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Abstract

Inverse method can be used to fill the gap between huge amount of data from sensors and complex

groundwater model. The iterative Ensemble Smoother (iES) is one of the most efficient algorithms applied to

groundwater modeling for data assimilation. However, the iES only works for multi-Gaussian fields, because

two-point statistics are used to estimate the co-relation between state variables and parameters. In curvilinear

geometries, such as sinuous channels in fluvial deposits, the distribution of hydraulic conductivity is non-

multiGaussian. Multiple-Point Geostatistics (MPG) method has gained popularity for modeling curvilinear

structures by conditioning on directly measured data, such as conductivities. This paper is aimed at bridging

the iES and MPG method via pilot points to deal with inverse problem for further conditioning on indirect

data, such as piezometric head, in non-Gaussian fields. As a result, the better flow and transport modeling

will be achieved because both data and the concept model (e,g., geological structures) are honored after data

assimilation. To do that, the iES is used to update conductivities at pilot points by assimilating indirect

data, then the updated values at pilot points together with measured conductivities will be used as hard

data to model hydraulic conductivity field via Direct Sampling, an MPG method. A synthetic example was

used to demonstrate the methodology in terms of characterization of conductivity and flow and transport

predictions. The results show that this new approach can not only assimilate dynamic data into groundwater

flow model but also preserve curvilinear structures.
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1. Introduction1

Accurate characterization of the spatial variation of hydrological properties such as hydrologic conduc-2

tivity and their corresponding uncertainty is a key issue for a range of engineering problems such as site3
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remediation and restoration, waste disposal for radioactive material and carbon sequestration for mitigating4

greenhouse gas emission (e.g., Rabideau and Miller, 1994; De Marsily et al., 2005; Lengler et al., 2010).5

In the framework of Monte-Carlo simulation, there are two steps that are routinely used to characterize the6

heterogeneity of hydraulic conductivity in groundwater studies, using direct and indirect measurements from7

the field. First, directly measured hydraulic conductivities, normally termed as hard data, can be conditioned8

through geostatistical approaches, such as Sequential Gaussian Simulation (Deutsch and Journel, 1992;9

Gómez-Hernández and Journel, 1993) and multiple-point geostatistics (Strebelle, 2002). Second, indirect10

head and concentration data, termed as soft data, can then be further conditioned through inverse methods11

in groundwater modeling (e.g, Hendricks Franssen, 2001; Zhou et al., 2014).12

Inverse method is an approach to calibrate initial parameters by minimizing an objective function that13

is generally composed of the sum of squared difference between observed indirect data and simulated values.14

The initial parameters are iteratively adjusted through a gradient-based approach or posterior sampling.15

Examples of these inverse methods include pilot point method (RamaRao et al., 1995), self-calibration16

method (Gomez-Hernandez et al., 1997), the Markov chain Monte Carlo method (Oliver et al., 1997), and17

gradual deformation (Hu, 2000). A comprehensive review of inverse methods can be found from the literature18

(e.g., Yeh, 1986; Hendricks Franssen et al., 2009; Zhou et al., 2014).19

Comparing with inverse methods mentioned above, the Ensemble Kalman Filter (EnKF) has increas-20

ingly gained popularity because of its CPU-efficiency and ease of implementation (Hendricks Franssen and21

Kinzelbach, 2009; Xu et al., 2013). The EnKF was first introduced by Evensen (1994) and widely applied to22

a spectrum of fields such as groundwater modeling, petroleum engineering, weather forecast and oceanog-23

raphy. Reichle et al. (2002) applied the EnKF to estimate soil moisture by assimilating L-band (1.4 GHz)24

microwave radio-brightness observations into a land surface model. Different ensemble sizes were tested in25

terms of the efficiency of the EnKF, using a series of synthetic experiments. The results indicate that the26

EnKF is an efficient data assimilation approach in land surface modeling for moderate ensemble size. Chen27

and Zhang (2006) applied the EnKF to update hydraulic conductivities by integrating observed hydraulic28

head data for a transient groundwater flow model in geologic formations. A two-dimensional example and29

a three-dimensional example were used to test the capability of the EnKF and the results show that the30

