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Engineered nanoparticles interact with nutrients to intensify
eutrophication in a wetland ecosystem experiment
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Abstract.  Despite the rapid rise in diversity and quantities of engineered nanomaterials produced,
the impacts of these emerging contaminants on the structure and function of ecosystems have received
little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may
interact with nutrient pollution in altering ecosystem productivity, despite the recognition that
eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we
asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and
productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by
nutrient pollution? To address these questions, we examined the impacts of a citrate-coated gold
nanoparticle (AuNPs) and of a commercial pesticide containing Cu(OH), nanoparticles (CuNPs) on
aquatic primary producers under both ambient and enriched nutrient conditions. Wetland mesocosms
were exposed repeatedly with low concentrations of nanoparticles and nutrients over the course of a 9-
month experiment in an effort to replicate realistic field exposure scenarios. In the absence of nutrient
enrichment, there were no persistent effects of AuNPs or CuNPs on primary producers or ecosystem
productivity. However, when combined with nutrient enrichment, both NPs intensified eutrophication.
When either of these NPs were added in combination with nutrients, algal blooms persisted for >50 d
longer than in the nutrient-only treatment. In the AuNP treatment, this shift from clear waters to tur-
bid waters led to large declines in both macrophyte growth and rates of ecosystem gross primary pro-
ductivity (average reduction of 52% + 6% and 92% =+ 5%, respectively) during the summer. Our
results suggest that nutrient status greatly influences the ecosystem-scale impact of two emerging con-
taminants and that synthetic chemicals may be playing an under-appreciated role in the global trends
of increasing eutrophication. We provide evidence here that chronic exposure to Au and Cu(OH),
nanoparticles at low concentrations can intensify eutrophication of wetlands and promote the occur-

rence of algal blooms.
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INTRODUCTION

The rising concentrations and diversity of synthetic chemi-
cals in the environment is an important marker of the
Anthropocene (Lewis and Maslin 2015). However, our under-
standing of the ecological consequences of emerging contami-
nants lags far behind that of other global change drivers, such
as elevated atmospheric CO,, habitat loss, or climate change
(Bernhardt et al. 2017). Although many emerging contami-
nants, like metal nanomaterials, are becoming globally ubig-
uitous (Jambeck et al. 2015, Stehle and Schulz 2015,
Gonzdlez-Alonso et al. 2017), they are found at both the
highest concentrations and in the greatest diversity in
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wastewaters and agricultural runoff, where they co-occur with
high nutrient loads and historically problematic contaminants
(King et al. 2016). The nutrient pollution side of this issue is
well studied. Eutrophication resulting from excess phospho-
rus (P) and nitrogen (N) inputs to water bodies stimulates
algal blooms and low oxygen conditions that often result in a
loss of biodiversity (Smith et al. 1999). Though eutrophica-
tion is recognized as the primary water quality issue in fresh-
water ecosystems worldwide (Smith and Schindler 2009),
little attention has been paid to how emerging synthetic
chemicals, like nanomaterials, may interact with nutrient pol-
lution and alter ecosystem productivity and biodiversity.
There is growing evidence that our failure to examine the
interactions between nutrient and other synthetic chemical
pollutants may be compromising our understanding of
impaired aquatic ecosystems. For instance, two studies
found that phosphorus availability modulated the response
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of phytoplankton and periphyton communities to silver
nanoparticles in lakes, leading to a reduction of the contam-
inant toxicity for pelagic primary producers and an
increased toxicity for the benthic communities (Das et al.
2014, Norman et al. 2015). The deleterious effects of syn-
thetic chemicals may be amplified under high nutrient loads
due to increased uptake rates and faster transfer of the con-
taminants through exposed food webs (Berglund 2003). Or,
on the contrary, the uptake of toxic compounds in freshwa-
ter food webs has been shown to decrease in the presence of
high algal biomass, especially during algal blooms in
eutrophic systems (Pickhardt et al. 2002). Because eutrophi-
cation often shifts ecosystem pH and alters organic matter
composition and concentrations, nutrient enrichment can
thus alter the fate, transport and reactivity of pollutants
(Skei et al. 2000, Valenti et al. 2011, Kong et al. 2017).
While the ecological consequences of both nutrient pollu-
tion and synthetic chemical exposures are often mediated
through complex top-down or bottom-up effects, such com-
plicated trophic interactions are still rarely included in eco-
logical or ecotoxicological studies (Rohr et al. 2006, Gessner
and Tlili 2016), at the exception of some well-studied con-
ventional pesticides (Van den Brink et al. 2000, 2009, Lin
et al. 2012, Yin et al. 2018).

One important class of emerging contaminants that repre-
sents a rapidly growing sector of the synthetic chemical
industry are engineered nanoparticles (NPs) that are being
produced in increasing quantity to perform a wide range of
applications in medicine, food, cosmetics, electronics, or as
agrochemicals (Kah 2015, Mitrano et al. 2015, Servin et al.
2015, Sun et al. 2015). Nanomaterials are now recognized as
emerging contaminants of terrestrial and aquatic ecosystems
where they join other emerging and established contami-
nants (e.g., nutrient pollution, metals, pharmaceuticals).
While many studies have examined the effects of engineered
nanomaterials on organisms, they have typically examined
them in isolation from other likely co-occurring contami-
nants that may modulate their ecological effects (Simonin
and Richaume 2015, Bundschuh et al. 2016).

