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Abstract

Inverse method can be used to fill the gap between huge amount of data from sensors and complex
groundwater model. The iterative Ensemble Smoother (iES) is one of the most efficient algorithms applied to
groundwater modeling for data assimilation. However, the iES only works for multi-Gaussian fields, because
two-point statistics are used to estimate the co-relation between state variables and parameters. In curvilinear
geometries, such as sinuous channels in fluvial deposits, the distribution of hydraulic conductivity is non-
multiGaussian. Multiple-Point Geostatistics (MPG) method has gained popularity for modeling curvilinear
structures by conditioning on directly measured data, such as conductivities. This paper is aimed at bridging
the iES and MPG method via pilot points to deal with inverse problem for further conditioning on indirect
data, such as piezometric head, in non-Gaussian fields. As a result, the better flow and transport modeling
will be achieved because both data and the concept model (e,g., geological structures) are honored after data
assimilation. To do that, the iES is used to update conductivities at pilot points by assimilating indirect
data, then the updated values at pilot points together with measured conductivities will be used as hard
data to model hydraulic conductivity field via Direct Sampling, an MPG method. A synthetic example was
used to demonstrate the methodology in terms of characterization of conductivity and flow and transport
predictions. The results show that this new approach can not only assimilate dynamic data into groundwater

flow model but also preserve curvilinear structures.

Keywords: Inverse Modeling, Iterative Ensemble Smoother, Pilot Point, Direct Sampling

1. Introduction

Accurate characterization of the spatial variation of hydrological properties such as hydrologic conduc-

tivity and their corresponding uncertainty is a key issue for a range of engineering problems such as site
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remediation and restoration, waste disposal for radioactive material and carbon sequestration for mitigating
greenhouse gas emission (e.g., Rabideau and Miller, 1994; De Marsily et al., 2005; Lengler et al., 2010).

In the framework of Monte-Carlo simulation, there are two steps that are routinely used to characterize the
heterogeneity of hydraulic conductivity in groundwater studies, using direct and indirect measurements from
the field. First, directly measured hydraulic conductivities, normally termed as hard data, can be conditioned
through geostatistical approaches, such as Sequential Gaussian Simulation (Deutsch and Journel, 1992;
Goémez-Herndndez and Journel, 1993) and multiple-point geostatistics (Strebelle, 2002). Second, indirect
head and concentration data, termed as soft data, can then be further conditioned through inverse methods
in groundwater modeling (e.g, Hendricks Franssen, 2001; Zhou et al., 2014).

Inverse method is an approach to calibrate initial parameters by minimizing an objective function that
is generally composed of the sum of squared difference between observed indirect data and simulated values.
The initial parameters are iteratively adjusted through a gradient-based approach or posterior sampling.
Examples of these inverse methods include pilot point method (RamaRao et al., 1995), self-calibration
method (Gomez-Hernandez et al., 1997), the Markov chain Monte Carlo method (Oliver et al., 1997), and
gradual deformation (Hu, 2000). A comprehensive review of inverse methods can be found from the literature
(e.g., Yeh, 1986; Hendricks Franssen et al., 2009; Zhou et al., 2014).

Comparing with inverse methods mentioned above, the Ensemble Kalman Filter (EnKF) has increas-
ingly gained popularity because of its CPU-efficiency and ease of implementation (Hendricks Franssen and
Kinzelbach, 2009; Xu et al., 2013). The EnKF was first introduced by Evensen (1994) and widely applied to
a spectrum of fields such as groundwater modeling, petroleum engineering, weather forecast and oceanog-
raphy. Reichle et al. (2002) applied the EnKF to estimate soil moisture by assimilating L-band (1.4 GHz)
microwave radio-brightness observations into a land surface model. Different ensemble sizes were tested in
terms of the efficiency of the EnKF, using a series of synthetic experiments. The results indicate that the
EnKF is an efficient data assimilation approach in land surface modeling for moderate ensemble size. Chen
and Zhang (2006) applied the EnKF to update hydraulic conductivities by integrating observed hydraulic
head data for a transient groundwater flow model in geologic formations. A two-dimensional example and
a three-dimensional example were used to test the capability of the EnKF and the results show that the
EnKF could provide an efficient approach for the estimation of hydraulic conductivity. Gu et al. (2005)
applied the EnKF to calibrate permeability using history pressure data in a reservoir model, and concluded
that the EnKF can provide a faster computational speed and a reliable estimation of parameters in the

