) cos( ( )/ )N N1 2 2 1 2 2= − ℏ+ + (2.25)

We emphasize again that once convergence with respect to nx
and np is achieved, eqs 2.23 and 2.24 produce the exact
Wigner density W(q, p).
By virtue of the delta function in eq 2.24, the CSPIW

expression for the Wigner density has 2N + 1 integration
variables for each degree of freedom. Evaluation of this high-
dimensional integral requires the use of Monte Carlo
methods,38 and the non-negative function f is the natural
choice of sampling function. Since the Wigner function is
normalized, the product fg integrates to unity, therefore the
sampling function is not normalized. To evaluate the Wigner
function itself, one would need to compute the normalization
integral of the sampling function by other methods. However,
this is not necessary in the most common use of the Wigner
density, in the context of quasiclassical approximations.
Quasiclassical dynamics calculations require trajectory initial

conditions with weights given by the Wigner density. In
multidimensional applications, the initial conditions must be
sampled via Monte Carlo methods, thus the integrals with
respect to the auxiliary path integral variables must be
evaluated concurrently with those required to construct the
Wigner function. As an example, consider the real part of the
quasiclassical position correlation function, which is given by
the expression
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with 2N + 3 integration variables, which is in a form suitable
for Monte Carlo evaluation with f ≥ 0 as the unnormalized
sampling function. If desired, the imaginary part can be
obtained from the real part by using the relation between the
real and imaginary parts of an autocorrelation function.22,39,40

We rewrite this expression as the ratio
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By computing the integral of the denominator of eq 2.27,
along with that of the numerator, using the same sampling
function, the normalization factors cancel upon division, thus
numerical evaluation of the normalization integral is not
necessary.
c. CSPIW Sampling with Information-Guided Noise

Reduction. The CSPIW formulation achieves a significant
reduction of the phase fluctuations, leading to a dramatic
reduction of the Monte Carlo error. Still, application of the
method to systems of many degrees of freedom at low
temperature, where many path integral beads are necessary,
can be challenging. To further reduce the statistical error, we
resort to IGNoR,29 a technique that exploits the exact value of
a similar integral. IGNoR has been used successfully in FBSD
simulations of neat fluids at low temperatures.41,42 In this
section we describe the use of IGNoR to reduce the Monte
Carlo noise in the evaluation of the CSPIW expression.

To proceed, we note that the converged CSPIW Wigner
function is normalized to unity; that is,
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We define the integrals of the positive and negative regions of
the Wigner integrand,
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and the change of the values of these integrals upon
multiplication with the desired position correlation factors,
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The exact value of the correlation function is given by C+ +
C−, and this value often is very small compared to the
magnitudes of C+ and C−. The integrals in eqs 2.29 and 2.30
correspond to the volumes of the positive and negative
regions of these functions, and are easily evaluated with
relatively good statistics. However, the cancellation between
positive and negative volumes gives rise to very poor statistics,
commonly referred to as a Monte Carlo sign problem. The
IGNoR technique exploits the fact that the Monte Carlo
estimates (from the same random walk) of the integrals of eq
2.30 are strongly correlated with those of eq 2.29. However,
the exact values of the integrals in eq 2.29 are available. Thus,
IGNoR replaces the noisy term ⟨C−⟩ in the raw Monte Carlo
estimate ⟨C+⟩ + ⟨C−⟩ by a corrected estimate,

C t C t C t
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+
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where the angular brackets indicate the raw Monte Carlo
averages. It has been shown29,41,42 that the IGNoR correction
leads to substantial noise cancellation, which often results in a
dramatic reduction of statistical error.

III. APPLICATIONS
In this section we investigate the convergence characteristics
of the procedure described in section II by applying it to
several one-dimensional model Hamiltonians and also to
systems of many degrees of freedom. We show two-
dimensional plots of the phase space density, the resulting
position-and momentum-space densities, as well as the
quasiclassical approximation to time correlation functions

obtained from trajectories sampled from the Wigner
distribution. All time correlation functions are obtained
through classical trajectory calculations using the velocity
Verlet algorithm to solve Newton’s equations. The error bars
correspond to the standard deviation of the mean calculated
by binning the Monte Carlo data.
Further, we compare the CSPIW results to those obtained

analytically or via numerically exact basis set methods, and to
the results of three approximate procedures: the local
harmonic and Gaussian approximations, and the adiabatic
switching trajectory-based method. Before presenting our
results we give a short overview of these methods.
The local harmonic approximation (LHA) and local

