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Abstract—This paper presents iDO, a compiler-directed ap-
proach to failure atomicity with nonvolatile memory. Unlike most
prior work, which instruments each store of persistent data for
redo or undo logging, the iDO compiler identifies idempotent in-
struction sequences, whose re-execution is guaranteed to be side-
effect-free, thereby eliminating the need to log every persistent
store. Using an extension of prior work on JUSTDO logging, the
compiler then arranges, during recovery from failure, to back up
each thread to the beginning of the current idempotent region and
re-execute to the end of the current failure-atomic section. This
extension transforms JUSTDO logging from a technique of value
only on hypothetical future machines with nonvolatile caches into
a technique that also significantly outperforms state-of-the art
lock-based persistence mechanisms on current hardware during
normal execution, while preserving very fast recovery times.

I. INTRODUCTION

With the emergence of fast, byte-addressable nonvolatile

memory such as commercial 3D XPoint, ReRAM, and STT-

MRAM, we can now conceive of systems in which main

memory, accessed with ordinary loads and stores, is simply

“always available,” and need not be flushed to the file system

to survive a crash. The obvious use case of such a technology,

and the one we focus on here, is to allow programmers to store

heap objects persistently in memory, bypassing the expensive

serialization of those objects onto traditional storage devices.

This use case is widely applicable: we envision applications

using persistent heap objects as an alternative to disk-resident

local databases or as a way (e.g., on energy-harvesting devices

with frequent crashes) to enable fast restarts.

Unfortunately, from the perspective of crash recovery, non-

volatile main memory is compromised by the fact that tradi-

tional caches can write data back to memory in arbitrary order,

leading to inconsistent values in the wake of a crash [1], [2].

A failure in the middle of a linked-list insertion, for example,

may lead to a post-crash dangling reference if the next
pointer of the predecessor node is written back to memory

before the inserted node itself. Moreover even in the absence

of reordering, failure during an operation that is meant to be

atomic can leave the contents of memory in an inconsistent

intermediate state, rendering it unusable.

In order to avoid such errors and ensure post-crash con-

sistency of persistent data, researchers have developed failure-

atomicity systems that allow programmers to delineate failure-

atomic operations on the persistent data—typically in the

form of transactions [2]–[6] or failure-atomic sections (FASEs)

protected by outermost locks [7]–[9]. Given knowledge of

where operations start and end, the failure-atomicity system

can ensure, via logging or some other approach, that all oper-

ations within the code region happen atomically with respect

to failure and maintain the consistency of the persistent data.

Transactions have potential advantages with respect to ease

of programming and (potentially) performance during normal

operation (at least in comparison to coarse-grain locking),

but can be difficult to retrofit into existing code, due to

idioms like hand-over-hand locking and limitations on the

use of condition synchronization or irreversible operations.

Transactions also tend to perform more poorly than well tuned

fine-grain locking. Our own work is based on locking.

The principal challenge of FASE-based recovery, compared

to transactional recovery, stems from the lack of isolation

in critical sections. In a lock-based program, FASEs that

involve more than one lock, even when data-race free, may

be able to see each other’s changes while both are still in

progress; in fact, correct execution may depend on them seeing

each other’s changes (e.g., for condition synchronization).

UNDO logging, which makes updates “in place,” avoids hiding

the FASE’s updates, but must address the possibility that

a completed FASE will depend on values written in some

other FASE that was interrupted by a crash. Systems like

Atlas [7], which incorporate UNDO logging, must therefore

track cross-FASE dependences and be prepared to roll back

even completed FASEs during post-crash recovery. A similar

problem arises with REDO logging for FASEs, as in the

NVThreads system [8]: if an incomplete FASE releases a lock,

it must share its locally buffered changes with any thread

that subsequently acquires the lock; it must also track the

dependence. If the earlier FASE fails, the dependent must fail

as well. This implies that when a thread reaches the end of a

dependent FASE during normal execution, it must wait until

the earlier FASE has completed before replaying its own log

and proceeding.

To simplify the management of logs for FASE-based per-

sistence, and, in particular, to avoid the need for dependence
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tracking, Izraelevitz et al. introduced the notion of JUSTDO

logging [9]. Rather than rolling back a FASE during recovery

(as one would with UNDO logging) or replaying a FASE’s

writes (as one would with REDO logging), the JUSTDO system

logs enough information to resume a FASE during recovery

and execute it to completion (“recovery via resumption”).

Immediately prior to each store instruction in a FASE, the

JUSTDO system logs (in persistent memory) the program

counter, the to-be-updated address, and the value to be written.

During recovery, the system uses the code of the crashed

program to complete the remainder of each interrupted FASE,

beginning with the most recent log entry. Future program runs

can then be assured that the recovered data is consistent, much

as conventional programs can be ensured of the integrity of

data in a journaled file system.

The problem with JUSTDO logging is its requirement that

the log be written and made persistent before the related

store—a requirement that is very expensive to fulfill on

conventional machines with volatile caches. Current ISAs

provide limited support for ordering write-back from cache

to persistent memory, and these limitations seem likely to

continue into the foreseeable future [10]. To ensure that writes

reach memory in a particular order, the program must typically

employ a sequence of instructions referred to as a persist fence.

On an Intel x86, the sequence is 〈sfence, clwb, clwb,
..., sfence〉. This sequence initiates and waits for the

write-back of a set of cache lines, ensuring that they will

be persistent before any future writes. Unfortunately, the wait

incurs the cost of round-trip communication with the memory

controller.

Given the cost of persistence ordering, JUSTDO assumes—

unlike Atlas and NVThreads—that it will run on a machine

in which caches are persistent, due either to implementation

in STT-MRAM or to capacitor-driven flushing in the event of

power failure. On a more conventional machine with persist

fences, JUSTDO is 2–3× slower than Atlas [8], [9].

JUSTDO logging also imposes a restricted programming

model within FASEs, with no use of volatile data and no

caching of values in registers [8], [9]. These restrictions

would seem to preclude the use of SIMD instructions, widely

regarded as essential to data-intensive applications [11], [12]

and in-memory databases [13], [14].

