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Abstract—This paper proposes a new algorithm for Au-
tonomous Underwater Vehcle (AUV) path planning in 3D space
to visit multiple targets using Dubins curves. For a given target-
sequence, the 3D path planning is usually solved by two steps:
Step 1 projects 3D targets to the X-Y plane and designs a 2D path
on this plane; Step 2 maps the 2D path into 3D via interpolation.
The proposed new algorithm defines a local coordinate system
(LCS) for each pair of targets and designs the 2D Dubins curve in
the LCS, then uses the Euler’s rotation transformation to convert
the 2D dubins curve into the 3D global coordinate system (GCS).
Applying the proposed rotation method to a given target sequence
and given incoming-outgoing angles yields 3D Dubins path with
guaranteed G2 continuity at the joints of two Dubins curves.
The proposed method is compared with the interpolation method
and Bezier curve method. Computer simulations demonstrate
that the proposed algorithm provides better G2 continuity in 3D
space or shorter path lengths than the existing linear or spline
interpolation methods and Bezier curves.

Index Terms—Autonomous Underwater Vehicles, AUV, Path
Planning, 3D Dubins Curve, Bezier Curve, Geometric Continuity,
Back-Propagation Algorithm.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have been
widely applied in oil and gas industry, ocean exploration, en-
vironmental monitoring, underwater infrastructure monitoring
and underwater data collection [1]–[3]. In underwater wireless
sensor network (UWSN), multiple AUVs are employed to
collect data from predetermined targets via acoustic communi-
cation [4]. However, due to the limited range and bandwidth
of acoustic communication and high energy cost of sensor
node, the AUV-Aided Underwater Routing Protocol in [4]
still has a lot of limitations in data collecting. Recently, the
Magneto-Inductive (MI) communication has the advantages of
low-cost and easily-deployable [5]. Therefore, the AUV can
be utilized to complete the data collection by visiting multiple
sensor nodes via MI communication. Hence, path planning
problems in two and three dimensional space have attracted
many research attention [6], [7].

With the given target-sequence, path planning algorithm
design a smooth path for the AUV to visit all the targets.
Some existing works focus on 2D space and design smooth
path in 2D only [8]. 2D point-to-point smooth paths in X-Y
are often designed via Dubins curves [8], [9], Bezier curves
or other curves to accommodate the dynamic constraints of
AUVs. Smooth paths in 3D are often designed by mapping
2D curves into 3D via interpolation [7], [10]. However, the
linear interpolation method [7] fails to meet with G1 continuity
at multiple targets. The spline interpolation method [10] may

result in much longer total distances between targets in 3D
space.

In this paper we proposes a new algorithm to solve 3D
path planning without interpolation methods. This algorithm
consists of two functions: Function 1 designs a 3D Dubins
path for a given target-sequence and incoming-outgoing angles
by a rotation method. Function 2 utilizes the back-propagation
method to choose the shortest path from all possible incoming-
outing angles. With the target-sequences, we apply function 1
and Function 2 to design 3D Dubins path for the AUV. In
this paper, we design 3D Dubins path without interpolation
methods. The rotation based 3D Dubins path design method
achieves better continuity than the linear or spline interpolation
method, and the new method has shorter total distance than
spline interpolation method.

In practice, different types of AUVs have different motion
constraints. For example, the Autonomous Benthic Explorer
(ABE) equipped with five thrusters can move in any direction,
and can hover and reverse [11]. In contrast, the survey-type
AUVs have many constraints such as finite navigation distance,
stringent non-holonomic motion constraints, and no direction
reversing. In particular, the non-holonomic motion constraint
requires that the vehicle moves along a smooth path with
bounded curvatures and geometric continuity to support their
kinematic constraints [12]. Besides motion constraints of AUV,
the ocean environmental conditions will effect the movement
of AUVs, such as the strong ocean current [13]. In this thesis,
we focus on the strong motion constraints in our multi-AUV
path planning problem where geometric continuity is required
without considering the ocean environmental conditions.

II. SYSTEM MODEL AND MOTION CONSTRAINTS

We consider one AUV to visit multiple underwater targets
in a 3D underwater environment, where a set of N targets
T = {T1, T2, · · · , TN} are pre-assigned to the AUV and will
be visited sequentially by the AUV. The AUV sets off from the
origin target and returns back to the same target after visiting
all targets in the assignment. Each target will be visited by the
AUV exactly once.