EnKF could provide an efficient approach for the estimation of hydraulic conductivity. Gu et al. (2005)31

applied the EnKF to calibrate permeability using history pressure data in a reservoir model, and concluded32

that the EnKF can provide a faster computational speed and a reliable estimation of parameters in the33

synthetic example. Liu et al. (2008) applied the EnKF to inversely calibrate the hydraulic conductivity and34
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transport parameters such as dispersivity using hydraulic head and tracer concentration data at the MADE35

site. Huang et al. (2009) used the EnKF to assimilate both hydraulic head and solute concentration data36

to update the hydraulic conductivity field in order to get a better prediction of solute transport. Kurtz37

et al. (2014) employed the EnKF to jointly assimilate piezometric head data and groundwater temperature38

for updating river bed conductivity in a river-aquifer model. Li et al. (2017) used both surface deformation39

and hydraulic head to calibrate the transmissivity and elastic/inelastic specific storages via the EnKF and40

a synthetic example shows that the EnKF can effectively reduce model uncertainty after conditioning on all41

the data in a land subsidence model.42

An alternative data assimilation method to the EnKF is the Ensemble Smoother (ES), which was first43

presented by van Leeuwen and Evensen (1996) and has been emerged as an effective and efficient approach for44

data assimilation. The analysis scheme of the ES is similar to the EnKF. However, in ES, all the observation45

data are assimilated at once to update the state parameter instead of assimilating observations sequentially46

in the EnKF. Because there is no recurring groundwater modeling, the ES has much less computational cost.47

Bailey and Baù (2010) applied the ES to calibrate the hydraulic conductivity by assimilating hydraulic head48

and return flow volume. Bailey et al. (2012) used the ES to improve the estimation of denitrification rate49

by assimilating nitrate concentration and nitrate mass data. In order to improve the method and to avoid50

the impact of strong non-linearity of the forward simulator, an iterative ES (iES) was proposed, in which51

the same set of data is iteratively applied to update parameters. Li et al. (2018a) compared the EnKF and52

the iterative ES, and found that the latter can achieve similar results as the EnKF but have an advantage53

of less computational cost.54

Although the EnKF/iES has been extensively applied in subsurface flow models, it only performs well55

in aquifers where the hydraulic conductivity follows a multiGaussian distribution. In curvilinear structures56

such as fractures in sedimentary rocks and channels in fluvial deposits, the hydraulic conductivity does57

not have the multiGaussian distribution. Multiple Points Geostatistics (MPG) method has been widely58

used to simulate the non-multiGaussian geological deposits in the past decades. Instead of using two-point59

variogram-based geostatistics, MPG uses multiple-point (e.g., pattern) to represent correlations of multiple60

variables in space. Strebelle (2002) proposed a Single Normal Equation simulation(SNESIM) method to61

model the curvilinear structure using a training image. The training image is a conceptual model which62

is composed of the potential structures of the target aquifer. One of shortcomings for SNESIM is that: it63

can only model categorical variables such as rock facies. However, aquifer parameters such as hydraulic64

conductivity and porosity in groundwater modeling are continuous variables. More recently, Mariethoz et al.65
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(2010) developed a Direct Sampling (DS) method to simulate the geological curvilinear structures. It can not66

only model categorical variables but also continuous variables, and has an advantage of less computational67

cost.68

Although there is a wide range of methods to simulate the non-multiGaussian geological fields through69

MPG methods, it is a challenge to conditioning on indirect data such as hydraulic head data for improved70

flow and transport predictions. Caers (2003) proposed a probability perturbation method to solve the inverse71

problem by updating MPG realizations simulated by SNESIM, using a Markov chain process until all obser-72

vation data match simulated ones. Sarma et al. (2009) applied a kernel-based generalized EnKF to update73

permeabilities in non-Gaussian reservoirs. However, the back transformation calculation is still a challenge74

to solve. Zhou et al. (2011) presented a normal-score EnKF method, where the non-Gaussian distributed75

log-conductivity was transformed into the Gaussian distributed log-conductivity before implementing the76

EnKF, in order to handle the non-Gaussianity. Li et al. (2018b) developed an iterative normal-score En-77

semble Smoother using the same method to deal with non-Gaussianity in data assimilation. Zhou et al.78