Hence, in this study, we asked two main questions: To what
extent do engineered nanomaterials affect the biomass and
productivity of primary producers in wetland ecosystems?
How are these impacts modulated by nutrient enrichment?
To answer these questions, we assessed the impact of repeated
exposures of wetland ecosystems to two different nanomateri-
als: citrate-coated gold nanoparticles and a nanopesticide
containing Cu(OH), nanoparticles (later called AuNPs and
CuNPs, respectively). With the growing use of nanomaterials
in agrochemical products and the application of biosolids
containing high concentrations of NPs, wetlands receiving
waters from agriculture fields will likely be a major environ-
mental sink for these emerging contaminants (Dale et al.
2015, Kah 2015). We added CuNPs in the form of a commer-
cial pesticide (Kocide 3000, DuPont, Wilmington, Delaware,
USA), whereas the AuNPs were custom synthesized. Our
intention in the AuNP enrichment was to use these particles
as a tracer for nanoparticle behavior because AuNPs typically
have low aqueous solubility and, in contrast with Cu, there
are low natural background concentrations of Au in the envi-
ronment (Ferry et al. 2009, Keller et al. 2017). We conducted
our experiment in large wetland mesocosms that were
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assigned to one of two nutrient conditions (ambient vs. nutri-
ent enriched). Over the course of a nine-month experiment,
we examined the interactive effects of continuous, low dose
additions of AuNPs or CulNPs (low pg/L range) with nutrient
enrichment (inorganic N and P additions) on aquatic primary
producers within a set of outdoor replicated wetland meso-
cosms. The submerged portion of our mesocosms was domi-
nated by the aquatic macrophyte Egeria densa and supported
complex aquatic food webs including numerous macroinver-
tebrate taxa and large populations of Gambusia holbrookii. In
this paper, we specifically assessed the individual and interac-
tive effects of nanoparticles and nutrient enrichment treat-
ments on water chemistry, biomass, metal accumulation, and
activity of aquatic primary producers.

We hypothesized that CuNPs would have significant
ecological impacts on primary producers due to the well-
described toxicity and antimicrobial activity of this fungi-
cide, even in the pg/L range in aquatic ecosystems (Wang
et al. 2011h, Thwala et al. 2016, Keller et al. 2017). The
direction of this effect was difficult to predict a priori, as
CuNP fungicides could directly affect algal communities
and the photosynthetic potential of macrophytes (Regier
et al. 2015), or they might indirectly benefit autotrophs
because of their toxicity to competing microbes. We
expected to observe significant effects of AuNP on wetland
autotrophs, as AuNPs have been found to induce toxicity
and to be bioavailable for different model organisms (Bar-
rena et al. 2009, Sabo-Attwood et al. 2012, Tsyusko et al.
2012, Glenn and Klaine 2013). We anticipated significant
treatment interactions between nutrient enrichment and
both NPs, as previous studies have reported interactive
effects of nutrient enrichment and pollutants on algal and
periphyton stoichiometry and on macrophyte growth (Ful-
ton et al. 2009, Das et al. 2014, Norman et al. 2015). How-
ever, the direction of this interaction was difficult to predict
as nutrient availability may either compensate for or
enhance the impact of metal pollution on aquatic primary
producers (Gessner and Tlili 2016).

MATERIALS AND METHODS

Wetland mesocosm setup and experimental design

Our outdoor wetland mesocosm facility is located in the
Duke Forest, a research forest adjacent to Duke University
in Durham County, North Carolina, USA. Each mesocosm
is a large box built from weather-treated lumber (dimensions
3.66 x 1.22 x 0.81 m) that was partially filled with sand.
This sand was graded to create a flat, deep segment 0.8 m in
length adjacent to a 2.8 m hillslope rising at a 13° slope and
then lined with a food grade liner. This setup allowed us to
create three different hydrologic zones within each meso-
cosm: a permanently flooded zone (aquatic zone), a periodi-
cally flooded zone (transition zone), and a rarely flooded
zone (upland zone). More details about the construction,
set-up and monitoring of the mesocosms are further
described in Lowry et al. (2012) and Colman et al. (2014).
In early June 2015, we filled the mesocosms with a sandy-
loam soil (Soils and Sand, Durham, North Carolina, USA)
with a texture of 56.1% sand, 24.3% loam, 19.6% clay, total
organic matter content of 3.05%, and a pH of 6.3. Initially,
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250 L of groundwater from the experimental site in the
Duke Forest was used to fill the mesocosms. The organisms
were introduced sequentially in the system between June
and September 2015. In the aquatic zone, we added the
macrophyte Egeria densa; the aquatic snails Physella acuta
and Lymnaea sp.; and the fish Gambusia holbrookii (eastern
mosquitofish). Algae and zooplankton inoculum was added
in 250 mL of water from a local wetland biweekly to avoid
strong divergences between mesocosms over time because of
limited dispersal (Hall et al. 2004). To homogenize the water
chemistry and algal composition between mesocosms, the
water was circulated between all the mesocosms throughout
July 2015 using submersible pond pumps. In the transition
zone, the following plant species were planted: Juncus effu-
sus, Carex lurida, and Lobelia cardinalis. In the upland zone,
Panicum  virgatum and Chasmanthium latifolium were
planted, Lolium multiflorum and Andropogon gerardii were
seeded. These mesocosms were open to colonization by
other organisms and populations of insects and spiders were
also monitored during the experiment.