synthetic example. Liu et al. (2008) applied the EnKF to inversely calibrate the hydraulic conductivity and
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transport parameters such as dispersivity using hydraulic head and tracer concentration data at the MADE
site. Huang et al. (2009) used the EnKF to assimilate both hydraulic head and solute concentration data
to update the hydraulic conductivity field in order to get a better prediction of solute transport. Kurtz
et al. (2014) employed the EnKF to jointly assimilate piezometric head data and groundwater temperature
for updating river bed conductivity in a river-aquifer model. Li et al. (2017) used both surface deformation
and hydraulic head to calibrate the transmissivity and elastic/inelastic specific storages via the EnKF and
a synthetic example shows that the EnKF can effectively reduce model uncertainty after conditioning on all
the data in a land subsidence model.

An alternative data assimilation method to the EnKF is the Ensemble Smoother (ES), which was first
presented by van Leeuwen and Evensen (1996) and has been emerged as an effective and efficient approach for
data assimilation. The analysis scheme of the ES is similar to the EnKF. However, in ES, all the observation
data are assimilated at once to update the state parameter instead of assimilating observations sequentially
in the EnKF. Because there is no recurring groundwater modeling, the ES has much less computational cost.
Bailey and Bau (2010) applied the ES to calibrate the hydraulic conductivity by assimilating hydraulic head
and return flow volume. Bailey et al. (2012) used the ES to improve the estimation of denitrification rate
by assimilating nitrate concentration and nitrate mass data. In order to improve the method and to avoid
the impact of strong non-linearity of the forward simulator, an iterative ES (iES) was proposed, in which
the same set of data is iteratively applied to update parameters. Li et al. (2018a) compared the EnKF and
the iterative ES, and found that the latter can achieve similar results as the EnKF but have an advantage
of less computational cost.

Although the EnKF /iES has been extensively applied in subsurface flow models, it only performs well
in aquifers where the hydraulic conductivity follows a multiGaussian distribution. In curvilinear structures
such as fractures in sedimentary rocks and channels in fluvial deposits, the hydraulic conductivity does
not have the multiGaussian distribution. Multiple Points Geostatistics (MPG) method has been widely
used to simulate the non-multiGaussian geological deposits in the past decades. Instead of using two-point
variogram-based geostatistics, MPG uses multiple-point (e.g., pattern) to represent correlations of multiple
variables in space. Strebelle (2002) proposed a Single Normal Equation simulation(SNESIM) method to
model the curvilinear structure using a training image. The training image is a conceptual model which
is composed of the potential structures of the target aquifer. One of shortcomings for SNESIM is that: it
can only model categorical variables such as rock facies. However, aquifer parameters such as hydraulic

conductivity and porosity in groundwater modeling are continuous variables. More recently, Mariethoz et al.
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(2010) developed a Direct Sampling (DS) method to simulate the geological curvilinear structures. It can not
only model categorical variables but also continuous variables, and has an advantage of less computational
cost.

Although there is a wide range of methods to simulate the non-multiGaussian geological fields through
MPG methods, it is a challenge to conditioning on indirect data such as hydraulic head data for improved
flow and transport predictions. Caers (2003) proposed a probability perturbation method to solve the inverse
problem by updating MPG realizations simulated by SNESIM, using a Markov chain process until all obser-
vation data match simulated ones. Sarma et al. (2009) applied a kernel-based generalized EnKF to update
permeabilities in non-Gaussian reservoirs. However, the back transformation calculation is still a challenge
to solve. Zhou et al. (2011) presented a normal-score EnKF method, where the non-Gaussian distributed
log-conductivity was transformed into the Gaussian distributed log-conductivity before implementing the
EnKF, in order to handle the non-Gaussianity. Li et al. (2018b) developed an iterative normal-score En-
semble Smoother using the same method to deal with non-Gaussianity in data assimilation. Zhou et al.
(2012) developed a pattern-search-based method based on the idea of DS method. Instead of just search-
ing the hydraulic conductivity pattern, the corresponding hydraulic head pattern is also included as a part
of ensemble pattern search. Li et al. (2013) proposed an ensemble PATtern (EnPAT) search method as
an extension to the pattern-search-based method by simultaneously updating both hydraulic conductivity
and hydraulic head, and an improved characterization of patterns is achieved in a synthetic example for
groundwater modeling.