Gaussian approximation (LGA) can both be expressed as
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where u(q) = ℏβω(q) (with q V q m( ) ( )/ω = ″ ) and
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Equation 3.1 is applicable to regions of positive curvature,
where ω(q) is real-valued. At points where ω(q) is imaginary
the LHA replaces eq 3.2 by
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Figure 1. Contour maps: two-dimensional histograms of the phase space density. Converged basis set calculations (top left), W3, ∞(q, p) (top
right), W3,0(q, p) (bottom left), W3,4(q, p) (bottom right). The line plots present the marginal distributions, obtained by integrating the Wigner
function with respect to p and q, respectively. Solid black line, basis set calculations; dashed black line, classical Boltzmann density; green markers,
W0, ∞(q, p); purple markers, W3,0(q, p); blue markers, W3, ∞(q, p); red markers, W3,4(q, p). (a) Model potential V1, 3 2ωβℏ = , N = 7. (b)
Model potential V1, 2ωβℏ = , N = 2. (c) Model potential V2, 5 2ωβℏ = , N = 12. (d) Model potential V2, 3 2ωβℏ = , N = 7.
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When |u | > π, Q becomes negative and the LHA is not usable.
The LGA suggests using

( )
Q u

u

u
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tanh 1
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=
| |

| | (3.4)

in regions of negative curvature.
The adiabatic switching method for generating the Wigner

density21,22 (ASW) relies on the classical adiabatic theorem to
slowly convert the available Wigner density of a model
reference system (e.g., a quadratic fit to the potential) to that
of the target Hamiltonian. Because the adiabatic switching
process changes the energy of the trajectories, a rescaling
procedure is also employed to maintain the desired temper-
ature. The ASW approximation becomes exact for quadratic
potentials.
A. One-Dimensional Models. We demonstrate the

method on three strongly anharmonic one-dimensional
models with particle mass m = 1.
The first two models employ the potentials V1 and V2,

which are given by fourth degree polynomials,

V q q q q( )
1
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0.2 0.0151
2 2 3 4ω= − +

(3.5)

V q q q q( )
1
2

0.1 0.12
2 2 3 4ω= − +

(3.6)

where 2ω = . Figure 1 shows the phase space distribution
at two temperatures for each of the potentials. We also
compare the position and momentum distributions

P p qW q p Q q pW q p( ) d ( , ), ( ) d ( , )∫ ∫= =
(3.7)

obtained via the CSPIW method to those obtained via
numerically exact basis set calculations and also to the classical
Boltzmann distribution. The CSPIW calculations employed
106 Monte Carlo samples. The reason for using such a large
number of Monte Carlo points was our desire to generate
smooth, visually appealing phase space distributions. Thermo-
dynamic averages and time-dependent properties extracted
from quasiclassical calculations with initial conditions sampled
from the CSPIW distribution require much smaller numbers
of Monte Carlo points. Because convergence of the 2N + 3-
dimensional integral was relatively easy in this case, we did
not apply the IGNoR enhancement.
It is seen that the CSPIW calculation converges to the

correct phase space distribution over a wide range of
temperatures for both potentials, accurately capturing the
position and momentum spans as well as the position of the
peak which is slightly shifted from the potential minimum.
Further, Figure 1 shows that the position distribution is always
in excellent agreement with the basis set results, regardless of
the values of the truncation parameters. At low temperatures,
the number of beads required to minimize the Trotter error
increases and the span of the path integral chain grows,
leading to a larger and more oscillatory phase. The CSPIW
expansion shrinks the highly oscillatory wings responsible for
this phase substantially, such that the distribution converges
well even at very low temperatures. Convergence was achieved
with nx = 3, np = 4.
Next, we examine the use of the CSPIW distribution to

obtain time-dependent properties from a classical trajectory
calculation. Figure 2 shows the real part of the position

correlation function, eq 2.26, obtained by launching classical
trajectories from the CSPIW distribution W3,4, the LHA
approximation, and also from the exact Wigner function,
obtained through a basis set calculation. The calculations were
performed at very low temperatures, which are most
challenging for the CSPIW method. It is seen that the
converged CSPIW density leads to results practically
indistinguishable from those obtained by using the exact
Wigner function.
The third model system is a Morse potential,