The key contribution of our work is to demonstrate that

recovery via resumption can in fact be made efficient on

conventional machines, with volatile caches and expensive

persist fences. The key is to arrange for each log operation

(and in particular each persist fence) to cover multiple store

instructions of the original application. We achieve this cover-

age via compiler-based identification of idempotent instruction

sequences. Because an idempotent region of code can safely

be re-executed an arbitrary number of times without changing

its output, the recovery procedure in the wake of a crash

can resume execution at the beginning of the current region,

eliminating the need to log each individual store instruction

of the original program.

This paper presents iDO, a practical compiler-directed

failure-atomicity system. Like JUSTDO logging, iDO sup-

ports fine-grained concurrency through lock-based FASEs, and

avoids the need to track dependences by executing forward

to the end of each FASE during post-crash recovery. Unlike

JUSTDO, iDO allows the use of registers in FASEs, and per-

sists its stores at coarser granularity. While these advantages

should allow iDO to outperform prior systems on hypothetical

machines with nonvolatile caches, experiments confirm that

it can also outperform them—by substantial margins—on

conventional machines with volatile caches.
Instead of logging information at every store instruction,

iDO logs (and persists) a slightly larger amount of program

state (registers, live stack variables, and the program counter)

at the beginning of every idempotent code region within the

overall FASE. In practice, idempotent sequences tend to be sig-

nificantly longer than the span between consecutive stores—

tens of instructions in our benchmarks; hundreds or even

thousands of instructions in larger applications [15]. As iDO is

implemented in the LLVM tool chain [16], our implementation

is also able to implement a variety of important optimizations,

logging significantly less information—and packing it into

fewer cache lines—than one might naively expect. We also

introduce a new implementation for FASE-boundary locks

that requires only a single memory fence, rather than the two

employed in JUSTDO.
Our principal contributions can be summarized as follows:
• We introduce iDO logging, a lightweight strategy that

leverages idempotence to ensure both the atomicity of

FASEs and the consistency of persistent memory in

the wake of a system crash. Rather than log individual

memory stores, iDO logs a lightweight summary of live

program state at the beginning of each idempotent region.

• We compare the performance of iDO to that of several

existing systems, demonstrating up to an order of magni-

tude improvement over Atlas in run-time speed, and better

scaling than transactional systems like Mnemosyne [2].

• We verify that recovery time in iDO is also very fast—

one to two orders of magnitude faster than Atlas in long-

running programs.
Our paper is organized as follows. Section II gives ad-

ditional background on failure-atomicity systems and idem-

potence. Section III discusses the high-level design of iDO

logging; Section IV delves into system details. Performance

results are presented in Section V. We discuss related work in

Section VI and conclude in Section VII.

II. BACKGROUND

A. System Model
iDO assumes a near-term hybrid architecture (Fig. 1), in

which some of main memory has been replaced with non-

volatile memory, but the rest of main memory, the caches,

and the processor registers remain volatile. Data in the core

and caches are therefore transient and will be lost on system

failure.1 Portions of main memory are likely to continue to be

1In general, we refer to physical memory as volatile or nonvolatile, and to
program memory (data) as transient or persistent.
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Fig. 1: Hybrid architecture model in which a portion of

memory is nonvolatile, but the core, caches, and DRAM are

volatile.

(a) FASE with nested locks:
mutex _lock (lock 1)
    ...
    mutex _lock (lock 2)
    ...
    mutex _unlock (lock 2)
    ...
mutex _unlock (lock 1)

(b) FASE with cross locks:
mutex _lock (lock 1)
    ...
mutex _lock (lock 2)
    …
mutex _unlock (lock 1)
    ...
mutex _unlock (lock 2)

Fig. 2: FASEs with different interleaved lock patterns.

implemented with DRAM in the short term, due to density,

cost, and/or endurance issues with some NVM technologies.

As in other recent work, we assume that read and write

latencies of NVM are similar to those of DRAM [7], [8] and

that writes are atomic at 8-byte granularity [17]. Our failure

model encompasses (only) fail-stop errors that arise outside

the running application. These include kernel panics, power

outages, and various kinds of hardware failure.

B. Programming Model

As noted in Section I, iDO employs a programming model

based on lock-delineated failure-atomic sections (FASEs), pri-

marily because of their ubiquity in existing code. A FASE is

defined as a maximal-length region of code beginning with a

lock (mutex) acquire operation and ending with a lock release,

in which at least one lock is always held [7]–[9], [18]. Note

that the outermost lock and unlock pairs do not necessarily

need to be the same. Figure 2 shows examples of FASEs

with two possible interleaved lock patterns. The left-hand side

shows nested locks; the right has a cross-locking (hand-over-

hand locking) pattern.

For each FASE, iDO provides a variant of the classic ACID

transaction properties [19]:

Atomicity means that updates to persistent data performed in

a FASE complete in an “all or nothing” manner. A FASE

that is interrupted by a crash is completed as part of the

recovery procedure.

Consistency is typically defined by program semantics. We

assume that every FASE transitions memory from a state

in which all program invariants hold to another in which

they still hold. By completing an interrupted FASE during

recovery, we preserve consistency even in the presence of

failures by pushing persistent data to a state in which no

locks are held.

Isolation requires that a transaction never see other threads’

changes during its execution and, likewise, that its own

changes be invisible until commit time. In a FASE-based

programming model, isolation is a consequence of mutual

exclusion, but only for properly-nested FASEs (Fig. 2(a))

with the same outermost locks.

Durability (persistence) means that the results of FASEs

survive crashes. More specifically, if the results of one

FASE are visible to a second, and the second survives a

crash, the first survives as well.

For single-threaded programs or code that accesses pri-

vatized variables, iDO also supports programmer-delineated

durable code regions. These code regions are defined by

the programmer to be failure atomic but lack the isolation

guarantees of lock-delineated FASEs. From here on, we use

the term “FASE” to denote both lock- and programmer-

delineated failure atomic code regions.