The famous REMUS AUV model created by Prestero [14]
describes the six degrees of freedom (DOF) as surge, sway,
heave, pitch, roll, yaw. In this paper, we simplify the dynamics
model by only considering the position and heading of the
AUV, as shown in Fig. 1, where the AUV in the Local Coor-
dinate System (X,Y, Z) has a heading direction Φ(θ, ϕ), with
θ and ϕ being the azimuth and elevation angles, respectively.
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Fig. 1: AUV heading direction defined in the Local Coordinate
System (LCS)

The survey-type AUV has nonholonomic constraints which
require the path of AUV to have bounded curvature. The
AUV is prohibited to take sharp turns or make sudden stops.
Therefore, the derivative of AUV heading direction has to
satisfy:

Φ̇ = ψ, ψ ∈ [−ψa, ψa] (1)

where the dot operator is the first derivative with respect to θ
and ϕ, and ψa is the curvature bound.

In addition, the nonholonomic constraints require that the
AUV path satisfy geometric continuity. For example, the G0,
G1 and G2 continuities are defined as follows [12]: let P (u) =
[x1(u), y1(u), z1(u)] and Q(v) = [x2(v), y2(v), z2(v)] be two
parametric curves in the 3D space, where u ∈ [a, b] and v ∈
[c, d].
G0 Continuity: If P (b) = Q(c) = J , then the two curves

meet at the joint point with G0 continuity.
G1 Continuity: If G0 continuous and Ṗ (u)|u=b = Q̇(v)|v=c,

then the two curves meet at the joint point with G1 continuity.
G2 Continuity: If G1 continuous and P̈ (u)|u=b = Q̈(v)|v=c,

then the two curves meet at the joint point with G2 continuity.
The goal of the path planning algorithm is to design a

smooth curve for the AUV to visit all targets with a shortest
total length while satisfying the continuity constraints.

III. THE PROPOSED ALGORITHM FOR 3D DUBINS PATH
DESIGN

This section proposes the new design algorithm for 3D
Dubins path based on Euler’s transformation. Consider two tar-
gets Ta and Tb defined in a Global Coordinate System (GCS)
u-v-w, as shown in Fig. 2. The new algorithm first defines a
local coordinate system LCS1 (x-y-z) that contains the two
targets and the incoming heading of Ta, then designs the 2D
point-to-point smooth Dubins path from Ta to Tb in the X-Y
plane of LCS1. The 2D Dubins curve is then transformed to
the 3D path in the GCS using Euler’s transformation. Once
the 3D Dubins segment between Ta and Tb is designed, the
LCS2 centered at Tb is used in a similar manner to design
the next segment of the 3D Dubins path.

Fig. 2: Global coordinate system (GCS) and two local coor-
dinate systems: LCS1 and LCS2

A. Coordinate System Rotation Algorithm

To facilitate the design of the 3D Dubins curve between
two targets Ta and Tb, we first shift the origin of the GCS
to the location of target Ta, and denote the shifted GCS as
GCS′ (u′-v′-w′). The Local Coordinate System LCS1 (x-y-
z) of Ta is defined by the heading vector Oa and the line
linking Ta with Tb, as shown in Fig. 3. The y axis lays on
the vector connecting Ta and Tb, the x-y plane contains the
vector Oa, and the z axis is perpendicular to the x-y plane
with its direction following the right-hand rule.

Fig. 3: GCS and LCS and rotations and three Euler transfor-
mation angles α, β, and γ

The rotation between LCS1 and GCS′ follows the Euler’s
transform and is described in three detailed steps:

• Rotate axis w′ with angle α by matrix D, where α is
the angle between axis u′ and vector Oa. The u′ axis
becomes the x1 axis as shown in Fig. 3.

• Rotate axis x1 with angle γ by matrix C. The z1 axis is
rotated to z2. The y2 axis becomes the y2 axis as shown
in Fig. 3.

• Rotate axis y2 to axis y with angle β about z2 axis by
matrix B. The direction of y is the same as vector Vab,
as shown in Fig. 3.