V x D( ) (1 e )q q( ) 20= − α− − (3.8)

with D ,11
4

2
11

α= = , which lead to the harmonic

frequency at the minimum ωmin = 1. With these parameters,
the potential supports six bound states.
In Figure 3 we present the Wigner phase space distribution

at ℏωminβ = 10 as obtained using the W4,4 CSPIW procedure,
and also from the LGA and ASW approximations. The chosen
low temperature leads to extended imaginary time paths which
cause substantial phase cancellation and thus present a
challenge to the CSPIW calculation. Excited state contribu-
tions are negligible at this temperature, so we also present a
comparison to the analytical expression for the ground state,
which is seen to have very small negative zones in the wings.
It is seen that the CSPIW method faithfully reproduces the
shape of the Wigner density with good statistics, although the
very small negative parts are obscured by Monte Carlo noise.
This potential has an extended region of negative curvature,
where |u | > π. As a result, the LHA approximation breaks

Figure 2. Real part of the quasiclassical position autocorrelation
function. Black line: Wigner dynamics starting from the exact Wigner
function with 105 Monte Carlo points. Blue line: Wigner dynamics
starting from the LHA Wigner density. Red circles: CSPIW results
with W3,4. Top: model potential V1, 3 2ωβℏ = , N = 7. Bottom:
model potential V2, 5 2ωβℏ = , N = 12.
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down completely, and we do not show it in the figure. The
LGA density displays a sharp cutoff with a high ridge in the
repulsive potential region when u > π and a much more
extended momentum distribution along the ridge. The simple,
trajectory-based ASW approximation does a very good job of
capturing the phase space density.
B. System-Bath Model. Next, we use the CSPIW method

to generate the Wigner function and subsequent dynamics for
a harmonic system coupled bilinearly to a dissipative
harmonic bath. This model provides an excellent testbed for
assessing the convergence properties of the CSPIW method,
as the discretized path integral representation and integrand
truncation do not benefit from the quadratic nature of the
Hamiltonian, yet obtaining exact results is relatively
straightforward. The system-bath Hamiltonian has the form

H
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(3.9)

The frequencies for the harmonic bath and the system-bath
coupling coefficients are collectively characterized by a
spectral density43 of the Ohmic form with an exponential
cutoff,

J( )
2

e / cω π ξω= ℏ ω ω−
(3.10)

where ξ quantifies the system-bath interaction strength and ωc
= 1.25Ω. Results are reported for a weakly coupled harmonic
bath (ξ = 0.2) at a low temperature (ℏΩβ = 5), as well as a
strongly coupled bath (ξ = 1) at an intermediate temperature
(ℏΩβ = 2). In each case the continuous bath was discretized
into 24 oscillators using the logarithmic discretization44,45 with
ωmax = 4ωc. We report the real part of the position
autocorrelation function for the system given by the
quasiclassical Wigner procedure,

C t s p W s p s s tx p x pRe ( ) d d d d ( , , , ) ( )s s0 ,0 0 0 0 ,0 0 0 0∫ ∫ ∫ ∫=

(3.11)

Since the Hamiltonian is quadratic, the quasiclassical
expression is expected to produce the exact quantum

mechanical result, provided the Wigner distribution is
accurate.
The CSPIW calculations were performed with Ns = 16 for

the system coordinate and different numbers of path integral
steps for each bath degree of freedom, chosen to give ℏωiβ/Ni
≤ 0.4 This discretization resulted in 372 coordinate plus 25
momentum integration variables in eq 3.11 in the case of the
low-temperature bath, and 166 coordinate plus 25 momentum
integration variables in the case of the intermediate-temper-
ature bath. Because of the high dimensionality of the
integration, we applied the IGNoR convergence enhancement.
Figure 4 shows the quasiclassical results obtained using the

CSPIW distribution, along with exact quantum mechanical
results calculated analytically, and classical results obtained by
sampling trajectory initial conditions from the classical
Boltzmann density. For these multidimensional calculations,
the integrand truncation implemented in the CSPIW method
is essential for convergence, as the sign problem grows
exponentially with integral dimension. In the absence of
truncation, we found it impossible to obtain meaningful
results that were not buried in statistical noise. The correlation
functions shown in Figure 3 were evaluated by sampling the
W2,0 distribution with 25000 Monte Carlo points per
dimension. While the CSPIW procedure leads to results
with reasonable precision (the statistical error bars are smaller
than the marker size), the Monte Carlo error bars in the raw
CSPIW results are still substantial. As seen in Figure 3, the
IGNoR processing leads to a very significant reduction of

Figure 3. Wigner density for the Morse potential at ℏωminβ = 10.
Top left: Analytic ground state Wigner function. Top right: W4,4.
Bottom left: LGA aproximation. Bottom right: ASW approximation.

