Global Curve Simplification

Mees van de Kerkhof
Utrecht University, The Netherlands
m.a.vandekerkhof@uu.nl

Irina Kostitsyna
TU Eindhoven, The Netherlands
i.kostitsyna@tue.nl

Maarten Loffler
Utrecht University, The Netherlands
m.loffler@uu.nl

Majid Mirzanezhad
Tulane University, New Orleans, USA
mmirzane@tulane.edu

Carola Wenk
Tulane University, New Orleans, USA
cwenk@tulane.edu

Abstract

Due to its many applications, curve simplification is a long-studied problem in computational
geometry and adjacent disciplines, such as graphics, geographical information science, etc. Given a
polygonal curve P with n vertices, the goal is to find another polygonal curve P’ with a smaller
number of vertices such that P’ is sufficiently similar to P. Quality guarantees of a simplification
are usually given in a local sense, bounding the distance between a shortcut and its corresponding
section of the curve. In this work we aim to provide a systematic overview of curve simplification
problems under global distance measures that bound the distance between P and P'. We consider
six different curve distance measures: three variants of the Hausdorff distance and three variants of
the Fréchet distance. And we study different restrictions on the choice of vertices for P'. We provide
polynomial-time algorithms for some variants of the global curve simplification problem, and show
NP-hardness for other variants. Through this systematic study we observe, for the first time, some
surprising patterns, and suggest directions for future research in this important area.
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1 Introduction

Due to its many applications, curve simplification (also known as line simplification) is a
long-studied problem in computational geometry and adjacent disciplines, such as graphics,
geographical information science, etc. Given a polygonal curve P with n vertices, the goal
is to find another polygonal curve P’ with a smaller number of vertices such that P’ is
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Input curve ,/5'

Figure 1 For a target distance &, the red curve (middle) is a global simplification of the input
curve (left), but it is not a local simplification, since the first shortcut does not closely represent its
corresponding curve section (right). The example works for both Hausdorff and Fréchet distance.

sufficiently similar to P. Classical algorithms for this problem famously include a simple
recursive scheme by Douglas and Peucker [16], and a more involved dynamic programming
approach by Imai and Iri [21]; both are frequently implemented and cited. Since then,
numerous further results on curve simplification, often in specific settings or under additional
constraints, have been obtained [1, 2, 6, 11, 12, 14, 8, 18, 20].

Despite its popularity, the Douglas-Peucker algorithm comes with no provable quality
guarantees. The method by Imai and Iri, though slower, was introduced as an alternative
which does supply guarantees: it finds an optimal shortest path in a graph in which potential
shortcuts are marked as either valid or invalid, based on their distance to the corresponding
sections of the input curve. However, Agarwal et al. [2] note that the Imai-Iri algorithm
does not actually globally optimize any distance measure between the original curve P and
the simplification P’. This work initiated a more formal study of curve simplification; van
Kreveld et al. [24] systematically show that both Douglas-Peucker and Imai-Iri may indeed
produce far-from-optimal results.

This raises a question of what it means for a simplification to be optimal. We may view
it as a dual-optimization problem: we wish to minimize the number of vertices of P’ given
a constraint on its similarity to P. This depends on the distance measure used; popular
curve distance measures include the Hausdorff and Fréchet distances (variants and formal
definitions are discussed in Section 2.1). However, the difference in interpretation between
Agarwal et al. and Imai and Iri lies not so much in the choice of distance measure, but rather
what exactly it is applied to. In fact, the Imai-Iri algorithm is optimal in a local sense: it
outputs a subsequence of the vertices of P such that the Hausdorff distance between each
shortcut and its corresponding section of the input is bounded: each shortcut approximates
the section of P between the vertices of the shortcut.

In this work, we underline this difference by using the term global simplification when
a bound on a distance measure must be satisfied between P and P’ (formal definition in
Section 2.3), and local simplification when a bound on a distance measure must be satisfied
between each edge of P’ and its corresponding section of P. Clearly, a local simplification
is also a global simplification, but the reverse is not necessarily true, see Figure 1. Both
local and global simplifications have their merits: one can imagine situations where it is
important that each segment of a simplified curve is a good representation of the curve
section it replaces, but in other applications (e.g., visualization) it is really the similarity of
the overall result to the original that matters. Most existing work on curve simplification
falls in the local category. In this work, we focus on global curve simplification.