(2012) developed a pattern-search-based method based on the idea of DS method. Instead of just search-79

ing the hydraulic conductivity pattern, the corresponding hydraulic head pattern is also included as a part80

of ensemble pattern search. Li et al. (2013) proposed an ensemble PATtern (EnPAT) search method as81

an extension to the pattern-search-based method by simultaneously updating both hydraulic conductivity82

and hydraulic head, and an improved characterization of patterns is achieved in a synthetic example for83

groundwater modeling.84

In this paper, we propose a new approach to address the inverse problem of MPG simulations, by coupling85

iterative ES and Direct Sampling method. Specifically, a set of pilot points are chosen randomly from the86

hydraulic conductivity field. Then, they will be updated using dynamic data (i.e., observation head) via87

iterative ES. The updated conductivities at pilot points will be regarded as hard data to interpolate the88

hydraulic conductivity fields at un-sampled locations using DS in order to preserve geological structures that89

are displayed in the concept model (i.e., training image). The proposed approach can not only efficiently90

assimilate dynamic data into groundwater modeling through the iES, but also preserve the non-multiGaussian91

feature through DS. The coupled iES-DS method is built on the iterative ES in assimilating dynamic data92

and on DS in modeling non-multGaussian fields. The proposed method will be demonstrated in a synthetic93

example, in terms of conductivity characterization and flow and transport predictions.94
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2. Methodology95

2.1. Forward Modeling96

The governing equation of groundwater transient flow in saturated porous media can be described as97

follows (Bear, 1972):98
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where K is the hydraulic conductivity; h is the hydraulic head; Ss is the specific storage; t is time; and W ∗
99

is the source and sink.100

The governing equation for the solute transport with linear equilibrium adsorption can be described by101

the following differential equation (Bear, 1972):102

∇(φD · ∇c)−∇qc = φR
∂c

∂t
(2)

where c is solute concentration in the water phase; φ is the porosity; ∇ is the gradient operator; D is the103

local hydrodynamic dispersion coefficient tensor; q is the Darcy velocity given by q = −K∇h, and R is104

retardation factor.105

2.2. Inverse Modeling106

The proposed inverse method is based on the coupling of iterative ES and DS. A detailed explanation of107

iterative ensemble smoother can be found in van Leeuwen and Evensen (1996). Figure 1 is the flowchart of108

iES-DS, coupling with MODFLOW (Harbaugh et al., 2000). It can be summarized in following steps:109

1. Build the joint vector:110

ψ =

 lnK

h

 (3)

In this vector, K is the ensemble of log-hydraulic conductivities at pilot points, and h is the simulated111

heads after running MODFLOW. The ith realization in this vector can be described as follows:112
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i

(4)

where m denotes the number of pilot points; n denotes the number of nodes where hydraulic heads113

are collected; k denotes the number of time step; and T is the transpose matrix symbol. Unlike the114

EnKF, all simulated hydraulic head data at all time steps are jointed globally in the iES.115

2. Calculate the error covariance for the predicted state:116

P f
e =

1

Ne − 1

Ne∑
i=1

(
ψf −ψf)(

ψf −ψf)T
(5)

where f denotes the forecast state. The overline denotes the mean of the forecast ensemble. The117

mean of ensemble is used to represent the best estimate of the true value. Ne denotes the number118

of realizations in the ensemble. Broadly, more realizations will provide a more accurate estimation of119

cross-covariance, but need a higher computational cost accordingly.120

3. Calculate the Kalman Gain.121

The Kalman gain is a weight coefficient matrix and used to adjust the forecast matrix by minimizing122

the error between observation data and simulations. d is an ensemble of observations with an error123

εi for the ith realization. di is an observation vector including the true piezometric heads d and124

observation error εi.125

di = d+ εi (6)

Re is the ensemble error covariance:126

Re = εεT (7)

Kalman Gain can be written as,127

Ke = P f
eH

T (HP f
eH

T +Re)−1 (8)

where H is the measurement matrix.128
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4. Update the ensemble by the following equation:129

ψa
i = ψf

i +Ke(di −Hψf
i ) (9)

where ψa
i is the updated realizations and ψf

i is the forecast realizations.130

5. Interpolate both the updated hydraulic conductivities at pilot points and hard data to un-sampled131

locations, using DS method. The algorithm of the DS is described in detail in Mariethoz et al. (2010).132

6. Go back to Step 1 until the mismatch of hydraulic heads converges. Emerick and Reynolds (2013)133

discussed a set of termination criteria that can be used for the iterative ES.134