Mesocosms were designated as either nutrient enriched or
ambient nutrient, with nutrient additions to the nutrient
enriched mesocosms beginning on 28 September 2015, over
three months before the beginning of the nanomaterial addi-
tions. The ambient nutrient mesocosms received 1 L of
mesocosm water each week without any nutrients added to
mimic dosing disturbance, while the Nutrient enriched
mesocosms received 1 L of mesocosm water each week
that had been supplemented with 88 mg of N as KNO3 and
35 mg of P as KH,PO,4. While our addition rate had an
N:P molar ratio of 5.5, the measured nutrient N:P ratios in
the water column averaged at 16.8 4+ 1.6 in the nutrient
enriched mesocosms (23 + 3.0 in the ambient nutrient
mesocosms). Our goal was to push the mesocosms towards
eutrophic conditions without attaining hypereutrophic con-
ditions. We achieved this with an annual addition rate of
2.5 g N/m? of and 1.0 g P/m? which falls between thresh-
olds for eutrophication in wetland ecosystems receiving
water from agroecosystems (Verhoeven et al. 2006).

On 18 January 2016, we randomly assigned the NP treat-
ments to cross the nutrient treatments, resulting in a full-fac-
torial experiment with three replicate mesocosms for each of
six treatment/nutrient-status combinations: control-ambient
nutrient, control-nutrient enriched, AuNP-ambient nutrient,
AuNP-nutrient enriched, CuNP-ambient nutrient, CuNP-
nutrient enriched. Nanoparticle additions were done weekly
over the 270-d (9-month) experiment, with NP additions
mixed with 1 L of mesocosm water, which was then dis-
tributed throughout the entire aquatic zone of each mesocosm
directly below surface water. Control treatments received the
same volume of mesocosm water without any NPs.

The citrate-stabilized AuNPs were synthesized by the Cen-
ter for the Environmental Implications of Nanotechnology
(CEINT) at Duke University and had an average primary
particle diameter of 11.9 + 1.2 nm (transmission electron
microscopy measurement) in the stock suspension and an
average hydrodynamic diameter of 10.9 + 1.4 nm and an
apparent zeta potential of —13 + 6 mV in mesocosm water
without nutrient addition at pH 7.5 (Dynamic Light Scatter-
ing measurement based on particle number; Zetasizer Nano
ZS, Malvern, UK). In the nutrient enriched mesocosm water,
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the hydrodynamic diameter was 12.0 4+ 0.2 nm and the zeta
potential was —14 + 1 mV, indicating overall a high stability
of the AuNPs in mesocosm water. The mesocosms exposed
to AuNPs received a weekly dose of 19 mg Au uniformly
applied to the aquatic zone resulting in a total dose of
750 mg Au added over the 9 months of the experiment.

The copper hydroxide NPs (CulNPs) were a commercial
nanopesticide (KOCIDE 3000; DuPont, Wilmington, Dela-
ware, USA). As a commercial product, this pesticide does not
contain only Cu(OH), NPs and present some trace amounts
of other elements including a polymer matrix that could influ-
ence its toxicity and bioavailability (Keller et al. 2017). The
CuNPs had an average primary particle diameter of
38.7 £ 8.2 nm in the stock powder and an average hydrody-
namic diameter of 120 + 30 nm and zeta potential of
—32.0 £ 5.5 mV in the mesocosm water without nutrient
addition at pH 7.5. In the nutrient enriched mesocosm water,
the hydrodynamic diameter was 106 + 16 nm and the zeta
potential was —32.8 £ 1.6 mV. The mesocosms exposed to
CuNPs received a weekly dose of 35 mg of Kocide, except for
the first week of the treatment when they received an initial
pulse of 347 mg that resulted in a total dose of 1.664 g
Kocide per mesocosm over the 9 months of the study. The
measured Cu content in the Kocide product is 27% (dry
mass). Thus, the total dose of Cu-based NPs added to the
mesocosms was then 450 mg of Cu over the course of the
experiment. The dissolution rates of the CuNPs were assessed
in situ using Float-ALyzer G2 membrane dialysis devices
(Spectrum Laboratories, Rancho Dominguez, California,
USA) with a molecular weight cutoff of 8-10 kDa. It was
observed that after 48 h, 60% =+ 8% of the CuNPs were dis-
solved in absence of nutrient addition and 70% =+ 3% in
nutrient enriched conditions (Vencalek et al. 2016).

The concentrations of CuNP and AuNP applied to the
mesocosms were different because they were added for
different goals. The concentration for CuNP was designed
to simulate field rates. We assumed a conservative ratio
between contributing land surface to wetland area of 10:1
for the aquatic compartment of our wetland (1.83 m? at ini-
tiation of treatments). Based on the application rates from
the label of Kocide 3000, we assumed an application rate of
20 kg/ha (intermediate value between mean rates for tree
crops and field crops). We then used a literature value mea-
sured for a Kocide Cu(OH), fungicide for the rate of loss of
agrochemicals from surface soils of 6% (Rice et al. 2001).
When scaled to the 9-month window of our experiment, this
gave an addition rate of 450 mg of Cu per mesocosm.
AuNPs were used as a particle tracer (low dissolution) that
would behave more like a particle than CulNPs (high dissolu-
tion). As such, we needed to ensure that it would be readily
detectable across time and in various compartments of the
mesocosms. Based on past experiments, we chose 750 mg of
Au addition per mesocosm. As a whole, the amount of both
CuNPs and AuNPs was designed to yield water column con-
centrations in the low pg/L range.