1.1 Existing Work on Global Curve Simplification

Surprisingly, only a few results on simplification under global distance measures are known [2,
7, 10, 24]; consequently, what makes the problem difficult is not well understood.
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Agarwal et al. [2] first consider the idea of global simplification. They introduce what
they call a weak simplification: a model in which the vertices of the simplification are not
restricted to be a subset of the input vertices, but can lie anywhere in the ambient space.!
Interestingly, they compare this to a local simplification where vertices are restricted to be
a subset of the input. We may interpret a combination of two of their results (Theorem
1.2 and Theorem 4.1) as an approximation algorithm for global curve simplification with
unrestricted vertices under the Fréchet distance: for a given curve P and threshold § one can
compute, in O(nlogn) time, a simplification P’ which has at most the number of vertices of
an optimal simplification with threshold §/8.

Bereg et al. [7] first explicitly consider global simplification in the setting where vertices
are restricted to be a subsequence of input vertices, but using the discrete Fréchet distance:
a variant of the Fréchet distance which only measures distances between vertices (refer
to Section 2.1). They show how to compute an optimal simplification where vertices are
restricted to be a subsequence in O(n?) time, and they give an O(nlogn) time algorithm for
the setting where vertices may be placed freely.

Van Kreveld et al. [24] consider the same (global distance, but vertices should be a
subsequence) setting, but for the continuous Fréchet and Hausdorff distances. They give
polynomial-time algorithms for the Fréchet distance and directed Hausdorff distance (from
simplification curve to input curve), but they show the problem is NP-hard for the directed

Hausdorff distance in the opposite direction and for the undirected Hausdorff distance.

Recently, Bringmann and Chaudhury [10] improved their result for the Fréchet distance to
O(n?®), and also give a conditional cubic lower bound.

Finally, we mention there is earlier work which does not explicitly study simplification

under global distance measures, but contains results that may be reinterpreted as such.

Guibas et al. [19] provide algorithms for computing minimum-link paths that stab a sequence
of regions in order. One of the variants, presented in Theorems 10 and 14 of [19], computes
what may be seen as an optimal simplification under the Fréchet distance with no vertex
restrictions, i.e., the same setting that was studied by Agarwal et al., in O(n?log? n) time.

2 Classification

We aim to provide a systematic overview of curve simplification problems under global
distance measures. To this end, we have collected known results and arranged them in a table
(Table 1), and provide several new results to complement these (refer to Section 2.4). This
allows us for the first time to observe some surprising patterns, and it suggests directions for
future research in this important area. We first discuss the dimensions of the table.

2.1 Distance Measures

For our study, we consider six different curve distance measures: three variants of the
Hausdorff distance and three variants of the Fréchet distance. These are among the most
popular curve distance measures in the algorithms literature. The Hausdorff distance captures
the maximum distance from a point on one curve to a point on the other curve. The variants
of the Hausdorff distance we consider are the directed Hausdorff distance from the input to
the output, the directed Hausdorff distance from the output to the input, and the undirected

1 We choose not to adopt the terms weak and strong in this context because we will also distinguish an
intermediate model, and to avoid confusion with the weak Fréchet distance; refer to Section 2.2.
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Figure 2 Globally simplified curves under Fréchet distance (left) and Hausdorff distance (right).
The vertex-restricted case (in red) requires 5 vertices for Fréchet distance and 8 vertices for the
Hausdorff distance. The curve-restricted case (in blue) requires 4 vertices for Fréchet distance and 6
vertices for the Hausdorff distance. The non-restricted case (in green) requires only 3 vertices for
Fréchet distance and only 5 vertices for the Hausdorff distance. The §-neighborhoods for the original
curves are shown in yellow.

(or bidirectional) Hausdorff distance. The Fréchet distance captures the maximum distance
between a pair of points traveling along the two curves simultaneously. We now formally
define all six distance measures.

Let P = (p1,p2,--- ,pn) be the input polygonal curve. We treat P as a continuous map
P :[1,n] — RY, where P(i) = p; for integer i, and the i-th edge is linearly parametrized as
P(i+X)=(1— XNp; + A\pir1. We write PJs,t] for the subcurve between P(s) and P(¢) and
denote the shortcut, i.e., the straight line connecting them, by (P(s)P(t)).

The Fréchet distance between two polygonal curves P and @, with n and m vertices,
respectively, is F(P, Q) = inf(, gy max; [|[P(c(t)) — Q(0(¢))||, where o and @ are continuous
non-decreasing functions from [0, 1] to [1,n] and [1,m], respectively. If o and # are continuous
but not necessarily monotone, the resulting infimum is called the weak Fréchet distance.
Finally, the discrete Fréchet distance is a variant where o and 6 are discrete functions from
{1,...,k} to {1,...,n} and {1,...,m} with the property that |o(i) — o(i + 1)| < 1.