Note that, the concept of pilot points plays a key role in the proposed methodology and it connects135

the iES and DS for handling the inverse problem of non-Gaussian fields. If no pilot points are considered,136

the coupled iES-DS comes to the DS alone. In other words, dynamic data will not be integrated into the137

MPG simulations. On the other hand, if all the nodes are pilot points, the proposed algorithm becomes the138

iES, and the non-Gaussian features can not be preserved after data assimilation. The pilot points bridge139

the iterative ES and DS for dealing with non-Gaussianity in data assimilation for better flow and transport140

modeling.141

3. A Synthetic Example142

A synthetic example is designed to test the performance of this new approach by coupling DS and iES143

for data assimilation in a bimodal aquifer. A 2D transient flow model is considered. A time period of 30144

days is divided into 60 time steps with a multiplier of 1.05. The aquifer has 50 × 50 cells and each cell has a145

size of 5 m × 5 m. The boundary conditions of the aquifer are simplified as no flow boundaries on the North146

and South sides and the East side is a constant head boundary (h = 5m). 50 pumping wells are set on the147

west boundary. The pumping rate of these wells is set to q = −3.0m3/day at high conductivity cells and148

q = −0.3m3/day at low conductivity cells in order to get a prominent change of hydraulic heads at wells.149

9 observation wells are used to get observed hydraulic head data for inverse modeling. Figure 2 shows the150

schematic boundary conditions and the location of observation wells. Table 1 shows the setting parameters151

for the synthetic example. MODFLOW (Harbaugh et al., 2000) is used to solve the flow equation (1).152

DS method is used to generate the reference conductivity field (see Figure 3). The training image (Figure153

4) is obtained by overlaying a continuous hydraulic conductivity field generated by Sequential Gaussian154

Simulation (Gómez-Hernández and Journel, 1993), on a categorical facies field that has been routinely used155
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to test methodology in fluvial deposits (e.g., Li et al., 2015). The same training image is used to generate156

the initial ensemble of conductivity fields via DS for integrating head data. Seven cases are considered with157

different numbers of pilot points and ensemble size (see Table 2). The purpose of these cases is to validate158

the method and to test the sensitivity of these key parameters to the results. Figure 5 shows the distribution159

of pilot points and measured conductivities for Case 5.160

4. Results and Discussion161

4.1. Hydraulic Conductivity Characterization162

Figures 6 and 7 show the ensemble mean and ensemble variance of conductivity fields for 7 Cases that163

are listed in Table 2.164

For Case 1, no measured conductivities and head data are conditioned, and ensemble mean and ensemble165

variance of lnK tend to be constant, as expected. Although each individual realization, as the reference166

conductivity field in Figure 3, displays a strong heterogeneity with preferred flow paths, the averaging of167

conductivities through ensemble smears out those high permeable channels. In addition, since there are no168

measured hard and soft data that are considered, the ensemble variance that represents the uncertainty of169

hydraulic conductivity shows the highest.170

For Case 2, six measured conductivities, as hard data, are conditioned through DS. Ensemble mean of171

conductivity fields displays a pattern that is close to the reference conductivity field in Figure 3, and overall172

ensemble variance is decreased, with zero variance at the locations of measured conductivities and gradually173

elevated variance away from the conditioning points.174

For Case 3, besides the measured conductivities, head data collected from observation wells are used175

to update the conductivity ensemble of Case 2. The iterative ES is applied to update conductivities at all176

the nodes. In other words, all the nodes are pilot points, and thus no DS is used for interpolation. In177

terms of ensemble mean, the pattern is closer to the reference, compared with Case 2 where only measured178

conductivities are considered. Because additional head data are conditioned, ensemble variance is further179

decreased. However, because only two-point geostatistics (i.e., cross-covariances) are used, the pattern in180

each individual realization can not be preserved, which can be found in Figure 8 where the histogram of181

conductivity, after updating using iterative ES, has become a Gaussian distribution, departing from the182

bimodal distribution of the reference field.183

In order to preserve the non-Gaussian feature (i.e., high permeable channels), a subset of nodes, terms184

as pilot points, is introduced. Specifically, the conductivities at pilot points are updated using head data via185
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iterative ES, and then DS is further used to extrapolate the updated conductivities at pilot points for other186

nodes. For Cases 4 - 6, the number of pilot points is gradually increased from 14 to 494, while the number187

of measured conductivities and hydraulic head data are kept the same. The ensemble size is 200 for these188

three Cases. The ensemble mean and ensemble variance is improved from Case 4 to 5, because the elevated189

number of pilot points from 14 to 94 brings more information from hydraulic head data. From Case 5 to190