Au and Cu concentrations in unfiltered surface water were
measured before and after dosing every week. Samples were
acid digested (HNO; and HCI, 3:1 ratio) and measured
using ICP-MS (7900 ICP-MS, Agilent, Santa Clara, Califor-
nia, USA). On average, the Au concentration in surface
water 2 h after dosing was 74.1 &+ 47.9 pg/L and 7 d after
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dosing (right before the new weekly dosing) was
4.4 + 3.7 pg/L. On average, Cu concentration in water after
dosing was 50.8 + 30.0 pg/LL and 7 d after dosing was
13.1 £ 10.9 pg/L. In the control mesocosms, the Au and Cu
concentrations were below the method detection limit
(0.15 pg/L) for most of the measurements.

Water chemistry and ecosystem metabolism rates

Over the course of the experiment, we extensively moni-
tored the mesocosm water volume, temperature, turbidity,
pH, conductivity (Manta 2, Eureka, Austin, Texas, USA),
anion concentrations: NO3 ™, SO4~, CI™, Br~ (ICS 2000 Ion
Chromatograph, Dionex, Sunnyvale, California, USA) and
ortho-PO, (DU-64 Spectrophotometer, Beckman Coulter,
Atlanta, Georgia, USA) on a daily or weekly basis. The
weather conditions were also monitored continuously during
the experiment for air temperature, precipitations, wind, rel-
ative humidity, and barometric pressure (Weather station,
Campbell Scientific, Logan Utah, USA). Some selected
parameters are presented in Appendix S1.

On a monthly basis, the concentrations of total N and dis-
solved organic carbon (DOC) were measured on a TOC-
VCPH Analyzer with a TNM-1 module (Shimadzu, Kyoto,
Japan) and total P on a Beckman DU-64 Spectrophotometer.

Dissolved oxygen (DO) concentrations (at 15 cm deep)
were measured weekly before dawn using a YSI DO200 or
YSI 556 (YSI, Yellow Springs, Ohio, USA). Continuous DO
measurements (15-min intervals) for one to four consecutive
days were conducted monthly using a EXO1 data sondes
probe (YSI) in order to calculate the ecosystem metabolism
rates: ecosystem gross primary productivity (GPP) and
ecosystem respiration (ER) that were estimated from the
day-night dynamics of DO in surface waters. We performed
metabolism rate calculations using the LakeMetabolizer
package in R (Winslow et al. 2016) with the k.vachon func-
tion to estimate the coefficient of gas exchange across the air—
water interface (k) and the metab.ols function using the ordi-
nary least squares model to estimate the GPP and ER rates.

Algae

Knowing that our treatments could cause modifications in
the abundance of planktonic and epiphytic algae, we collected
both quantitative data on phytoplankton and qualitative data
on epiphytic algae. For phytoplankton, chlorophyll @ (chl @)
concentrations were measured weekly in surface waters at
15 cm deep (Submersible fluorometer, Turner Designs, San
Jose, California, USA and CRI1000 data logger, Campbell
Scientific). Epiphytic algal abundance was recorded in weekly
photographs of each mesocosm. Based on published correla-
tions between planktonic and epiphytic algal abundance
under low to moderate nutrient enrichment (Sand-Jensen and
Sendergaard 1981, Sand-Jensen and Borum 1991), an algal
bloom threshold was established based on chl a concentra-
tions in the water column that was consistent with the litera-
ture for phytoplankton (Carlson 1977, Pace et al. 2017), and
consistent with evidence of the existence and persistence of a
mat of epiphytic algae as documented in mesocosm pho-
tographs. The algal bloom threshold was estimated at
3.37 pg/L chl a in this experimental system.
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Macrophytes

To measure stem-level rates of photosynthesis and respira-
tion and the accumulation of the NPs in new plant growth,
three stems from the macrophyte Egeria densa were collected
(7 cm clippings shoots) at the water surface every
three months (Days 90, 193, and 269). These stems were
thoroughly rinsed to remove periphyton before measuring
photosynthesis and respiration rates in a bottle assay. The
stems were incubated in 40 mL vials in filter-sterilized meso-
cosm water (from where the stem originated) for 3-4 h under
light and for 34 h under dark conditions in a growth cham-
ber (25°C, photosynthetically active radiation [PAR] 250-
450 pmol-m~2s~!). The CO, concentration was measured in
the headspace using a LI-COR LI 6200 and 6250 (LI-COR,
Lincoln, Nebraska, USA) and the slope of accumulation or
decline of CO, over time was used to calculate the photosyn-
thesis and respiration rates. To express the photosynthesis
and respiration rates per unit of surface area, the leaf area
was measured by scanning each individual leaf and using the
WinFolia software (Regent Instruments, Quebec, Canada).
The dried Egeria densa stems were later digested using either
HNO3:H,0,:HCI (6:3:22) for control or Au-exposed tissues,
or HNO3:H,0,; (2:1) for Cu-exposed tissues. Total metal con-
centration was then measured using ICP-MS (Agilent 7700;
Agilent, Santa Clara, California, USA). The absence of drift
during the analysis was checked by measuring two standards
(5 and 10 ppb, Cole-Parmer, Vernon Hills, Illinois, USA)
every 10 samples. The calculated method detection limit was
0.5 pg of Au or Cu per g of dry plants.