In this paper, we propose a new approach to address the inverse problem of MPG simulations, by coupling
iterative ES and Direct Sampling method. Specifically, a set of pilot points are chosen randomly from the
hydraulic conductivity field. Then, they will be updated using dynamic data (i.e., observation head) via
iterative ES. The updated conductivities at pilot points will be regarded as hard data to interpolate the
hydraulic conductivity fields at un-sampled locations using DS in order to preserve geological structures that
are displayed in the concept model (i.e., training image). The proposed approach can not only efficiently
assimilate dynamic data into groundwater modeling through the iES, but also preserve the non-multiGaussian
feature through DS. The coupled iES-DS method is built on the iterative ES in assimilating dynamic data
and on DS in modeling non-multGaussian fields. The proposed method will be demonstrated in a synthetic

example, in terms of conductivity characterization and flow and transport predictions.
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2. Methodology

2.1. Forward Modeling

The governing equation of groundwater transient flow in saturated porous media can be described as

follows (Bear, 1972):

0 Oh 0, .0h 0, .0h oh

%(K%%L@*y( @)Jfaz( 5;) ~ W =584 (1)

where K is the hydraulic conductivity; h is the hydraulic head; S, is the specific storage; t is time; and W*
is the source and sink.

The governing equation for the solute transport with linear equilibrium adsorption can be described by

the following differential equation (Bear, 1972):

V(¢D - Vc¢) — Vqc = qu% (2)

where c is solute concentration in the water phase; ¢ is the porosity; V is the gradient operator; D is the
local hydrodynamic dispersion coefficient tensor; q is the Darcy velocity given by q = —KVh, and R is

retardation factor.

2.2. Inverse Modeling

The proposed inverse method is based on the coupling of iterative ES and DS. A detailed explanation of
iterative ensemble smoother can be found in van Leeuwen and Evensen (1996). Figure 1 is the flowchart of

iES-DS, coupling with MODFLOW (Harbaugh et al., 2000). It can be summarized in following steps:

1. Build the joint vector:

InK
P = (3)
h

In this vector, K is the ensemble of log-hydraulic conductivities at pilot points, and h is the simulated

heads after running MODFLOW. The i** realization in this vector can be described as follows:
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where m denotes the number of pilot points; n denotes the number of nodes where hydraulic heads
are collected; k denotes the number of time step; and T is the transpose matrix symbol. Unlike the

EnKF, all simulated hydraulic head data at all time steps are jointed globally in the iES.

. Calculate the error covariance for the predicted state:

N
1 - —f —f\T
pf_ F_ f_ 5
: Ne_li;(w ¥ ) (¢ —97) (5)
where f denotes the forecast state. The overline denotes the mean of the forecast ensemble. The
mean of ensemble is used to represent the best estimate of the true value. N, denotes the number
of realizations in the ensemble. Broadly, more realizations will provide a more accurate estimation of

cross-covariance, but need a higher computational cost accordingly.

. Calculate the Kalman Gain.

The Kalman gain is a weight coefficient matrix and used to adjust the forecast matrix by minimizing
the error between observation data and simulations. d is an ensemble of observations with an error
¢€; for the ith realization. d; is an observation vector including the true piezometric heads d and

observation error €;.