The directed Hausdorff distance between two polygonal curves (or more generally, compact

sets) P and Q is defined as ﬁ(P, Q) = mea}gcnéig |lp — q||- The undirected Hausdor{f distance
PEP g

is then simply the maximum over the two directions: H(P, Q) = max{ﬁ(P, Q), ﬁ(Q, P)}.

2.2 Vertex Restrictions

Once we have fixed the distance measure and agreed that we wish to apply it globally,
one important design decision still remains to be made. Traditional curve simplification
algorithms consider the (polygonal) input curve P to be a sequence of points, and produce
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Table 1 Known and new results (in blue) for the GCS problem under global distance measures.

Distance| Vertex-restricted (V) Curve-restricted (C) Non-restricted (N)

ﬁ(P, &) | strongly NP-hard [24] weakly NP-hard (Thm 5) 7

O(n*) [24]

mP ) O(n*log n) (Thm 3)

weakly NP-hard (Thm 5) poly(n) [23]

H(P,d) | strongly NP-hard [24] strongly NP-hard (Cor 14) strongly NP-hard (Thm 13)

O(n?log?n) in R? [19]

O(mn®) [24] O(n) in R' (Thm 7) o ADDIOX
F(P,5) O(r*) [22 weakly NP-hard in &2 (Thm 5) | 7 fn’é)léglfl)oglffg ") 2
O(n”) [10] (2,1 + &)-approx (Thm 11)
dF(P,4) Oo(n?) [7] O(n®) (Thm 6) O(nlogn) [7]
wF(P, 6) O(n®) (Thm 2) weakly NP-hard (Thm 5) (2,1 + e)-approx (Cor 12)

as output P’ a subsequence of this sequence. However, if we measure the distance globally,
there may be no strong reason to restrict the family of acceptable output curves so much:
the distance measure already ensures the similarity between input and output curves, so
perhaps we may allow a more free choice of vertex placement. Indeed, several results under
this more relaxed viewpoint exist, as discussed in Section 1.1. Here, we choose to investigate
three increasing levels of freedom: (1) vertez-restricted (V), where vertices of P’ have to be a
subsequence of vertices of P; (2) curve-restricted (C), where vertices of P’ can lie anywhere
on P but have to respect the order along P; and (3) non-restricted (N ), where vertices of P’
can be anywhere in the ambient space. Figure 2 illustrates the difference between the three
models. The third category does not make sense for local curve simplification, but is very
natural for global curve simplification. Observe that when the vertices of a simplified curve
have more freedom, the optimal simplified curve never has more, but may have fewer, vertices.

2.3 Global Curve Simplification Overview

We are now ready to formally define a class of global curve simplification problems. When
D(-,-) denotes a distance measure between curves (e.g., the Hausdorff or Fréchet distance),
the global curve simplification (GCS) problem asks what is the smallest number k such
that there exists a curve P’ with at most k vertices, chosen either as a subsequence of the
vertices of P (variant V), as a sequence of points on the edges of P in the correct order
along P (variant C), or chosen anywhere in R? (variant A') and such that D(P, P’) < §, for
a given threshold 4. In all cases, we require that P and P’ start at the same point and end
at the same point.

Table 1 summarizes results for the different variants of the GCS problem obtained by
instantiating D with the Hausdorff or Fréchet distance measures and by applying a vertex
restriction R. Here R € {V,C, N}, and D is either the undirected Hausdorff distance H, the
directed Hausdorff distance ﬁ(P, ) from P to P’, the directed Hausdorff distance ﬁ(P, é)
from P’ to P, the Fréchet distance F, the discrete Fréchet distance dF, or the weak Fréchet
distance wF. Throughout the paper we use Dg(P,d) to denote a curve P’ that is the optimal
R-restricted simplification of P with D(P, P') < é.
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Since GCS is a dual-optimization problem, we call an algorithm an («, 3)-approzimation
if it computes a solution with distance at most 8§ and uses at most a times more shortcuts
than the optimal solution for distance 4.