At the same three-month intervals, Egeria densa growth
rates were measured by harvesting all the plant biomass that
had colonized mesh columns (Tenax Cintoflex-M Aquacul-
ture and Hatchery Netting, 2 cm mesh size, column diame-
ter 20 cm, height 50 cm) located in the aquatic zone of the
mesocosms. Three mesh columns per mesocosm were posi-
tioned in the aquatic zone along a depth gradient. At each
harvest, the biomass collected in the three mesh columns
was combined and dried at 60°C for at least 72 h and the
water volume inside each column was measured to deter-
mine the Egeria densa growth rates per unit volume.

Statistical analyses

Analysis of chl a, dissolved oxygen, GPP, ER, Egeria
densa photosynthesis, respiration rates, growth rates, metal
concentrations, total N, total P, and DOC concentrations
were conducted using generalized linear mixed-effects mod-
eling to determine the effects of NP exposure (Control,
AuNPs, CuNPs), nutrient status (ambient nutrient, nutrient
enriched), and their interactions. In model selection and
post hoc tests, we chose P < 0.05 to discriminate significant
effects. Main effects and interactions were nested by day and
mesocosm was treated as a random effect in the models to
account for serial correlation among observations from the
same mesocosms over time (Zuur et al. 2009). The models
were fit following a framework similar to the one described
in King et al. (2016) using the glmer function of the Ime4
package in R 3.2.3 (R Core Team 2015). For non-repeated
measurements, such as the number of algal bloom days, a
generalized linear model was used to test the effects of



September 2018

nanoparticle exposure, nutrient enrichment, and their inter-
action by using the glm function and a similar framework to
fit the model to the data. The most appropriate probability
distribution (family) for each analyte was initially con-
strained by the type of response variable (e.g., for counts,
Poisson or negative binomial; for continuous, Gaussian or
Gamma; for proportions, binomial). Model fitting was then
done using a tiered approach. First, to test and correct for
disparities between the assumed and actual distribution of
analytes, multiple models were compared using different link
functions (e.g., identity, inverse, log) with residual plots and
Aikake information criterion (AIC) values used to select the
most parsimonious model (Zuur et al. 2009). Second, to test
for and correct for the presence or absence of interactions,
the full model with all interactions was compared with mod-
els with nonsignificant interactions being removed and
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residual plots and AIC values again being used to select the
most parsimonious model. To determine at what levels the
differences arose due to treatment, nutrient status, and/or
time, post hoc comparisons were performed using the
Ismeans function in the Ismeans package in R. Results were
graphed using the ggplot2 package in R.

RESuULTS

Exacerbated eutrophication in nutrient enriched
AuNP and CuNP mesocosms

The water column total N concentration was more than
30% higher in both AuNP-nutrient enriched and CuNP-
nutrient enriched treatments compared with the control-nutri-
ent enriched mesocosms on Days 27 and 56 (Fig. 1a, b; NP
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Fic. 1. (a, b) Total nitrogen, (c, d) dissolved organic carbon (DOC), and (e, f) total phosphorus in the water column in the nutrient
enriched treatments only. The citrate-coated gold nanoparticle (AuNP; a, c, e) and Cu(OH), nanoparticles (CuNP; b, d, f) nutrient enriched
treatments are displayed in different panels along with their respective control treatment means and 95% confidence intervals are presented
and significant effects (P < 0.05) are indicated by asterisks.
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effect, P = 0.004). Similarly, DOC concentrations were more
than 30% higher than controls in the AuNP-nutrient enriched
on days 56 and 90 (Fig. 1¢) and more than 49% higher in
CuNP-nutrient enriched mesocosms than controls on days 27
and 56 (Fig. 1d, NP effect [P < 0.001], nutrient effect
[P =0.005]). In the AuNP-ambient nutrient and CuNP-
ambient nutrient mesocosms, there was no detectable change
in total N or DOC concentrations compared to control-ambi-
ent nutrient mesocosms (data not shown). Unlike total N or
DOC, total P concentration were not significantly altered by
any experimental treatment on any date (Fig. le, f).

Repeated nanomaterial exposure in nutrient enriched
conditions increased algal bloom frequency and magnitude

On multiple dates, phytoplankton biomass (measured as
water column chl @) was significantly higher in the AuNP-
nutrient enriched (Fig. 2b) and CuNP-nutrient enriched
treatments (Fig. 2d) compared to the control-nutrient
enriched treatment. In contrast, we never observed a signifi-
cant chl a response to nutrients added without NPs (signifi-
cant NP x nutrient interaction, P = 0.006). In the absence
of nutrient enrichment, the chl @ concentration was signifi-
cantly higher or lower compared to the control-ambient
nutrient treatment at several dates in both CulNP (higher at
two dates, lower at one date, Fig. 2c) and AuNP (higher at
three dates, lower at three dates, Fig. 2a; overall NP effect,
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P < 0.001). The highest chl @ concentrations recorded in this
experiment were observed in the AuNP-nutrient enriched
treatment (>30 pg/L) during major algal bloom events (be-
tween Day 150 and 210, summer season). Over the course of
the experiment, the number of days when a large algal
bloom was observed was 3.5 times higher in the nutrient
enriched AuNPs and CuNPs exposed mesocosms (77-79 d)
than in the control-nutrient enriched mesocosms (23 d,
Fig. 3). In the absence of nutrient enrichment, the number
of algal bloom days was not significantly different in the
mesocosms exposed to NPs and control conditions (Fig. 3).