FASE-based failure-atomicity systems based on UNDO and

REDO logging typically prohibit thread communication out-

side of critical sections [7], [8]. This prohibition prevents

a happens-before dependence between critical sections from

being created without the system’s knowledge. An advan-

tage we gain from recovery via resumption is that thread

communication outside of critical sections can occur without

compromising correctness.

Despite its strengths, recovery via resumption has some

pitfalls. In order for recovery to succeed, the failure atomic

code region must be allowed to be run to completion. For this

reason, resumption is infeasible for speculative transactions,

which must be able to abort and roll back all updates made so

far when a conflict is detected late in their execution (possibly

during recovery). Consequently, iDO logging is vulnerable to

software bugs within FASEs—on recovery, reexecuting the

buggy code will not restore consistency.

In this work, we assume a programming model that ex-

pects all writes to persistent locations to occur within lock-

or programmer-delineated FASEs. This model ensures that

program state after a crash corresponds to a cut across the

store order aligned with either a lock release or the end of a

durable code region in every thread. Like other FASE-based

systems [7]–[9], we disallow not only conventional data races

within FASEs but also races on atomic variables, to avoid the

possibility that the order in which the race is resolved may be

inverted at recovery time. Provided they do not cause a race,

persistent reads are allowed outside FASEs.

C. Idempotence

An idempotent region is a single-entry, (possibly) multiple-

exit subgraph of the control flow graph of the program. In

keeping with standard terminology, we use the term inputs to

refer to variables that are live-in to a region and used there.

That is, an input has a definition that reaches the region entry

and a use of that definition within the region. Similarly, we

use the term outputs to refer to variables that are updated

in a region and live-out at the end of the region. That is,

an output of a region is a variable written in the region that
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serves as an input to some following region. We also use the

term antidependence to refer to a write-after-read dependence,

in which a variable is used and subsequently overwritten. A

region is idempotent if and only if it would generate the same

output if control were to jump back to the region entry from

any execution point within the region (assuming isolation from

other threads). To enable such a jump-back, the region inputs

must not be overwritten—i.e., there must be no antidependence

on the inputs—during the execution of the region.

Idempotent regions have been used for a variety of purposes

in the literature, including recovery from exceptions, failed

speculation, and various kinds of hardware faults [15], [20]–

[22]. For any of these purposes—and for iDO—inputs must

be preserved to enable re-execution.

III. IDO FAILURE ATOMICITY SYSTEM

Unlike UNDO or REDO logging, iDO logging provides fail-

ure atomicity via resumption and requires no log for individual

memory stores. Once a thread enters a FASE, iDO must ensure

that it completes the FASE, even in the presence of failures.

At the beginning of each idempotent code region in the body

of a FASE, all inputs to the region are known to have been

logged in persistent memory. Since the region is idempotent,

the thread never overwrites the region’s inputs before the next

log event. Consequently, if a crash interrupts the execution

of the idempotent region, iDO can re-execute the idempotent

region from the beginning using the persistent inputs.

More precisely, at the end of each (compiler-delineated)

idempotent region, iDO logs the output data of the region—the

data that were modified by the region and that serve as input

to some following region. In data flow terms, we define the

output of region r as the live-out data defined in the region—

the values that are written and downward-exposed [23]:

OutputSetr = Defr
⋂

LiveOutr (1)

where Defr is the set of values defined in r and LiveOutr is

the set of live-out values of r. The iDO compiler persists the

values in OutputSetr at the end of region r.

Successful recovery requires additional care. In particular,

if we re-execute a FASE using a recovery thread, this thread

must hold the same locks as the original crashed thread.

Tracking this information is the responsibility of the thread’s

local lock array (Sec. III-A), which is updated at every lock

acquisition and release.

The following subsections consider the structure of the

iDO log, the implementation of FASE-boundary locks, and

the recovery procedure. Additional compiler details—and in

particular, the steps required to identify FASEs and transform

the FASEs into a series of idempotent regions—are deferred

to Section IV.

A. The iDO Log

For each thread, the iDO runtime creates a structure called

the iDO_Log. We manage the per-thread iDO logs using a

global linked list whose iDO_head is placed in a persistent

Fig. 3: iDO log structure and management: the number of iDO

logs matches the number of threads created.

memory location to be found by the recovery procedure

(Sec. IV-C). Log structures are added to the list at thread

creation. As shown in Figure 3, each iDO_log structure

comprises four key fields. The recovery_pc field points

to the initial instruction of the current idempotent region. The

intRF and floatRF fields hold live-out register values; each

register has a fixed location in its array. The lock_array
field holds indirect lock addresses for the mutexes owned by

the thread—more on this in Section III-B.

Here then is the series of steps required, within a FASE, to

complete the execution of idempotent region r and begin the

execution of region s:

1) Issue write-back instructions for all output registers of r
(saving them to intRF and floatRF) and for all output

values in the stack. Together, these comprise OutputSetr.

Note that live-out values that were not written in r are

already sure to have persisted; no additional action is

required for them.

2) Update recovery_pc to point to the beginning of s.

Once this step is finished, s can be re-executed to recover

from failures that occur during its execution.

3) Execute the code of s, generating the values in

OutputSets. These values will be persisted at the end of

s—i.e., at the boundary between s and its own successor

t, as described in step 1. Note that by definition an

idempotent region will never overwrite its own input.

iDO continues in this fashion until the end of the FASE. To

enforce the order of these steps, the iDO compiler inserts a

single persist fence between the first step and the second, and

again between the second and the third. After completing the

steps, a thread moves on to the next idempotent region. Output

registers are written to intRF and floatRF immediately

after their final modification in the current region. Writes-back

of output values in the stack are likewise initiated immediately

after the final write of the current region, though we do not

wait for completion until the fence between steps 1 and 2.

In the absence of precise pointer analysis, we cannot always

identify the final writes to variables accessed via pointers;

these are therefore tracked at run time and then written back

at the end of each idempotent region.

Recovery in the wake of a crash is described in Sec-

tion III-C.