2.4 New Results

In order to provide a thorough understanding of the different variants of the GCS problem
we provide several new results. In some cases these are straightforward adaptations of known
results, in other cases they require deeper ideas. Additional lemmas, theorems, and proofs
are available in the full version of this paper [22]. We give polynomial time algorithms for
finding wFy,(P,d), the vertex-restricted GCS under the weak Fréchet distance (Section 3,
Theorem 2), and wFy (P, 8), the vertex-restricted GCS under the strong Fréchet distance (see
[22]). In Section 4 we consider the vertex-restricted problem under the directed Hausdorff
distance from P’ to P (that is, to find ﬁv(P, d)), originally considered by van Kreveld et
al. [24], and we provide an algorithm with an improved runtime of O(n>logn) (Theorem 3).
In Section 5 we prove that solving the curve-restricted GCS is NP-hard for almost all distance
measures considered in this paper except for the discrete Fréchet distance (Theorem 6) and
strong Fréchet distance in R! (Theorem 7) for which we present polynomial time algorithms.
To the best of our knowledge, these are the first results in the curve-restricted setting
under global distance measures. Finally, in Section 8, we give a (2,1 + €)-approximation
algorithm for F(P,d), the non-restricted GCS under the Fréchet distance, which runs in
O*(n?log nloglogn) time, where O* hides factors polynomial in 1/¢ (Theorem 11). The same
result also holds for wF (P, 4) (Corollary 12). In Section 9 we show that the non-restricted
GCS problem becomes NP-hard when we consider the Hausdorff distance (Theorem 13).

2.5 Discussion

With both the existing work and our new results in place, we now have a good overview of
the complexity of the different variants of the GCS problem, see Table 1.

Observe that the curve-restricted variants seem to generally be harder than both the vertex-
restricted and the non-restricted variants. That means that, on the one hand, broadening
the search space from the vertex-restricted to the curve-restricted case makes the problem
harder. But on the other hand it does not give unrestricted freedom of choice, which in turn
enables the development of efficient algorithms for the unrestricted case.

Another interesting pattern can be observed for the Hausdorff distance measures. The
direction of the Hausdorff distance makes a significant difference in whether the corresponding
GCS problem is NP-hard or polynomially solvable. The GCS problem for the undirected
Hausdorf distance is at least as hard as for the directed Hausdorff distance from the input
curve to the simplification.

Drawing upon the above observations we make the following conjecture:

» Conjecture 1. The curve-restricted and non-restricted GCS problems for ﬁ(P, d) are
strongly NP-hard.

3 Freespace-Based Algorithms for Fréchet Simplification

We use the free space diagram between P and its shortcut graph G to solve the vertex-
restricted GCS problem under the weak and strong Fréchet distances in O(n?®) time and
space. This is related to map-matching [4, 9], however in our case we need to compute
shortest paths in the free space that correspond to simple paths in G. While map-matching
for closed simple paths is NP-complete [25], we exploit the DAG property of G to develop
efficient algorithms. The proof for the strong Fréchet distance can be found in [22].
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SP(3)

Figure 3 A free space diagram FSD;(P,G) with strips and spines.

3.1 Shortcut DAG and Free Space Diagram

Let G = (V,E) be the shortcut DAG of P, where V = {1,...,n} and E = {(u,v) |1 <
u < v < n}. BEach v €V is embedded at p, and each edge € = (u,v) € E as a straight line
shortcut is linearly parameterized as e(t) = (1 — t)py + tpy for t € [0,1]. We consider the
parameter space of G to be E x [0, 1].

Now, let § > 0, and consider the joint parameter space [1,n] x E x [0,1] of P and G.

Any (s,e,t) € [1,n] x E x [0,1] is called free if ||P(s) — e(¢)|| < 4, and the union of all free
points is referred to as the free space. For brevity, we write (s, e(t)) instead of (s, e,t), and
if e(t) = v € V we write (s,v). The free space diagram FSD;(P, G) consists of all points in
[1,n] x E x [0,1] together with an annotation for each point whether it is free or not. In
the special case that the graph is a polygonal curve () with m vertices, then FSDs(P, Q)
consists of (n — 1) X (m — 1) cells in the domain [1,n] x [1,m]. A monotone path from
(1,1) to (n,m) that lies entirely within the free space corresponds to a pair of monotone
reparameterizations (o, #) that witness F(P,Q) < 4. Such a reachable path can be computed
using dynamic programming in O(mn) time [5]. If one drops the monotonicity requirement
for the path, one obtains a witness for wF(P, Q) < 4.

The free space diagram FSD;(P,G) consists of one cell for each edge in P and each
edge in (. The free space in such a cell is convex. The boundary of a cell comprises four
line segments that each contain at most one free space interval. FSDs(P,G) is composed
of spines and strips. For any v € V and e € E we call SP(v) = [1,n] x v a spine and
ST(e) = [1,n] x e x [0,1] a strip. We denote the free space within spines and strips as
SPs(v) ={(s,v) | 1 <s<mn, ||P(s)— pu|| <6} and STs(e) = {(s,e(¥)) | 1<s<mn, 0<t <
1, ||P(s) — e(t)]] < é}. For (u,v) € E, both spines centered at the vertices of the edge are
subsets of the strip: SP(u),SP(v) C ST(u,v), and SP(u) is a subset of all strips with respect
to edges incident on u. See Figure 3 for an illustration.