With the three steps, we obtain the three Euler rotation
angles α, β, γ. The three rotation matrices D,C,B are defined



as:

D =

 cosα sinα 0
− sinα cosα 0

0 0 1

 (2)

C =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 (3)

B =

 cosβ sinβ 0
− sinβ cosβ 0

0 0 1

 (4)

Then the vector G = (u′, v′, w′) in the GCS′ will rotate to
the vector L = (x, y, z) by:

L = (B× C× D)×G (5)

where × denotes the matrix multiplication.

B. The Proposed 3D Dubins Path Design

This subsection describes a rotation based method to design
a 3D Dubins path with a given target sequence and a pair of
heading angles. The basic steps to design the 3D path is shown
in Algorithm 1, where the inputs are the target coordinates in
the GCS T1, T2, · · · , Tn with the given target sequence, and
the outputs are the 3D Dubins curve coordinates in the GCS.

According to the proposed algorithm for designing the 3D
Dubins path, we now show the continuity at the joint target
point between two Dubins curves. The curve CLCS′ is in the
x′ − y′ plane for the Ta-Tb segment, and the curve CLCS′′ is
in the x′′ − y′′ plane for the Tb-Tc segment. The two curves
touch at point Tb and have the same tangent. Hence, the two
curves satisfy G0 and G1 continuity based on the definition of
geometric continuity. In addition, the two curves are designed
with the same turning radius. Therefore, the radius of curvature
of the two curves at point Tb is the same, thus the 3D Dubins
path satisfies the G2 continuity.

C. Back Propagation Algorithm via Trellis

The algorithm 1 designs 3D Dubins path for a given
target sequence and given heading angles directly without
interpolation. However, every target can have multiple heading
angles which lead to Bn combinations, where B is the number
of angles in the discrete set, and n is the number of targets in
the assigned sequence. How to select the shortest path from
start to end and reduce the computational complexity becomes
an important issue. In previous work, Wang applied Genetic
Algorithm [10] and Cai used exhaustive search [7] to choose
the shortest path. In this paper, we use a back propagation
method to select the optimal heading angles for a given target
sequence.

Assume the target sequence has a total of n targets. Because
the AUV sets off and returns to the first target, there will be
n + 1 stages for the target-sequence. We define the discrete
azimuth heading sets to reduce the computational complexity.
We assume that there are B different heading angles for the
AUV to choose at each target, which corresponds to B states
in each stage. Now, we need to find a shortest state path from

Algorithm 1 : 3D Dubins Path Design

1) Assign the coordinates of targets T1 and T2 in the
GCS as Ta(u, v, w) := T1(u, v, w) and Tb(u, v, w) :=
T2(u, v, w).
2) Define a new coordinate system GCS′ by shifting the
origin of GCS to Ta. Find the vector Vab connecting Ta and
Tb. Define LCS for Ta as shown in Fig.3. The coordinate
of Tb in LCS is then (0, L, 0), where L is the length of
vector Vab;
3) Since both Ta and Tb are on the X-Y plane of LCS, we
now select a pair of out-going and in-coming vectors in the
available set for Ta and Tb, respectively. Denote the vectors
in LCS as Oa and Ib, respectively.
4) Apply the 2D Dubins curve method to find the shortest
path from Ta to Tb in LCS and denote the path as CLCS .
5) Apply the Euler’s transform algorithm to find the rotation
matrices D,C,B for transferring vectors in LCS to GCS′.
Hence, the transformed coordinates and heading vectors are
CGCS′ = (B×C×D)−1×CLCS , OGCS′ = (B×C×D)−1×
Oa, and IGCS′ = (B× C× D)−1 × Ib, respectively;
6) Shift CGCS′ in GCS′ to coordinates in GCS and output
it as CGCS which is the 3D path from Ta to Tb; Output
the corresponding OGCS′ and IGCS′ as Φ1 and Φ2, the
headings for T1 and T2, respectively;
7) Repeat Step 4-6 to design Dubins curves for other
heading angles of Ta and Tb, if required;
8) To design Dubins curve for the next segment of the target
sequence, substitute Ta, Tb, and Oa by T2, T3, and I2,
respectively. Repeat Step 2-7 to design the paths from T2
to T3.
9) Repeat Step 8 until all remaining targets in the given
target sequence are visited and the AUV returns to T1.

Stage 1 to State n + 1, which is implemented by the back
propagation method in Function 2.