261



B. Indirect Locking

Our discussion thus far has talked mostly about idempotent

regions. To obtain failure atomicity for entire FASEs, we must

introduce lock recovery. In particular, in the wake of a crash,

we must reassign locks that were held at the time of the crash

to the correct recovery threads, ensure that those locks are held

before re-executing the interrupted FASEs, and guarantee that

no other locks are accidentally left locked from the previous

program execution (else deadlock might occur). Previous

approaches [3], [9] persist each mutex. Then, during recovery,

they unlock each held mutex to release it from a failed thread

before assigning it to a recovery thread. In JUSTDO logging,

this task requires updating a lock intention log and a lock
ownership log before and after the lock operation. Each lock

or unlock operation then entails two persist fence sequences—

a significant expense.

iDO introduces a novel approach that avoids the need to

make mutexes persistent. The key insight is that all mutexes

must be unlocked after a system failure, so their values are

not really needed. We can therefore minimize persistence

overhead by introducing an indirect lock holder for each lock.

The lock holder resides in persistent memory and holds the

(immutable) address of the (transient) lock. During normal

execution, immediately after acquiring a lock, a thread records

the address of the lock holder in one of the lock_array
entries of the iDO_Log. It also sets a bit in an initial

index slot in the array to indicate which array slots are live.

Immediately before releasing a lock, the thread clears both the

lock_array entry and the bit. Finally, the iDO compiler

inserts an idempotent region boundary immediately after each

lock acquire and before each lock release.

Upon system failure, each transient mutex will be lost. The

recovery procedure, however, will allocate a new transient lock

for every indirect lock holder, and arrange for each recovery

thread to acquire the (new) locks identified by lock holders

in its lock_array. An interesting side effect of this scheme

(also present in JUSTDO logging), is that if one thread acquires

a lock and, before recording the indirect lock holder, the

system crashes, another thread may steal the lock in recovery!

This effect turns out to be harmless: the region boundaries after

lock acquire ensure that the robbed thread failed to execute any

instructions under the lock.

C. iDO Recovery

Building on the preceding subsections, we can now sum-

marize the entire recovery procedure:

1) On process restart, iDO detects the crash and retrieves

the iDO_Log linked list.

2) iDO initializes and creates a recovery thread for each

entry in the log list.

3) Each recovery thread reacquires the locks in its

lock_array and executes a barrier with respect to

other threads.

4) Each recovery thread restores its registers (including

the stack pointer) from its iDO log, and jumps to the

beginning of its interrupted idempotent region.

5) Each thread executes to the end of its current FASE, at

which point no thread holds a lock, recovery is complete,

and the recovery process can terminate.

It should be emphasized that, as with all failure atomicity

systems, iDO logging does not implement full checkpointing

of an executing program, nor does it provide a means of

restarting execution or of continuing beyond the end of in-

terrupted FASEs. Once the crashed program’s persistent data

is consistent, further recovery (if any) is fully application

specific.

IV. IMPLEMENTATION DETAILS

A. Compiler Implementation

Figure 4 shows an overview of the iDO compiler, which

is built on top of LLVM. It takes the generated LLVM-IR

from the front end as input. It then performs three phases of

instrumentation and generates the executable. We discuss the

three phases in the paragraphs below.

a) FASE Inference and Lock Ownership Preservation:
In its first instrumentation phase, the iDO compiler infers

FASE boundaries in lock-based code, and then instruments

lock and unlock operations with iDO library calls, on the

assumption that each FASE is confined to a single function.

As in the technical specification for transactions in C++ [24],

one might prefer in a production-quality system to have

language extensions with which to mark FASE boundaries in

the program source, and to identify functions and function

pointers that might be called from within a FASE.

b) Idempotent Region Formation: In its second instru-

mentation phase, the iDO compiler identifies idempotent re-

gions. Previous idempotence-based recovery schemes have

developed a simple region partition algorithm to guarantee the

absence of memory antidependences, making the preservation

of live-in variables the only run-time cost. We use the specific

scheme developed by De Kruijf et al. [15]. The iDO compiler

first computes a set of cutting points for antidependent pairs

of memory accesses using LLVM’s basicAA alias analysis,

then applies a hitting set algorithm to select the best cutting

strategy. We report region characteristics in Section V-C.

c) Preserving Inputs and Persisting Outputs: In its third

and final instrumentation phase, the iDO compiler performs

two key analyses. First, it guarantees that the inputs to each

idempotent region are not overwritten during the region’s

execution. For registers, we artificially extend the live interval

of each live-in register to the end of the region [25], thereby

preventing the register allocator from assigning other live

intervals in the region to the same register and reintroducing

an antidependence. For stack variables, we perform a similar

live interval extension, preventing them from being shared in

LLVM’s stack coloring phase [16].

In a second, related analysis, the iDO compiler ensures that

outputs of the current idempotent region have persisted at the

end of the region. As noted in Section III-A, registers that

are live-out but were not written in the region (i.e., are being

passed through from a previous region) are already known

to have persisted. If a register is written multiple times, only
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FASE Inference & 
Lock Ownership

Preserva on

Idempotent 
Region Forma on

Register 
Alloca on

LLVM-IR Live-In Variables 
Preserva on

Other Code 
Genera on 

Phases

Executable

Fig. 4: iDO compiler overview. Starting with LLVM IR from dragonegg/clang, the compiler performs three iDO phases

(indicated in bold) and then generates an executable.

the final value is logged. The log entries are then persisted

(written back) at the end of the idempotent region. Similarly,

writes-back of output values in the stack are initiated at the

final write of the idempotent region. Writes-back of variables

accessed via pointers (e.g., in the heap) are tracked at run time

and then written back at the end of the region.