3.2 Weak Fréchet Distance wFy, (P, §) in Polynomial Time

Let P = wFy(P,4) and let n’ = #P’ be the number of vertices in P’. Then P’ is a path
in G, and P’ visits an increasing subsequence of vertices in P (or V). From the fact that
wF(P,P") < ¢ we know that there is a path P = (0,6) from (1,1) to (rn,n') in FSD;(P, P')
that lies entirely within free space. And since FSDs(P, P') is a subset of FSDs(P,G), the
path P = (o, ) is also a path in FSDs(P,G). Here, o is a reparameterization of P, and 6 is
a reparameterization of P’, and P’ is simple. We call (s,d) in FSDs(P,G) weakly reachable if
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there exists a path P = (o0, 0) from (1,1) to (s,d) in FSDs(P, G) that lies in free space such
that @ is a reparameterization of a simple path from p; to some point on an edge in G. We
denote the number of vertices on this simple path by #P, and we call P weakly reachable.
We define the cost function ¢ : [1,n] x V = N as ¢(z,v) = minp #P, where the minimum
ranges over all weakly reachable paths to (z,v) in the free space diagram. If no such path
exists then ¢(z,v) = co. Note that all points in a free space interval (on the boundary of a
free space cell) have the same ¢-value.

» Observation 1. There is a weakly reachable path P in FSDs(P,G) from (1,1) to (n,n)
with #P = #wFy (P, §) if and only if ¢(n,n) = #wFyp (P, d).

Since ¢ is the length of a shortest path, it seems as if one could compute it by simply
using a breadth-first propagation. However, one has to be careful because a weakly reachable
path P is only allowed to backtrack along the path in G that it has already traversed. We
therefore carefully combine two breadth-first propagations to compute the ¢ values for all
I € T, where T is the set of all (non-empty) free space intervals on all spines SP(v) for all
v € V. For the primary breadth-first propagation, we initialize a queue @ by enqueuing the
interval I C SP4(1) that contains (1,1). Once an interval has been enqueued it is considered
visited, and it can never become unvisited again. Then we repeatedly extract the next interval
I from Q. Assume I C SPs(u). For each v from u + 1 to n we consider ST(u,v) and we
compute all unvisited intervals J C SPs(u) USP;s(v) that are reachable from I with a path in
STs(u,v). These J can be reached using one more vertex, therefore we set ¢(J) = ¢(I) + 1,
we insert J into @, and we store the predecessor 7(J) = I. For each J € SPs(u) we then
launch a secondary breadth-first traversal to propagate ¢(J) to all unvisited intervals J' €
that are reachable from J within the free space of FSDs(P,G(x(J))). Here, G(m(J)) denotes
the projection of the predecessor DAG rooted at w(J) onto G, i.e., each interval I in the
predecessor DAG is projected to u if I C SPs(u). This allows P to backtrack along the path in
G that it has already traversed, without increasing ¢. This secondary breadth-first traversal
uses a separate queue ', and sets ¢(J') = ¢(J) and w(J') = J. When this secondary
traversal is finished, @’ is prepended to @, and then the primary breadth-first propagation
continues. Once () is empty, i.e., all intervals have been visited, ¢(I) = #wFy (P, §), where
I C SPs(n) is the interval that contains (n,n). Backtracking a path P from n to 1 in the
predecessor DAG rooted at m(I), and projecting P onto G, yields the simplified curve P’.
This algorithm visits each interval in 7 once using nested breadth-first traversals. Since there
are O(n3) free space intervals this takes O(n3) time and space.

» Theorem 2. Given a polygonal curve P with n vertices and § > 0, an optimal solution to
the vertez-restricted GCS problem under the weak Fréchet distance can be computed in O(n?)
time and space.

4 Vertex-Restricted GCS under Directed Hausdorff from P’ to P

In this section we revisit the GCS problem for ﬁv (P, ) considered by Kreveld et al. [24].
We improve on the running time of their O(n?) time algorithm. First we thicken the input
curve P by width 6. This induces a polygon P with h = O(n?) holes. Now all we need is
to decide whether each shortcut (p;p;) for all 1 < ¢ < j < n lies entirely within P or not.
To this end, we preprocess P into a data structure such that for any straight line query
ray p originating from a point inside P one can efficiently compute the first point on the
boundary of P hit by p. We use the data structure proposed by [13] of size O(N) which
can be constructed in time O(Nv/h + h%2logh + N log N) and which answers queries in



M. van de Kerkhof, |. Kostitsyna, M. Loffler, M. Mirzanezhad, and C. Wenk

split gadget pinhole gadget

I |%
!
fi
/! s,
!
!
!