Consequences to dissolved oxygen and metabolism rates

Under nutrient enriched conditions, pre-dawn dissolved
oxygen (DO) levels were consistently lower than nutrient
enriched controls in both the AuNP treatment between Day
20 and 116 (Fig. 4b) and in the CulNP treatment between
Day 20 and 63 (Fig. 4d). NPs alone had no consistent effect
on DO concentrations in the absence of nutrient enrichment
(Fig. 4a, c¢). All mesocosms had pre-dawn DO concentra-
tions consistently below 10% throughout the summer (Day
132 and 234) and were predominantly hypoxic.

Gross primary productivity (GPP) and ecosystem respira-
tion (ER) varied widely over the course of the experiment
and the highest ecosystem metabolism rates were observed
in the spring (Day 86, Fig. 5). The metabolism rates were
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observe on Day 76, 117, and 138 in the control mesocosm are Egeria densa flowers.

only significantly affected by the AuNP-nutrient enriched
treatment (Fig. 5). In this treatment, GPP was suppressed
to near zero on 4 measurement dates (Day 155, 156, 191,
192; —91 to —94%), while ER was significantly reduced on
one date (Day 155, —94%).

Physiological effects of Au and CulN Ps and
bioaccumulation in Egeria densa

In the AuNP-ambient nutrient treatment, photosynthesis
rates (measured on new stems on Days 90, 193, and 269)
were significantly reduced at all dates (—22% to —39%,

Fig. 6), while in the AuNP-nutrient enriched treatment,
photosynthesis was decreased only on Day 90 (—42%,
Fig. 6). On Day 90, a reduction of the respiration rates was
found in the nutrient enriched AuNP mesocosms (—63%,
Fig. 6) and on Day 193 in the ambient nutrient AuNPs
mesocosms (—63%, Fig. 6). In the mesocosms exposed to
CuNPs, no effects were observed on Egeria photosynthesis,
but respiration rates were significantly decreased on Day 90
(—80%, Fig. 6) in the nutrient enriched conditions.

On all destructive sampling dates, Au and Cu concentra-
tions in Egeria stems (new growth) were significantly higher
in plants collected from NP treatments than those from
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controls (P < 0.001, Fig. 7). The highest concentration of
Au was observed in Egeria densa stems on Days 90 and 193
with concentrations ranging from 137 to 298 mg/kg on
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average (Fig. 7a), while the Cu concentrations averaged
between 37 and 61 mg/kg during the experiment (Fig. 7b).
The Au concentrations decreased significantly over time in
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Egeria densa stems, especially between day 193 and 269. In
both Ambient Nutrient and Nutrient Enriched conditions,
Cu concentrations increased between Day 90 and 193 and
then remained stable to Day 269.

During the same months, Egeria densa growth rates were
measured in mesh columns placed in the water column and
the highest growth rates in the controls were observed dur-
ing the summer (Day 193, Fig. 8). The nutrient enrichment
treatment did not significantly alter Egeria growth rates
(P = 0.82). The only significant treatment effect observed
was a 52% decline in Egeria growth rates in the AuNP-nutri-
ent enriched on Day 193 (Fig. 8).

Discussion

We found that when added together with nutrients,
AuNPs enhanced the frequency and duration of algal
blooms and this was accompanied by a reduction in macro-
phyte growth and photosynthesis, leading to extended peri-
ods of water column hypoxia and reduced ecosystem
productivity. Adding CuNPs in combination with nutrient
enrichment caused similar increases in algal blooms and
reductions in dissolved oxygen, but these changes were not
accompanied by a decline in ecosystem productivity. In the
absence of nutrient enrichment, there were no consistent
effects of AuNPs or CuNPs on primary producers and
whole ecosystem behavior.

Larger impacts of gold nanoparticles than copper-based
nanopesticide

We were surprised to discover that our “nanoparticle-tra-
cers,” AuNPs, caused larger and more frequent ecosystem

responses than the Cu-based nanopesticide. The macrophyte
response to AuNPs could result from a direct effect of the
rapid Au accumulation into Egeria densa in the first
6 months of the experiment, while CulNPs showed both less
bioaccumulation and non-significant effects on leaf-level Ege-
ria densa physiology. These patterns in bioaccumulation and
impact may be related to the contrasting behavior of CulNPs
and AuNPs in the water column. The CuNPs used in this
experiment had a larger initial size than the AuNPs, showed
evidence of aggregation, but also rapidly dissolved in situ in
mesocosm water (dissolution half-life time, #;, ~ 8 h) and
dissolved Cu** was likely complexed by dissolved organic
matter (Vencalek et al. 2016). In contrast, AuNPs were less
aggregated in the water column (~10 nm) and are assumed to
have low solubility under environmental conditions (Lee and
Ranville 2012). The two metal NPs were dosed at different
concentrations in the mesocosms, but our results still suggest
that under these environmentally realistic conditions, the
metal bioaccumulation rate in an aquatic plant was higher
when exposed to the small and stable AuNPs than the much
more soluble CuNPs.