B. Persist Coalescing

As a further optimization, the iDO compiler takes advantage

of the fact that register values are small, and do not need to

persist in any particular order. A system like Atlas, which

logs 32 bytes of information for every store, can persist at

most two contiguous log entries in a single 64-byte cache line

write-back. In iDO, as many as eight register values can be

persisted with a single write-back (clflush). This persist
coalescing [1] is always safe in iDO, even though registers

are grouped by name rather than by order of update at run

time, because the registers logged in the current region are

used only in later regions. If, for example, a running program

updates registers A, C, and B, in that order, it is still safe to

persist the logged values of A and B together, followed by C.

C. Persistent Region Support

iDO requires mechanisms to enable processes to allocate

regions of persistent memory and make those regions visible

to the program. We leverage Atlas’s implementation for this

purpose. Atlas’s region manager represents persistent memory

regions as files, which processes incorporate into their address

space via mmap. The mapped regions then support memory

allocation methods such as nv_malloc and nv_calloc.

V. EVALUATION

For our evaluation of iDO logging we compared against

several alternative failure atomicity runtimes. We employ real-

world applications to explore iDO logging’s performance

impact during normal (crash-free) execution. We also employ

microbenchmarks to measure scalability. For all our bench-

marks, we report statistics on the idempotent regions as a

guide to understanding performance. Separately, we measure

recovery time. Finally, we assess the sensitivity of our results

to changes in NVM latency.

Where applicable, we compare against the following failure

atomic runtimes, which guarantee crash consistency on a

persistent memory machine.

Atlas [7] is an UNDO-logging system that uses locks for

synchronization. Like iDO logging, Atlas equates failure-

atomic regions with outermost critical sections. The use

of UNDO logging allows Atlas to delay a FASE’s writes-

back (though not those of its UNDO log) until the end

of the FASE. At the same time, the lack of isolation,

combined with the rollback-based recovery model, forces

Atlas to track dependences across critical sections and

to be prepared to roll back even a completed FASE if

it depends on some other FASE that failed to complete

before a crash.

Mnemosyne [2] is a REDO-based transactional system inte-

grated into the language-level transactions of C and C++.

We used the updated version included in the recently pub-

lished WHISPER benchmark suite [26], but fixed a scal-

ing bug accidentally introduced in that version. Specifi-

cally, we removed the call to __pm_trace_print at

line 139 of pm_instr.h.

JUSTDO [9] is a recovery-via-resumption system, originally

designed for machines with persistent caches, that logs re-

covery information at every store. Unlike the version from

the original paper, our JUSTDO implementation adopts the

iDO strategy of placing the program stack in nonvolatile

memory. This change leads to a significant performance

improvement by avoiding the need to manually copy

stack variables into the heap on FASE initialization.

NVML [4] is Intel’s UNDO-logging system. It tracks informa-

tion on persistent objects and separates persistence from

synchronization using programmer delineated FASEs. A

library-based system, NVML requires the programmer to

annotate persistent accesses in each FASE.

NVThreads [8] is a REDO-logging, lock-based system that

operates at the granularity of pages using OS page pro-

tections. Critical sections maintain copies of dirty pages

and release them upon lock release.

Origin indicates the uninstrumented (and thus crash-

vulnerable) code, used as a performance baseline.

Atlas, iDO, and JUSTDO use the LLVM [16] back end.

Mnemosyne uses the gcc 4.8 back end due to its reliance on

C++ transactions, a feature not yet implemented in LLVM. For

all experiments, all runtimes use the same FASEs (but Mnem-

osyne, as a transactional system, treats them as critical sections

on a single global lock, with a speculative implementation).

For testing, we used an otherwise-idle machine with four

AMD Opteron 6276 processors, each of which has 16 single-

threaded cores, for a total of 64 hardware threads. Each core

has access to private L1 and shared L2 caches (totaling 1 MB

per core); the L3 cache (12 MB) is shared across all cores of a

single processor. The machine runs CentOS 7.4. In the absence

of actual nonvolatile DIMMs, we placed our “persistent”
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Fig. 5: Memcached throughput (millions of data structure operations per second) as a function of thread count.
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Fig. 6: Redis throughput for databases with 10K, 100K, and

1M-element key ranges.

data structures in ordinary memory (DRAM). We assume

that clflush instructions followed by an sfence roughly

approximate the overhead of persistence on machines (e.g.,

those with Intel’s ADR [27]) in which the on-chip memory

controller is part of the persistence domain. We explore the

sensitivity of our results to this assumption in Section V-E.

A. Performance Overhead

To understand iDO’s performance on real-world bench-

marks, we integrated it, along with several other failure

atomicity libraries, with Memcached [28] and Redis [29], two

production-quality key-value stores.

Memcached [28] is used—typically to cache query

results—by a wide variety of commercial enterprises, includ-

ing Facebook, Wikipedia, and Flickr. It has been in active

development since 2003. We took advantage of the fact that

Mnemosyne was already integrated into an older version of the

software (1.2.4) in the WHISPER benchmark [26] and further

integrated iDO, Atlas, and JUSTDO into that same, lock-based

code. For our experiments, we ran both a Memcached server

and client on our AMD Opteron server and followed the

methodology of Dice et al. [30] to maximize throughput. We

used the tool memaslap [31] as the client to generate a stream

of Memcached requests according to a desired distribution.

We used 32 client threads, which generated requests with

uniformly distributed 16-byte keys and 8-byte values.2 We

2Memaslap accompanies Memcached in the WHISPER suite [26]. We also
tried to use YCSB [32], but Mnemosyne crashed on this workload with 32
client threads.

experimented with two types of workloads: insertion-intensive

(50% insertion / 50% search) and search-intensive (10% inser-

tion / 90% search).

Throughput appears in Figure 5. In general, iDO logging

outperforms all other FASE-based competitors by a factor

of two or more. At its peak, iDO throughput reaches 25–

33% of that of the original code, imposing significant but

arguably tolerable overhead in return for persistence and crash

consistency. Notably, none of the systems manages to scale

particularly well, and even the original version scales only to

eight threads. Older versions of Memcached were notorious

for exhibiting poor scaling due to coarse-grain locking [30]

and the synchronization framework has been reworked since

1.2.4. Because of the coarse-grain locking in Memcached,

Mnemosyne enjoys better performance than iDO. Given the

scalability problems common to transactional systems (shown

in Sec. V-B), we believe that iDO will outperform Mnemosyne

in later versions of Memcached.