Figure 5 Pinhole gadgets = for F¢ (P, §)
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Figure 4 Sketch of the template curve.

O(vhlog N) time. We have ©(n?) shortcuts (p;p;) to process and need to examine whether
each shortcut lies inside P or not. If a shortcut lies inside P then we include it in the edge
set of the shortcut graph proposed by Imai and Iri [20]. Otherwise we eliminate the shortcut.
We originate a ray at p; and compute the first point = on the boundary of P hit by the ray
in O(vhlog N) time. If |[p; — || > ||pi — p;| then the shortcut lies inside P, otherwise it
does not. Once the edge set of the shortcut graph is constructed, we compute the shortest
path in it. As a result we have the following theorem:

» Theorem 3. Given a polygonal curve P with n vertices and 6 > 0, an optimal solution to
the curve-restricted GCS problem for ﬁv(P, §) can be computed in O(n3logn) time using
O(n?) space.

5 NP-Hardness of Several Curve-Restricted Variants

In this section we construct a template that we use to prove NP-hardness of the curve-
restricted GCS problems for most of the distance measures discussed in this paper. The
template takes inspiration from the NP-hardness proofs of minimum-link path problems [23].
We believe that this template can be adapted to show hardness of other similar problems.

The template reduces from the SUBSET SUM problem. Given a set of m integers
A={ay,as,...,a;n} and an integer M, we will construct an instance of the curve-restricted
GCS problem such that there exists a subset B C A with the total sum of its integers equal
to M if and only if there exists a simplified polygonal curve with at most 2m + 1 vertices.

The input curve P we construct has a zig-zag pattern. It has m split gadgets at every
other bend of the pattern, m + 1 enumeration gadgets at the other bends, and 2m pinhole
gadgets halfway through each zig-zag segment (refer to Figure 4).

The construction forces any optimal simplification P’ to follow a zig-zag pattern with a
vertex on each split and enumeration gadget and no other vertices. The pinhole gadget is
named as such because any segment of P’ that goes through it is forced to pass through a
specific point, called the pinhole. This limits the placements of P"’s vertices. The choice of
where to place the vertex on each split gadget then corresponds to the choice of including
or excluding a given integer in the subset B and the z-coordinate of the vertex on each
enumeration gadget encodes the sum of integers in B up to that point. We ensure that the
endpoint of P is reachable with at most 2m + 1 vertices only if B sums to exactly M.

The split and enumeration gadgets always have the same shape, but the shape of the
pinhole gadget depends on the distance measure. Pinhole gadgets must be chosen so that
the following properties hold:
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1. Any segment of P’ starting before a pinhole gadget and ending after the pinhole gadget
must pass through the pinhole gadget’s pinhole.

2. It must be impossible to have a segment of P’ traverse multiple pinhole gadgets at once.

3. Any segment of P’ where the starting vertex u is on a split or enumeration gadget, the
segment goes through a pinhole, and the ending vertex v is on the next enumeration or
split gadget, must have distance < § to P[u,v].

4. P must be polynomial in size. Specifically, only a polynomial number of polyline segments
can be used and all vertices must have rational coordinates.

In Figure 5 we show pinhole gadgets for Fréchet distance and directed Hausdorff distance

directed from P’ to P. The gadget for Fréchet distance also works for weak Fréchet distance,

undirected Hausdorff distance and directed Hausdorff distance in the other direction. For

these latter three distance measures, we note that the pinhole gadget here does not force P’

to go through the pinhole but to pass close enough by it instead. This results in there being

reachable intervals on the split and enumeration gadgets rather than reachable points. This
leads to an expanded version of the first property:

1. The endpoint of any segment of P’ starting before a pinhole gadget and ending after the
pinhole gadget must have distance less than 9= to the endpoint of the segment with
the same starting point that passes exactly through the pinhole and ends on the same
segment of P.

If this property holds (as it does for the gadget in Figure 5 (left) under weak Fréchet and

Hausdorff distance) the reachable intervals on the gadgets are so small they never overlap, so

the reduction still holds. This leads to the following theorems:

» Theorem 4. Given a curve distance measure, if there erists a pinhole gadget that can be
inserted in the described template such that the listed properties hold, the curve-restricted
GCS problem for that distance measure is NP-hard.