We expected Egeria tissue metal concentrations to be simi-
lar at each harvest since the stems collected were about the
same age (new growth) and were exposed to a similar water
column NP concentrations. This expectation was met for
CuNPs but not for AuNPs. Tissue Cu concentrations in Ege-
ria was stable across the three harvest dates. However, in the
AuNP treated mesocosms, the highest Au accumulation was
measured on Day 90 and then tissue Au concentration in
Egeria densa stems declined over the remaining six months of
the experiment. This result raises a number of questions
about the environmental variables that mediate AuNP uptake
in plants. It is unlikely that these large decreases were
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explained by higher plant turnover or regulation of Au con-
centrations in tissue but they may have been controlled by an
external factor sensitive to seasonal variations and/or NP
dosing. We speculate that changes in the composition and
capacity of the periphyton growing on Egeria stems could be
responsible for the differences in bioaccumulation over time
that we observed. Periphyton can act as a barrier to prevent
contaminant uptake by the macrophytes (e.g., NPs strongly
adsorbed to the biofilm) or could be involved in the facilita-
tion of the uptake of NPs by mediating their dissolution or
modifying NP aggregation and surface properties (Schwab
et al. 2016). It is also possible that E. densa exudes a sulfhy-
dryl rich metal binding protein, which could modulate the
bioavailability of Au as it has been previously shown for
AgNPs (Bone et al. 2012, Unrine et al. 2012).

We cannot resolve whether the higher tissue concentra-
tions or a higher toxicity of AuNPs led to more severe effects
of AuNPs than CuNPs in this experiment. In previous lab

based assays, metal NPs have been reported to reduce both
algal and macrophyte growth and photosynthesis (Hoecke
et al. 2013, Thwala et al. 2016). In these studies, researchers
typically attribute these negative impacts on increases in
oxidative stress or membrane damage caused by the NPs
but the literature is scarce on the specific toxicity mecha-
nisms of AulNPs in plants and algae. However, one study in
Caenorhabditis elegans demonstrated that citrate coated
AuNPs can cause unfolded protein response and endoplas-
mic reticulum stress by denaturing proteins that they come
into contact with (Tsyusko et al. 2012).

Despite the known toxicity of Cu to aquatic organisms,
Cu from CuNPs was less bioavailable and had less impact
on autotrophs than AuNPs. The study of the toxicity and
ecological impacts of AuNP has received less attention than
other NPs, such as Ag-NPs and TiO,-NPs, because of their
lower industrial production rates. The use of AuNPs in
pharmaceuticals is growing (bioimaging, gene/drug delivery,
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phototherapy, home diagnostics; Ghosh et al. 2008, Rossi
et al. 2016) but widespread environmental exposure to this
contaminant is unlikely. The important implications of this
study for future ecological research on contaminant impacts
are the recognition that lab based toxicity studies can have
limited power to predict ecological impact. What is needed
is research that uncovers the mechanisms through which
AuNPs can disrupt and alter ecosystem processes so that we
can prevent environmental exposures of contaminants pos-
sessing similar traits.

Metal nanoparticle contaminants can intensify eutrophication
in wetland ecosystems

We hypothesized that nutrient enrichment would alter the
ecological impact of NPs and we indeed found multiple lines
of evidence showing interactive effects between nutrient
enrichment and NPs. We observed very limited effects of both
AuNPs and CuNPs in the absence of nutrient enrichment,
but when added together with nutrients, both NPs exacer-
bated the adverse effects of eutrophication in wetlands (algal
blooms, hypoxia, and decreased productivity). This experi-
ment suggests that nutrient status can greatly influence the
ecosystem-scale impact of emerging contaminants, and that
metal-based synthetic chemicals may be playing an under-
appreciated role in the global trends of increasing eutrophica-
tion (Heisler et al. 2008, Smith and Schindler 2009).

We found little evidence that nutrient enrichment directly
affect NP properties, with neither NP aggregation nor surface
charge being affected by nutrient enrichment. The rate of
AuNP and CuNP assimilation into macrophyte tissues was
unaffected by nutrient enrichment, suggesting that other
unmeasured properties of the NPs (e.g., organic coatings,

surficial chemistry) were not significantly altered by the nutri-
ent regime. Together these results suggest that there are lim-
ited direct interactions between nutrient status and the
bioavailability or surficial reactivity of these NPs. However,
our results demonstrate that nutrient enrichment can alter
organismal responses to NPs. Photosynthetic rates of individ-
ual Egeria plants were more suppressed by AuNPs in the
absence of nutrient enrichment than under high nutrient con-
ditions. Under low nutrient conditions, the energetic costs to
take up nutrients might be more important and thus limiting
the energy available to be invested to offset the effects of
external stressors. This result supports the nutrient rescue
hypothesis, that high nutrient availability allows individuals
to invest in detoxification responses or compensate for the
energetic costs of contaminant stress more easily (Leflaive
et al. 2015, Aristi et al. 2016). Despite this finding at the
individual plant scale, this “rescue” did not propagate to
ecosystem scales where we consistently observed ecologi-
cal responses to NP exposure only in the nutrient enriched
treatments.