Case 6, the number of pilot point is further increased from 94 to 494, but the ensemble mean and ensemble191

variance keep the same pattern and uncertainty. This means that additional information from pilot points192

can not improve the estimation and accuracy. In contrast, the elevated number of pilot points may introduce193

noises for individual realizations after interpolating by DS in Case 6.194

For Case 7, we increased the ensemble size from 200 in Case 6 to 500 in Case 7, in order to improve195

the quality of interpolated conductivity realizations. Ensemble mean and ensemble variance are smoothed196

because cross-covariances are more accurately estimated with the larger ensemble size in the iterative ES.197

This is consistent with studies of data assimilation via the EnKF (e.g., Hendricks Franssen and Kinzelbach,198

2009).199

Figure 8 displays the histogram of log-conductivity for Cases 3, 5 and 6. It is evident that, if iterative200

ES is used alone, the updated conductivity is inclined to be Gaussian, however, when iterative ES is coupled201

with DS via pilot points, the bimodal distribution of log-conductivity, as shown in the reference field, can202

be preserved after conditioning on hydraulic head data using the proposed approach.203

4.2. Hydraulic Head204

Besides looking at the characterization of conductivity, the reproduction of hydraulic head can also be205

used to validate the methodology. Recall piezometric head data from Well #1-#9 are integrated into the206

groundwater flow model for calibrating conductivities. Figure 9 shows the simulated heads for the first 6 Cases207

for well #6. With conditioning on measured conductivities, the uncertainty of simulated heads is reduced208

from Case 1 to Case 2. With the best estimation of conductivity in Case 6 using an ensemble size of 200, the209

reference head is close to the mean of simulated heads and the spread of simulated heads is the smallest one210

within the first 6 Cases. This result is consistent with the characterization of hydraulic conductivity. Note211

that the capability of reproducing the reference head depends on how much information/data are considered212

and integrated into the model. In these Cases, only 9 measured conductivities and head data from 9 wells213

are used to characterize complex patterns that display a high non-Gaussianity. The overall uncertainty of214

simulated heads still shows a high uncertainty, as expected, based on Bayes’ rule. If additional data such as215
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measured conductivities and head data are conditioned further using the proposed approach, its uncertainty216

will certainly reduced.217

4.3. Transport Prediction218

The main purpose of data assimilation is to improve the predictive capability of the flow and transport219

model. The solute migration is more sensitive to preferred flow paths than hydraulic conductivity. In this220

work, a line of contaminant source with a constant concentration is released near the west boundary. The221

total simulation time for the transport migration is 1500 days and the start concentration is 30mg/l. Porosity222

is assumed to be 0.3. MT3D (Zheng and Wang, 1999) is used to solve the transport equation (2).223

Figures 10 and 11 display the ensemble mean and ensemble variance of plume migration for 7 Cases224

as well as the simulated plume for the reference conductivity field. The plume migration of the reference225

conductivity field clearly shows channel structures which are propagated from the geologic structures of226

conductivities. When including measured conductivities and head data, the reproduction of plume migration227

to the reference one is the best. In this work, only hydraulic head data collected from 9 monitoring wells are228

used for conditioning. If concentration data are sampled and used for conditioning as well, the prediction of229

plume migration will be considerably improved, as it was demonstrated in Li et al. (2012).230

5. Conclusion231

In this paper, a new approach to assimilate dynamic data into a non-Gaussian aquifer by coupling the232

iterative Ensemble Smoother and multiple-point geostatistics method is proposed. It borrows the advantages233

of both DS method in modeling non-Gaussianity and iES in assimilating dynamic data. This new method234

is aimed at reproducing channelized structures by assimilating indirect data such as hydraulic head. A235

synthetic study has been applied to test the capability of the new approach. Seven Cases are conducted to236

evaluate this new method. Among the seven Cases, the sensitivity of the number of pilot points and ensemble237

size to the results are evaluated. The results show that, after combining DS method and iterative ES through238

pilot points, hydraulic head data can be successfully assimilated into the non-Gaussian aquifer as well as239