R, is the ensemble error covariance:
R, = eeT (7)
Kalman Gain can be written as,
K.=P/HT"(HP/HT + R.)! (8)

where H is the measurement matrix.
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4. Update the ensemble by the following equation:
¥ =] + Ko(di — H)) (9)

where 1] is the updated realizations and d)zf is the forecast realizations.
5. Interpolate both the updated hydraulic conductivities at pilot points and hard data to un-sampled
locations, using DS method. The algorithm of the DS is described in detail in Mariethoz et al. (2010).
6. Go back to Step 1 until the mismatch of hydraulic heads converges. Emerick and Reynolds (2013)

discussed a set of termination criteria that can be used for the iterative ES.

Note that, the concept of pilot points plays a key role in the proposed methodology and it connects
the iES and DS for handling the inverse problem of non-Gaussian fields. If no pilot points are considered,
the coupled iES-DS comes to the DS alone. In other words, dynamic data will not be integrated into the
MPG simulations. On the other hand, if all the nodes are pilot points, the proposed algorithm becomes the
iES, and the non-Gaussian features can not be preserved after data assimilation. The pilot points bridge
the iterative ES and DS for dealing with non-Gaussianity in data assimilation for better flow and transport

modeling.

3. A Synthetic Example

A synthetic example is designed to test the performance of this new approach by coupling DS and iES
for data assimilation in a bimodal aquifer. A 2D transient flow model is considered. A time period of 30
days is divided into 60 time steps with a multiplier of 1.05. The aquifer has 50 x 50 cells and each cell has a
size of 5 m X 5 m. The boundary conditions of the aquifer are simplified as no flow boundaries on the North
and South sides and the East side is a constant head boundary (h = 5m). 50 pumping wells are set on the
west boundary. The pumping rate of these wells is set to ¢ = —3.0m3/day at high conductivity cells and
q = —0.3m3/day at low conductivity cells in order to get a prominent change of hydraulic heads at wells.
9 observation wells are used to get observed hydraulic head data for inverse modeling. Figure 2 shows the
schematic boundary conditions and the location of observation wells. Table 1 shows the setting parameters
for the synthetic example. MODFLOW (Harbaugh et al., 2000) is used to solve the flow equation (1).

DS method is used to generate the reference conductivity field (see Figure 3). The training image (Figure
4) is obtained by overlaying a continuous hydraulic conductivity field generated by Sequential Gaussian

Simulation (Gémez-Hernédndez and Journel, 1993), on a categorical facies field that has been routinely used
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to test methodology in fluvial deposits (e.g., Li et al., 2015). The same training image is used to generate
the initial ensemble of conductivity fields via DS for integrating head data. Seven cases are considered with
different numbers of pilot points and ensemble size (see Table 2). The purpose of these cases is to validate
the method and to test the sensitivity of these key parameters to the results. Figure 5 shows the distribution

of pilot points and measured conductivities for Case 5.

4. Results and Discussion

4.1. Hydraulic Conductivity Characterization

Figures 6 and 7 show the ensemble mean and ensemble variance of conductivity fields for 7 Cases that
are listed in Table 2.

For Case 1, no measured conductivities and head data are conditioned, and ensemble mean and ensemble
variance of InK tend to be constant, as expected. Although each individual realization, as the reference
conductivity field in Figure 3, displays a strong heterogeneity with preferred flow paths, the averaging of
conductivities through ensemble smears out those high permeable channels. In addition, since there are no
measured hard and soft data that are considered, the ensemble variance that represents the uncertainty of
hydraulic conductivity shows the highest.

For Case 2, six measured conductivities, as hard data, are conditioned through DS. Ensemble mean of
conductivity fields displays a pattern that is close to the reference conductivity field in Figure 3, and overall
ensemble variance is decreased, with zero variance at the locations of measured conductivities and gradually
elevated variance away from the conditioning points.

For Case 3, besides the measured conductivities, head data collected from observation wells are used
to update the conductivity ensemble of Case 2. The iterative ES is applied to update conductivities at all
the nodes. In other words, all the nodes are pilot points, and thus no DS is used for interpolation. In
terms of ensemble mean, the pattern is closer to the reference, compared with Case 2 where only measured
conductivities are considered. Because additional head data are conditioned, ensemble variance is further
decreased. However, because only two-point geostatistics (i.e., cross-covariances) are used, the pattern in
each individual realization can not be preserved, which can be found in Figure 8 where the histogram of
conductivity, after updating using iterative ES, has become a Gaussian distribution, departing from the
bimodal distribution of the reference field.