Under nutrient enriched conditions, AuNPs and CuNPs
were associated with an increased frequency and magnitude
of algal blooms in these experimental systems. These algal
blooms led to decreases in dissolved oxygen in the water col-
umn and lowered primary productivity after 5 and 6 months
of AuNP exposures (late spring-summer season). The
extended algal bloom in the AuNPs-nutrient enriched treat-
ment lead to 91%-94% declines in ecosystem GPP. We
hypothesize that this pronounced response arises from rela-
tively small disparities in the effects of our contaminant stres-
sor on algae vs. macrophytes (Fig. 9). In the presence of the
NPs, floating algae were better able to capitalize on the nutri-
ents added in our nutrient enrichment treatments and thus
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could shade out their benthic competitors. We hypothesize
that the 52% of the reduction we observed in macrophyte
growth rates in the AuNPs-enriched nutrient treatment
resulted from altered competitive interactions (in particular
shading) rather than from direct AuNP toxicity.

There are many direct and indirect mechanisms that may
explain how NPs and nutrients together caused the observed
increased magnitude and duration of bloom conditions in
the summer months of the experiment. In the first three
months of the experiment, total N and DOC concentrations
increased by 30-60% in the water columns of mesocosms in
the NPs-nutrient enriched treatments compared to the nutri-
ent only controls. These increases could be explained by
mortality of the algae and macrophytes immediately after
we initiated the contaminant exposure (previously observed
by Roussel et al. 2007, Colman et al. 2014) or by an increase
in consumer excretion rates in response to contaminant
exposure (Taylor et al. 2016). Either mechanism could
explain the internal eutrophication we observed in the pres-
ence of NPs, and could explain the observed intensification
of the effects of our nutrient enrichment treatment. This
compounding of internal mineralization with nutrient
enrichment likely generated the appropriate conditions for
the cyclical algal blooms observed in the NPs-nutrient
enriched treatments.

An alternative explanation for the observed algal blooms
is that the NP exposures selected for tolerant or resistant
algal taxa that were then competitively superior to macro-
phytes under NP exposure scenarios. Since our mesocosms
contained only a single macrophyte species, such community
adaptation was not possible for these benthic plants. We
speculate that the slower growth and recovery rates of
macrophytes relative to algae would disadvantage these ben-
thic autotrophs. Adding to the complexity of this competi-
tive interaction, previous studies have documented that
increased nutrient availability or NP stress can decrease the
production of allelopathic secondary compounds (e.g., phe-
nolics, flavonoids) by macrophytes (Richardson et al. 1999,
Gross et al. 2007, Wang et al. 2011a). Such a shift in

resource allocation by macrophytes would further advantage
their planktonic competitors. Altogether, these results sug-
gest that early in the experiment, mesocosms exposed to
nutrient enrichment and AuNPs saw a combination of an
initial increase in nutrient availability and modifications in
competitive interactions between algae and macrophytes
(Fig. 9). This combination of direct and indirect effects of
NPs likely contributed to the cascading effects that caused a
suppression of ecosystem productivity four to five months
later during algal blooms.

Our results provide an example of emerging contaminants
having large ecosystem-level impacts on aquatic ecosystems,
with both AuNPs and CuNPs causing higher frequency and
magnitude of algal blooms. Our experiment also demon-
strated that such impacts are highly context dependent, as
we only observed these ecosystem impacts when NPs were
superimposed with nutrient enrichment. Studying the inter-
active effects of multiple stressors in realistic biological sys-
tems is crucial, as this work again confirms that their
consequences on ecosystem structure and function are very
difficult to predict. While many questions about the mecha-
nisms responsible for these effects remain unanswered, our
findings provide evidence that synthetic chemicals such as
metal NPs can exacerbate aquatic ecosystem eutrophication.

CONCLUSIONS

Perhaps the most fascinating outcome of this experiment
was the discovery that the addition of small amounts of a
single synthetic nanoparticle could in fact catalyze the trans-
formation of our wetland ecosystems from clear waters to
turbid waters with large floating algal mats. The increasing
frequency and magnitude of algal blooms is expected to
increase with climate change but the role of synthetic chemi-
cals, like metal pollutants or pharmaceuticals in these events
is not currently considered (Heisler et al. 2008, O’Neil et al.
2012). The effects observed here might be specific to these
metal NP contaminants but we postulate that any chemical
contaminant that causes differential stress for algae relative
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to macrophytes or modifies nutrient availability has the
potential to intensify eutrophication (Fig. 9). This experi-
ment shows that large declines in the rates of ecosystem pro-
ductivity and changes in the relative dominance of different
autotrophs can result from sub-lethal effects at very low
concentrations. We cannot determine from the current
experiment whether AuNPs reduced the ability of macro-
phytes to compete for nutrients and produce allelochemicals
or if AuNPs selected for bloom-forming algal species. Fur-
ther work should explore how each of these competitive
interactions may be affected by contaminant exposure.

This study also shows that the ability to detect these
ecosystem level effects is highly sensitive to the timing of
experimentation and sampling. The most marked treatment
responses were observed during the warmest months of the
year and dissipated in the subsequent autumn, even as we
continued to add both nutrients and NPs to the mesocosms.
This suggests that the effect of these materials, and perhaps
many conventional contaminants, may be most pronounced
and most measurable during periods of intense competition,
which in many aquatic ecosystems are characterized by
warm temperatures, high rates of grazing pressure, and high
productivity by both macrophytes and algae.
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