» Theorem 5. The GCS problem for He(P,5), He(P,8), He(P,6), Fe(P,8),wFc(P,8) is
NP-hard.

Theorem 4 implies this template may be used to prove curve-restricted simplification under
other distance measures NP-hard as well in the future. Since the template reduces from
SUBSET SUM it proves the above problems weakly to be NP-hard. For undirected Hausdorff
distance, we also prove strong NP-hardness in Corollary 14.

6 Curve-Restricted GCS under Discrete Fréchet Distance

Next we present an O(n®)-time algorithm for the GCS problem for dF¢ (P, §). Observe that,
given an input curve P, there is only a discrete set of candidate points we need to consider
for vertices of the output curve. Let A be the arrangement of n disks of radius § centered on
the vertices of P, and let C = {c1, ..., cm), with m € O(n?), be the sequence of intersections
between P and A, in order along P. Observe that under the discrete Fréchet distance, if there
exists a curve-restricted simplification P’ = (g1,..., qx) of P, then there exists a subsequence
of C of length k which is a simplification of P.

Although the approach of Bereg et al. [7] to compute the minimal vertex-restricted
simplification of A does not apply in our case, we can design a dynamic programming
algorithm in a similar fashion. Define K (7, ) to be the minimum value k such that there
exists a subsequence (cy,...,¢;) of length k that has discrete Fréchet distance at most &
to the sequence (p1,...,p;). We will design a dynamic program to calculate all nm values
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0

Figure 6 The time-stamped traversals made by the man m and the dog d. The red lines indicate
the dog’s jumps.

K(1,7). Specifically, if p;_1 and c¢; are within distance d, then

K(i,7) = min (K(z —1,5), min (K(i—1,5")+ 1)) ,
155/ <j
and K(i,j) = oo otherwise. This definition immediately gives an O(n*) algorithm to
compute K (n,m). We can improve on this by maintaining a second table with prefix minima

M(,j) = ) g}}ré ; K(i,7), which can be calculated in constant time per table entry and overall

saves a linear factor. The full proof of the following theorem can be found in [22].

» Theorem 6. Given a polygonal curve P with n vertices and 6 > 0, an optimal solution to
the dFc(P,8) can be computed in O(n3) time and O(n?) space.

7 GCS Fréchet Distance in One Dimension

In this section we provide a greedy algorithm for the curve-restricted GCS problem in R!
under the Fréchet distance. We describe our algorithm using the man-dog terminology that is
often used in the literature on Fréchet distance: Initially a man and his dog start at p;. The
man walks along P until his distance to the dog exceeds 6. Now if there is a turn between
the man and the dog, the dog marks its current position and jumps over the turn and stays
at distance exactly 6 away from the man. If there is no turn in between, the dog just follows

the man at distance exactly ¢ and stops when the man arrives at the next turn or the end.

Once they both end the walk at p, we report the positions marked by the dog as P’. See
Figure 6. More details are given in [22].

» Theorem 7. Given a polygonal curve P in R' with n vertices and § > 0, an optimal
solution to the curve-restricted GCS problem under the Fréchet distance can be computed in
linear time.

8 Approximation of Non-Restricted GCS under Fréchet Distance

In this section we present an approximation algorithm for the non-restricted GCS problem
that discretizes the feasible space for the vertices of the simplified curve. The idea is to
compute a polynomial number of shortcuts in the discretized space, and (approximately)
validate for each shortcut whether it is within Fréchet distance § to a subcurve of P. For every
subcurve of P we incrementally add the valid shortcuts to the edge set of a graph G until all
the shortcuts have been processed. Once G is built, we compute the shortest path in G and
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Algorithm 1 Non-restricted GCS problem for the Fréchet distance.

1 forall i € {1,--- ,n} do Compute C;(6, (¢6/(4V/d)) and G; ;

2 E+ 0, Ve, Ci+pUC, Cp+ ppUCy;

3 forall C; and C;, with1 <i<j<ndo

4 forall ¢; € C; and c3 € C; do

5 L if VaL1DATE({c102), P[Z, j]) = true then F < F U {cica), V « V U{c1,e2};
6 return the shortest path between p; and p, in G = (V, E).

return P’. To speed up the validation for each shortcut, we use a data structure to decide
whether the Fréchet distance between a shortcut and a subcurve of P is at most 4. For a better
understanding of our algorithm, we introduce some notation. Consider a ball B(o, ) of radius
r > 0 centered at o € R?. Let Prt(R%,1) be a partitioning of R? into a set of disjoint cells
(hypercubes) of side length [ that is induced by axis parallel hyperplanes placed consecutively
at distance I. For any 1 < i < n we call C; = Ci(r,1) = {c € Prt(R%,1) |en B(p;,r) # 0} a
discretization of B(p;,r). Let G; be the set of corners of all cells in C;.