In order to preserve the non-Gaussian feature (i.e., high permeable channels), a subset of nodes, terms

as pilot points, is introduced. Specifically, the conductivities at pilot points are updated using head data via
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iterative ES, and then DS is further used to extrapolate the updated conductivities at pilot points for other
nodes. For Cases 4 - 6, the number of pilot points is gradually increased from 14 to 494, while the number
of measured conductivities and hydraulic head data are kept the same. The ensemble size is 200 for these
three Cases. The ensemble mean and ensemble variance is improved from Case 4 to 5, because the elevated
number of pilot points from 14 to 94 brings more information from hydraulic head data. From Case 5 to
Case 6, the number of pilot point is further increased from 94 to 494, but the ensemble mean and ensemble
variance keep the same pattern and uncertainty. This means that additional information from pilot points
can not improve the estimation and accuracy. In contrast, the elevated number of pilot points may introduce
noises for individual realizations after interpolating by DS in Case 6.

For Case 7, we increased the ensemble size from 200 in Case 6 to 500 in Case 7, in order to improve
the quality of interpolated conductivity realizations. Ensemble mean and ensemble variance are smoothed
because cross-covariances are more accurately estimated with the larger ensemble size in the iterative ES.
This is consistent with studies of data assimilation via the EnKF (e.g., Hendricks Franssen and Kinzelbach,
2009).

Figure 8 displays the histogram of log-conductivity for Cases 3, 5 and 6. It is evident that, if iterative
ES is used alone, the updated conductivity is inclined to be Gaussian, however, when iterative ES is coupled
with DS via pilot points, the bimodal distribution of log-conductivity, as shown in the reference field, can

be preserved after conditioning on hydraulic head data using the proposed approach.

4.2. Hydraulic Head

Besides looking at the characterization of conductivity, the reproduction of hydraulic head can also be
used to validate the methodology. Recall piezometric head data from Well #1-#9 are integrated into the
groundwater flow model for calibrating conductivities. Figure 9 shows the simulated heads for the first 6 Cases
for well #6. With conditioning on measured conductivities, the uncertainty of simulated heads is reduced
from Case 1 to Case 2. With the best estimation of conductivity in Case 6 using an ensemble size of 200, the
reference head is close to the mean of simulated heads and the spread of simulated heads is the smallest one
within the first 6 Cases. This result is consistent with the characterization of hydraulic conductivity. Note
that the capability of reproducing the reference head depends on how much information/data are considered
and integrated into the model. In these Cases, only 9 measured conductivities and head data from 9 wells
are used to characterize complex patterns that display a high non-Gaussianity. The overall uncertainty of

simulated heads still shows a high uncertainty, as expected, based on Bayes’ rule. If additional data such as
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measured conductivities and head data are conditioned further using the proposed approach, its uncertainty

will certainly reduced.

4.8. Transport Prediction

The main purpose of data assimilation is to improve the predictive capability of the flow and transport
model. The solute migration is more sensitive to preferred flow paths than hydraulic conductivity. In this
work, a line of contaminant source with a constant concentration is released near the west boundary. The
total simulation time for the transport migration is 1500 days and the start concentration is 30mg/l. Porosity
is assumed to be 0.3. MT3D (Zheng and Wang, 1999) is used to solve the transport equation (2).

Figures 10 and 11 display the ensemble mean and ensemble variance of plume migration for 7 Cases
as well as the simulated plume for the reference conductivity field. The plume migration of the reference
conductivity field clearly shows channel structures which are propagated from the geologic structures of
conductivities. When including measured conductivities and head data, the reproduction of plume migration
to the reference one is the best. In this work, only hydraulic head data collected from 9 monitoring wells are
used for conditioning. If concentration data are sampled and used for conditioning as well, the prediction of

plume migration will be considerably improved, as it was demonstrated in Li et al. (2012).