The back propagation method is illustrated by a trellis
diagram, as shown in Fig. 4, where the back propagation
method keeps only one surviving path entering into each state
at each stage. This method achieves the optimal solution and
reduces the computational complexity from exhaustive search.
The back propagation method also has lower computational
complexity than the GA algorithm which may not achieve the
optimal solution.

The steps to choose the shortest path for a target sequence
is listed as follows.

1) From Stage 1 to Stage 2, there are B2 different paths.
Compute the lengths of these paths via Algorithm 1
and choose a shortest path for each state in Stage 2,
illustrated as the red lines in Fig. 4. Discard other paths
and only keep the B shortest surviving paths from Stage
1 to each state in Stage 2 and record the path lengths as
the path metric M1b, b = 1, · · · , B.

2) From Stage 2 to Stage 3, repeat Function 1 to calculate
the lengths of the possible B2 paths, add the path metric



Fig. 4: Trellis diagram for the back-propagation algorithm for
shortest path selection.

Fig. 5: Cubic Bezier curve with four control points.

M1 to the corresponding paths; choose the shortest B
paths that originate from Stage 1 and arrive at each state
in Stage 3; Record the total path lengths as path metric
M2b, b = 1, · · · , B.

3) Repeat Step 2 for (n− 2) times, until Stage (n+ 1).
4) Choose the shortest path among the B surviving path,

and denote it as P . The corresponding states along the
trellis are the optimal heading angle sequence to achieve
the shortest path for a given target-sequence.

For a given sequence, Function 2 is used to choose the
shortest 3D Dubins path from all possible heading angles with
affordable computational complexity.

IV. 3D BEZIER CURVE

In this section, we apply the Bezier curve to design the 3D
path for AUV [15], [16] and compare 3D Bezier curves to 3D
Dubins curves. Bezier curves have advantage in continuity,
hence, are often used to design smooth paths. For AUV
motion-control, the path of AUV has to satisfy G2 continuity
at each point of the path. With G2 continuity, the AUV can
change its acceleration gently. Therefore, we choose the cubic
Bezier curve to design 3D path for AUVs, as shown in Fig.
5, where four control points are used to design one Bezier
curve. Two of the four points are the starting and ending target
locations, and the other two points may be arbitrarily chosen
to control the curvature of the path.

The cubic Bezier curve is defined by the following equation:

P (t) = (1− t)3P1 + 3(1− t)2tC1 + 3(1− t)t2C2 + t3P2

(6)

where P1, P2, C1, and C2 are four control points of the cubic
Bezier curve and t ∈ [0, 1] with t = 0 corresponding to the
starting target and t = 1 corresponding to the ending target.
In AUV path planning, we denote the control points P1 and
P2 as the targets. The control points C1 and C2 are two points
out of the path to control the curve’s shape and length.

Each cubic Bezier curve is differentiable and continuous to
degree 3 at any point on the curve. Therefore, the continuity of
the overall path of the sequence is to ensure that the joint point
of two Bezier curves are continuous. We now consider two
cubic Bezier curves P (t) with its four control points at (P1,
P2, C1, C2) and Q(t) with its four control points at (Q1, Q2,
C3, C4). Based on the definition of continuity, G0 continuity
can be achieved by P (1) = Q(0), which yields

P2 = Q1. (7)

For G1 continuity, we have Ṗ (1) = Q̇(0), which results in

P2 − C2 = C3 −Q1. (8)

Combining (7) and (8), we get:

C3 = 2P2 − C2. (9)

Similarly for G2 continuity, we have P̈ (1) = P̈ (0), yield-
ing:

C4 − 2C1 +Q1 = P2 − 2C2 + C1. (10)

Combining (10), (8), and (7), we get:

Q2 = 4P2 − 4C2 + C1. (11)

In path planning of the overall sequence, we assume P1, P2,
Q1, and Q2 are the targets. The other control points will be
chosen to minimize the total length of the 3D Bezier curves.
For a given target sequence, we choose C1 and C2 for first
two targets T1, T2 and design the first segment of cubic Bezier
curve between these two targets. The control points of the
following segments of Bezier curves are calculated by (9) and
(11) to satisfy the G2 continuity at the joint target locations.
Therefore, how to choose the two control points for the first
segment T1 to T2 determines the overall Bezier curve path for
the whole sequence. A cubic grid in the 3D space near T1 and
T2 may be defined and all points on the grid may be selected
as the two control points for the Bezier curve design. If the
total number of grid points is N , then the two control points
have N2 possible combinations. Then how to choose the grid
and how to choose the two control points on the grid becomes
a difficult problem.