As we can see, Algorithm 1 is a straightforward computation of valid shortcuts and shortest
path in the graph G. The VaLIDATE procedure takes a shortcut {c;cy) and a subcurve PJi, j]
as arguments and decides (approximately) if F({c;cs), P[i,j]) < §. In particular, it returns
true if F({c1ea), Pli, j]) < (1 +¢/2)é and false if F({cica), P[i,j]) > (1 + €)d. We implement
the VALIDATE procedure (line 5) using the data structure in [17]. Let #P’ denote the number
of vertices of the polygonal curve P’. The following lemmas imply Theorem 11. More details
and proofs are provided in [22].

» Lemma 8. The shortest path returned by Algorithm 1 exists and F(P, P;|g) < (1+¢)é.

::Ig
» Lemma 9. Let P’ = Fyr(P,6) and let P, be the curve returned by Algorithm 1. Then
4P < A#P —1).

» Lemma 10. Algorithm 1 runs in O (J-:_dn log n(log?(1/e)logn+e~(#*nloglog n)) time
and uses O((e~%log®(1/e))n) space.

» Theorem 11. Let P be a polygonal curve with n vertices in R%, § > 0, and P’ = Fpr(P,4).
For any 0 < € < 1, one can compute in O*(n?lognloglogn) time and O*(n) space a non-
restricted simplification P* of P such that #P* < 2(#P' —1) and F(P, P*) < (1+¢)4. Here,
O* hides factors polynomial in 1/¢.

» Corollary 12. Theorem 11 also holds for the non-restricted GCS under the weak Fréchet
distance.

9 Strong NP-Hardness for Non-Restricted GCS under Undirected
Hausdorff Distance

Van Kreveld et al. [24] showed that the vertex-restricted GCS problem is NP-hard for
undirected Hausdorff distance by a reduction from Hamiltonian cycle in segment intersection
graphs. Their proof can be extended to the curve-restricted and non-restricted case; however,
because of the increased freedom in vertex placement we must take care when exact embedding
the segment graph: e.g., segments that intersect at arbitrarily small angles could potentially
cause coordinates with unbounded bit complexity. For this reason, we here reduce from a



M. van de Kerkhof, |. Kostitsyna, M. Loffler, M. Mirzanezhad, and C. Wenk

more restricted class of graphs: orthogonal segment intersections graphs. Czyzowicz et al. [15]
show that Hamiltonian cycle remains NP-complete in 2-connected cubic bipartite planar
graphs, and Akiyama et al. [3] prove that every bipartite planar graph has a representation
as an intersection graph of orthogonal line segments. Hence, Hamiltonian cycle in orthogonal
segment intersection graphs is NP-complete.

We sketch the adapted proof; the full proof can be found in [22]. Let S be a set of n
horizontal or vertical line segments in the plane with integer-coordinate endpoints such that
(JS forms one connected component. Furthermore, assume that all intersections of segments
in S are proper, that is no endpoints of segments in S coincide. Let the input polygonal
curve P consist of the subsegments of S, and let P cover all the segments of S (possibly
multiple times). That is, the vertices of P are chosen from the set of endpoints and the
intersection points of segments in .S, and the union of all the links of P equals to the union of
the segments in S. Set § = %, and let D C R? be the Minkowski sum of S and a closed ball
of radius 4. A simplification P’ with Hausdorff distance at most § to P must visit the J-disks
around all endpoints of S, while staying inside ). A Hamiltonian path in the intersection
graph of S corresponds to a simplification P’ with 3n — 1 vertices. Indeed, since no two
d-disks around the endpoints of the segments in S are visible to each other within D (unless
they are endpoints of the same segment), an optimal solution visits the two endpoints of each
segment consecutively and has one extra bend to switch to the next segment. This results in
three links of P’ per segment, except for the first and the last segment to be covered, for
which only two links each are needed.

» Theorem 13. The non-restricted GCS problem under undirected Hausdorff distance is
strongly NP-hard.

Since a solution to the reduction never benefits from placing vertices not on P, we also
immediately obtain an improvement over Theorem 5 for the case of He (P, d).

» Corollary 14. The curve-restricted GCS problem under undirected Hausdorff distance is
strongly NP-hard.
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