5. Conclusion

In this paper, a new approach to assimilate dynamic data into a non-Gaussian aquifer by coupling the
iterative Ensemble Smoother and multiple-point geostatistics method is proposed. It borrows the advantages
of both DS method in modeling non-Gaussianity and iES in assimilating dynamic data. This new method
is aimed at reproducing channelized structures by assimilating indirect data such as hydraulic head. A
synthetic study has been applied to test the capability of the new approach. Seven Cases are conducted to
evaluate this new method. Among the seven Cases, the sensitivity of the number of pilot points and ensemble
size to the results are evaluated. The results show that, after combining DS method and iterative ES through
pilot points, hydraulic head data can be successfully assimilated into the non-Gaussian aquifer as well as
preserving the bimodal distribution that is displayed in the conceptual model (i.e., training image). The
coupled iES-DS has a better performance than iES alone since iES is not be able to keep the non-Gaussian
distribution because of the use of two-point statistics for estimating correlations between state variables
and parameters. Flow and transport predictions are then introduced to test the predictive capability of

the updated conductivities. The results show that it can give a better prediction on both hydraulic head

10
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and contaminant transport, after all the data are integrated into the model, and more importantly, the
non-Gaussian feature is preserved after assimilating dynamic data. The proposed iES-DS method provides

a new avenue for groundwater inverse modeling in a non-Gaussian aquifer.
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Table 1: Setup of the groundwater flow model

Training image size
Model size

Grid size

Aquifer thickness
Simulation time

Number of periods
Number of time steps
Aquifer storage coefficient
Initial head

250 x 250
50 x 50
5m X 5m
5 m

30 days

1

60

0.003

5 m

Table 2: Case study

Casel Case2 Case3 Case4 Cased Case6 Case7
Conditioned K 0 6 6 6 6 6 6
Conditioned h 0 0 9 9 9 9 9
Number of pilot points 0 0 0 14 94 494 494
DS DS iES iES-DS iES-DS iES-DS iES-DS
Ensemble size 200 200 200 200 200 200 500
Generate Hydraulic
Conductivity (K) MODFLOW

Get a Reference

Ensembles using Direct

Sampling

Field

}

Get Observation
Head at 9 Wells

v

Select Random
Pilot Points

Simulate Head
Ensembles

A

A

Update Pilot
Points Ensembles

T+1

using ES

T+1

Direct
A

Sampling

Update K using
Pilot Points as
Hard Data

MODFLOW

15

Figure 1: Flowchart of the proposed iES-DS method. First, a reference hydraulic conductivity field is generated as the ‘true’
one for validation. Then, the simulated head will be selected at 9 wells as observation data. DS is applied to generate hydraulic
conductivity ensemble. The corresponding hydraulic head ensemble will be simulated by running MODFLOW and a certain
number of pilot points will be selected randomly. The iterative ES is used to update conductivities at pilot points by integrating
the head data collected from 9 wells. The updated conductivities at pilot points will be regarded as hard data to interpolate
hydraulic conductivity field by DS. The updated conductivity fields will be used as the input for the next iteration until a
convergence is achieved. T denotes the iteration number.



No Flow Boundary

g
#7 #8 #9 2
£ o} o} o} =
N (]
Il =
3 #4 #5 #6 &
T o) o} o} I
g =
3 #1 #2 #3 2
3 o) ) o) g,
=~

No Flow Boundary

Figure 2: Boundary conditions and well locations.
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Figure 3: Reference log-conductivity field generated by Direct Sampling.
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Training Image

Figure 4: Training image generated by overlaying a continuous conductivity field on a categorical facies field.
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Figure 5: The distribution of pilot points. The color dots are pilot points and the white circles are measured conductivities
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Mean Variance

Case 1

Case 2

Case 3

Figure 6: Ensemble mean and ensemble variance for case 1-3.
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Variance

Figure 7: Ensemble mean and ensemble variance for case 4-7.
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Figure 8: Histogram of log-conductivity for difference cases.
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Figure 9: Flow prediction at well #6 .
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Figure 10: Ensemble mean and ensemble variance of transport migration for Case 1-3.
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Figure 11: Ensemble mean and ensemble variance of transport migration for Case 4-7.
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