V. SIMULATION

A. Results of the Proposed 3D Dubins Curve Algorithm

In this paper, computer simulation was set up with 8
randomly distributed underwater targets in a cube of 600 ×
600 × 600 m3 space which would be visited by one survey-
type AUVs. The turning radius of survey-type AUV is usually
larger than 10 meters. For example, the MBARI Dorado class
torpedo-style AUV has a minimum 10 meters turning radius.
Therefore, we set the turning radius r = 12 m for Dubins
path. The simulated space is much smaller than the real AUV
navigation space. Because of the small turning radius, we
intend to zoom in to our simulation results to show the Dubins
curves clearly. Therefore, we choose a small underwater cube
space. For the sake of simplicity, we chose the typical set of
the azimuth headings for AUV movement as φ = { bπ4 } with
b = 1, 3, 5, 7.

Following the method proposed in sections III, the proposed
algorithm designed the 3D Dubins path for eight targets,
as shown in Fig. 6, where different segments are shown in
different colors.

Fig. 6: 3D Dubins paths for one AUV visiting 8 targets,
designed by the new algorithm

The total distances traveled by the AUV are compared
among the different design methods, as shown in Fig. 7. The
proposed 3D algorithm reduced the total length of 3D path
over the spline interpolation, and has the similar distances as
the linear interpolation method. It is interesting to note that
the total Euclidean distance is the shortest path among all de-
signed paths. The spline interpolation method has the longest
total distance, because the cubic spline interpolation has to
increase the distance to satisfy the continuity requirement.
The proposed algorithm satisfied the continuity requirement
without increasing the path length and achieved a similar total
distance as the linear interpolation method; while the linear
interpolation method failed to satisfy the G1 continuity at the
joint target locations.

To demonstrate the difference between the proposed algo-
rithm and the interpolation methods, we applied these methods
to design 3D path with the same target sequence, and the
results are shown in Fig. 8(a) and Fig. 8(b), respectively.

Fig. 7: Total distance comparison for four target-sequence.

Compared with linear interpolation, the proposed algorithm
and spline interpolation achieve G2 continuity at joint target
locations. In addition, the proposed algorithm has shorter total
distance than spline interpolation.

(a)

(b)

Fig. 8: Comparison of 3D paths designed by the proposed
algorithm and (a) linear interpolation method; (b) the Spline
interpolation method



B. Results of 3D Bezier curves

In section IV, we introduce the method of designing 3D
Bezier curves. The lengths of Bezier curves are determined by
the choice of the first two control points. In our simulation,
we defined a cubic grid around the first two targets and chose
the first two control points C1 and C2 on this grid randomly.
We used the trial and error method to select the control points
randomly for one million trials and designed the 3D Bezier
curve for each trial. The shortest path among the one million
trials was selected as the relatively shortest path for the given
eight target sequence. The best result is shown in Fig. 9. In
Fig. 9(a), the bezier curves from T1 to T4 perform well and
each segment is smooth and short. However, when the number
of targets increases, the control points for the last two targets
in the sequence became far away from the targets and the
designed cubic Bezier curves became very long, as shown in
Fig. 9(b), where the scale of the figure is on 104. Although the
3d Bezier curves satisfied the G2 continuity, the tight coupling
of control points in the target sequence made the design of
the 3D Bezier curve much more difficult than the 3D Dubins
curves.

(a)

(b)

Fig. 9: 3D Bezier curves for an eight-target sequence.(a) Bezier
curve from T1 to T4; (b) Bezier curve from T4 to T8.

VI. CONCLUSION

In this paper, we have proposed a new algorithm to design
3D Dubins path with the Euler’s rotation transform method
rather than interpolation. The proposed algorithm guarantees
the G2 continuity at the joint target locations of multiple target
sequence. In addition, we utilize the back propagation method
to choose the shortest path for a given target assignment
sequence, which reduces the computational complexity and
guarantees the optimality of the path selection. The proposed
algorithm achieves better 3D continuity and/or shorter path
length than the existing interpolation methods. Compared with
cubic Bezier curves, our new 3D Dubins curve can achieve
much shorter path length.
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