Redis [29] is an object-based key-value store that supports

a wide variety of data structures as values. Unlike Mem-

cached, Redis is single threaded, so we relied on programmer-

annotated FASEs (rather than outermost locks) to delineate

failure-atomic regions. As in our Memcached experiments, we

took advantage of the fact that Redis has already been adapted

for persistent memory [26]—in this case using NVML. Build-

ing on this prior work, we integrated iDO, JUSTDO, and Atlas

into the code base. We ran both server and client on our

AMD Opteron machine, using Redis’s included lru test as

the client. This client queries the server with a mix of 80%

gets and 20% puts, with a power-law key distribution over

a fixed key range (10K, 100K, or 1M) for one minute.

As shown in Figure 6, iDO outperforms existing persistence

systems on Redis by significant margins for all key ranges,

with overhead of 30–50% relative to the crash-vulnerable code.

As Redis has rather long FASEs with relatively few persistent

writes, iDO can take significant advantage of idempotent re-

gions. Notably, as the database grows, the performance differ-

ence between iDO and the uninstrumented code shrinks. This

effect occurs because the benchmark spends more time search-

ing for keys in the larger database, and iDO logging imposes

minimal costs on read paths, since they are idempotent. Also

of note is the performance of the two UNDO logging systems—

Atlas and NVML. While both provide UNDO logging, NVML
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has neither compiler integration nor synchronization; program-

mers must manually annotate every persistent store in a FASE

and insert necessary synchronization. Atlas, on the other hand,

achieves substantially greater ease of use (for multithreaded

code) through compiler-based detection of persistent accesses

and automatic tracking of cross-FASE dependences. These

additional features in Atlas become performance overheads

in a single-threaded benchmark like Redis.

B. Scalability

For scalability experiments, we used the same data structure

microbenchmarks used in the evaluation of JUSTDO log-

ging [9]. These microbenchmarks perform repeated accesses

to a shared data structure across a varying number of threads.

The data structures we implemented were:

Stack A locking variation on the Treiber Stack [33].

Queue The two-lock version of the M&S queue [34].

Ordered List A sorted list traversed using hand-over-hand

locking. This implementation allows for concurrent ac-

cesses within the list, but threads cannot pass one another.

Map A fixed-size hash map that uses the ordered list imple-

mentation for each bucket, obviating the need for per-

bucket locks.

These data structures allow varying degrees of parallelism.

The stack, for example, serializes accesses in a very small

critical section. At the other extreme, the hash map allows

concurrent accesses both across and within buckets. We expect

low-parallelism data structures to scale poorly with worker

thread count whereas high-parallelism data structures should

exhibit nearly linear scaling. Our performance results are

conservative in that they present the maximum possible stress-

test throughput of the structure. In real code, these data

structures may not be the overall bottleneck.

At each thread count, tests are run for a fixed time interval

using a low overhead hardware timer, and total operations are

aggregated at the end. For the duration of microbenchmark

execution, each thread repeatedly chooses a random operation

to execute on the structure. For our evaluations of the queues

and stacks, threads choose randomly between insert or

remove. For the ordered list and hash maps, threads choose

randomly between get or put on a random key within a

fixed range. Threads were pinned to cores in a consistent order

for all experiments: we entirely fill a single 16-core processor

before moving to the next.

During each test, threads synchronize only through the

tested data structure. Variables within the data structures

are appropriately padded to avoid false sharing. To gener-

ate random numbers, threads use thread-local generators to

avoid contention. To smooth performance curves, pages are

prefaulted to prevent soft page faults. Performance of the

microbenchmarks is up to 10× better without persistence; we

elided this result for clarity.

Scalability results appear in Figure 7. As in Memcached

and Redis, iDO logging matches or outperforms other FASE-

based schemes in all configurations, especially at higher

thread counts. In general, iDO logging also scales better than
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Fig. 8: Benchmark region characteristics: cumulative distribu-

tion of stores (top) and live-in registers (bottom) per dynamic

region.

Mnemosyne, showing near perfect speedup on the hash map.

This scaling demonstrates the absolute lack of synchronization

between threads in the iDO runtime—all thread synchroniza-

tion is handled through the locks of the original program.

In contrast, both Atlas and Mnemosyne quickly saturate their

runtime’s synchronization and throttle performance.

Mnemosyne performs better when the applications have

little inherent concurrency or when the number of worker

threads is low. Since both iDO and Atlas require ordered

writes to persistent memory at every lock acquisition and

release in order to track lock ownership, their per-thread

execution is slowed relative to Mnemosyne, which employs

a speculative implementation. Conversely, both iDO and Atlas

support hand-over-hand locking, as used in the ordered list.

Mnemosyne, with its transactional API, does not support this

idiom, so the entire traversal is done in a single transaction

and data is written to persistent memory only once. iDO and

Atlas extract more concurrency from the benchmark, but per-

thread execution is slower than Mnemosyne. Consequently, at

very high thread counts, iDO outperforms Mnemosyne due

to extracted parallelism, despite its single thread performance

being about 4× slower.

C. Region Characteristics

To better understand performance differences, we used

Intel’s Pin tool [35] to collect statistics on idempotent regions.

For each of our applications and microbenchmarks, the upper

half of Figure 8 displays the cumulative dynamic distribution

of stores per idempotent region. Any number larger than one

indicates a savings in logging operations relative to REDO,

UNDO, or JUSTDO logging.

In the microbenchmarks, most regions contain zero or one

stores. The Ordered List, in particular, spends much of its time
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Fig. 7: Throughput (millions of data structure operations per second) as a function of thread count.

searching with hand-over-hand locking and no data updates.

This allows Mnemosyne, which avoids logging lock opera-

tions, to outperform all other schemes in this microbenchmark

for low and moderate thread counts. Even with very small

regions, iDO still outperforms JUSTDO by substantial margins,

largely because of its indirect locking mechanism.