preserving the bimodal distribution that is displayed in the conceptual model (i.e., training image). The240

coupled iES-DS has a better performance than iES alone since iES is not be able to keep the non-Gaussian241

distribution because of the use of two-point statistics for estimating correlations between state variables242

and parameters. Flow and transport predictions are then introduced to test the predictive capability of243

the updated conductivities. The results show that it can give a better prediction on both hydraulic head244
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and contaminant transport, after all the data are integrated into the model, and more importantly, the245

non-Gaussian feature is preserved after assimilating dynamic data. The proposed iES-DS method provides246

a new avenue for groundwater inverse modeling in a non-Gaussian aquifer.247
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Li, L., Zhou, H., Gómez-Hernández, J. J., Franssen, H.-J. H., 2012. Jointly mapping hydraulic conductivity310

and porosity by assimilating concentration data via ensemble kalman filter. Journal of hydrology 428,311

152–169.312

Liu, G., Chen, Y., Zhang, D., 2008. Investigation of flow and transport processes at the made site using313

ensemble kalman filter. Advances in Water Resources 31 (7), 975–986.314

Mariethoz, G., Renard, P., Straubhaar, J., 2010. The direct sampling method to perform multiple-point315

geostatistical simulations. Water Resources Research 46 (11).316

Oliver, D., Cunha, L., Reynolds, A., 1997. Markov chain Monte Carlo methods for conditioning a perme-317

ability field to pressure data. Mathematical Geology 29 (1), 61–91.318

Rabideau, A. J., Miller, C. T., 1994. Two-dimensional modeling of aquifer remediation influenced by sorption319

nonequilibrium and hydraulic conductivity heterogeneity. Water Resources Research 30 (5), 1457–1470.320

RamaRao, B. S., LaVenue, A. M., De Marsily, G., Marietta, M. G., 1995. Pilot point methodology for321

automated calibration of an ensemble of conditionally simulated transmissivity fields: 1. theory and com-322

putational experiments. Water Resources Research 31 (3), 475–493.323

13



Reichle, R. H., McLaughlin, D. B., Entekhabi, D., 2002. Hydrologic data assimilation with the ensemble324

kalman filter. Monthly Weather Review 130 (1), 103–114.325

Sarma, P., Chen, W. H., et al., 2009. Generalization of the ensemble kalman filter using kernels for nongaus-326

sian random fields. In: SPE reservoir simulation symposium. Society of Petroleum Engineers.327

Strebelle, S., 2002. Conditional simulation of complex geological structures using multiple-point statistics.328

Mathematical Geology 34 (1), 1–21.329

van Leeuwen, P. J., Evensen, G., 1996. Data assimilation and inverse methods in terms of a probabilistic330

formulation. Monthly Weather Review 124 (12), 2898–2913.331
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Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., Li, L., 2011. An approach to handling non-340

gaussianity of parameters and state variables in ensemble kalman filtering. Advances in Water Resources341

34 (7), 844–864.342
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Table 1: Setup of the groundwater flow model

Training image size 250 × 250
Model size 50 × 50
Grid size 5 m × 5 m
Aquifer thickness 5 m
Simulation time 30 days
Number of periods 1
Number of time steps 60
Aquifer storage coefficient 0.003
Initial head 5 m

Table 2: Case study

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Conditioned K 0 6 6 6 6 6 6
Conditioned h 0 0 9 9 9 9 9
Number of pilot points 0 0 0 14 94 494 494
Method DS DS iES iES-DS iES-DS iES-DS iES-DS
Ensemble size 200 200 200 200 200 200 500

Figure 1: Flowchart of the proposed iES-DS method. First, a reference hydraulic conductivity field is generated as the ‘true’
one for validation. Then, the simulated head will be selected at 9 wells as observation data. DS is applied to generate hydraulic
conductivity ensemble. The corresponding hydraulic head ensemble will be simulated by running MODFLOW and a certain
number of pilot points will be selected randomly. The iterative ES is used to update conductivities at pilot points by integrating
the head data collected from 9 wells. The updated conductivities at pilot points will be regarded as hard data to interpolate
hydraulic conductivity field by DS. The updated conductivity fields will be used as the input for the next iteration until a
convergence is achieved. T denotes the iteration number.
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Figure 10: Ensemble mean and ensemble variance of transport migration for Case 1-3.
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