Figure 4. System position autocorrelation function for the system-
bath Hamiltonian. Black line: exact quantum mechanical results. Blue
line: classical Boltzmann result. Green circles: raw CSPIW results.
Red squares: CSPIW method with IGNoR processing. Top: ωc =
1.25 Ω, ξ = 0.2, ℏΩβ = 5, 397 integration variables. Bottom: ωc =
1.25Ω, ξ = 1, ℏΩβ = 2, 191 integration variables.
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statistical error, resulting in CSPIW results that are in nearly
quantitative agreement with those of the exact calculation.
Since the Hamiltonian in eq 3.9 is fully quadratic, the LHA for
the Wigner distribution would produce the exact results for
this system.
C. Quartic Force Field for Formamide. As a final

example, we apply the CSPIW method to the formamide
molecule, HCONH2, described by an ab initio quartic force
field. The potential was calculated using Gaussian 0946 at the
level of Møller−Plesset (MP2) perturbation theory with aug-
ccpvtz basis set.47,48 The Hamiltonian is expressed in normal
mode coordinates and has the form
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We report the marginal thermal distributions of various

modes,

Figure 5. Marginal position distributions of some normal modes of formamide at 300 K. Black solid line: exact quantum PIMC results. Blue
dashed line: harmonic Wigner distribution. Red markers: W2,0 results.

Figure 6. Average vibrational kinetic energy of formamide. Red markers: CSPIW results (with error bars). Green line: classical approximation.
Blue line: harmonic Wigner approximation. Black line: PIMC value. Left: convergence of kinetic energy with respect to nx for np = 4. Right:
convergence with respect to np for nx = 4.
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as obtained using the CSPIW method, along with numerically
exact results obtained from path integral Monte Carlo
(PIMC) calculations and Wigner distributions corresponding
to the harmonic part of the Hamiltonian at 300 K. At this
temperature ℏωminβ = 0.64 and ℏωmaxβ = 18.06, where ωmin
and ωmax are the lowest and highest frequency normal modes,
respectively. Each normal mode coordinate was discretized
with a different value of time steps, with 2N ranging between
4 and 64, with the total number of integration variables equal
to 432. For sampling the phase space, 23 000 Monte Carlo
points per integration variable were used.
Figure 5 shows the marginal distributions of various normal

modes as obtained from the CSPIW method with integrand
truncation at nx = 2, np = 0 and compares them to those
obtained from numerically exact PIMC calculations and also
to the harmonic approximation. It is seen that the CSPIW
results are in excellent agreement with the exact quantum
mechanical distributions. While the harmonic approximation
appears nearly quantitative for the highest frequency modes, it
leads to large error in the distributions of low frequency
modes, where the anharmonicity is most pronounced.
We also present the average kinetic energy of the

formamide molecule at 300 K. In this calculation we did
not apply momentum truncation to the four highest frequency
modes, as convergence was easily attained without truncation
of these variables. Figure 6 shows the obtained kinetic energy
as a function of the truncation parameters. Convergence was
achieved with nx = 6, np = 4. For comparison, we also show
the classical kinetic energy, the value obtained from the
harmonic approximation to the Wigner function, and also that
obtained from numerically exact PIMC calculations. The
kinetic energy is obtained as the difference between total and
potential energy using the thermodynamic PIMC estimator,49
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where Z = Tr[exp(−βĤ)] is the partition function and the
brackets denote the normalized Monte Carlo average with
respect to the path integral discretization of the Boltzmann
operator.
As seen in Figure 6, the converged CSPIW results are in

quantitative agreement with the PIMC values. The classical
estimate is very poor, as most vibrations are cold at room
temperature. The large deviation from the harmonic kinetic
energy arises mainly from the large anharmonicity of the
lowest frequency mode. Since the number of Monte Carlo
samples was kept constant across all the simulations, the
statistical error is more pronounced in the CSPIW calculations
with higher order truncation parameters.

IV. CONCLUDING REMARKS
We have described in this paper a numerically exact procedure
for computing thermal Wigner phase space distributions in
systems of many degrees of freedom. The method is based on

the path integral representation of the Boltzmann operator,
but makes use of the coherent state distribution which
involves a stable procedure to minimize the Monte Carlo sign
problem by avoiding highly oscillatory regions that do not
make an appreciable contribution to the result. We also show
how the method may be combined with the IGNoR
enhancement to further shrink the statistical error.
Our test calculations on several model systems, including

one-dimensional and multidimensional Hamiltonians, show
that the CSPIW method quickly leads to converged,
numerically exact results with small statistical error for the
quantum phase space distribution and also for time correlation
functions obtained via classical trajectories. Thus, the CSPIW
method should offer a useful tool for quantizing trajectory
initial conditions in quasiclassical simulations and also in
quantum-classical calculations.
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