For more realistic applications, we observe that roughly

30% (Memcached) to 50% (Redis) of all regions have multiple

stores, allowing iDO to consolidate log operations, leading

to higher throughput even at low thread counts. We believe

the average region size could be improved with better alias

analysis in the compiler. We currently rely on LLVM’s basic-

AA algorithm, which is quite conservative.

The lower half of Figure 8 displays the cumulative dynamic

distribution of live-in registers per idempotent region. Sig-

nificantly, more than 99% of the dynamic regions in all the

benchmarks have fewer than five live-in registers, indicating

that the typical log operation requires only a single cache line

flush for the register inputs.

D. Recovery Overheads

We evaluate the speed and correctness of recovery by

running the microbenchmarks of Section V-B and killing the

process. We interrupt the applications by sending an external

SIGKILL signal after the applications have run for 1, 10, 20,

30, 40 and 50 seconds. For the recovery, iDO follows the re-

covery procedure in Section III-C. As summarized before, iDO

needs to first initialize the recovery threads. Then iDO recovers

the live-in variables for the interrupted region, jumps back to

the entry of the interrupted region, and continues execution

Kill Time 1 s 10 s 20 s 30 s 40 s 50 s

Stack 0.7 6.6 14.0 20.7 28.7 34.9

Queue 0.8 9.0 20.1 31.6 43.3 56.1

OrderedList 4.1 72.1 162.2 260.9 301.8 424.8

HashMap 0.3 1.5 2.7 4.2 5.2 6.2

TABLE I: Recovery time ratio (ATLAS/iDO) at different kill

times.

until the end of the FASE. Interestingly, the recovery time for

iDO with 64 threads is always about one second. Since most

of the FASEs in the benchmarks are short (generally on the

order of a microsecond), the main overhead for iDO recovery

comes from mapping the persistent region into the process’s

virtual address space and creating the recovery threads—all of

which is essentially constant overhead. In contrast, for Atlas,

recovery needs to first traverse the logs and compute a global

consistent state following the happens-before order recorded

in the logs, then undo any stores in the interrupted FASEs.

Table I shows the ratio of recovery times for ATLAS

and iDO. When the applications run for only a short time

(1 second) before “crashing,” ATLAS can quickly traverse the

small number of logs and compute a consistent state, while

iDO still has to pay the overhead of creating and initializing

recovery threads. However, when the applications run for a

longer time (> 10 seconds), ATLAS must traverse a much

larger number of logs and compute a consistent state. We can

observe up to 400× faster recovery for iDO in this case.
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Fig. 9: Sensitivity to NVM latency (ns).

E. Sensitivity to NVM Latency

In the experiments of Sections V-A through V-D, we relied

on sfence instructions to capture the cost of waiting for

previous writes-back (clflushes) to reach the on-chip mem-

ory controller. Given that some machines may implement this

controller with, say, STT-MRAM instead of capacitor-backed

SRAM, while others may require a handshake across the

memory bus, we re-ran our Memcached and Redis experiments

with additional delays to emulate the cost of nonvolatile

writes (which are typically more expensive than reads) or

of traversing a long data path. As in Mnemosyne [2], we

inserted a configurable delay (looping with nops) after each

non-cacheable store to nonvolatile memory, and after each

clflush that follows cacheable stores to such memory. We

also leveraged a similar capability in Atlas. Results, for delays

ranging from 20–2000 ns, appear in Figure 9. The Memcached

result reprises the 32-server, insertion-intensive data point of

Figure 5(a); the Redis result reprises the “large” data point of

Figure 6.

Both iDO logging and Atlas maintain their performance up

to a delay of around 100 ns; beyond this point, significant

slowdown occurs. JUSTDO logging, by contrast, sees signifi-

cant (1.5–2×) slowdown relative to Figures 5 and 6 with even

20 ns of additional delay. We attribute this difference to the

relatively frequent logging of JUSTDO relative to Atlas and

iDO. While very preliminary, we take these results both as a

strong endorsement of Intel’s ADR [27] (asynchronous DRAM

refresh on power fail) and as a suggestion that it may be

reasonable, with an appropriate runtime, to replace capacitor-

backed SRAM with physically nonvolatile memory in an ADR

memory controller.

VI. RELATED WORK

A. Nonvolatile Memory

With the impending end of DRAM scaling, several device

technologies are competing to provide inexpensive, dense, and

nonvolatile storage in the hopes of becoming the next domi-

nant main memory technology. Candidates include PCM [36],

[37], Memristors [38], and spin-transfer torque magnetic

memory (STT-MRAM) [39]. In building these technologies,

researchers are attempting to maximize density, endurance,

economy, and speed, resulting in various compromises across

these variables.

At the level of the microarchitecture, architects are trying

to give programmers fast and fine-grained control over the

ordering and timing of writes-back from volatile caches into

nonvolatile main memory; the semantics surrounding this

ordering comprise the memory persistency model [1] analo-

gous to traditional memory consistency [40]. While existing

processors provide rough control over write back (e.g., Intel’s

clflush and nontemporal stores), future designs may track

thread-local orderings and buffering to reduce the penalty of

ordering writes into persistence. Various schemes and their

hardware include epoch persistence [36], buffered epoch per-

sistence [1], [41], explicit epoch persistence [42], DPO [43],

and HOPS [26]. Intel has also released ISA extensions for

its persistency model [10] including the new clwb and

clflushopt instructions.

On top of these persistency models, several research groups

have built high performance software for persistent appli-

cations. Example projects include concurrent data struc-

tures [44]–[47] transactional key-value stores [6], [48]–[50],

file systems [17], and databases [51]–[53].

In contrast with these high-performance and specialized

applications, a growing body of work, of which iDO logging is

a member, addresses run-time libraries and compiler support to

enable programmers to more easily write crash-resistant code.

Table II summarizes the differences among several of these

systems. Mnemosyne [2], NV-Heaps [3], SoftWrAP [55], and

NVML [54] extend transactional memory to provide durability

guarantees on nonvolatile memory. Mnemosyne emphasizes

performance; its use of REDO logs postpones the need to flush

data to persistence until a transaction commits. SoftWrAP, also

a REDO system, uses shadow paging and Intel’s now depre-

cated pcommit instruction [10] to batch updates from DRAM

to NVM. NV-heaps, an UNDO log system, emphasizes pro-

grammer convenience, providing garbage collection and strong

type checking to help avoid pitfalls unique to persistence—

e.g., pointers to transient data inadvertently stored in persistent

memory. NVML, Intel’s persistent memory transaction system,

uses UNDO logging on persistent objects and implements

several highly optimized procedures that bypass transactional

tracking for common functions.

Other failure atomic run-time systems [7]–[9], like iDO

logging, use locks for synchronization and delineate failure

atomic regions as outermost critical sections, as discussed in

Section I.
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TABLE II: Failure Atomic Systems and their Properties

System
Failure-atomic

region semantics

Recovery

Method

Logging

Granularity

Dependency

tracking needed?

Designed for

transient caches?

iDO Logging Lock-inferred FASE Resumption Idempotent Region No Yes

Atlas [7] Lock-inferred FASE UNDO Store Yes Yes

Mnemosyne [2] C++ Transactions REDO Store No Yes

NVThreads [8] Lock-inferred FASE REDO Page Yes Yes

JUSTDO [9] Lock-inferred FASE Resumption Store No No

NVHeaps [3] Transactions UNDO Object No Yes

NVML [54] Programmer Delineated UNDO Object No Yes

SoftWrAP [55] Programmer Delineated REDO Contiguous data blocks No Yes

Extensions to several of these systems explore how to

compose operations on concurrent persistent data structures

into larger failure atomic sections, thereby eliminating fine-

grained write tracking within the persistent data structure. For

data structures that meet detectable execution [56], query-

based logging [57] allows UNDO and JUSTDO based systems to

support this optimized composition (analogous to “boosting”

in software transactional memory [58]). It seems clear that

similar optimizations could work in iDO logging.

All of these specialized persistent applications and runtimes

can be seen as nonvolatile memory analogues of traditional

failure atomic systems for disk/flash, and they borrow many

techniques from the literature. Disk-based database systems

have traditionally used write-ahead logging to ensure consis-

tent recoverability [59]. Transactional file updates have been

explored in research prototypes [60], [61] and commercial im-

plementations [62]. User-space implementations of persistent

heaps supporting failure-atomic updates have been explored

in research [63]. Logging-based systems have historically

ensured consistency by discarding changes from any update

interrupted by failure (even in the REDO case, an update will

not be completed on recovery unless it recorded everything

it wanted to do before the failure occurred). In contrast,

for idempotent updates, an update cut short by failure can

simply be re-executed rather than discarding changes, reducing

required logging [64], [65].

B. Idempotence

Over the years, many researchers have leveraged idempo-
tence for various purposes. Mahlke et al. were the first to ex-

ploit the idea, which they used to recover from exceptions dur-

ing speculative execution in a VLIW processor [66]. Around

the same time, Bershad et al. proposed restartable atomic
sequences for a uniprocessor based on idempotence [65].

Kim et al. leveraged idempotence to reduce the hardware

storage required to buffer data in their compiler-assisted specu-

lative execution model [67]. Hampton et al. used idempotence

to support fast and precise exceptions in a vector processor

with virtual memory [68]. Tseng et al. used idempotent regions

for data-triggered thread execution [69].

Recently, researchers have leveraged idempotence for re-

covery from soft errors—e.g., ECC faults [15], [70]. Also,

Liu et al. [20] advanced the state of the art with checkpoint
pruning, which serves to remove logging operations that can

be reconstructed from other logs in the event of a soft run-time

error. Liu et al. [21], [22], [71], [72] also extended idempotent

processing in the context of sensor-based soft error detectors

to ensure complete recovery.
More recently, the energy-harvesting system community

has started using idempotent processing to recover from the

frequent power failures that occur in systems without batteries.

Xie et al. [73] use idempotence-based recovery and heuristics

to approximate minimal checkpoints (logs) to survive power

failures. Their design revolves around the idea of severing

anti-dependences by placing a checkpoint between a load-store

pair, in a manner reminiscent of Feng et al. [70] and de Kruijf

et al. [15]. Lately, their techniques were used by Woude et

al. [74] to highlight both the promise and the limitations of

using idempotence to ensure forward progress when multiple

power failures occur within a span of microseconds. In a

similar vein, Liu et al. [75] highlight the limitations of anti-

dependence based idempotence analysis in terms of additional

power consumption due to unnecessary checkpoints. Signif-

icantly, all of these projects target embedded processors in

which out-of-order execution and caches do not exist.
Despite this wealth of related work, iDO is, to the best of

our knowledge, the first system to use idempotence to achieve

lightweight, fault-tolerant execution of failure-atomic sections

in general-purpose programs.

VII. CONCLUSION

Fault tolerance is one of the most exciting applications

of emerging nonvolatile memory technologies. Existing ap-

proaches to persistence, however, suffer from problems with

both performance and usability. Transactional approaches are

generally incompatible with existing lock-based code, and

tend not to scale to high levels of concurrency. Failure-

atomic regions (FASEs), by contrast, are compatible with

most common locking idioms and introduce no new barriers

to scalability. Unfortunately, prior FASE-based approaches to

persistence incur significant run-time overhead.
To address these limitations, we have introduced iDO

logging, a compiler-directed approach to failure atomicity.

The iDO compiler divides each FASE into idempotent re-

gions, arranging on failure recovery to restart any interrupted
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idempotent region and execute forward to the end of the

FASE. Unlike systems based on UNDO or REDO logging,

iDO avoids the need to log individual program stores, thereby

achieving a significant reduction in instrumentation overhead.

Across a variety of benchmark applications, iDO significantly

outperforms the fastest existing lock-based persistent systems

during normal execution, even on machines with conventional

volatile caches, while preserving very fast recovery times.
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